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Abstract—The design, manufacture and operational charac-
teristics (e.g., yield, performance, and reliability) of modern
electronic integrated systems exhibit extreme levels of com-
plexity that cannot be easily modelled or predicted. Different
mathematical methodologies have been explored to address this
issue. Monte Carlo simulation is the most widely employed and
straightforward approach to evaluate the circuits’ performance
statistics. However, the high number of trial cases and the long
simulations times required to obtain results for complex circuits
with a ppm resolution, lead to very long analysis times. The
present work addresses the evaluation of alternative statistical
inference methodologies which allow obtaining similar results
departing from a smaller dimension data set of Monte Carlo
simulations from which the overall population is estimated. These
methodologies include the use of Bayesian inference, Expectation-
Minimization, and Kolmogorov-Smirnov tests. Results are pre-
sented which show the validity of these approaches.

I. INTRODUCTION

Within new and future nano-scale technologies, the ability
to control critical device parameters is becoming increasingly
difficult and the effects of significant process variations are
inevitable [1]. The prohibitively high cost associated with pre-
silicon validation and post-silicon tuning of current analogue
and mixed-signal (AMS) circuits is a growing problem as
geometries continue to shrink and the relative magnitude of
critical process fluctuations continues to grow. These circuits
tend to become large-scale complex systems that must be
tuned and adaptively adjusted over time. Hence, there is an
immediate need to develop new methodologies and tools to
support the validation and tuning of nano-scale AMS circuits
for future technology generations.

Most AMS circuits’ performance metrics are extremely
sensitive to inter-die and/or intra-die variations associated with
todays manufacturing processes. For this reason, AMS circuits
are not as scalable as digital circuits and they have been
considered as major bottlenecks for future IC technology
scaling [2]. On the other hand, with such large variations
testing issues related to yield loss and test escapes tend to
be aggravated [1]. Each AMS circuit becomes now a larger
and complex system that can adaptively vary over time namely
by means of digitally assisted schemes to eliminate defective
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redundant parts or to re-adjust the operating conditions in order
to increase production yield and/or operating performance. It,
in turn, brings up enormous fundamental technical problems
related to computer-aided design of tunable AMS circuits
in terms of: (1) time needed to perform a large number of
simulations to optimally design the circuit; (2) accuracy to
find the best parameters and control nodes to be used for
observation and control purposes in the testing and tuning
schemes to be adopted; (3) select the best parameters to be
adopted in the test production stages in order to maximize
manufacturing yield and minimize test escapes.

Different mathematical methodologies have been explored
to address these issues. In the most recent approaches, statisti-
cal modelling has been explored where an initial sample of the
circuits behaviour under parametric variations is obtained by
Monte Carlo (MC) simulation, after which a statistical model
is formulated to estimate a single joint probability density
function (pdf) for all performance parameters being specified.
Methodologies based on the multivariate normal law, Gaussian
copulas [3], kernel density estimation [4], and univariate
extreme value statistics [5] were proposed. Nevertheless, these
methods are sensitive to the dimension of the initial sample
and still require performing a large number of simulations of
a model obtained from the preliminary sample of the circuit
performance.

The major drawback to MC analysis is simulation time.
A large number of trails is needed, particularly if one needs
to accurately evaluate the tails of the distribution. While this
is not an issue for small circuits or individual circuit blocks
found after partitioning, it can represent a significant burden
in design and test development time for large circuits.

The objective of the preliminary work presented here is
to evaluate alternative statistical methods to reduce the time
and effort to estimate performance distribution and parametric
yield for pre-silicon verification. Among these alternatives
is the use of an approach based on Bayesian inference and
Expectation-Maximization (EM) algorithms. The key idea is
to start from a set of early-stage data to first learn the prior
knowledge and statistically encode it as a prior distribution.
The EM algorithm allows obtaining the response surfaces of
both mean and variance of a process even when departing from



incomplete data. Next section presents the theoretical concepts
behind this approach and section III presents preliminary
results that confirm its validity. Section IV highlights the main
conclusions.

II. THE EXPECTATION-MAXIMIZATION ALGORITHM

Knowing the expected probability distribution of a circuits
performance is equivalent to finding the Maximum-Likelihood
(ML) estimate of the parameters of an underlying distribution
from a given data set, when the available data is incomplete
or has missing values. The same approach can be applied
to estimating the performance distribution of the fabricated
circuits departing from a limited in size sample of fabricated
circuits.

The EM algorithm [6], [7] allows finding the ML estimate of
the parameters of a distribution z after a given (observed) data
sample of that population. It can be said that data = comprises
both incomplete observed data y and unobserved data z , i.
e,z = (y;20)T.

In a ML estimation approach one has a likelihood func-
tion and wants to find the parameter © that maximizes the
probability of having obtained the observed data, i. e., that
governs the probability density function (pdf). © is found

= p(y|®) = H p(y:|©), given the

observed sample y = [y1,¥2,.. 7yN} of that distribution.
Within the EM approach one starts by finding an estimate
for the likelihood function followed by maximizing the whole
term, where each entry of z is as a random variable once it
was not actually observed.

The expectation of the whole likelihood function, given the
observed data y is E[logL(0)|y, ©@]. This expectation is
maximized calculating @+ = argmazE[logL(0)|y, 0W].

e

by maximizing L(O)

Let’s suppose one intends to estimate parameter 6 of pop-
ulation X ~ Normal(f,0?). It is stipulated or believed
true that o2 = a. Likewise, there is evidence that the most
expected value of parameter 0 is b, with variance d2. It is then
credible to assume that a priori § ~ Normal(b, d?). Taking

y = [y1,-..,yn] as a particular case of a random i.i.d. sample
(X1, ..., X,], then,
L(0,a,z)= fx (z]0,0° =a)

:P(X:scl,...,X:xn|9,02:a)

B 1 1(z; —0)°
= };[1 m\/&exp [_Qa ]

= (27ra)7% exp [—;a Z (z; — 9)21
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n

On the other hand, using the Bayes rule, with © equal to
the set of all values that # can assume,
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Fig. 1: Distribution of the = values over the two normal pdf.
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Next, P (6 | x) is used as the new a priori distribution for
0, being the process repeated until the values for 6 converge.

The key idea is to start from a set of early-stage data to
first learn the prior knowledge and statistically encode it as a
prior distribution. Even if MC simulations are used to obtain
a relatively small set of samples that will act as iteration 0.

A. Modelling of a population after fusion of Gaussian sub-sets

The EM approach can be used to model an unknown pop-
ulation after fusing Gaussian sub-sets of that population [8].
An unknown population P can be represented from sampled
sub-sets Y and Z in the form P = w1Y + wyZ, with
Y ~ Normal(6y,0%), Z ~ Normal(f2,03), where coeffi-
cients w; and wy are real numbers. The EM algorithm allows
estimating these coefficients after using iteratively Bayesian
statistics. The population sub-sets Y and Z can actually be
obtained from a larger sample X of P.

To illustrate this, consider the universe P from which a
sample comprised by the set of values X was obtained, as
shown in figure 1. From the X sample two sub-sets Y and Z,
both with normal pdf, were extracted. Given a value z;, one



can calculate the probabilities of this value belonging to Y,
Dy;, and Z, pz, = 1 — py;:

Pzi|Y)P(Y)
zi|Y)P(Y) + P(xi|Z) P(Z)

1 _<1'r?zy)2
er 2oy (D
oy vV 2 P

If py, > pz,, then z; is initially allocated to the Y pdf,
and to Z otherwise. This procedure is repeated for all the
other points, being in the end two new Y and Z clusters
obtained (continuous lines in figure 1). Next, new mean and
variance values are calculated for the two normal distributions
(equations 2).

with P(x;|Y) =

V1T Y22+ YnTn
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The process is repeated until convergence is found. In
the end, the P pdf is expressed as P = py N(uy;oy) +
pzN(uz;0z7). It is also possible to implement the process
using more than two sub-sets.

B. Kolmogorov-Smirnov test

Once the parameters of the unknown population have been
estimated, the Kolmogorov-Smirnov (KS) test can be applied
to evaluate whether a sample of dimension n is representative
of a population X with a (fdp) Normal(u,o?). For that, the
following hypothesis can be formulated:

Hy: Fx(z) = Fy;

Hy: Fx # Fy,
where F'x () is the accumulated distribution function ( fda) of
X and Fy that of a random variable Y ~ Normal (u,0?). If
the obtained KS test value is lower than p, then the probability
of rejecting Hy, being that the true hypothesis, is lower than p,
i. e, P(RejectingHy | Hy is true) < p; as such, the null
hypothesis is rejected; otherwise Hy is not rejected. Iteratively,
one can find the (fdp) of which z comes from, or of which
it represents an occurrence.

III. RESULTS

The EM based performance variation estimation approach
presented above was evaluated considering the simulation of
two particular circuits, a cascode current mirror and a low
dropout voltage (LDO) regulator.
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Fig. 2: Cascode current mirror circuit used as an example.

A. Cascode current mirror

Figure 2 shows a cascode current mirror considered in the
first evaluation case. The circuit was simulated applying a DC
current I superimposed with an AC component. MC simula-
tions with different number of cases were carried out for 10%
Gaussian random variations at 3o of the transistors’ widths,
and the rms value of the output voltage V,,,, was taken for each
case. An MC population with 10° cases taken as reference,
presents Vo ~ Normal(f = 1.0924V, 02 = 23.14mV).

Figures 3a and 3b show the evolution of F(V,,;) and
Std(Vyut), for the different number of simulation cases. It can
be seen that with the 4050 cases MC simulation, the average
value obtained is very close to the expected value of 1.0924 V.
Also, although the average value obtained with EM is smaller,
nevertheless, the probability distribution curve (figure 3c) is
closer to that given by the 10° MC simulation than the one
provided by the 4050 cases.

Table I shows the evolution of E[V,,:] and Std[V,,:] when
using the EM algorithm with 100 iterations for different
number N of samples (sub-sets, each with 300 elements),
for the 4050 cases data set. These values show that the EM
algorithm provides estimates that closely approach the true
values 6 = 1.0924 V and o = 23.14 V, as N increases.

It was then estimated that, using the EM algorithm applied
to the sample obtained from the 4050 trials MC simulation, the
overall population (here characterized by the 10> MC simula-
tion) presents E[X]| = 1.09265 V' and Std[X] = 0.02226 V.
To evaluate whether it is likely that X follows a normal
distribution with the parameters provided by the EM algorithm
applied to the 4050 MC simulation data set, the KS test was
applied, i. e.,

H()Z Fx(x) = Fy;

Hy: Fx # Fy,
where Fx(x) is the accumulated distribution function (fda)
of X and Fy the (fda) of a random variable YV ~
Normal (1.0925, 0.022262). As p —valor = 0.3174 the null
hypothesis is credible, what confirms the robustness of the
EM algorithm.

Regarding simulation time, while the 4050 MC simulation
takes 190 seconds cpu time, the 105 MC simulation takes 50



TABLE I: Estimates of the output voltage average and standard deviation provided by EM for the cascoded current mirror.

N

10

20

50

100

200

300

500

600

E[X]

1.08363

1.09423

1.09319

1.09317

1.09275

1.09270

1.09269

1.0926

Std[X

0,01261

0,01547

0,01599

0,01567

0,01544

0, 02092

0,02073

0, 02226

1,094

1,093
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Fig. 3: Comparison between values given by MC simulations
of the cascoded current mirror with 10° and 4050 trials, and
those estimated with EM.
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Fig. 4: Evolution of the average values provided by EM with
the number of iterations.

times more. The execution time to run the EM algorithm is
3.8 seconds.

B. Low dropout voltage regulator

The second evaluation case concerns an ultra low-power
LDO voltage regulator. A 10* MC simulation of the cir-
cuit provides an output voltage with average value and
variance voyr, ~ Normal(1.152,0.02357?) V. The sim-
ulation time is 11784 seconds. Two MC simulations with
200 cases each were carried out that present, respectively,
voury ~ Normal(1.156,0.02295%) V and vour, ~
Normal(1.150,0.02144%) V, and take 179,6 seconds.

The EM algorithm was applied to the two sets of data
obtained with the 200 cases MC simulations, being then the
average of each set expressed as Y = wlel + waYQ and
7 = w121 + w2 Z5. In this case, the EM execution time is
1.43 seconds for each set Y and Z.

The value estimated for the output voltage E[X], after com-
bining the four averages and coefficients, E[X] = (w,1Y; +
wy2Yo + w121 + w,2Z2)/2, obtained using EM after 140
iterations is E[X] = 1.1532 V, i. e., an approach with a relative
error of €., = 0.1%. It can be seen that the EM estimated
value provides a very small error, which is also smaller than
those given by the 200 cases MC simulations, which present
errors of €,..; = 0.35% and €,¢; = —0.17%, respectively. After
1300 iterations E[X] is almost the same. In fact, as shown in
figure 4 the average values provided by EM after 140 iterations
are very close to the expected reference value.

Regarding simulation time, instead of 3 hours and 16
minutes required for the 10* MC simulation, a total of about



6 minutes is needed to run the two 200 cases MC simulation
and execute EM.

IV. CONCLUSIONS

The use of the Expectation-Maximization algorithm has
been explored as a means to, in a more expedite form, find the
distribution of a circuits performance variation, either at the
design stage or in production after fabrication. In the case of
pre-silicon verification, this allows us to reduce the number of
Monte Carlo simulations to a smaller dimension data set from
which the overall population is estimated. In the post-silicon
case, yield can be estimated after fabrication of a smaller
number of circuits.

Two circuit examples are presented for which it is shown
that significant simulation time can be saved when a large
number of Monte Carlo simulations is replaced for a seed,
lower dimension, Monte Carlo simulation followed by the
application of the Expectation-Maximization algorithm. In one
of the evaluation cases a gain of execution time of about 50
with an estimation error of 0.02% for the average value and
3.8% for the standard deviation is obtained, and for the other
an execution time gain of 35 is obtained with an estimation
error of 0.1%.

This approach can also be used to estimate test tolerance
bands and to identify adjustment ranges for controlling vari-
ables of tuning schemes.
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