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Abstract
The rising fuel costs is disallowing random cruis-
ing strategies for passenger finding. Hereby, a rec-
ommendation model to suggest the most passenger-
profitable urban area/stand is presented. This
framework is able to combine the 1) underlying
historical patterns on passenger demand and the
2) current network status to decide which is the
best zone to head to in each moment. The ma-
jor contribution of this work is on how to com-
bine well-known methods for learning from data
streams (such as the historical GPS traces) as an ap-
proach to solve this particular problem. The results
were promising: 395.361/506.873 of the services
dispatched were correctly predicted. The experi-
ments also highlighted that a fleet equipped with
such framework surpassed a fleet that is not: they
experienced an average waiting time to pick-up a
passenger 5% lower than its competitor.

1 Introduction
The taxis became crucial for human mobility in
medium/large-sized urban areas. They provide a direct,
comfortable and speedy way to move in and out of big town
centers - as complement to other transportation means or as
a main solution. In the past years, the city councils tried to
guarantee that the running vacant taxis will always meet the
demand in their urban areas by emitting more taxi licenses
than the necessary. As result, the cities’ cores are commonly
crowded by a huge number of vacant taxis - which take
desperate measures to find new passengers such as random
cruise’ strategies. These strategies have undesirable side
effects like large wastes of fuel, an inefficient traffic handling,
an increase of the air pollution.

The taxi driver mobility intelligence is one of the keys to
mitigate this problems. The knowledge about where the ser-
vices (i.e. the transport of a passenger from a pick-up to a
drop-off location) will actually emerge can truly be useful to
the driver – especially where there are more than one com-
petitor operating. Recently, the major taxi fleets are equipped
with GPS sensors and wireless communication devices. Typ-
ically, these vehicles will transmit information to a data cen-
ter about their location and the events undergoing like the

Figure 1: Taxi Stand choice problem.

passenger pick-up and drop-off. These historical traces can
reveal the underlying running mobility patterns. Multiple
works in the literature have already explored this kind of
data successfully with distinct applications like smart driv-
ing [Yuan et al., 2010], modeling the spatiotemporal struc-
ture of taxi services [Deng and Ji, 2011; Liu et al., 2009;
Yue et al., 2009], building passenger-finding strategies [Li et
al., 2011; Lee et al., 2008] or even predicting the taxi location
in a passenger-perspective [Phithakkitnukoon et al., 2010].
Despite their useful insights, the majority of the techniques
reported are offline, discarding the main advantages of this
signal (i.e. a streaming one).

In our work, we focus on the online choice problem about
which is the best taxi stand to go to after a passenger drop-
off (i.e. the stand where we will pick-up another passenger
quicker). Our goal is to use the vehicular network communi-
cational framework to improve their reliability by combining
all drivers’ experience. In other words, the idea is to fore-
cast how many services will arise in each taxi stand based on
the network past behavior to feed a recommendation model to
calculate the best stand to head to. An illustration about our
problem is presented in Fig. 1 (the five blue dots represent
possible stands to head to after a passenger drop-off; our rec-
ommendation system outputs one of them as the best choice
at the moment).

Such recommendation model can present a true advantage
for a fleet when facing other competitors, which will work
with less information than you do. This tool can improve
the informed driving experience by transmitting to the driver



which is the stand where 1) he will wait less time to get a pas-
senger in; or where 2) he will get the service with the greatest
revenue.

The smart stand-choice problem is based on four key de-
cision variables: the expected price for a service over time,
the distance/cost relation with each stand, how many taxis are
already waiting at each stand and the passenger demand for
each stand over time. The taxi vehicular network can be a
ubiquitous sensor of taxi-passenger demand from where we
can continuously mine the reported variables. However, the
work described here will just address the decision process
based on the last three variables.

In our previous work [Moreira-Matias et al., 2012], we al-
ready proposed a model to predict the spatiotemporal distri-
bution of the taxi passenger demand (i.e. the number of ser-
vices that will emerge along the taxi stand network). This
study departed from this initial work to extend it along three
different dimensions:

1. The Recommendation System: we use these predic-
tions as input to a Recommendation System that also
accounts the number of taxis already in a stand and the
distance to it. Such framework will improve the taxi
driver mobility intelligence in real time, helping him to
decide which is the most profitable stand in each mo-
ment. It will be based not only in his own past decisions
and outcomes, but on a combination of everyone experi-
ence, taking full advantage of the ubiquitous charac-
teristics of the vehicular communicational networks.

2. Test-bed: Our experiments took advantage of the ve-
hicular network online information to feed the predic-
tive framework. Moreover, the recommendation perfor-
mance was evaluated in real-time, demonstrating its
robustness and its ability to learn, decide and evolve
without a high computational effort;

3. Dataset: 506.873 services were dispatched to our 441
vehicle fleet during our experiments. This large scale
test was carried out along 9 months.

There are some works in the literature related with this prob-
lem, namely: 1) mining the best passenger-finding strate-
gies [Li et al., 2011; Lee et al., 2008], 2) dividing the ur-
ban area into attractive clusters based on the historical pas-
senger demand (i.e.: city zones with distinct demand pat-
terns) [Deng and Ji, 2011; Liu et al., 2009; Yue et al., 2009]
and even 3) predicting the passenger demand at certain ur-
ban hotspots [Li et al., 2012; Kaltenbrunner et al., 2010;
Chang et al., 2010]. The major contribution of this work
facing this state-of-the-art is to build smart recommenda-
tions about the taxi stand to head to in an online streaming
environment (i.e. real-time; while the taxis are operating)
based not only on their historical trace but also on the current
network status. In fact, the reported works present offline
frameworks and/or test-beds or just account a low number of
decision variables.

The results were obtained using two distinct test-beds:
firstly, (1) we let the stream run continuously between Au-
gust 2011 and April 2012. The predictive model was trained
during the first five months and it was stream-tested in the
last four. Secondly, (2) we used a traffic simulator to test

if our Recommendation System could beat the drivers’ ex-
pected behavior. We simulated a competitive scenario – with
two fleets - using the services historical log and on the exist-
ing road network system. The obtained results validated that
our method can effectively help the drivers to decide where
they can achieve more profit.

The remainder of the paper is structured as follows. Sec-
tion 2 formally presents our predictive model while Section
3 details our recommendation one. The fourth section de-
scribes our case study, how we acquired and preprocessed the
data used as well as some statistics about it. The fifth section
describes how we tested the methodology in a concrete sce-
nario: firstly, we introduce the two experimental setups and
the metrics used to evaluate both models. Then, the obtained
results are detailed, followed by some important remarks. Fi-
nally, conclusions are drawn.

2 The Predictive Model
In this section we present some relevant definitions and a brief
description of the predictive model on taxi passenger demand.
The reader should consult the section II in [Moreira-Matias et
al., 2012] for further details. Let S = {s1, s2, ..., sN} be the
set of N taxi stands of interest and D = {d1, d2, ..., dj} a
set of j possible passenger destinations. Our problem is to
choose the best taxi stand at the instant t according with our
forecast about passenger demand distribution over the time
stands for the period [t, t+ P ].

Consider Xk = {Xk,0, Xk,1, ..., Xk,t} to be a discrete
time series (aggregation period of P-minutes) for the number
of demanded services at a taxi stand k. The goal is to build
a model which determines the set of service counts Xk,t+1

for instant t + 1 and per taxi stand k ∈ {1, ..., N}. To do
so, three distinct short-term prediction models are proposed,
as well as a well-known data stream ensemble framework to
use all models. We briefly describe these models along this
section.

2.1 Time Varying Poisson Model
Consider the probability for n taxi assignments to emerge in
a certain time period - P (n) - following a Poisson Distribu-
tion.It is possible to define it using the following equation

P (n;λ) =
e−λλn

n!
(1)

where λ represents the rate (average demand for taxi services)
in a fixed time interval. However, in this specific problem,
the rate λ is not constant but time-variant. Therefore, it was
adapted as a function of time, i.e. λ(t), transforming the Pois-
son distribution into a non homogeneous one. Let λ0 be the
average (i.e. expected) rate of the Poisson process over a full
week. Consider λ(t) to be defined as follows

λ(t) = λ0δd(t)ηd(t),h(t) (2)

where δd(t) is the relative change for the weekday d(t) (e.g.:
Saturdays have lower day rates than Tuesdays); ηd(t),h(t) is
the relative change for the period h(t) in the day d(t) (e.g. the
peak hours); d(t) represents the weekday 1=Sunday, 2=Mon-
day, ...; and h(t) represents the period when time t falls (e.g.



the time 00:31 is contained in period 2 if we consider 30-
minutes periods).

2.2 Weighted Time Varying Poisson Model
The model previously presented can be faced as a time-
dependent average which produces predictions based on the
long-term historical data. However, it is not guaranteed that
every taxi stand will have a highly regular passenger demand:
actually, the demand in many stands can often be seasonal.
The sunny beaches are a good example on the demand sea-
sonality: the taxi demand around them will be higher on sum-
mer weekends rather than other seasons along the year.

To face this specific issue, a weighted average model is
proposed based on the one presented before: the goal is to
increase the relevance of the demand pattern observed in the
recent week (e.g. what happened on the previous Tuesday
is more relevant than what happened two or three Tuesdays
ago). The weight set ω is calculated using a well-known time
series approach to these type of problems: the Exponential
Smoothing [Holt, 2004]. This model will enhance the impor-
tance of the mid-term historical data rather than the long-term
one already proposed in the above section.

2.3 Autoregressive Integrated Moving Average
Model

The two previous models assume the existence of a regular
(seasonal or not) periodicity in taxi service passenger demand
(i.e. the demand at one taxi stand on a regular Tuesday during
a certain period will be highly similar to the demand verified
during the same period on other Tuesdays). However, the
demand can present distinct periodicities for different stands.
The ubiquitous features of this network force us to rapidly
decide if and how the model is evolving so that it is possible
to adapt to these changes instantly.

The AutoRegressive Integrated Moving Average Model
(ARIMA) [Box et al., 1976] is a well-known methodology
to both model and forecast univariate time series data such
as traffic flow data [Min and Wynter, 2011], electricity price
[Contreras et al., 2003] and other short-term prediction prob-
lems such as the one presented here. There are two main
advantages to using ARIMA when compared to other algo-
rithms. Firstly, 1) it is versatile to represent very differ-
ent types of time series: the autoregressive (AR) ones, the
moving average ones (MA) and a combination of those two
(ARMA); Secondly, 2) it combines the most recent samples
from the series to produce a forecast and to update itself to
changes in the model. A brief presentation of one of the sim-
plest ARIMA models (for non-seasonal stationary time se-
ries) is presented below following the existing description in
[Zhang, 2003] (however, our framework can also detect both
seasonal and non-stationary series). For a more detailed dis-
cussion, the reader should consult a comprehensive time se-
ries forecasting text such as the one presented in Chapters 4
and 5 in [Cryer and Chan, 2008].

2.4 Sliding Window Ensemble Framework
Three distinct predictive models have been proposed which
focus on learning from the long, medium and short-term his-
torical data. However, a question remains open: Is it pos-

sible to combine them all to improve our prediction? Over
the last decade, regression and classification tasks on streams
attracted the community attention due to their drifting char-
acteristics. The ensembles of such models were specifically
addressed due to the challenge related to this type of data.
One of the most popular models is the weighted ensemble
[Wang et al., 2003]. This error-based model was employed in
this framework. The Averaged Weighted Error(AVE) metric
was used to measure such error.

3 Recommendation Model
Let Xk,t+1 be the number of services to be demanded in the
taxi stand k during the 30-minutes period next to the time
instant t. Then, a passenger is dropped-off somewhere by
a vehicle of interest w minutes after the last forecast on the
instantt. The problem is to choice one of the possible taxi
stands to head to. This choice is related with four key vari-
ables: the expected price for a service over time, the distance
to each stand, how many taxis are already waiting at each
stand and the predicted passenger demand. However, here we
solve this issue like a minimization problem: we want to rank
the stands according the minimum waiting time (target vari-
able) to pick-up a passenger, whenever it is directly picked-up
or dispatched by the central.

Let Ck,t+1 be the number of taxis already parked in the
stand k in the drop-off moment and Lk,w be the number of
services departed from the same stand between this moment
and the moment of the last forecast (i.e.: t).We can define the
service deficit - SDk,t+w on the taxi stand k i.e.: a prediction
on the number of services that still will be demanded in the
stand discounting the vehicles already waiting in the line) as

SDk,t+w = (Xk,t+1 − Ck,t+1 − Lk,w) ∗ ρH (3)
where ρH is the similarity (i.e.: 1 – error) obtained by our
forecasting model in this specific stand during the sliding
training window H. In fact, ρH works as a certainty about
our prediction (i.e.: if two stands have the same SD but our
model is experiencing a bigger error in one of them, the other
stand should be picked instead).

Let υk be the distance (in kilometres) between the drop-off
location and the taxi stand k. We can define the normalized
distance to the stand - Uk - as follows

Uk = 1− υk
ξ

(4)

where ξ is the distance to the farthest stand. We can calculate
the Recommendation Score of the taxi stand k as

RSk = Uk ∗ SDk,t+w (5)

Then, we calculate the Recommendation Score of every
stands and we recommend to the driver the stand with the
highest one.

4 Data Acquisition and Preprocessing
The stream events data of a taxi company operating in the city
of Porto, Portugal, was used as case study. This city is the
center of a medium-sized urban area (consisting of 1.3 mil-
lion inhabitants) where the passenger demand is lower than



the number of running vacant taxis, resulting in a huge com-
petition between both companies and drivers. The data was
continuously acquired using the telematics installed in each
one of the 441 running vehicles of the company fleet through-
out a non-stop period of nine months. This study just uses
as input/output the services obtained directly at the stands or
those automatically dispatched to the parked vehicles (more
details in the section below). This was done because the pas-
senger demand at each taxi stand is the main feature to aid the
taxi drivers’ decision.

Statistics about the period studied are presented. Table 1
details the number of taxi services demanded per daily shift
and day type. Table 2 contains information about all ser-
vices per taxi/driver and cruise time. The service column in
Table 2 represents the number of services taken by the taxi
drivers, while the second represents the total cruise time of
every service. Additionally, it is possible to state that the cen-
tral service assignment is 24% of the total service (versus the
76% of the service requested directly on the street) while 77%
of the service is demanded directly to taxis parked in a taxi
stand (and 23% is assigned while they are cruising). The av-
erage waiting time (to pick-up passengers) of a taxi parked at
a taxi stand is 42 minutes while the average time for a ser-
vice is only 11 minutes and 12 seconds. Such low ratio of
busy/vacant time reflects the current economic crisis in Portu-
gal and the regulators’ inability to reduce the number of taxis
in the city. It also highlights the importance of the predictive
system presented here, where the shortness of services could
be mitigated by obtaining services from the competitors.

5 Experimental Results
In this section, we firstly describe the experimental setup de-
veloped to test our predictive model on the available data.
Secondly, we introduce our simulation model and the exper-
iments associated with. Thirdly, we present our Recommen-
dation System and the metrics used to evaluate our methods.
Finally, we present the results.

5.1 Experimental Setup for the Predictive Model
Our model produces an online forecast for the taxi-passenger
demand at all taxi stands at each P-minutes period. Our test-

Table 1: Taxi Services Volume (Per Daytype/Shift)

Daytype Total Services Averaged Service Demand per Shift
Group Emerged 0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503

Table 2: Taxi Services Volume(Per Driver/Cruise Time)

Services per Driver Total Cruise Time (minutes)
Maximum 6751 71750
Minimum 100 643
Mean 2679 33132
Std. Dev. 1162 13902

bed was based on prequential evaluation: data about the net-
work events was continuously acquired.

Each data chunk was transmitted and received through a
socket. The model was programmed using the R language.
The prediction effort was divided into three distinct processes
running on a multicore CPU (the time series for each stand
is independent from the remaining ones) which reduced the
computational time of each forecast. The pre-defined func-
tions used and the values set for the models parameters are
detailed along this section.

An aggregation period of 30 minutes was set (i.e. a new
forecast is produced each 30 minutes; P=30) and a radius of
100 m (W = 100 ¿ 50 defined by the existing regulations). It
was set based on the average waiting time at a taxi stand, i.e.
a forecast horizon lower than 42 minutes.

The ARIMA model (p,d,q values and seasonality) was
firstly set (and updated each 24h) by learning/detecting the
underlying model (i.e. autocorrelation and partial autocor-
relation analysis) running on the historical time series curve
for each considered taxi stand. To do so, we used an auto-
matic time series function in the [forecast] R package [Yeas-
min and Rob, 1999] - auto-arima – with the default parame-
ters. The weights/parameters for each model are specifically
fit for each period/prediction using the function arima from
the built-in R package [stats].

The time-varying Poisson averaged models (both weighted
and non-weighted) were also updated every 24 hours. A slid-
ing window of 4 hours (H=8) was considered in the ensemble.

5.2 Traffic Simulator: An Online Test-Bed
The DIVERT [Conceicao et al., 2008] is a high-performance
traffic simulator framework which uses a realistic micro-
scopic mobility model. The main advantage of this frame-
work when facing others is the easiness to create new sim-
ulation modules efficiently. Hence, we have created a new
model that simulates the real behavior of a taxi fleet. Upon
a request, a central entity elects one taxi to do the requested
service. Once the service is finished, the same entity recom-
mends a new taxi-stand for the taxi to go to and wait for a
new service.

This framework was employed as an online test-bed for our
Recommendation System. Firstly, the realistic map of the city
of Porto - containing the real road network topology and the
exact location of the 63 taxi stands in the city – was loaded.
). Secondly, we fed the framework with a service log (i.e.
a time-dependent origin-destination matrix) correspondent to
the studied period. However, we just accessed the log of one
out of the two running fleets in Porto (the largest one, with
441 vehicles). To simulate a scenario similar to our own, we
divided this fleet into two using a ratio close to real one (60%
for the fleet A1 and 40% to the fleet B1). The services dis-
patched from the central were also divided in the same pro-
portion while the services demanded in each taxi stand will
be the same. The fleet B1 will use the most common and tra-
ditional way to choose the best taxi-stand: it will go to the
nearest taxi stand of each drop-off location (i.e. after a drop-
off, each driver has to head to a specific taxi stand of its own
choice). However, the fleet A1 will use our Recommendation
System to do an informed driving, which considers multiple



variables – like the number of taxis in each stand or the de-
mand prediction on them - to support this important decision.
Finally, we ran the simulation and we extract the metrics for
each fleet. The framework is used to calculate the optimal
paths between the taxi stand and the passenger location and
the dependent behavior of the fleets (the location of each ve-
hicle will affect the way they get the services). Our main
goal is to simulate a real scenario behavior and its competi-
tive characteristics while we are testing the Recommendation
System. It is important to notice that both fleets would get
similar results if they did not use any Recommendation Sys-
tem. We also highlight that the vehicles will remain parked in
the stand waiting for a service whenever the time it takes to
appear. In this case, we consider the maximum threshold of
120 minutes that is deeply detailed in the following section,
along with the remaining evaluation metrics.

5.3 Evaluation Methods
We used the data obtained from the last four months to eval-
uate our both experimental setups (where 506873 services
emerged). Firstly, we present two error measurements which
were employed to evaluate our output: one from the literature
and another from our own specifically adapted to our current
problem. Secondly, we detail the two performance metrics
used to evaluate our recommendation models.

Consider Rk = {Rk,0, Rk,1, ..., Rk,t} to be a discrete time
series (aggregation period of P -minutes) with the number of
services predicted for a taxi stand of interest k in the pe-
riod {1, t} and Xk = {Xk,0, Xk,1, ..., Xk,t} the number of
services actually emerged in the same conditions. The (1)
Symmetric Mean Percentage Error (sMAPE) is a well-known
metric to evaluate the success of time series forecast models.
However, this metric can be too intolerant with small magni-
tude errors (e.g. if two services are predicted on a given pe-
riod for a taxi stand of interest but no one actually emerges,
the error within that period would be 1). Then, we propose
to also use an adapted version of Normalized Mean Absolute
Error (NMAE).

The (2) Average Weighted Error (AVE) is a metric of our
own based on the NMAE. We defined it as

AV E′ =

t∑
i=1

θk,i ∗Xk,i

σk,i ∗ ψk
(6)

σk,i =

{
Xk,i if Xk,i > 0
1 if Xk,i = 0

}
(7)

θk,i =

{
|Rk,i −Xk,i| if Xk,i > th
0 if Xk,i ≤ th

}
(8)

ψk =

t∑
i=1

Xk,i, AV E =

{
AV E′ if AVE’ ≤ 1
1 if AVE’ > 1

}
(9)

where ψk is the total of services emerged at the taxi stand
k during the time period {1, t}. The main feature about this
metric is to weight the error in each period by the number of
real events actually emerged (i.e. the errors on periods where
more services were actually demanded are more relevant than
the remaining ones).

Both metrics are focused just on one time series for a given
taxi stand. However, the results presented below use an aver-
aged error measured based on all stands series – GA. Consider
β to be an error metric of interest. AGβ is an aggregated met-
ric given by a weighted average of the error in all stands. It is
formally presented in the following equation.

AGβ =

N∑
k=1

GAβ,k ∗ ψk
µ

, µ =

N∑
k=1

ψk (10)

We considered three performance metrics in the evaluation of
our recommendation models: (1) the Waiting Time (WT) and
(2) the Vacant Running Distance (VRD) and the number of
No Services (NS). The Waiting Time is the total time that a
driver takes between a drop-off and a pick-up (i.e. to leave
a stand with a passenger or to get one in his/her current lo-
cation). The Vacant Running Distance is the distance that a
driver does to get into a stand after a drop-off (i.e.: without
any passenger inside). Independently on the time measured
on the simulation, we always consider a maximum threshold
of 120 minutes to the Waiting Time. The No Service metric
is a ratio between the number of times that a taxi parked on a
stand had a waiting time greater than the 120 minutes thresh-
old and the number of services effectively dispatched by the
respective fleet.

5.4 Results
Firstly, we present the results obtained by the online experi-
ments done with the predictive models. The error measured
for each model is highlighted in Table 3 and Table 4. The
results are firstly presented per shift and then globally. These
error values were aggregated using the AGβ previously de-
fined.

Secondly, the values calculated for our performance met-
rics using the traffic simulator previously described are de-
tailed in the Table 5. The fleet A1 used the Recommendation
Model 1 (RS1) while the B1 uses the common expected be-
havior (previously defined). Distinct metrics values are pre-
sented for the two using different aggregations like the arith-
metic mean (i.e. average), the median and the standard devi-
ation. The No Services ratio is also displayed.

6 Final Remarks
In this paper, we present a novel application of time series
forecasting techniques to improve the taxi driver mobility
intelligence. We did it in three distinct steps: firstly (1) we
mined both GPS and event signals emitted by a company op-
erating in Porto, Portugal (where the passenger demand is

Table 3: Error Measured on the Models using AV E

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 21.28% 24.88% 22.88% 23.43%
W. Poisson Mean 23.32% 28.37% 26.77% 26.74%
ARIMA 20.85% 26.12% 22.92% 20.91%
Ensemble 14.37% 18.18% 17.19% 15.89%



Table 4: Error Measured on the Models using sMAPE

Periods
Model

00h−08h 08h−16h 16h−00h 24h

Poisson Mean 15.09% 19.20% 17.51% 16.84%
W. Poisson Mean 17.32% 20.66% 19.88% 18.47%
ARIMA 16.81% 18.59% 17.85% 18.51%
Ensemble 14.37% 18.18% 17.19% 15.89%

Table 5: An Analysis on the Recommendation Performance

Performance Metrics A1(RS) B1(common)
Average WT 38.98 40.84
Median WT 26.29 27.92

Std. Dev. WT 33.79 33.22
Average VRD 3.27 1.06
Median VRD 2.80 0.98

Std. Dev. VRD 2.53 0.54

No Service (%) 11.08% 19.26%

lower than the vacant taxis). Secondly, we predicted - in a
real-time experiment - the distribution of the taxi-passenger
demand for the 63 taxi stands at 30-minute period intervals.
Finally, we recreated the scenario running in Porto, where
two fleets (the fleet A and B, which contain 441 and 250 ve-
hicles, respectively) compete to get as many services as pos-
sible. We did it using a traffic simulation framework fed by
the real services historical log of the largest operating fleet.
One of the fleets used our Recommendation System for the
Taxi Stand choice problem while the other one just picked
the stand using a baseline model corresponding to the driver
common behavior in similar situations.

Our predictive model demonstrated a more than satisfac-
tory performance, anticipating in real time the spatial distri-
bution of the passenger demand with an error of just 20%.
We believe that this model is a true novelty and a major
contribution to the area through its online adapting charac-
teristics:

• It takes advantage of the ubiquitous characteristics of
a taxi communicational network, assembling the expe-
rience and the knowledge of all vehicles/drivers while
they usually use just their own;

• It simultaneously uses long-term, mid-term and short
term historical data as a learning base;

• It rapidly produces real-time short-term predictions of
the demand, which can truly improve drivers’ mobility
intelligence and consequently, their profit.

This approach meets no parallel in the literature also by
its test-bed: the models were tested in a streaming environ-
ment, while the state-of-art presents mainly offline experi-
mental setups. Our simulation results demonstrated that such
informed driving can truly improve the drivers’ mobility in-
telligence: the fleet A1 had an Average Waiting Time 5% lower
than its competitor – even if it has a larger fleet. We also high-
light the reduction of the No Service ratio in 50% while the

Vacant Running Time faced an increase. It is important to
state that this Recommendation System is focused on a Sce-
nario like our own – two or more competitors operating in a
medium/large city where the demand is lower than the num-
ber of running vehicles. Its main goal is to recommend a
stand where a service will rapidly emerge – even if this stand
is far away. The idea is to be in a position able to pick-up
the emerging service demand before the remaining compe-
tition. This factor can provoke a slight increase on the Va-
cant Running Time but it will also reduce the usually large
Waiting Times to pick-up passengers. Other scenarios may
require a distinct calibration of the model to account different
needs/goals.
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