
End-to-End Delay Estimation

using RPL Metrics in WSN

Pedro Pinto

ESTG, Instituto Politécnico de Viana

do Castelo and INESC TEC

Viana do Castelo and Porto, Portugal

Email: pedropinto@estg.ipvc.pt

António Pinto

CIICESI, ESTGF, Politécnico do

Porto and INESC TEC

Porto, Portugal

Email: apinto@inescporto.pt

Manuel Ricardo

INESC TEC, Faculdade de

Engenharia, Universidade do Porto

Porto, Portugal

Email: mricardo@inescporto.pt

Abstract—Critical monitoring applications can use wireless

sensor networks to transport delay sensitive data. This data may

demand bounded delays in order to be considered useful by the

receiver. In these cases, an accurate and real-time estimation of

the end-to-end delay could be used to anticipate the data

usefulness prior to sending it.

A novel real-time and end-to-end delay estimation mechanism

is proposed in this paper, which considers processing times and

two new RPL metrics. Results show that our proposal is more

accurate than the ETT-based solution for delay estimation, and it

does not significantly degrade the network performance.

Keywords—WSN; QoS; End-to-End Delay; RPL; ETT; ETX

I. INTRODUCTION

Wireless Sensor Networks (WSN) can be used to transport
data of monitoring applications. Critical monitoring
applications can generate traffic flows with QoS requirements
such as delay, loss, or throughput. If a particular flow is
sensitive to delay, the WSN should deliver the packets of this
flow to the destination within a delay that enables the data to be
useful for the application.

From the communications point of view, a WSN node may
generate data, forward data from other nodes, or consume data.
A typical interaction between WSN nodes is presented in Fig.
1. For a flow generated in a given node, the End-to-End Delay
(EED) can be defined as the time elapsed since data is
generated at the application layer of the source node until this
data arrives to the destination application in the sink node.

In order to ensure an EED for a flow in a WSN scenario
QoS mechanisms could be used. However, traditional QoS
architectures such as integrated or differentiated services seem
to be not suitable to WSN due to the additional functionality
they would introduce in sensor nodes, such as traffic shaping,
classification, policing, scheduling or resource reservation.
Thus, a simpler but still accurate EED estimation mechanism
needs to be defined. This mechanism could be applied to flows

that are sensitive to delay but not to packet loss, and would be
used to classify the data packets that will miss the application
delay deadlines, and avoid their transmission to the network.

Current research efforts on quality of service characterize
EED estimation by using probabilistic estimation of delays,
network calculus, or routing metrics. Regarding routing
metrics, the Expected Transmission Time (ETT) or ETT-based
metrics have been proposed.

Our proposal consists of a novel EED estimation
mechanism that combines path delays and node processing
delays. Its novelty comes from considering in-node delays with
two new RPL metrics. This solution provides an EED
estimation which is more accurate than the ETT-based
solution.

The structure of this paper is as follows. Section II surveys
work related to our proposal. Section III describes the proposed
EED estimation mechanism. Section IV presents the hardware
and simulation environment used to validate our solution.
Section V provides the results obtained and discusses them.
Section VI concludes paper and addresses future work.

II. RELATED WORK

According to the taxonomy presented in [1], current efforts
to measure or estimate EED can be divided in three types:
queuing models or network calculus; active probing using
messages and protocols; piggy-backing delay information into
normal traffic or in routing protocol messages. In [2] is
presented a probabilistic routing metric based on the estimation
of the EED distribution. In [3] the authors developed a model
to evaluate QoS by analyzing EED. In [4] network calculus
was used to obtain the deterministic upper bound of EED in
WSN. In [5] are used arrival and service curves for stochastic
network calculus, used to derive the EED envelopes. The
above proposals aim to obtain EED limits or bounds prior to
WSN deployment, and do not obtain EED estimation in real
time. The proposals using probe packets or piggy-back
information in data packets have the undesired effect of
introducing additional traffic in the WSN, contributing to
consume energy and processing resources.

The research proposals using routing protocol messages are
based on ETT or ETT-related metrics, which can either be
obtained by using probe packets or by deriving it from metrics

Sink node

Application

Layer

Data Flow

Generator node

Application

Generator/forwarder

node(s)

End-to-End Delay Delay

Fig. 1. WSN nodes and End-to-End Delay

978-1-4799-0543-0/13/$31.00 ©2013 IEEE

such as the Expected Transmission Count (ETX). According to
[6], ETT can be derived from ETX by calculating:

D

S
ETXETT ´= (1)

where ETX is the expected number of transmission
attempts required for successfully transmitting a packet, S is
the packet size, and D is the data rate of the link. A
performance study regarding the use of ETX-based metrics can
be found in [7]. In [8] a metric named Improved ETT is
proposed, which focuses on the routing efficiency under
various link conditions. In [9] the ETT metric is adapted to
improve the estimation of transmission time by including the
actual load of different nodes. In [10] the authors recommend
that the queuing and transmission delay should be considered
simultaneously in order to minimize EED. In [11] the authors
present a novel ETT derived metric which takes into account
the time between transmissions in each node in order to
increase average network throughput in Wireless Mesh
Networks. The research efforts presented above use ETT or
ETT-based metrics to enhance performance, but the accuracy
of these metrics was not discussed in any of these papers. Also,
none of these proposals considers the processing delay which,
in sensor nodes, may be relevant.

III. END-TO-END DELAY ESTIMATION MECHANISM

Let us assume 3 nodes: a generator, a forwarder and a sink.
The forwarder node forwards packets from other nodes but also
generates packets. The sink node is the destination of all
packets. These nodes are represented in Fig. 2 where the
generator node i uses its parent node p, to reach the sink node s.
Node p also generates its own packets towards the sink. Fig. 2
also presents the layered communications architecture of these
nodes, some of their relevant functions, and a data flow. The
rounded-corner boxes inside each layer represent labels
characterizing relevant states in the data communications
process.

Our proposal estimates the EED by estimating all the
delays between the labels where the data passes through, from
the application in the generator node to the application in the
sink node. The EED is estimated whenever a node’s
application generates a new data packet and it is based on the
delays obtained for previous packets. Since our nodes run the
ContikiOS 2.5 [12] operating system, the labels were inserted
in the ContikiOS code files, according to Table I.

Within each node, two internal delay components are
defined: the link delay, and the processing delay. The link
delay comprises the time related to packet transmission and
link queuing. The processing delay comprises the time elapsed
while packets are being processed inside the nodes and that is

not related to transmission or queuing. In order to obtain the
delays in other nodes two RPL metrics are also used. So, in
each node, the delay each packet will suffer is estimated from
the delay of previous packets sent and from these two RPL
metrics.

TABLE I. RELATION BETWEEN LABELS, FUNCTIONS AND FILES

Label Function in code OS file

APP-send send_packet() udp-client.c

APP-receive receive_packet() udp-server.c

uIP6-fwd/out
uip_process() uip6.c

uIP6-in

MAC-receive input_packet() contikimac.c

MAC-queuing send_packet()

csma.c
MAC-send

transmit_queued_packet()
PHY-send

PHY-receive mac_call_sent_callback()

A. Link Delay

Fig. 3 shows the delays considered to obtain the link delay
in node i, in particular the MAC layer queuing delay and the
transmission delay. The link delay calculated for the packet n
transmitted from node i to a parent node p is obtained by:

 n

ip

n

i

n

ip onDelayTransmissiQueueDelayLinkDelay += (2)

where the QueueDelay is the interval between the time the
packet is inserted into the MAC queue until its removal, and
the TransmissionDelay is the time interval required for the
packet successful transmission, including the ACK reception.

B. Processing Delay

WSN nodes may have different capabilities in what
concerns processing power and memory. In order to obtain the
processing delay, different information paths inside a node are
considered. In a generator node, the data payload will be
generated by the application layer, then sent to the IP layer, and
then passed to the MAC layer. In a forwarder node, after the
packet is received, it is passed to the MAC layer, then to IP
layer, and then it will be sent to the MAC queue. In the case of
a sink node, the packet will be received, passed to the MAC
layer, then to the IP layer, and finally delivered to the
Application layer. These internal paths and associated delays
are shown in Fig. 4. The delay names include the layers
between which the delay is accounted (e.g. Delay_L5L3 is the
delay between layer 5 and layer 3). Since the generation of data
payload in layer 5 until the packet is received at the MAC
layer, two internal delays are accounted: the Delay_L5L3 and
the Delay_L3L2. For a generator node i, the Generation
Processing Delay (GenProcDelay) for a packet n is obtained as
follows:

Parent node p

APP

UDP

IP

MAC

PHY

Generator/forwarder node i

APP

UDP

IP

MAC

PHY

MAC Queuing

PHY-receivePHY-sendQueue Delay

MAC-send

Transmission Delay

Layer

Label

Data Flow

Delay

Fig. 3. Link Delay - Generator/forwarder node and parent node
Sink s

APP

UDP

IP

MAC

PHY

Forwarder node p (parent for i)

APP

UDP

IP

MAC

PHY

uIP6-in

APP-receive

MAC-receive

uIP6-fwd/out

MAC-queuingMAC-receive

APP-send

PHY-receivePHY-send

MAC-send

Layer

Label

Data Flow

PHY-receive

Generator node i

APP

UDP

IP

MAC

PHY

APP-send

uIP6-fwd/out

MAC-queueing

PHY-send

MAC-send

Fig. 2. EED estimation – WSN nodes’ interaction

 n

i

n

i

n

i Delay_L3L2Delay_L5L3ayGenProcDel += (3)

In the case node i is forwarding a packet n from other node,
the following delays are accounted: Delay_L2L3_FWD -
which is the delay accounted between layer 2 and layer 3 of a
packet meant to be forwarded - and Delay_L3L2. Thus, the
Forward Processing Delay (FwdProcDelay) in node i for
packet n is obtained by:

 n

i

n

i

n

i Delay_L3L2_FWDDelay_L2L3ayFwdProcDel += (4)

For the packet n received in the sink s, Delay_L2L3 and
Delay_L3L5 are accounted. The Input Processing Delay
(InProcDelay) accounted in the sink is obtained by:

 n

s

n

s

n

s Delay_L3L5Delay_L2L3yInProcDela += (5)

C. Internal Delays

The internal delays used in link delay and processing delay
components are obtained by using timers with a millisecond
precision. These timers measure the time interval between code
execution points defined by the labels indicated in Table I.
Exponential Weighted Moving Averages (EWMA) are used to
consider the history of these timers:

1).1(. --+= n

i

last

i

n

i DelayDelayDelay bb

These moving averages are used to obtain QueueDelay,
TransmissionDelay, Delay_L2L3, Delay_L2L3_FWD
Delay_L3L5, Delay_L5L3, and Delay_L3L2.

D. RPL Metrics

Our proposal uses the RPL (IPv6 Routing Protocol for
Low-power and Lossy Networks)[13] as routing protocol.
Nodes using RPL organize themselves in a tree-like topology
named Destination-Oriented Directed Acyclic Graph
(DODAG) optimized according to an Objective Function (OF)
towards one defined sink node. Our proposal assumes RPL
using the Minimum Rank with Hysteresis Objective Function
(MRHOF)[14], which selects routes that minimize a metric
using hysteresis in order to reduce instability due to small
metric changes. The rank used by OF represents a cost for the
path selected towards the root. By applying the OF, each node
elects one parent towards the sink from a set of candidate
parents. Different metrics may be used, carried in a DAG
Metric Container object, which includes a set of Routing
Metric/Constraint objects. In order to advertise the internal
nodes delays, our proposal uses two metrics: the Path Delay
Metric (PathDelayMetric) which represents the cumulative link
delays to the sink, and the Processing Delay Metric
(ProcDelayMetric) which represents the cumulative processing
delays to the sink. Both metrics are advertised by every node
within the RPL routing protocol messages. The

PathDelayMetric and ProcDelayMetric for a forwarding node i
with an RPL preferred parent p and sink s, can be obtained by:

ps

n

ipis etricPathDelayMLinkDelayetricPathDelayM += (6)

ps

n

iis etricProcDelayMelaydProcDFwcDelayMetriProc += (7)

A sink node s advertises to its neighbors a PathDelayMetric
of zero and a ProcDelayMetric according to the following:

 n

sss ProcDelayInetricProcDelayM =

The other nodes will broadcast both path and processing
metrics according to the RPL specification.

E. In-node End-to-end Delay Estimation

In our proposal, the EED estimation is composed of the
end-to-end path delay which is the sum of all link delays, and
the processing delay which is the sum of all processing delays.
For a node i with parent p, the Path Delay (PathDelay) of
packet n sent to the sink s is calculated as follows:

ps

n

ip

n

is etricPathDelayMLinkDelayPathDelay += (8)

The PathDelay is obtained by the same elements of the
PathDelayMetric (Eq. 6). However, it is calculated when a
packet is generated while the PathDelayMetric is calculated
when RPL advertisements need to be sent to the neighbors,
which in turn depends on the hysteresis function.

For a packet n generated by node i and sent to the sink s,
the Processing Delay (ProcDelay) estimated in node i is the
following:

ps

n

i

n

is etricProcDelayMProcDelayGenProcDelay += (9)

The EED estimation mechanism is presented in Fig. 5 and
it is implemented in all nodes of the WSN.

When a node i needs to send a data packet n it estimates the
EED towards sink s using PathDelay and the ProcDelay
obtained for the last packet as follows:

 1-n

is

1-n

is

n

is ProcDelayPathDelayEDEstimatedE += (10)

IV. HARDWARE AND SIMULATION ENVIRONMENT

A test scenario was deployed and the Contiki Cooja
Simulator [15] was used to validate our EED estimation
proposal. The network topology adopted is shown in Fig. 6 and
the simulation parameters are presented in Table II. The
simulated scenario consists of 16 generator/forwarder nodes
placed within a distance of 30 meters from each other plus a
sink node, deployed in a WSN area of 100 meters by 100
meters. Each node was simulated as a Tmote Sky[16]
composed of a MSP430F1611 micro-controller and a CC2420

Generator/forwarder node i

APP

UDP

IP

MAC

PHY

uIP6-fwd/out

MAC-receive

Delay_L2L3_FWD Delay_L3L2

APP-send

Delay_L5L3

PHY-send

MAC-send

Layer

Label

Data Flow

Delay

PHY-receive

MAC-queuing

Sink s

APP

UDP

IP

MAC

PHY

Delay_L3L5

Delay_L2L3

uIP6-in

APP-receive

MAC-receive

PHY-receive

Fig. 4. Processing Delay - Generator/forwarder node and sink node

PathDelayMetric
PathDelay

EED Estimation

LinkDelay

ProcDelay

ProcDelayMetric

GenProcDelay

+

+

+

Fig. 5. EED Estimation using PathDelay and ProcDelay

radio with a data rate of 250 kbit/s using IEEE 802.15.4 MAC
and PHY layer specifications, with transmission and
interference ranges of 30 meters, and using the Unit Disk
Graph Medium as physical channel model. The nodes run the
Contiki OS 2.5[12] and were programmed to enable the debug
of application and RPL messages. Extra code was programmed
to implement the timers in each node and the respective
processing delay was measured, having an impact of 16 ms per
processed packet. The application layer uses UDP as transport
layer and it generates packets of 100 Bytes in a Constant Bit
Rate (CBR) by using constant Inter-packet Generation
Intervals (IGIs). The simulations were repeated 10 times using
different seeds. Simulations were configured to stop when the
sink has received 500 packets from each node.

TABLE II. SIMULATION PARAMETERS

Parameter Value

Number of nodes 16 + sink node

Deployment area 100 m x 100 m

Transmission range 30 m

Channel model Unit Disk Graph Medium

Packet size 100 Bytes

Transport/Application UDP/CBR

In the simulation, the ETT-based solution was compared
against our proposal and the EED estimation is obtained using
the Eq. 1. RPL was configured to use the ETX metric. The
metric value is multiplied by a transmission ratio in order to
obtain the estimation of the EED as shown in Fig. 7.

The simulator was configured to output the time instant
when a packet is generated and when a packet reaches the
destination application. In order to caracterize the EED
estimation accuracy, when a packet is generated an EED
estimation is performed, saved, and compared later with the
real EED. The absolute value of the difference between the
estimation and the real results is taken as the EED estimation
error. During simulations the EED estimation errors for all
packets and for all the nodes are accounted. When simulation
ends the average of these errors is calculated as the average
EED estimation error. Confidence intervals of 90% are
obtained.

V. RESULTS AND ANALYSIS

Fig. 8 shows the average EED estimation error and
respective confidence intervals for both solutions, for IGIs
ranging from 1 to 10 seconds in steps of 1 second. The results
show that, for IGIs below 2 seconds the average estimation
error of our proposal is higher than the obtained for the ETT-
based solution. For an IGI equal or larger than 2 seconds
(smaller traffic loads), our proposal presents an average
estimation error below the ETT-based solution. For an IGI
higher than 3 seconds, the difference obtained from the both
solutions is approximately constant, having a value around 250
ms.

Fig. 9 zooms Fig. 8 and shows the average EED estimation
error for both solutions obtained for IGI but ranging from 0.5
to 5 seconds, in steps of 0.5 seconds. The results show that, for
IGIs shorter than 1.5 seconds, our proposal presents an higher
estimation error than the ETT-based solution. For an IGI value
of 1.5 seconds the average estimation error obtained for both
solutions is approximately the same; above that value, our
proposal presents lower average estimation errors.

Fig. 10 shows the average PathDelay and ProcDelay
distributions of the EED estimation for our proposal and IGIs
ranging from 0.5 to 5 seconds. For IGIs ranging from 0.5 to 2.5
seconds the ProcDelay component accounts 5% of the total
EED estimation and it increases gradually up to 35%. For IGIs
larger than 2.5 seconds the ProcDelay component becomes

Fig. 9. Average EED Estimation Error – IGI from 0.5 to 5s

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

Sink node

Generator/Forwarder node

Transmission Range

Data Flow

Fig. 6. Simulation Topology

Fig. 8. Average EED Estimation Error – IGI from 1 to 10s

x

Transmission ratio (S/D)

ETX metric

ETT metric EED Estimation

Fig. 7. EED estimation using ETT-based solution

approximately constant and it accounts for about 35% of the
EED estimation. From the results shown in Fig. 9 and Fig. 10
we conclude that, for IGIs below 1.5 seconds, the PathDelay
has an impact higher than the ProcDelay. For these high
network loads, the PathDelay suffers from the links instability
and it turns highly unpredictable making our estimation less
accurate. For IGIs above 1.5 seconds, the ProcDelay represents
around 30% of the EED estimation and our proposal presents
higher accuracy than the obtained by the ETT-based solution,
benefiting from the consideration of processing delays.

Fig. 11 presents the average number of RPL packets sent by
both solutions, per node and per simulation, for IGIs ranging
from 0.5 to 5 seconds. The results show that, for all IGIs, the
number of RPL packets generated by our proposal is 3 times
the number of packets generated by the ETT-based solution.
From the results shown in Fig. 9 and Fig. 11 we can conclude
that the new RPL metrics used in our proposal lead to an higher
advertisement rate due to the ProcDelayMetric and
PathDelayMetric changes that occur more often than the ETX
metric. Thus, for shorter IGIs (high loads), our proposal has
higher estimation errors than the ETT-based solution. This high
advertisement rate becomes a benefit for our proposal for IGIs
larger than 1.5 seconds, since it enables a more accurate
estimation.

Fig. 12 and Fig. 13 present the average EED estimation
error for both solutions obtained for specific nodes (node 8 and

node 5), for IGIs ranging from 1 to 10 seconds. Fig. 12
presents the results for node 8 which has the sink as parent. Fig.
13 presents the results for the node 5 which has two forwarder
nodes in the path for the sink. The results show that nodes
closer to the sink (e.g. node 8) have estimation errors smaller
than the nodes more distant from the sink (e.g. node 5). Also,
for the nodes far from the sink, the difference between the
estimations using ETT-based solution and our proposal is
higher. For IGIs shorter than 6 seconds, the estimation in nodes
far from the sink becomes largely inaccurate, when compared
to nodes closer to sink. For IGI values of 1 and 2 seconds in
node 5, results show that there were no packets arriving
destination and so the average estimation error is zero.

Fig. 14 presents the average EED for both solutions and for
IGIs ranging from 1 to 10 seconds. The results show that, for
almost all IGIs, the average EED obtained for our proposal is
higher than the obtained for ETT-based solutions, except for
the IGI of 3 seconds. At the same time, for IGIs shorter than 3
seconds, the difference of both solutions is accentuated. The
results in Fig. 14 also show that the average EED values are
closer to the estimate EED errors presented in Fig. 8. Our
proposal intends to take advantage of the maximum EED
verified and, for an IGI of 5 seconds, it presents an average
EED of 1000 ms and an error around 690 ms. Thus, in this case
it is expected that a packet reachs the sink at maximum of 1690
ms for our proposal against around 2000 ms for the ETT-based
proposal.

Fig. 11. Average number of RPL packets – IGI from 0.5 to 5s

Fig. 12. Average EED Estimation Error – node 8

Fig. 13. Average EED Estimation Error – node 5

Fig. 10. ProcDelay and PathDelay Distribution – IGI from 0.5 to 5s

Fig. 15 presents the Packet Reception Ratio (PRR) for both
solutions and for IGIs ranging from 1 to 10 seconds. The
results show that for IGIs shorter than 7 seconds, the PRR of
our proposal is less than the PRR obtained for the ETT-based
solution, with a constant difference of approximately 10%. The
results presented in Fig. 14 and Fig. 15 indicate that the
proposed mechanism has no significant impact on these
performance items for an IGI higher than 7 seconds. For IGI
shorter than 3 seconds, the average EED increases significantly
when compared to ETT-based solution; for an IGI shorter than
7 seconds, the PRR is affected in approximately 10%. This
impact is due to the higher refresh rates of the RPL metrics
used in our proposal, as explained above.

VI. CONCLUSIONS AND FUTURE WORK

In this paper is proposed a novel real-time mechanism used
to estimate per-packet end-to-end delay for monitoring
applications running in WSN. This proposal accounts both the
transmission and processing delays of previous packets to
estimate the EED for each new packet. The EED estimation is
obtained by combining internal timers with two cumulative
RPL metrics.

Our proposal was compared against an ETT-based solution
and the results show that our proposal produces a more
accurate EED estimation for low network loads, without

impacting significantly on the network performance in terms of
average EED and PRR values.

Our proposal can be used to provide a node with EED
information before it transmits a packet. By dropping useless
packets a network can see its performance improved. These
mechanisms can also be used to save nodes energy by avoiding
the transmission of useless data.

ACKNOWLEDGMENT

This work is partially financed by the ERDF – European
Regional Development Fund through the COMPETE
Programme and by National Funds through the FCT –
Fundação para a Ciência e a Tecnologia within project CMU-
PT/SIA/0005/2009.

REFERENCES

[1] R. Baumann, S. Heimlicher, M. Strasser and A. Weibel and S. H. R.
Baumann, “A survey on routing metrics,” TIK Rep. 262 ETH-Zent., 2007.

[2] R. S. Oliver and G. Fohler, “Probabilistic estimation of end-to-end path
latency in Wireless Sensor Networks,” in IEEE 6th International Conference
on Mobile Adhoc and Sensor Systems, 2009. MASS ’09, 2009, pp. 423–431.

[3] D. D. Chaudhary and L. M. Waghmare, “Quality of service analysis in
wireless sensor network by controlling end-to-end delay,” in 2012 7th IEEE
Conference on Industrial Electronics and Applications (ICIEA), 2012, pp.
703–708.

[4] L. Cui and J. Yong-feng, “The research on end-to-end delay upper
bound in wireless sensor network,” in 2012 International Conference on
Image Analysis and Signal Processing (IASP), 2012, pp. 1–4.

[5] B. Huhu and G. Wang, “Study on Delay Boundary Based on SNC in
Wireless Sensor Networks,” in 2011 7th International Conference on Wireless
Communications, Networking and Mobile Computing (WiCOM), 2011, pp. 1–
4.

[6] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop
wireless mesh networks,” in In ACM MobiCom, 2004, pp. 114–128.

[7] N. Javaid, A. Javaid, I. A. Khan, and K. Djouani, “Performance study of
ETX based wireless routing metrics,” in Computer, Control and
Communication, 2009. IC4 2009. 2nd International Conference on, 2009, pp.
1 –7.

[8] S. Biaz, B. Qi, and Y. Ji, “Improving Expected Transmission Time
Metric in Multi-Rate Multi-Hop Networks,” in Consumer Communications
and Networking Conference, 2008. CCNC 2008. 5th IEEE, 2008, pp. 533 –
537.

[9] H. Zhou, C. Huang, Y. Cheng, and G. Wang, “A New Multi-metric QoS
Routing Protocol in Wireless Mesh Network,” in Networks Security, Wireless
Communications and Trusted Computing, 2009. NSWCTC ’09. International
Conference on, 2009, vol. 1, pp. 459 –467.

[10] H. Li, Y. cheng, C. Zhou, and W. Zhuang, “Minimizing End-to-End
Delay: A Novel Routing Metric for Multi-Radio Wireless Mesh Networks,” in
IEEE INFOCOM 2009, 2009, pp. 46 –54.

[11] D. Teng, S. Yang, D. Wang, and Y. Hu, “NQETT: Node Quality
Adjusted ETT for Wireless Mesh Networks,” in Wireless Communications,
Networking and Mobile Computing, 2008. WiCOM ’08. 4th International
Conference on, 2008, pp. 1 –4.

[12] “Contiki OS.” [Online]. Available: http://www.contiki-os.org.

[13] T. W. <wintert@acm.org>, “RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks.” [Online]. Available:
http://tools.ietf.org/html/rfc6550.

[14] O. G. <gnawali@cs.uh.edu>, “The Minimum Rank with Hysteresis
Objective Function.” [Online]. Available: http://tools.ietf.org/html/rfc6719.

[15] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings 2006 31st
IEEE Conference on Local Computer Networks, 2006, pp. 641–648.

[16] “Tmote Sky Project.” [Online]. Available:
http://www.snm.ethz.ch/Projects/TmoteSky.

Fig. 14. Average EED

Fig. 15. Packet Reception Ratio

