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Faced with the need to quantify software (un)reliability in the presence of faults, the 
semantics of state-based systems is urged to evolve towards quantified (e.g. probabilistic) 
nondeterminism. When one is approaching such semantics from a categorical perspective, 
this inevitably calls for some technical elaboration, in a monadic setting.
This paper proposes that such an evolution be undertaken without sacrificing the simplicity 
of the original (qualitative) definitions, by keeping quantification implicit rather than 
explicit. The approach is a monad lifting strategy whereby, under some conditions, 
definitions can be preserved provided the semantics moves to another category.
The technique is illustrated by showing how to introduce probabilism in an existing 
software component calculus, by moving to a suitable category of matrices and using linear 
algebra in the reasoning.
The paper also addresses the problem of preserving monadic strength in the move from 
original to target (Kleisli) categories, a topic which bears relationship to recent studies in 
categorial physics.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The calculus of state-based systems has been a long quest in the theory of computing. The study of deterministic, 
non-deterministic, probabilistic and weighted automata are steps towards increasingly sophisticated mathematical models 
intended to express the complexity of the real-life situations they wish to control or mimic.

In the coalgebraic approach [40] a state-based system is regarded as a function of type S → F S which expresses its 
behavior pattern, that is, how it evolves from the current state (S) to future states (F S). In this setting, this evolution is 
mirrored in the more and more complex functor F which is required to capture the overall behavior:

• F S = S — the system is deterministic and total
• F S = 1 + S — the system is deterministic but partial (alternative 1 means failure)
• F S = P S — the system is non-deterministic (where P S is the set of all finite subsets of S)
• F S = D S — the system is probabilistic (where D S is the set of all distributions of S with finite support).
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The behavior pattern of a complex coalgebraic system may combine two or more functors F above. A survey by 
Sokolova [43] identifies no less than thirteen such combinations in the literature, most of them concerned with discrete 
probabilism. As one would expect, the more Fs are involved in the functor expressing the next state pattern, the more 
intricate the corresponding formalization is.

This paper exploits a technique to tame such complexity based on the fact that all functors F above are monads and 
therefore associated to particular Kleisli categories [30]. However, as is well known, not every combination of monads forms 
a compound monad. Category theory is a generic mathematical framework based on a typed notion of composition. The 
slogan “keep definition, change category” emphasizes the stepwise compositionality of the proposed approach: once another 
monad is combined with F to capture another aspect of the behavior of the system, one keeps the definition of the previous 
step and re-interprets it inside the Kleisli category of the new monad.

The approach is attractive for two reasons: first, the structure of the “original” definition (written for the simplest case) 
is preserved and does not get convoluted; second, such Kleisli categories often have good potential for reasoning, as is the 
case of relation algebra (associated to the Kleisli category of the powerset monad) and linear algebra (similarly associated 
to the distribution monad and other weighted semantic models). The cost (if understood as such) is that of expressing the 
semantics of state-based systems in the pointfree language of category theory, putting emphasis on composition and other 
standard constructs.

Paper structure. This paper is an extension of a previous publication [38] which found its motivation in the need for state-
based system calculi to adapt to new trends in circuit design that point towards tolerating some imperfection of hardware 
devices. This calls for semantic models able to cope with faulty behavior in a quantitative way, e.g. probabilistic. Sect. 2 and 
Sect. 3 recall such a motivation. The case study of [38] — the enrichment of a calculus of software components [3] towards 
fault propagation — is given in Sect. 4 and extended with more results in Sect. 5. The required monad–monad lifting strat-
egy is also enriched in Sect. 8 concerning free monads. More insight into the problem of lifting strong monads is given in 
Sect. 9. For easy reference, Appendix A gives a minimal set of standard definitions required in the main text. Appendix B
gives proofs of auxiliary or lengthy to prove results.

Contribution. This paper proposes that, similarly to what has happened with the increasing role of relation algebra in com-
puter science [6,8,42], linear algebra be adopted as its natural development where quantitative reasoning is required. Relation 
algebra and linear algebra share a lot in common once addressed from e.g. a categorial perspective [9,28]. So there is room 
for evolution rather than radical change.

The contributions of this paper include (a) a case study on such an evolution concerning a calculus of software compo-
nents [3,4] intended for quantitative analysis of software reliability (sections 4 and 5); (b) a (generic) strategy for reducing 
the impact of the “probabilistic move” based on re-interpreting state-based system semantics in linear algebra through 
monadic “Kleisli-lifting”, keeping as much of the original semantics definition as possible (sections 6 to 8); (c) a discussion 
on the loss (across Kleisli-lifting) of the naturality of operations involving pairing, a technical aspect of systems’ modeling 
which needs attention (Sect. 9).

2. Motivation

In the trend towards miniaturization of automated systems the size of circuit transistors cannot be reduced endlessly, as 
these eventually become unreliable. There is, however, the idea that inexact hardware can be tolerated provided it is “good 
enough” [26].

Good enough has always been the way engineering works as a broad discipline: why invest in a “perfect” device if a less 
perfect (and less expensive) alternative suffices? Imperfect circuits will make a certain number of errors, but these will be 
tolerated if they nevertheless exhibit almost the same performance as perfect circuits. This is the principle behind inexact 
circuit design [26], where accuracy of the circuit is exchanged for cost savings (e.g. energy, delay, silicon) in a controlled way.

If unreliable hardware becomes widely accepted on the basis of fault tolerance guarantees, what will the impact of this 
be on the software layers which run on top of it in virtually any automated system? Running on less reliable hardware, 
functionally correct (e.g. proven) code becomes faulty and risky. Are we prepared to handle such risk at the software level 
in the same way it is tackled by hardware specialists? One needs to know how risk propagates across networks of software 
components so as to mitigate it.

The theory of software design by stepwise refinement already copes with some form of “approximation” in the sense that 
“vague” specifications are eventually realized by precise algorithms by taking design decisions which lead to (deterministic) 
code. However, there is a fundamental difference: all input–output pairs of a post-condition in a software specification are 
equally acceptable, giving room for the implementer to choose among them. In the case of imperfect design, one is coping 
with undesirable, possibly catastrophic outputs which one wishes to prove very unlikely.

In the area of safety critical systems, NASA has defined a probabilistic risk assessment (PRA) methodology [44] which 
characterizes risk in terms of three basic questions: what can go wrong? how likely is it? and what are the consequences? The 
PRA process answers these questions by systematically modeling and quantifying those scenarios that can lead to undesired 
consequences.

Altogether, it seems (as happened with other sciences in the past) that software design needs to become a quantitative
or probabilistic science. Consider concepts such as e.g. reliability. From a qualitative perspective, a software system is reliable
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if it can successfully carry out its own task as specified [11]. But our italicized text is an inexact quotation of [11], the exact one 
being: reliability [is] defined as a probabilistic measure of the system ability to successfully carry out its own task as specified.

From a functional perspective, this means moving from specifications (input/output relations) and implementations (func-
tions) to something which lives in between, for instance probabilistic functions expressing the propensity, or likelihood of 
multiple, possibly erroneous outputs. Typically, the classic non-deterministic choice between alternative behaviors,

bad ∪ good (1)

has to be replaced by probabilistic choice [31]

bad p� good (2)

and the reasoning should be able to ensure that the probability p of bad behavior is acceptably small.
Does the above entail abandoning relational reasoning in software design? Interestingly, the same style of reasoning 

will be preserved provided binary relations are generalized to (typed) matrices, the former being just a special case of the 
latter. This leads to a kind of linear algebra of programming [36]. Technically, in the same way relations can be transposed to 
set valued functions, which rely on the powerset monad to express non-determinism, so do probabilistic matrices, which 
transpose to distribution-valued functions that rely on the distribution monad to express probabilistic behavior. It turns 
out that it is the converse of such transposition which helps, saving explicit set-theoretical constructions in one case and 
explicit distribution manipulation in the other via pointfree styled, algebraic reasoning.

3. Coalgebraic approach

Quantitative software reliability analysis is not so easy in practice because, as is well-known, software systems are nowa-
days built component-wise. Cortellessa and Grassi [11] quantify component-to-component error propagation in terms of a 
matrix whose entry (i, j) gives the probability of component i transferring control to component j — a kind of probabilis-
tic call-graph. For our purposes, this abstracts too much from the semantics of component-oriented systems, which have 
been quite successfully formalized under the components as coalgebras motto (see e.g. [3]), building on extensive work on 
automata using coalgebra theory [17,40].

As already mentioned, coalgebra theory offers a generic approach to transition systems, described by functions of type

f : S → F S (3)

where S is a set of states and F S captures the future behavior of the system expressed by functor F. For F = P, the 
powerset functor, f is the power-transpose [6] of a binary relation on the state space S. Other instances of F lead to more 
sophisticated transition structures, for instance Mealy and Moore machines involving inputs and outputs. Barbosa [3] gives 
a software component calculus in which components are regarded as such machines, expressed as coalgebras.

In this paper we wish to investigate a (technically) cheap way of promoting the components as coalgebras approach from 
the qualitative, original formulation [3] to a quantitative, probabilistic extension able to cope with the impact of inexact 
circuit design on software. As the survey by Sokolova [43] shows, probabilistic systems have been in the software research 
agenda for quite some time. From the available literature we rely on a paper [17] which suits our needs: it studies trace 
semantics of state-based systems with different forms of branching such as e.g. the non-deterministic and the probabilistic, 
in a categorial setting. This fits with our previous work [37] on probabilistic automata as coalgebras in categories of matrices 
which shows that the cost of going quantitative amounts essentially to changing the underlying category where the reasoning 
takes place.

4. Case study

This section introduces our case study, the enrichment of the component algebra of [3] towards probabilistic software 
components. For illustrative purposes, we have implemented this algebra of component combinators in Haskell for the 
particular situation in which components are regarded as (monadic) Mealy machines. The original algebra has furthermore 
been extended probabilistically relying on the PFP library written by Erwig and Kollmannsberger [12]. On purpose, the 
examples hide many technical details which are deferred to later sections.

Abstract Mealy machines. An F-branching Mealy machine is a function of type

S × I → F (S × O) (4)

where S is the machine’s internal state space, I is the set of inputs and O the set of outputs. Our main principle is that 
of regarding a software system as a combination of Mealy machines, from elementary to more complex ones. For this to 
work, F in (4) will be regarded as a monad capturing effects which are propagated upwards, from component to composite 
machines.
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Functions of type (4), for F a monad, will be referred to as monadic Mealy machines (MMM) in the sequel. This type (4)
can be written in two other equivalent (isomorphic) ways, all useful in component algebra: the coalgebraic S → (F (S × O))I

— compare with (3) — and the state-monadic I → (F (S × O))S , depending on how currying is applied.

Methods = elementary Mealy machines. Let us see an example which shows how an aggregation of (possibly partial) functions 
sharing a data type already is a Mealy machine. In the example, a stack is modeled as a (partial) algebra of finite lists 
written in Haskell syntax as follows

push (s,a) = a : s
pop = tail
top = head
empty s = (0 ≡ length s)

whose types are 

push :: ([a],a) → [a]
pop :: [a] → [a]
top :: [a] → a
empty :: [a] → B

Below we show how to write each individual function as an elementary Mealy machine on the shared state space S = [ a ]
before aggregating them all into a single machine (component).

In the case of push, I = a. (Note that, in Haskell syntax, type variables are denoted by lower-case letters.) What about 
O? As in [3] we regard it as the singleton type 1 by pairing push with the uniquely defined (total and constant) function 
! :: b → 1:

push′ :: ([a],a) → ([a],1)

push′ = push � !
This definition relies on the pairing operator, (f � g) x = (f x, g x).

Note how action (“method”) push′ is pure in the sense that it does not generate any effect. The same happens with

empty′ :: ([a],1) → ([a],B)

empty′ = (id � empty) · π1

where this time the singleton type is at the input side, meaning a “trigger” for the operation to take place. Functions id and 
π1 are the identity function and the projection π1 (x, y) = x, respectively, the former ensuring that no state change takes 
place while checking for emptiness.

Concerning pop and top we have a new situation: as these are partial functions, some sort of totalization is required 
before promoting them to Mealy machines. The cheapest way of totalizing partial functions resorts to the “Maybe” monad 
M, mapping into an error value ∗ the inputs for which the function is undefined and otherwise signaling a successful 
computation using the monad’s unit η :: S →M S2:

(⇐) :: (a → b) → (a → B) → a → M b
(f ⇐ p) a = if p a then (η · f ) a else ∗

Note how f ⇐ p “fuses” f with a given pre-condition p, as in the following promotion of top to an M-monadic Mealy 
machine

top′ :: ([a],1) →M ([a],a)

top′ = ((id � top) ⇐ (¬ · empty)) · π1

which, as empty′ , does not change the state. Opting for the usual semantics of the pop method,

pop′ :: ([a],1) →M ([a],a)

pop′ = ((pop � top) ⇐ (¬ · empty)) · π1

we finally go back to pure push′ and empty′ making them M-compatible (i.e. M-resultric) through the success operator, i.e. 
the unit η of monad M:

push′ :: ([a],a) →M ([a],1)

push′ = η · (push � !)
empty′ :: ([a],1) →M ([a],B)

empty′ = η · (id � empty) · π1

Components = ∑
methods. Now that we have the methods of a stack written as individual Mealy machines over the same 

monad and shared state space, we add them up to obtain the intended stack component.3

2 Symbols ∗ and η pretty-print Nothing and Just of Haskell’s concrete syntax, respectively, cf. definition data M a = Nothing | Just a.
3 Coproduct notation x + y in the type declaration pretty-prints Haskell’s syntax for disjoint union, Either x y.
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stack :: ([a],1 + 1 + a + 1) →M ([a],a + a + 1 + B)

stack = pop′ ⊕ top′ ⊕ push′ ⊕ empty′

1 + 1 + a + 1

stack

a + a + 1 + B

Before giving the details of the binary operator ⊕ which binds methods together, note that stack is also a (composite) Mealy 
machine (4), for I = 1 + 1 + a + 1 and O = a + a + 1 + B. This I/O interfacing, pictured above, captures the four alternatives 
which are available for interacting with a stack. Note how input singleton types 1 mean “do it!” and output ones mean 
“done!”.

Components such as stack arise as the sum of their methods, a MMM binary combinator whose definition in Haskell 
syntax is4

(⊕) :: (Functor F) ⇒
- - input machines
((s, i) → F (s,o)) → ((s, j) → F (s,p)) →
- - output machine
(s, i + j) → F (s,o + p)

- - definition
m1 ⊕ m2 = (F dr◦) · cozip · (m1 + m2) · dr

Isomorphism dr :: (s, i + j) → (s, i) + (s, j) (resp. its converse dr◦) distributes (resp. factorizes) the shared state across the sum 
of inputs (resp. outputs); m1 + m2 is the sum (coproduct) of m1 and m2 and “cozip” operator cozip :: F a + F b → F (a + b)

promotes sums through functor F.5

Systems = component compositions. Let us now consider the idea of building a system in which two stacks interact with each 
other, e.g. by popping from one and pushing the outcome onto the other.6 For this another MMM combinator is needed 
taking two I/O-compatible MMM m1 and m2 (with different internal states in general) and building a third one, m1 ; m2, in 
which outputs of m1 are sent to m2:

I m1
J ; J m2

K (5)

The type of this combinator as implemented in Haskell is

(;) :: (Strong F,Monad F) ⇒
- - input machines
((s, i) → F (s, j)) → ((r, j) → F (r,k)) →
- - output machine
((s, r), i) → F ((s, r),k)

It requires F to be a strong monad [25], a topic to be addressed later. Note how the output machine has a composite state 
pairing the states of the two input machines.

We defer to a later stage the analysis of the formal definition of this combinator, which is central to the principle of 
building components out of other components [3]. As an example, we build the composite machine already anticipated 
above,

m = pop′ ; push′

which pops from a source stack (m1 = pop′) and pushes onto a target stack (m2 = push′). By running e.g.7

> m(([1],[2]),())
Just (([],[1,2]),())

4 Components of this kind are identified as separable in [2], where they are regarded as a collection of actions over a shared state space, each of them with a 
specific interface. This means that one may also “extract” from the overall component any of its methods (i.e. sub-components).

5 See Appendix B for the definitions of dr and cozip.
6 This interaction will of course fail if the source stack is empty, but this is not our concern — monad M will take care of such effects.
7 Recall that () is the Haskell notation for the unique inhabitant of type 1.
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we obtain the expected output and new state, while

> m(([],[2]),())
Nothing

fails, because the source stack is empty.

Faulty components. Let us finally consider the possibility, due to hardware imperfection, of pop′ behaving in the source stack 
of the previous example as expected, with probability p, and unexpectedly like top′ with probability 1 − p,

pop′′ :: P → ([a],1) →D (M ([a],a))

pop′′ p = pop′
p� top′

expressed in the notation of (2). P is the probability interval [0 . .1] and D denotes the (finite) distribution monad. The choice 
operator (p�) is defined by

(f p� g) x = {(f x,p), (g x,1 − p)}
where a distribution {(xi, pi)}i∈S is denoted by pairing each element of its support S with the corresponding probability.

Concerning the target stack, let the conjectured fault of push′ be that, with probability 1 − q, it does not push anything:

push′′ :: P → ([a],a) → D (M ([a],1))

push′′ q = push′
q� !′

where !′ = η · (id × !), of generic type (s, a) →M (s, 1), is the promotion of function ! to a MMM.
Note how pop′′ and push′′ have become “doubly” monadic in their cascading of the distribution (D) and Maybe (M) 

monads. To compose them, as in m = pop′ ;push′ above, we need a more sophisticated version of the semicolon combinator8:

(;D) ::
- - input probabilistic MMMs
((s, i) →D (M (s, j))) → ((r, j) → D (M (r,k))) →
- - output probabilistic MMM
((s, r), i) → D (M ((s, r),k))

Thanks to this new combinator, we can build a faulty version of machine m above 9

m2 = (pop′′ 0.95) ;D (push′′ 0.8)

Once we test it for the same composite state ([ 1 ], [ 2 ]) as in the first experiment above, we obtain:

> m2(([1],[2]),())
Just (([],[1,2]),()) 76.0%
Just (([],[2]),()) 19.0%

Just (([1],[1,2]),()) 4.0%
Just (([1],[2]),()) 1.0%

This simulation shows that the overall risk of faulty behavior is 24% (1 − 0.76), structured as: both stacks misbehave (1%); 
source stack misbehaves (4%); target stack misbehaves (19%). As expected, the second experiment

> m2(([],[2]),())
Nothing 100.0%

is always catastrophic (again popping from an empty stack).
Summing up: our animation in Haskell has been able to simulate fault propagation between two stack components with 

different fault patterns arising from conjectured hardware imperfections. Note that such animations may give false negatives 
in the sense of two faults canceling each other out and the result ending up “correct” for the wrong reason.

In the sequel we will want to reason about such fault propagation rather than just simulate it.

8 Its actual implementation is once again intentionally skipped.
9 The probabilities in these examples are chosen with no criterion apart from leading to distributions visible to the naked eye. By all means, 5% would 

be extremely high risk in realistic PRA [44], where only figures as small as 1.0E–7 become “acceptable”.
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5. Component algebra

The essence of the component algebra of [2,3] is a notion of component composition stated in a coalgebraic, categorial 
setting. Below we briefly review this framework, instantiated for generic F-branching Mealy machines (4).

Let X
η

FX F
2 X

μ
be a monad and m1, m2 be two machines (functions) of types S × I → F (S × J) and Q × J →

F (Q × K), respectively. We will represent these machines by arrows I
m1

S
J and J

m2

Q
K , respectively.10 Then their 

composition I
m1;m2

S × Q
K is a machine with composite state S × Q built in the following way: first, we build I

extr m1

S × Q
J , the 

state-extension of m1 with the state Q of m2

F ((S × J) × Q) F (S × J) × Q
τr

(S × I) × Q
m1×id

F ((S × Q) × J)

F xr

(S × Q) × I

xr

extr m1

where xr : (A × B) × C → (A × C) × B is the obvious isomorphism and τr is the right strength of monad F, τr : (F A) × B →
F (A × B), which therefore has to be a strong monad.11 The purpose of xr is to bring together the compound state and 
input I, on the input side. Note that I

extr m1

S × Q
J is of the same I/O type as m1 but its state is of type S × Q , not S.

In turn, m2 is extended in the same way, adding the state of m1 to the left,

F (S × (Q × K)) S × F (Q × K)
τl S × (Q × J)

id×m2

F ((S × Q) × K)

F a

(S × Q) × J

a

extl m2

where a :(A ×B) ×C → A ×(B ×C) is the well-known isomorphism. Finally, τl is the left strength of F, τl :(B ×F A) → F (B ×A). 
Thus we can define

extl m = F a◦ · τl · (id × m) · a (6)

where a◦ denotes the converse of isomorphism a, and

extr m = F xr · τr · (m × id) · xr (7)

since xr◦ = xr. Note how F a◦ brings together the compound state and type K , on the output. In spite of the efforts of xr to 
reconcile the input of extension extr m1 with the output of extr m2, they do not match, as the latter is F-more complex than 
the former:

F ((S × Q) × J) (S × Q) × I
extr m1

F ((S × Q) × K) (S × Q) × J
extr m2

F (F C)

μ

F B
F f

A
g

f•g

F C B
f

(8)

This suggests that f and g be composed using the Kleisli composition associated with monad F, denoted by f •g and depicted 
in diagram (8). Thus we obtain a generic definition of monadic Mealy machine composition which was left implicit in Sect. 4.

Definition 1. Given two F-monadic Mealy machines (MMM) I
m1

S
J and J

m2

Q
K with states S and Q , respectively, 

their composition is the F-monadic Mealy machine I
m1;m2

S × Q
K defined by:

10 Wherever the state S of a machine A m

S
B is implicit from the context, simplified notation A m B will be used instead.

11 See Definition 14 in Appendix A.
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m1 ; m2 = (extl m2) • (extr m1) (9)

which unfolds to

m1 ; m2 = ((F a◦) · τl · (id × m2) · xl) • (τr · (m1 × id) · xr) � (10)

Note the economy of this definition compared to the one relying directly on the multiplication μ and unit η of F. An 
advantage of relying on Kleisli composition (8) is its rich algebra, forming a monoid with η

f • (g • h) = (f • g) • h (11)

f • η = f = η • f (12)

and trading nicely with normal composition, cf. for instance

(F f ) · (h • k) = (F f · h) • k (13)

(f · g) • h = f • (F g · h) (14)

Further to composition and sum, our component algebra includes the operator which lifts any function to a trivial MMM 
by ignoring its internal state:

�·� : (I → O) → (S × I → F (S × O))

�f�= η · (id × f ) (15)

Functional lifting is convenient for expressing interface-level operations, that is, “state-less” transformations of the input 
and/or output types of a machine:

m{f→g} = �g� • m • �f� (16)

for f : J → I, g : O → P and m : I → O, yielding m{f→g} : J → P. Unfolding (16) one obtains

m{f→g} = F (id × g) · m · (id × f ) (17)

using the laws of Kleisli composition. This combinator is termed wiring in [2] where it is used at length. For our purposes, 
wiring will be particularly useful for defining machine sum as a universal construction.

Definition 2. Given two F-monadic Mealy machines I
p

S
O and J

q

S
P (with the same state space) their sum is the 

machine I + J
p⊕q

S
O + P defined by the following universal property:

k = p ⊕ q ≡
{

k{i1→id} = p{id→i1}
k{i2→id} = q{id→i2}

� (18)

Property (18) is convenient for decomposing component expressions where ⊕ is the outermost combinator. Before show-
ing this, we prove the consistency of this definition with respect to the closed formula given earlier for sums:

k = p ⊕ q

≡ { closed formula for ⊕ }
k = F dr◦ · cozip · (p + q) · dr

≡ { dr is an isomorphism ; property (B.5) }
k · dr◦ = [F (id × i1),F (id × i2)] · (p + q)

≡ { definition of dr◦ (B.1) ; coproduct fusion and absorption [6] }
[k · (id × i1),k · (id × i2)] = [F (id × i1) · p,F (id × i2) · q]

≡ { universal property }
k · (id × i1) = F (id × i1) · p ∧ k · (id × i2) = F (id × i2) · q

≡ { (17) twice }
k{i1→id} = p{id→i1} ∧ k{i2→id} = p{id→i2} �
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Lemma 3. The following properties of the machine sum operator hold:

extr (p ⊕ q) = extr p ⊕ extr q (19)

extl (p ⊕ q) = extl p ⊕ extl q (20)

(p ⊕ q){i1→id} = p{id→i1} (21)

(p ⊕ q){i2→id} = q{id→i2} (22)

Proof. Equalities (19) and (20) unfold into

(extr (p ⊕ q)){i1→id} = (extr p){id→i1} (23)

(extr (p ⊕ q)){i2→id} = (extr q){id→i2} (24)

and

(extl (p ⊕ q)){i1→id} = (extl p){id→i1} (25)

(extl (p ⊕ q)){i2→id} = (extl q){id→i2} (26)

respectively, which are proved in Appendix B. Equalities (21) and (22) follow straightforwardly from (18) by cancellation, 
i.e. via substitution k := p ⊕ q. �

Universal property (18) also provides a strategy for calculating the exchange law between machine sum and machine 
composition which follows.

Theorem 4 (Exchange law). Let I
m1

S
O , J

m2

S
P and O

n1

Q
U , P

n2

Q
V be pairs of F-monadic Mealy machines (each 

pair sharing the same state space). Then the following exchange law holds, showing how sequential composition commutes with 
sums12:

(m1 ⊕ m2) ; (n1 ⊕ n2) = (m1 ; n1) ⊕ (m2 ; n2) (27)

Proof. To prove (27) we observe that, by (18), the equality unfolds into{
(m1 ⊕ m2 ; n1 ⊕ n2){i1→id} = (m1 ; n1){id→i1}
(m1 ⊕ m2 ; n1 ⊕ n2){i2→id} = (m2 ; n2){id→i2}

Below we prove the first conjunct, the proof of the other being similar.

(m1 ⊕ m2 ; n1 ⊕ n2){i1→id}
= { definitions of wiring (16) and (;) (9) }

(extl (n1 ⊕ n2) • extr (m1 ⊕ m2)) • �i1�
= { definition of �·� (15) ; • associativity ; (16) }

extl (n1 ⊕ n2) • (extr (m1 ⊕ m2){i1→id})
= { property (23) etc. }

extl (n1 ⊕ n2) • F (id × i1) · extr m1

= { • / · assoc; property (25) }
F (id × i1) · (extl n1 • extr m1)

= { definitions of (;) (9) and wiring (16) }
(m1 ; n1){id→i1} �

In pictures, law (27) shows that the composition of machines

I+J
m1 ⊕ m2

O+P ; O+P n1 ⊕ n2
U+V (28)

12 For similar exchange laws in process calculi see e.g. [18].
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is the same machine as⎛
⎜⎜⎜⎜⎝

I m1
O ; O n1

U

+ ⊕ +
J

m2 P
;

P
n2 V

⎞
⎟⎟⎟⎟⎠ (29)

Thinking of (28) as the pipeline of two components p = m1 ⊕ m2 and q = n1 ⊕ n2 with two-methods each, (29) gives us a 
composite (also two-method) machine whose methods are obtained by synchronizing the methods of p and q.

In general, component communication is not so immediate, for it usually requires extra wirings (16) at interface-level to 
route the data across sub-components, as the examples in technical report [32] amply show. This report also describes how 
the above algebraic kernel for state-based system composition can be used to assign a MMM-semantics to a proof-of-concept 
object-oriented language and prove semantic properties of the language.13

6. Composing non-deterministic components

Having defined an algebra of combinators of software components understood as F-branching Mealy machines, let us 
come back to the central point of this paper: is such an algebra applicable to faulty (e.g. probabilistic) Mealy machines?

Recall from the motivation how we have simulated faulty composition of (probabilistic) M-Mealy machines in Haskell. 
In general, this means handling machines of type Q × I → D (F (Q × J)) for some space state Q , where before we had 
Q × I → F (Q × J). Thus another monad — the distribution monad D — is combined with F. Generalizing even further, we 
want to consider machines of type

Q × I → T (F (Q × J)) (30)

where monad X
ηF

F X F
2 X

μF caters for transitional effects (how the machine evolves) and monad

X
ηT

T X T
2 X

μT specifies the branching type of the system, adopting the terminology of [17]. A typical instance 
is T = P (powerset) and F = M = (1+) (‘maybe’), that is, machines

m : Q × I → P (1 + Q × J) (31)

which are reactive, possibly terminating non-deterministic finite state automata.
Note, however, that m (31) could alternatively be specified as a binary relation R of type Q × I → 1 + Q × J of which m is 

the power transpose [6], following the equivalence

R = �m� ≡ 〈∀b,a :: b R a ≡ b ∈ m a〉 (32)

which tells that a set-valued function m is uniquely represented by a binary relation R = �m� and vice-versa. Moreover, 
�m • n� = �m� · �n� holds, where m • n means the Kleisli composition of two set-valued functions and �m� · �n� is the 
relational composition of the corresponding binary relations:

b (R · S) a ≡ 〈∃c :: b R c ∧ c S a〉 (33)

This means that the category of binary relations coincides with the Kleisli category of the powerset monad

X
sing

P X P
2 Xdunion where sing a = {a} and dunion S = ⋃

s∈S s.
Back to (31), the advantage of “thinking relationally” is that machine m can be “replaced” by the relation �m� : Q × I →

1 + Q × J from whose (relational) type the powerset has vanished.14 So, in a sense, it is as if we were back to the situation 
where only M = (1+) is present.

How do relational M-machines compose? Recall from (9), (10) that machine composition relies on Kleisli composition (8)

— in this case, of monad M X = 1 + X, with structure X
i2 1 + X 1 + (1 + X)

[i1,id]
, where i1 and i2 are the injections 

associated to binary sums. Thus:

f • g = [i1, id] · (id + f ) · g = [i1, f ] · g (34)

13 This is supported by the MMM Haskell library available from https :/ /github .com /VictorCMiraldo /mmm.
14 “Vanished” is perhaps too strong a word but it serves our purpose: the powerset becomes implicit rather than explicit (as before) and so it does not get 

in the way of the calculations.

https://github.com/VictorCMiraldo/mmm
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How about relations? Consider evaluating expression [i1, f ] · g for f replaced by some relation 1 + B CR ,15 g by some 

other relation 1 + C AS and function composition replaced by relation composition:

R • S = [i1,R] · S (35)

Unfolding [i1, R] to i1 · i1
◦ ∪ R · i2

◦ one obtains, abbreviating by ∗ the application of i1 to the unique inhabitant of singleton 
type 1:

y (R • S) a ≡ (y = ∗) ∧ (∗ S a) ∨ 〈∃c :: (y R c) ∧ ((i2 c) S a)〉
In words: composition R • S is doomed to fail wherever S fails; otherwise, it will fail where R fails. For the same input, R • S
may both succeed and fail.

Summing up: we have encoded the Kleisli composition of a monad (M) not in the category of sets and functions but in 
the Kleisli category of another monad, the powerset monad. This is the category of binary relations. We can thus think of 
M-monadic Mealy machines as binary relations which compose (as machines) according to definition16

S ; R = [i1, (id + a◦) · τl · (id × R) · xl] · τr · (S × id) · xr (36)

where all dots mean relation composition (33).17

Note, however, that for the above constructions to help in reasoning about non-deterministic components we have to 
check if the properties of monad M remain intact once encoded relationally, extensive to the properties of the strength
operators also present in (36). Prior to doing this, let us replay the scenario above for the distribution in place of the 
powerset monad.

7. Composing probabilistic components

The probabilistic treatment of imprecision (faults) in M-Mealy machines calls for T = D and F = M in type (30), leading 
to

m : Q × I →D (1 + Q × J) (37)

whereupon non-deterministic branching becomes weighted with probabilities indicating the likelihood of state transitions, 
recall (2). So, m is now a distribution-valued function.

It turns out that the strategy to cope with this situation is similar to that of the previous section: distribution-valued 
functions are adjoint to so-called column stochastic (CS) matrices, which represent the inhabitants of the Kleisli category 
associated with monad D; and, for this monad, Kleisli composition corresponds to matrix composition, usually termed matrix 
multiplication:

b (M · N) a ≡ 〈
∑

c :: (b M c) × (c N a)〉 (38)

In this formula, both M and N are matrices. We prefer to denote the cell in (say) M addressed by row b and column a by 
the infix notation b M a, rather than the customary M(b, a) or Mb,a . This stresses on the notational proximity with relations: 
matrices are just weighted relations.18

Summing up: in the same way the “Kleisli lifting” of Sect. 6 makes the powerset monad implicit, leading into relation 
algebra, the same lifting now hides the distribution monad and leads to the linear algebra of CS matrices [36], under the 
universal correspondence

M = �f� ≡ 〈∀b,a :: b M a = (f a) b〉 (39)

where f : A → D B is a probabilistic function and D B is the set of all distributions on B with countable support; that is, for 
every a ∈ A, f a is some function μ : B → [ 0, 1 ] to the unit interval such that 

∑
b ∈ B μ b = 1.

Correspondence (39) establishes the isomorphism

A →D B ∼= A →CS B (40)

where on the left-hand side we have D-valued functions and on the right-hand side A →CS B denotes the set of all CS 
matrices with columns indexed by A, rows indexed by B and cells taking values from the interval [ 0, 1 ].19 This matrices as 

15 Relations of this type express the possibility that for some inputs, both termination and nontermination are possible [that is] relations from legal states to a “lifted” 
state set containing all legal states and in addition one “illegal state” standing for nontermination [22].
16 Note that, following precedents in the literature of the algebra of programming [6] and components as coalgebras [3], we write “.” for (backward) 

composition of relations and “;” for (forward) composition of components.
17 As usual, every function symbol f in (36) should be regarded as the homonym relation f such that b f a holds iff b = f a.
18 Ref. [37] argues in this direction by adapting well-known rules of relation algebra to linear algebra.
19 Each such column represents a distribution and therefore adds up to 1, as written above.
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arrows approach [28] regards them as morphisms of suitable categories (of typed matrices). In the current paper we focus 
on matrices on the interval [ 0, 1 ] subject to the column stochasticity constraint assumed in (39).

With no further detours let us adapt definition (35) of (relational) M-Kleisli composition to the corresponding definition 
in linear algebra, where relation R gives place to matrix 1 + B CM , relation S to matrix 1 + C AN and the little 
dot now denotes matrix composition (38):

M • N = [i1|M] · N (41)

The reader may wonder about how does injection i1 (a function) fit into a linear algebra expression (41). The explanation 
is the same as for functions in relational expressions: every function f :A → B is uniquely represented by a Dirac distribution, 
and hence by the homonym matrix f defined by b f a = 1 if b = f a and 0 otherwise.20 Combinator [M|N] occurring in (41)
means the juxtaposition of matrices M and N side-by-side, which therefore have to exhibit the same output type (and thus 
the same number of rows). Similarly to relations, it decomposes into [M|N] = M · i◦1 + N · i◦2 where addition of matrices is 
the obvious cell-wise operation and the converse M◦ of a matrix M swaps its rows with columns. (This is commonly known 
as the transpose of M.) Because matrix multiplication is bilinear, we obtain M • N = i1 · i◦1 · N + M · i◦2 · N and therefore the 
following pointwise version of (41)

y (M • N) a = (y = ∗) × (∗ N a) + 〈
∑

c :: (y M c) × ((i2 c) N a)〉
where ∗ is the same abbreviation used before and term y = ∗ evaluates to 1 if the equality holds and to 0 otherwise.21

The picture above shows an example of probabilistic, M-Kleisli composition of two matrices N : { a1, a2, a3 } → 1 +{ c1, c2 }
and M : { c1, c2 } → 1 + { b1, b2 }. Injection i1 : 1 → 1 + { b1, b2 } is the leftmost column vector. Note how, for input a1, there is 
60% probability of M • N failing, partly due (50%) to N failing or (50%) to passing output c1 to M, which for such an input 
has 20% probability of failing again.

As before with relations, we can think of probabilistic M-monadic Mealy machines as column stochastic matrices which 
compose (matricially) as follows

N ; M = [i1|(id ⊕ a◦) · τl · (id ⊗ M) · xl] · τr · (N ⊗ id) · xr (42)

where relational product becomes matrix Kronecker product

(y, x)(M ⊗ N)(b,a) = (yMb) × (xNa) (43)

and relational sum gives place to matrix direct sum, M ⊕ N =
[

M 0
0 N

]
.

8. Monads in relation/linear algebra

The evolution from relation to (typed) linear algebra proposed in the previous sections corresponds to moving from 
non-deterministic choice (1) to probabilistic choice (2). The latter can now be defined matricially, for probabilistic f and g: 
� f p� g� = p ⊗ � f � + (1 − p) ⊗ �g�.

20 See Sect. 8 for a technically more detailed explanation. We should also say that matrices in typed linear algebra [36] are not restricted to the usual view 
of matrices as “rectangles filled with numbers”, but are rather regarded as typed and possibly infinite dimensional, provided all columns have countable 
support. In this way, matrix composition is well-defined, as summations range over the non-zero elements only; also note that A + B (resp. A × B) in the 
type of a matrix means the disjoint union (resp. Cartesian product) of A and B. More details in e.g. [34,36].
21 See [34,37] for a number of useful rules interfacing index-free and index-wise matrix notation. Such rules, expressed in the style of the Eindhoven 

quantifier calculus [1], provide evidence of the safe mix among matrix, predicate and function notation in typed linear algebra.
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A generic strategy can be identified: having a notion of composition (10) for machines of type Q × I → F (Q × J) (4), 
where monad F captures their transition pattern, we want to reuse such a definition for more sophisticated machines of type 
Q × I → T (F (Q × J)) (30) by porting it “as is” to the Kleisli category of the extra monad T which captures the branching
structure [17].

For the above to make sense we must be sure that the lifting of monad F by T still is a monad in the Kleisli category 
of T. In general, let X

ηT
TX T

2 X
μT and X

ηF
FX F

2 X
μF be two monads in a category C,22 and let CT denote the 

Kleisli category induced by T. Denote by B A
f �

the morphism in CT corresponding to TB A
f

in C and define:

f � · g� = (f • g)� = (μT ·T f · g)� (44)

For any morphism B A
f

in C define its lifting to CT by f = (ηT · f )� . The following equalities

f · g� = (T f · g)� (45)

f � · g = (f · g)� (46)

prove useful, leading to

f · g = f · g (47)

F f = F f (48)

where the definition of functor F (to be given shortly) requires the notion of a distributive law.

Definition 5. (See Beck [5].) Let X
ηT

TX T
2 X

μT and X
ηF

FX F
2 X

μF be two monads. A distributive law of T over F is 
a natural transformation λ : F T → T F such that

λ · F ηT = ηT (49)

λ · FμT = μT ·Tλ · λ (50)

and

λ · ηF = TηF (51)

TμF · λ · Fλ = λ · μF (52)

hold. �
Theorem 6. (See Mulry [33].) Assume a distributive law λ : FT → TF and define, for each endofunctor F in C, its lifting F to CT by

F( f �) = (λ · F f )� cf. diagram TFB FTBλ
FA

F f
(53)

for T B A
f

. For F to be a functor in CT the two conditions (49) and (50) are enough.

Proof. See [33]. �
Theorem 7 (Monad lifting). Let monads F, T and distributive law λ be such as in Definition 5 and Theorem 6. Then

X
ηF=(ηT·ηF)�

FX F
2

X
μF=(ηT·μF)�

(54)

is a monad in CT thanks to conditions (51) and (52).

Proof. To the best of the authors knowledge, this result has been implicit in the literature which emerged from [5] but 
hardly stated explicitly. The closest they have found is a theorem in [45] but even there it is given as a summary of two 
chapters of a PhD thesis. Therefore, a (compact) proof is given in Appendix B. �

Recall that, in our component algebra illustration, F is the maybe monad M and T is one of either the powerset or 
distribution monads. From a result in [17] it can immediately be shown that the distributive law λ : 1 + T X → T (1 + X)

between M and any other monad T, λ = [ηT · i1, T i2], satisfies (49), (50) in both cases. It is also easy to show that 

22 In this paper we adopt as base category C the category of sets and total functions on sets.
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M satisfies (51), (52) for any T.23 So nondeterministic (resp. probabilistic) composition of M-monadic Mealy machines 
regarded as binary relations (resp. matrices) given by monadic definitions (36) (resp. (42)) is sound.

The scope of Theorem 7 is wider than it may seem at first sight. Suppose our software components are still possibly 
failing machines (F = M) which, further to their internal state, share a global state S, i.e. T is the state monad S X = (X × S)S . 
Then M lifts to the Kleisli category of S which is, not surprisingly, that of deterministic Mealy machines with state S.

On the other hand, M can be generalized to any T-liftable monad F satisfying (51), (52). Theorem 8 below shows that 
this also includes the free monad FG X ∼= X +G (FG X) over a functor G, of which M is an instance, for the constant functor 
G = 1. Thus a number of well-known monads are liftable, e.g. binary trees (for G X = X2), lists (for G X = A × X, for some A) 
and so on.

Theorem 8 (Free-monad lifting). Let G be a functor such that the initial algebra FG X X +G (FG X)
in exists, that is, FG is the

free monad on G. We denote by (|h|) the unique morphism24 from FG X to a given algebra Y X +G Yh of carrier Y, cf. diagram:

FG X

(|h|)

X +G (FG X)
in

id+G (|h|)

Y X +G Yh

Let G distribute over a given monad T through law TG GT
λG . Then the FG monad defined by

η = in · i1 = in1 (55)

μ = (|[id, in · i2]|) = (|[id, in2]|) (56)

is liftable to the Kleisli category of T, that is, that (51), (52) hold, for distributive law

λ = (|[T in1,T in2 · λG]|) (57)

of type T FG FG T
λ .

Proof. See Appendix B. �
9. Strong monads in relation/linear algebra

Recall from the motivation that we went as far as simulating probabilistic composition of M-machines in Haskell using 
the operator m1 ;D m2, the probabilistic evolution of m1 ; m2 (10). Although we have not seen its actual definition, we can 
say that fact �m1 ;D m2� = �m1� ; �m2� holds, where composition �m1� ; �m2� is given by (42) in the context of (39).25

We are not yet done, however: definition (42) is strongly monadic and we need to know in what sense strength is 
preserved through Kleisli-lifting. The question is: which strong monads (F) are still strong once lifted to the Kleisli category of 
another monad (T)? Recall that the two strengths

τl : B × F A → F (B × A)

τr : F A × B → F (A × B)

distribute context (B) across F-information structures. Their basic properties (A.1), (A.2) are preserved by their liftings τr

and τl .26 So, what may fail is their naturality (A.3) once lifted, that is,

τl · (N ⊗ F M) = F (N ⊗ M) · τl (58)

τr · (F M ⊗ N) = F (M ⊗ N) · τr (59)

where M and N are arbitrary arrows in the Kleisli category of monad T, denoted CT in the previous section, and ⊗ denotes 
the tensor in CT which results from lifting products in C

f � ⊗ g� = (δ · (f × g))� (60)

23 Concerning (51): [ηT · i1, T i2] · i2 = T i2; concerning (52): T [i1, id] · [ηT · i1, T i2 · λ] = [ηT · [i1, id] · i1, λ] = [λ · i1, λ] = λ · [i1, id].
24 Usually termed fold or catamorphism [6].
25 The actual implementation of (;D ) in the Haskell simulator follows verbatim pointfree formula (42) carefully using the encodings of Sect. 8.
26 The general rule is that f = (ηT · f )� embeds C in CT . Thus the lifting of e.g. an equality f · g = h in C, that is f · g = h in CT reduces to the original 

f · g = h, cf. (48), (47). Within the image of the embedding, everything in CT “works as if” in C. Our previous use of a function symbol f as denotation of 
the corresponding relation or matrix f is a very convenient, widely adopted abuse of notation [6].
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where δ denotes the “double strength” of a commutative monad

δ = τr • τl = τl • τr

(see Definition 15), a class of monads which includes both D and P.
Henceforth we shall assume that T is commutative, heading to the following theorem which gives sufficient conditions 

for a strong monad F to remain strong once lifted by a commutative T.27

Theorem 9 (Strong monad lifting). Let F, T, λ be as in Theorem 6. Further assume that F is strong and that T is commutative.28 Then 
F is strong in CT provided the following condition holds in C,

λ · (F δ) · τl = T τl · δ · (id × λ) (61)

or the equivalent

λ · (F δ) · τr = T τr · δ · (λ × id) (62)

cf. diagram

F (T X ×T Y)

F δ

T X × F T Y
τl

id×λ

F T (X × Y)

λ

T X ×T F Y

δ

T F (X × Y) T (X × F Y)
T τl

for (61), that for (62) being similar.

Proof. See Appendix B. �
Let us fix F =M = (1+) and give two examples of commutative T, one which satisfies e.g. (61) and another which does 

not. For M we have τl = (! + id) · dr, of type B × (1 + A) → 1 + B × A, where dr : A × (C + B) → A × C + A × B is the obvious 
isomorphism and ! : A → 1 is the unique function of its type, recall Sect. 4.

Take T = P, the powerset monad, which is commutative and such that δ(s, r) is the Cartesian product of s and r. Let 
(x, y) = ({ }, ∗), where ∗ denotes the sole inhabitant of 1. Then running the right-hand side of (61), (P τl) (δ (x, λ y)) will 
yield { } while the left-hand side λ (M δ (τl (x, y))) will yield { ∗}. (Below we will come back to this anomaly, rephrased in 
relation algebra.)

Now take T =D, the distribution monad. We prove below that (61) holds for this lifting of M:

λ · (M δ) · τl =D τl · δ · (id × λ)

≡ { distributive law λ = [ηD · i1,D i2]; functor M f = id + f }
[ηD · i1,D i2 · δ] · τl = D τl · δ · (id × [ηD · i1,D i2])

≡ { strength τl = (! + id) · dr }

[ηD · i1,D i2 · δ] · (! + id) · dr = D τl · δ · (id × [ηD · i1,D i2])
≡ { coproducts ; dr◦ = [id × i1, id × i2] }

[ηD · i1 · !,D i2 · δ] =D τl · δ · (id × [ηD · i1,D i2]) · [id × i1, id × i2]
≡ { coproducts ; δ · (id × ηD) = τr }{

ηD · i1 · ! = D τl · τr · (id × i1)

D i2 · δ =D τl · δ · (id ×D i2)

≡ { τr is natural (A.3) ; D id = id }

27 Note that requiring T to be commutative rules out some potentially useful examples, such as the state monad, the IO monad, the list monad and 
others. Nevertheless, monads M, D and P are commutative.
28 Therefore also strong, cf. Definition 15 in Appendix A.



JID:JLAMP AID:94 /FLA [m3G; v1.169; Prn:8/12/2015; 15:19] P.16 (1-26)

16 J.N. Oliveira, V.C. Miraldo / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

{

ηD · i1 · ! = D τl ·D (id × i1) · τr

D i2 · δ =D τl ·D (id × i2) · δ
≡ { (63), (64) below ; functor D }{

ηD · i1 · ! = D i1 ·D ! · τr

D i2 · δ =D i2 · δ
≡ { D ! = ηD · ! }

ηD · i1 · ! =D i1 · ηD · !
≡ { natural ηD }

ηD · i1 · ! = ηD · i1 · !
�

nb: One of the steps of the proof above relies on facts

τl · (id × i1) = i1 · ! (63)

τl · (id × i2) = i2 (64)

which stem directly from definition τl = (! + id) · dr via (B.1) and coproduct algebra.
If one tries to rework the proof above for P instead of D all steps are valid but the second-to-last: P ! �= η · ! since 

(P !) { } = { } �= { ∗} = η (! { }), confirming the counter-example given above. What in fact holds is the inclusion P ! .⊆ η · !
where f

.⊆ g ≡ 〈∀a :: f a ⊆ g b〉 is the lifting of the powerset ordering to functions of type A → P B.
In general, wherever � is a partial order definable on monad T in category C, it makes sense to order the morphisms in 

CT as follows:

f � � g� ≡ f
.� g (65)

This makes CT an order-enriched category [17], e.g. the category of relations (for T = P), of partial maps (for T = M), of 
subdistributions (for T the subdistribution monad29) etc.

It turns out that reasoning in CT ordered by � (65) is actually simpler than in C (which is the category of sets in our 
case) relying on order 

.�, as argued elsewhere [6,36,42]. We follow this strategy below in checking the validity of (58), (59)
directly in CT .

First, we show how the argument is rephrased and how it gets simpler should one work directly in the category of 
stochastic matrices which represents the Kleisli category of D where, as we have seen, the tensor product is known as 
Kronecker product (43).

We want to show that (58) holds, where M and N are (column) stochastic matrices. The naturality of τl (nb: hereupon 
we drop the lifting bars, under the convention we have used before) arises from that of dr and of ! ⊕ id. The naturality of 
dr is easy to prove from that of its converse using relation/matrix biproducts [28]. Concerning ! ⊕ id : B + A → 1 + A:

(! ⊕ id) · (M ⊕ N)

= { bifunctor ⊕ }
(! · M) ⊕ N

= { ! · M = ! because M is assumed column stochastic [37] }
! ⊕ N

= { bifunctor ⊕ }
(id ⊕ N) · (! ⊕ id)

�
(The calculation for τr will be similar.) Immediately we get that M is strong in the Kleisli category of D.

By contrast, take T = P in which case the corresponding Kleisli category is that of binary relations and the tensor product 
is given by (y, x)(M ⊗ N)(b, a) = (yMb) ∧ (xNa). (The notation × we used before for this tensor product is also common 
in the literature.) In this case, proof step ! · M = ! for M a binary relation does not hold in general: it fails wherever M is 
not entire, i.e. not totally defined, ! · M ⊆ ! holding instead, expressed in the enriched structure of this Kleisli category — an 
allegory in the sense of [13].

29 This monad corresponds to D relaxing the condition of all probabilities in distributions summing up to 1 to summing at most 1. D itself is trivially 
ordered by the identity.
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That (58) is an inclusion rather than an equality for relations could have been anticipated immediately from the free 
theorem [46] of ! + id:

(! + id) · (S + R) ⊆ (id + R) · (! + id)

Similarly, it can be anticipated that (58) will also fail for the sub-distribution monad [17], that is, for matrices M which are 
column sub-stochastic i.e. such that constraint ! · M = ! is relaxed to ! · M ≤ !.
Pairing. The fact that a (strong) transition monad lifts to the Kleisli category of a (commutative) branching monad in coalge-
braic modeling of software components does not mean that everything goes smoothly forever in such a Kleisli setting.

Pairing provides a simple and relevant counter-example. In the category of sets, (f � g) a = (f a, g a) is a right adjoint, 
forming a categorial product. However, this is not a categorial product once Kleisli lifted [9,34]. The corresponding matrix 
operation is the so-called Khatri–Rao matrix product [27] defined by (b, c) (M � N) a = (b M a) × (c N a). In relation algebra, 
(b, c) (R � S) a = (b R a) ∧ (c S a) is known as (strict) fork [14,42]. Both can be regarded as liftings of the pairing operator, 
which can be written generically as

M � N = (M ⊗ N) · � (66)

where � is the lifting of the diagonal function � : A → A × A, � a = (a, a), shown below as a matrix, for A the Booleans:

⎡
⎢⎢⎢⎢⎣

F T

(F , F ) 1 0

(F , T ) 0 0

(T , F ) 0 0

(T , T ) 0 1

⎤
⎥⎥⎥⎥⎦

Although � is a natural transformation for functions, � · f = (f × f ) · �, this naturality carries further neither to relations 
nor to stochastic matrices. In the latter case, the natural property of � (removing the overbar as before, for simplicity), 
(M⊗M) ·� = � ·M does not hold because (y, z) ((M⊗M) ·�) x = (y M x) ×(z M x) on the left-hand side, and (y, z) (� ·M) x =
(if y = z then y M x else 0) on the right-hand side. Thus the distributions captured by (M ⊗ M) · � have, in general, larger 
support.

Again, the weaker � · R ⊆ (R × R) · � holds for relations but, in this case, even this weaker form fails (in general) for 
sub-stochastic matrices, as the example shows:

� ·
[

0.8 0
0.1 1

]
≤

([
0.8 0
0.1 1

]
⊗

[
0.8 0
0.1 1

])
· �

≡ { expand � and the Kronecker product, then compose }⎡
⎢⎢⎣

0.8 0
0 0
0 0

0.1 1

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

0.64 0
0.08 0
0.08 0
0.01 1

⎤
⎥⎥⎦

≡ { matrix pointwise ≤ }
false

�
To the best of the authors’ knowledge, loss of naturality across Kleisli lifting has not been openly addressed in the 

literature. It clearly is a topic for future research essential to the success of the “keep definition, change category” strategy — 
see Sect. 12. Fortunately, in the context of the current paper its impact is limited, as shown next.

Impact on component algebra. In the terminology of categorial physics, � fails to be a uniform copying operation [9]. In general, 
this failure can be characterized by the fact that the equality δ · (f � f ) = T (id � id) · f does not hold in most commutative 
monads T of interest. As mentioned above, this is related to the fact that the lifting of (�) no longer participates in the 
adjunction which defines categorial products.

Back to our context, that of MMM regarded as software components, the question is: what is the impact of τl and τr
losing naturality in the lifting of the combinators defined in Sect. 5? It turns out that it has no impact and that the calculus 
remains the same, as our final theorem shows.

Theorem 10 (Component algebra lifting). Let F, T, λ be as in Theorem 7 and T be commutative so as to ensure tensor (60).
Recall the algebra of F-monadic Mealy machine combinators p ; q, p ⊕ q and p{f→g} given in Sect. 5. Then the same algebra holds 

once the lifting F (of F by T) replaces F in the definitions of such combinators; strengths τl , τr and isomorphisms a, xr etc. are lifted by 
T to τl , τr , a, xr etc.; cozip (B.2) is replaced by [F i1|F i2], where [f �|g�] = [f , g]�; product is replaced by tensor (60); and coproduct is 
replaced by direct sum ⊕.
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Proof. Our use of strength naturality (A.3) in the proofs of (23) and (25) in Appendix B — and similarly in those of (24)
and (26) — is confined to contexts in which f and g are specific functions (e.g. the identity and the coproduct injections) 
for which such properties trivially lift.30 �

Pipelining, wiring and sum are kernel MMM combinators which have a wide range of application, see e.g. [32]. The 
impact of the pairing anomaly discussed above on lifting other combinators of [2,3] not included in such a kernel is a 
subject for future work.

On CT order-enrichment. We have seen above that enriching CT with a partial order induced by monad T is convenient for 
reasoning, wherever this is possible. It turns out that the order-enrichment of CT is actually essential to defining suitable 
coalgebraic trace semantics for our software components. Hasuo et al. [17] show that such semantics arises naturally wher-
ever the ordering on CT is a cppo,31 which is the case for T = P, M and D extended to sub-distributions. The interested 
reader is referred to [17] for the technical details.

10. Related work

Mealy machines are addressed coalgebraically by Rutten [41] for the special case of T and F in our generic formulation

S → (T(F(S × O )))I (67)

being the identity monad, cf. S → (S × O )I . This type is isomorphic to I → (S × O )S and so, in this case, Mealy machines 
I → O form the Kleisli category of the state monad, parametric on S.

Type (67) also extends that of Mealy machines in the work by Barbosa [3], who considers F as a (commutative) monad 
but keeps T as the identity. This is also the case in Ref. [16], which gives a new foundation for Barbosa’s Mealy machines 
in terms of many-sorted Lawvere (FP) theories, as alternative to the bicategorial framework of [3].

There is a tight relationship between [16] and the current paper, in the sense that both are interested in the calculus 
of components as coalgebras of type S → (F (S × O))I regarded as “interface morphisms” I → O in suitable frameworks. That 
chosen in [16] is FP-theory ArrTh which encodes Hughes’ arrows [19], which are in close relationship with Kleisli categories. 
Our direct use of Mealy machines as arrows of the Kleisli category of the state monad (see above) correspond to this level of 
the formalization given in [16]. The presence of monads in the overall functor is addressed in both approaches by shifting to 
the corresponding Kleisli category. Another theory MArrTh is given when commutativity holds and a third one, PLTh where 
the arrow-theoretic operator first is dropped.

Altogether, the level of genericity in [16] is much higher than ours; the theory is elegant and generic, but the categorial 
machinery involved is an order of magnitude more complex. In the words of [16], the complexity of calculations would be 
overwhelming without the help of a suitable Kleisli category. This conforms to the idea expressed in the current paper that 
it is far more practical to lift monad F through T (67) and take advantage of the (enriched) Kleisli setting than working in 
the composite monad T F in sets.

There is, however, one major difference between [16] and the current paper: in (67) there are two monads and not a 
single one, leading to other topic of the paper, that of combining effects [20]. Variants of (67) have been studied elsewhere 
[43], namely reactive probabilistic automata, S → (M (D S))I; generative probabilistic automata, S → M (D (O × S)); bundle sys-
tems, S → D (P (O × S)) and so on. In a coalgebraic approach to weighted automata, Ref. [7] studies coalgebras of functor 
S → K × (KS

ω)I for K a field. Such coalgebras rely on the so-called field valuation (exponential) functor K−
ω calling for vector 

spaces. Inspired by this approach, a similar coalgebraic framework for weighted automata was studied by one of the authors 
directly in suitable categories of matrices [37].

The current paper draws much from the work on lifting coalgebras to Kleisli categories by Hasuo et al. [15,17]. They 
study the lifting of F-coalgebras in the category of sets and (total) functions to the Kleisli category of a (commutative) 
monad T. Our work specializes this framework by further requiring F to be a (strong) monad too, recall sections 8 and 9.

Jacobs et al. [21] also address the combination of monads in coalgebraic models of state-transition systems by providing 
a framework where the two main approaches to coalgebraic trace semantics — via either Kleisli categories or Eilenberg-
Moore categories — are thoroughly studied and related. The references of [21] also mention work on trace semantics for 
probabilistic systems which are related to the main topic of the current paper.

11. Conclusions

Faced with the need to quantify software (un)reliability in presence of faults arising from (intentionally) inexact hard-
ware, the semantics of state-based systems is urged to evolve towards weighted nondeterminism, typically in a probabilistic 
way.

30 In general, given a natural transformation α : F →G in C, α · F f =G f · α is preserved in CT in the sense that α · F f = G f · α immediately holds, as it 
is straightforward to prove.
31 A cppo-enriched category is such that each homset forms a ω-complete partial order.
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This paper proposes that semantic evolutions of this kind be obtained without sacrificing the simplicity of the original 
(qualitative) definitions. The idea is to keep quantification implicit rather than explicit, the trick being a change of category: 
instead of the category of sets where traditional (e.g. coalgebraic) semantics are expressed, we change to a suitable category 
(e.g. of matrices) tuned to the specific quantitative (e.g. probabilistic) effect.

In our case study, we move from the original category of sets where a component calculus is defined [3] and, rather 
than elaborating its definitions and proofs to the nondeterministic/probabilistic cases, we keep the original definitions by 
changing to suitable categories of relations/(stochastic) matrices. In the latter case, the main advantage is that all probabilistic 
accounting is silently carried out by (monadic) matrix composition and is not our concern.

As the original semantics are already monadic and coalgebraic, “keeping the definitions” entails monad lifting, as studied 
in Sect. 8. The approach works wherever state-based semantic models are structured around a pair (F, T) of monads subject 
to the (cumulative) set of conditions summarized in the following table:

T F Conditions F

Monad Functor (49) + (50) Functor
Monad + (51) + (52) Monad

Commutative monad Strong monad + (61) or (62) Strong monad

Jacobs et al. [21] refer to properties (49), (50) as the Kleisli-laws and to (51), (52) as the Eilenberg–Moore-laws, since the 
latter ensure functor lifting in such categories. Our Theorem 7 says that the latter also suffice for the lifted functor to be 
also a monad in CT and Theorem 9 finds a condition (61) (equivalent to (62)) for such a lifted monad to be strong.

In general, this “keep definition, change category” approach consists of investing in the Kleisli category CT of the monad T
chosen to capture the new (e.g. quantitative) effect — the so-called branching monad in [17], where the lifted monad F is 
referred to as the transition monad. Note that a lot more is demanded from T compared to F, namely it is required to be 
commutative (therefore strong) and order-enriched [17].

T Kleisli

P Relation algebra
Vec Matrix algebra
D Stochastic matrices
Giry Stochastic relations

Altogether, the proposed strategy is useful because such a lifting leads to rich algebraic theories and to relation algebra/linear 
algebra32 in particular, both offering useful pointfree styled calculi, as shown in the table above.

Ideally, the lifting should preserve theories, not only definitions. (E.g. the theory of component behavior equivalence of 
[3], in our case study.) But things are not so immediate in presence of tupling (cf. strong monads) as products become weak
once lifted. Weak tupling calls for a wider perspective, interestingly bridging relation algebra to categorial quantum physics
under the umbrella of monoidal categories. Thus the remarks by Coecke and Paquette [10]:

Rel [the category of relations] possesses more ‘quantum features’ than the category Set of sets and functions [...] The categories FdHilb
[of finite dimensional Hilbert spaces] and Rel moreover admit a categorical matrix calculus.

This topic is regarded as central to the work to be carried out in the future, as suggested below.

12. Future work

This paper is part of a line of research aiming at promoting linear algebra as the “natural” evolution of (pointfree) 
relation algebra towards quantitative reasoning in the software sciences. Other applications of linear algebra in the software 
field [28,29,34,36,37] can be regarded as instances of the generic strategy put forward in this paper. Thus far, the main 
difficulty encountered in this technique is the fact that strong monads do not lift in general because the pairing operator lifts 
differently depending on the “branching” monad.

For the distribution monad, this issue is addressed in e.g. [34] where it is shown that, if one of the arguments of 
probabilistic pairing is pure (i.e., of the form f = (ηT · f )� , recall Sect. 8) then the universal property of pairing holds. This 
helps in some situations but is far from providing a general answer, calling for further research possibly in connection to 
recent advances in categorial quantum physics and monoidal categories [9].

A fully fledged, coalgebraic trace semantics for probabilistic, component oriented software systems will call for sub-
distributions and, more generally, measure theory [23,39] in particular if applied to hybrid systems [35].

Not every combination of monads is suitable for immediate lifting, as is the case of some of the patterns addressed 
in [21]. The alternative approach proposed in this paper should be carefully evaluated and studied, in particular in what 
concerns its application to software component calculi in the general setting of [2,3].

32 This carries over to more sophisticated algebras and monads, for instance that of stochastic relations, the “Kleisli lifting” of the Giry monad [39].
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Appendix A. Strong and commutative monads in brief

For easy reference and self-containment, this appendix gathers together standard definitions that lead to the notion of a 
commutative monad which is at focus in the current paper. We use diagrams in order to make types clear and more explicit. 
For further reference see e.g. [17,24].

Definition 11 (Monad). A monad is an endofunctor F : C → C on a category C equipped with two natural transformations 
X

ηT
F X F

2 X
μT satisfying the equalities captured by the following commutative diagrams:

F X

id

ηT

F ηT

F
2 X

μT

F
3 X

F μT

μT

F
2 X μT

F X F
2 X

μT

The naturality conditions of ηF and μF are captured by the commutative diagrams, for all f : X → Y:

X
ηF

f

F X

F f

F
2 X

F
2 f

μF

Y
ηF

F Y F
2 Y

μT

�

Definition 12 (Strong functor). A functor F is said to be strong wherever it comes equipped with two natural transformations

X × (F Y)
τl

F (X × Y) (F X) × Y
τr

such that

F ((X × Y) × Z)

a

F (X × Y) × Z
τr

(F X × Y) × Z
τr×id

a

F (X × (Y × Z)) F X × (Y × Z)τr

(A.1)

and

F (X × 1)

F lft

(F X) × 1
τr

lft

F X

(A.2)

hold, where lft and a are well-known isomorphisms. (Similarly for τl and rgt : 1 × X → X.) The naturality conditions of τl and 
τr are captured by the commutative diagrams

X × (F Y)
τl

f×(F g)

F (X × Y)

F (f×g)

(F X) × Y
τr

(F f )×g

A × (F B)
τl

F (A × B) (F A) × B
τr

(A.3)

for all f : X → A and g : Y → B. �
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Definition 13 (Strong natural transformation). Given strong functors F and G, natural transformation α : F X → G X is said to 
be strong wherever it commutes with (×Y) in the following sense (similarly for (Y×) and τl):

F (X × Y)

α

(F X) × Y
τr

α×id

G (X × Y) (G X) × Yτr

� (A.4)

Definition 14 (Strong monad). A monad X
ηF

FX F
2 X

μF is said to be strong wherever: (a) F is a strong functor; (b) 
μF and ηF are strong natural transformations. For α = ηF (A.4) instantiates to ηF = τr · (ηF × id). For α = μF , (A.4) will 
instantiate to τr • τr = τr · (μF × id) since

τr : F2 X × Y → F
2 (X × Y)

τr = (F τr) · τr

(Similarly for τl .) �
Definition 15 (Commutative monad). A strong monad F said to be commutative wherever the equality holds:

τr • τl = τl • τr (A.5)

In this case it makes sense to define the “double strength” operator δ = τr • τl . �
Appendix B. Auxiliary definitions and proofs

Basics. The following operators are required in the main body of the paper:

dr◦ = [id × i1, id × i2] (B.1)

cozip = [F i1,F i2] (B.2)

where [f , g] is the junc combinator satisfying [f , g] · i1 = f and [f , g] · i2 = g. From the type

cozip : F A + F B → F (A + B) (B.3)

the corresponding free theorem is recorded

F (f + g) · cozip = cozip · (F f + F g) (B.4)

for further reference. The operator furthermore satisfies property

[F (id × i1),F (id × i2)] = (F dr◦) · cozip (B.5)

Proofs related to Section 5. Proof of fact (23), that of (24) being similar:

(extr (p ⊕ q)){i1→id}
= { wiring (16) ; functor F }

extr (p ⊕ q) · (id × i1)

= { definition of extr m (7) }
F xr · τr · ((p ⊕ q) × id) · xr · (id × i1)

= { xr natural property; × functor }
F xr · τr · (((p ⊕ q) · (id × i1)) × id) · xr

= { (p ⊕ q) · (id × i1) = (p ⊕ q){i1→id} = p{id→i1} (17), (18) }
F xr · τr · ((F (id × i1) · p) × id) · xr

= { × functor }
F xr · τr · (F (id × i1) × id) · (p × id) · xr
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= { natural properties of τr and xr }
F (id × i1) · F xr · τr · (p × id) · xr

= { (7) and (17) again }
(extr p){id→i1} �

Proof of (25), that of (26) being similar:

(extl (p ⊕ q)){i1→id}
= { wiring (17) ; • / · associativity }

extl (p ⊕ q) · (id × i1)

= { definition of extl (6) }
F a◦ · τl · (id × (p ⊕ q)) · a · (id × i1)

= { a natural }
F a◦ · τl · (id × (p ⊕ q)) · (id × (id × i1)) · a

= { × functor; (21) and (17) }
F a◦ · τl · (id × F (id × i1)) · (id × p) · a

= { τl natural; F functor; a◦ natural }
F (id × i1) · F a◦ · τl · (id × p) · a

= { definitions of extl (6) and wiring (17) }
(extl p){id→i1} �

Proof of Theorem 7. The standard monadic laws, e.g. μF · ηF = id, hold by construction (recall footnote 26). The proofs of 
the remaining natural laws,

F f � · ηF = ηF · f � (B.6)

F f � · μF = μF · (F2
f �) (B.7)

are given next. The naturality of ηF (B.6) relies on property (51) of the definition of a distributive law:

F( f �) · ηF = ηF · f �

≡ { definition (53) ; (45) and (46) }
(λ · F f · ηF)� = (T ηF · f )�

≡ { drop (_)� ; natural ηF }
λ · ηF · f = TηF · f

⇐ { Leibniz }
λ · ηF = TηF

≡ { assume (51) }
true �

The naturality of μF (B.7) relies on property (52) of the definition of a distributive law:

F( f �) · μF = μF · F(F f �)

≡ { definitions (53) and (54) }
(λ · F f )� · (ηT · μF)� = (ηT · μF)� · (λ · F(λ · F f ))�

≡ { (44) ; drop (_)� }
μT ·T(λ · F f ) · (ηT · μF) = μT ·T(ηT · μF) · (λ · F(λ · F f ))
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≡ { functors }
μT ·Tλ ·T(F f ) · ηT · μF = μT ·TηT ·TμF · λ · Fλ · F2 f

≡ { natural ηT followed by natural μF }
μT ·Tλ · ηT · μF · F2 f = μT ·TηT ·TμF · λ · Fλ · F2 f

≡ { natural ηT again }
μT · ηT · λ · μF · F2 f = μT ·T ηT ·TμF · λ · Fλ · F2 f

≡ { monad T }
λ · μF · F2 f = TμF · λ · Fλ · F2 fλ · μF = TμF · λ · Fλ

≡ { assume (52) }
true �

Proof of Theorem 8 (Free-monad lifting). Proof of (51) for F = FG:

λ · η
= { definitions of λ (57) and η (55) }

(|[T in1,T in2 · λG]|) · in · i1

= { (|·|) cancellation [6] }
[T in1,T in2 · λG] · (id + F λ) · i1

= { coproducts (absorption, cancellation, etc.) [6] }
T in1

= { (55) }
T η �

Concerning the proof of (52), let us annotate the instance of this equality for F = FG with a sketch of the proof strategy:

(|·|)-fusion︷ ︸︸ ︷
λ · μ︸︷︷︸
(|α|)

= (Tμ) · λ · FG λ︸ ︷︷ ︸
(|β|)

(B.8)

In words: we first need to calculate α and β and then resort to standard (|·|)-fusion [6] to complete the proof. It turns out 
that α is calculated using the same (standard) procedure:

λ · μ = (|α|)
≡ { definition of μ (56) }

λ · (|[id, in2]|) = (|α|)
⇐ { (|·|) fusion; unfold α = [α1,α2] }

λ · [id, in2] = [α1,α2] · (id + F λ)

≡ { coproducts }{
λ = α1
λ · in2 = α2 · F λ

To obtain α2, we unfold the second equality just above:

λ · in2 = α2 · F λ

≡ { definition of λ (57); (|·|)-cancellation again }
[T in1,T in2 · λG] · (id + F λ) · i2 = α2 · F λ

≡ { coproducts (as before) }
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T in2 · λG · F λ = α2 · F λ

⇐ { Leibniz }
α2 = T in2 · λG

Altogether, we obtain:

λ · μ = (|[λ,T in2 · λG]|) (B.9)

— recall (B.8). Next, we want to calculate β:

λ · FG λ = (|β|)
≡ { λ (57); (|·|)-absorption [6] }

β = [T in1 · λ,T in2 · λG]
Thus:

λ · FG λ = (|[T in1 · λ,T in2 · λG]|) (B.10)

We can now address (52):

Tμ · (λ · FG λ) = λ · μ
≡ { (B.9) and (B.10) above }

Tμ · (|[T in1 · λ,T in2 · λG]|) = (|[λ,T in2 · λG]|)
⇐ { standard (|·|)-fusion over functor id +G f }

Tμ · [T in1 · λ,T in2 · λG] = [λ,T in2 · λG] · (id +G (Tμ))

≡ { coproducts }{
Tμ ·T in1 · λ = λ

Tμ ·T in2 · λG = T in2 · λG ·G (Tμ)

Concerning the first branch:

Tμ ·T in1 · λ
= { functor T ; in1 = η }
T (μ · η) · λ

= { μ · η = id; T id = id (monads, functors) }
λ �

And finally, the second branch:

Tμ ·T in2 · λG = T in2 · λG ·G (Tμ)

≡ { λG natural }
Tμ ·T in2 · λG = T in2 ·T (Gμ) · λG

⇐ { Leibniz }
Tμ ·T in2 = T in2 ·T (Gμ)

⇐ { functor T }
μ · in2 = in2 ·Gμ

≡ { catamorphism μ (56) }
true �

This completes the proof.33

33 Note that there is a sketch of this construction in [20].



JID:JLAMP AID:94 /FLA [m3G; v1.169; Prn:8/12/2015; 15:19] P.25 (1-26)

J.N. Oliveira, V.C. Miraldo / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–••• 25
Proof of Theorem 9 (Strong monad lifting). Assuming that, by Theorems 6 and 7, F is a monad in CT , it remains to check 
under what conditions it is strong (Definition 14).

As before (recall footnote 26) we are not concerned with the properties stated in the diagrams of Definitions 12 and 13, 
which hold by construction of F, τl and τr . It is rather the naturality of τl (58) and τr (59) which needs checking. Concerning 
(58):

τl · (g� ⊗ F f �) = F (g� ⊗ f �) · τl

≡ { (53) ; (60) }
τl · (δ · (g × (λ · F f )))� = (λ · F (δ · (g × f )))� · τl

≡ { (45) ; (46) }
(T τl · δ · (g × (λ · F f )))� = (λ · F (δ · (g × f )) · τl)

�

≡ { drop (_)� }
T τl · δ · (g × (λ · F f )) = λ · F (δ · (g × f )) · τl

≡ { products ; functor F }
T τl · δ · (id × λ) · (g × F f ) = λ · F δ · F(g × f )) · τl

≡ { naturality of τl }
T τl · δ · (id × λ) · (g × F f ) = λ · F δ · τl · (g × F f )

⇐ { Leibniz }
T τl · δ · (id × λ) = λ · F δ · τl

≡ { assume (61) }
true �

So (61) is required.
The proof that (59) requires (62) is similar. However, this is not an extra condition, as — since τr = F swap · τl · swap, 

where swap is isomorphism swap = π2 � π1 — (62) is equivalent to (61), as shown next:

λ · F δ · τr = T τr · δ · (λ × id)

≡ { τr = F swap · τl · swap }
λ · F δ · F swap · τl · swap = T τr · δ · (λ × id)

≡ { T swap · δ = δ · swap ; swap isomorphism }
λ · F (T swap · δ) · τl = T τr · δ · (λ × id) · swap

≡ { naturality (λ and swap) ; functor F }
T F swap · λ · F δ · τl = T τr · δ · swap · (id × λ)

≡ { T swap · δ = δ · swap }
T F swap · λ · F δ · τl = T τr ·T swap · δ · (id × λ)

≡ { τr · swap = F swap · τl }
T F swap · λ · F δ · τl = T (F swap · τl) · δ · (id × λ)

≡ { drop isomorphism T F swap }
λ · F δ · τl = T (τl) · δ · (id × λ) �
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