Challenges and trends
for sampling-based monitoring in SDN

Catarina Pires da Silva, Solange Rito Lima and Joao Marco Silva

University of Minho, Department of Informatics, 4710-057 Braga, Portugal

Abstract. Network management evolved in a way where implementing
complex, high level network policies, implies dealing with some attributes
that depend on low-level specific configuration. This reflects on a diffi-
culty of changing the underlying infrastructure. SDN (Software-Defined
Networking) concept opens a road for new developments due to the cen-
tralized non vendor-specific control of the network, most of it related
with the separation of data and control planes.

SDN raises different perspectives on how networks can operate and, con-
sequently, how they can be managed and monitored. In particular, facing
the undeniable need to reduce the amount of monitoring data in today’s
broadband networks, packet/flow sampling has emerged as one promis-
ing field for SDN. In this context, this paper is focused on exploring the
SDN architecture, and its elements, for supporting sampling-based net-
work monitoring. The aim is to take advantage of the integrated view of
SDN controllers to apply and configure appropriate sampling techniques
in network measurement points according to the requirements of specific
measurement tasks. This will allow a flexible and service-oriented con-
figuration of network monitoring, allowing also to improve the trade-off
between accuracy and overhead of the monitoring process.

To pursue this, in this paper relevant SDN elements will be examined,
alongside with existing monitoring solutions in the SDN research area.
The analysis of these solutions led to the proposal of a new approach
for the flexible configuration of sampling-based monitoring resorting to
SDN components and protocols.

This flexibility also enables programmable measurements, allowing a
SDN controller to manage measurement tasks concurrently at multiple
spatial and temporal scales.

Since collecting actual data to create information is important at the time
of taking decisions, network operators need to understand the dynamic
of their network through monitoring and sampling.

Keywords: SDN, packet sampling, monitoring solutions

Acknowledgments. The heading should be treated as a subsubsection heading
and should not be assigned a number.
%sectionThe References Section

2 Challenges and trends for sampling-based monitoring in SDN

1 Introduction

Despite the evolution use of traditional networks, the underneath structure of
networks became less flexible. This occurs mainly due to the integration and
interconnection of many proprietary, vertically integrated devices, where vendors
dictate specify methods and proprietary software [1]. It can be seen from the
transition from IP (Internet Protocol) version 4 to IP version 6, that is taking
decades to be accomplished, or the introduction of new routing protocols, that
can take a decade to become fully operational, that todays networks are rigid
and somehow resilient to progress or new solutions. The use of the traditional
networking architecture, means that any change will affect the entire network,
so it reaches a point where networks are relatively static as their operators seek
to minimize the risk of disruptions.

The SDN (Software-Defined Networking) architecture proposes to structure
the network in three different layers: the infrastructure layer, the control layer
and application layer. This organization has the purpose of decoupling the data
and control planes allowing some networking tasks such as forwarding ruling and
monitoring to be held by a centralized node called Controller [3]. Resorting to a
centralized controller supports decision making for each device since it enables
a full view of the network.

Connecting the controller to the infrastructure layer requires an API (Ap-
plication Programming Interface), being the OpenFlow standard currently the
most popular in the SDN domain. Then, the controller software, called NOS
(Network Operating System), runs the data plane protocol so the infrastructure
layer and control layer can communicate with each other, enabling networking
tasks to be performed [2].

Although being an encompassing innovation enabler, currently, SDN research-
ing is mostly focused on how to apply the architecture to fulfil todays needs
related to forwarding mechanisms, scalability and security. Taking advantage of
the centralized control in order to enhance monitoring and management still is
an open issue, with some few works and solutions coming up in latest years.

A field with large potential to evolve through SDN is the traffic monitor-
ing based on packet sampling. Sampling provides an overview of the network
dynamics by collecting only a subset of the traffic in specific nodes, at specific
time or count interval, allowing to retrieve information about what happens
in the network without burden of collecting all traffic [4]. It is well documented
that different sampling techniques provide distinct performance for specific task,
for instance, accounting, traffic classification, intrusion detection, among others
(citar minha tese). However, most of the current network devices only support
a small number of techniques, namely deterministic and probabilistic sampling
(detailed in Section 3).

In the context of sampling-based network monitoring, this research work
explores the use of SDN concepts, elements and architecture to sustain the se-
lection and configuration of sampling techniques in the network environment
being monitored. The aim is to take advantage of SDN to provide an insight on
selecting the most suitable sampling solutions for monitoring an SDN network.

Challenges and trends for sampling-based monitoring in SDN 3

Furthermore, this work introduces the elements that coexist in the network,
what are the options when building a simple topology and what are the most
feasible monitoring approaches, taking into account that today more and various
resources are used in a network, meaning more load.

Considering the aspects above and the importance of monitoring and man-
aging networks in a flexible and efficient way, studying a solution on how packet
sampling techniques must be approached in an SDN architecture to sustain mon-
itoring operations is the main objective to fulfill in this work.

2 Software-Defined Networking

The SDN architecture proposes a change to increase flexibility and fulfil the
demands and requirements of current and next generation networks. In Figure
1, the decoupling of data and control planes is faced with the traditional ar-
chitecture scheme. As illustrated, SDN provides a centralized point of control
that can directly influence multiple processes of a network element using freely
programmable control software. This means that we are no longer relying on
proprietary management systems.

Applications

Data Plane

Conlrol Plane]

Control Plane

Control Plane
Data Plane

Control Plane
Data Plane

g Data Plane

Fig. 1. Traditional Architecture vs SDN Architecture

Due to the separation of planes, the neutral software and the emerging of
open and free software to control and operate networks, SDN permits the intro-
duction of new features to be more easily implemented than in most of today’s
environments.

The capability of having a central point of control, accessing and viewing the
whole system, while having the possibility of making different kinds of traffic
engineering decisions in different regions of the network, provides an increase of
flexibility on network management and monitoring [1].

4 Challenges and trends for sampling-based monitoring in SDN

2.1 SDN architecture

The SDN architecture is divided in three different layers, as illustrated in Figure
1, right side. The infrastructure layer is where networks devices such as switches
and routers are, forming what is known as data plane. The middle layer, called
control layer, is made by one or more controllers, which provide several ways of
centrally operating the network. The connection between these layers is done via
an API, known as southbound API. If it is decided to have several controllers,
their connection is done via west and eastbound APIs. On the top, the application
layer provides, via a northbound API, the possibility of communicating with
the control layer, sending specific instructions through functional applications,
which may have several purposes such as monitoring and controlling access for
operation and management [3].

This separation of data and control planes is important as it becomes eas-
ier to address these two different functions and make each of them more flexible
and manageable. It also allows data and control planes functions to be physically
separated by hardware. Contextually, this means that an SDN switch only has
a data plane module and does not have any conventional control plane function-
ality, fully relying on the external controller entity to make decisions. As SDN
provides a more centralized control, network operators only need to manage the
controllers, enabling a possible NaaS (network-as-a-service) reality.

The vision of SDN is a key enabler for simplifying management processes
leading to keen interest from both the industry and the research community.
Exploring the SDN architecture in network management can solve many prob-
lems because, in this way, flexibility, programmability, simplification of tasks
and application deployment can be achieved through a centralized network view
[6]. Managing a network with SDN means that in a single node of the network,
the controller, has the power to configure, collect and store data from numerous
points of the network and then analyse them.

The heterogeneous choice of SDN architecture can be observed in Figure 1. As
Northbound API, the choice varies from REST(Representational State Transfer)
to Procera[7] and Frenetic[8]. A variety of NOSs are available to function as SDN
controllers, such as RYU [9], POX [10] and Beacon[11].

From a bottom up point of view, it first come across the Southbound API.
There are several available interfaces, being OpenFlow [12] and ForCES (FOR-
warding & Control Element Separation) [13] the ones with greater expression.

2.2 Openflow

OpenFlow is a non-proprietary communication standard, which provides a way
to establish connection between the control and infrastructure layers of an SDN
architecture. Despite OpenFlow (and SDN) being used by the industry, it was
initially deployed in academic campus networks [12]. It is supported by the ONF
(Open Networking Foundation), which is responsible for the promotion of SDN
and publication of OpenFlow switch specifications [12, 14, 15].

Challenges and trends for sampling-based monitoring in SDN 5

OpenFlow allows connection and operation of data plane, enabling a direct
control of the network through setting up packet forwarding rules on network
devices, such as switches. An overview of OpenFlow’s scope of activity in the
SDN architecture is presented in Figure 1, Infrastructure Layer.

Instructions or primitives provided by OpenFlow specifications can be used
by software applications to apply rules on the SDN infrastructure layer devices.
Its implementation is done on both the interfaces: at the infrastructure layer and
at the control layer [12] [16].

OpenFlow specifies network traffic based on flows (i.e., packets that match
the same entry in a flow table). These flows together with a set of headers, are
combined with a set of admissible fields on the flow table. Flows can be defined
by the control layer in a static or dynamic way.

Switches can apply rules from the OpenFlow protocol using flow tables, which
are manipulated by a controller, via the OpenFlow protocol. The communication
between controller and switch is done through a secure channel interface, allow-
ing several kinds of interactions such as sending instructions from the controller
to the switch or replying to a statistics request to the controller.

A flow table includes a list of flow entries used to forward packets. Each of
these entries has header fields to match against incoming packets. Counters are
updated for a matching packet (used for flow statistics), and actions are applied
to matching packets. Actions are instructions for packet matching that allow
discard, modify, queue, or forward operations to the packet.

SDN architecture working together with OpenFlow, in physical or virtual
networks, gives the ability to instantly respond to changes due to the granular
control provided by the OpenFlow ability of per-flow programmability [12,17].

2.3 Open vSwitch

Open vSwitch [18] is a virtual switch consisting on a software layer that resides in
a virtual machine host [19]. It was designed to bring flexibility and platform-free
usage, meeting the needs of the open source community. Open vSwitch contains
files with initial code from the Stanford University OpenFlow development team.

For the past several years, the focus in its development was to achieve a high
level of performance in different platforms while sharing resources and workloads.
To prevent problems such as consumption of hypervisor resources, Open vSwitch
implements what is called flow caching [20]. Flow caching means that traffic
handling is cached on the kernel module the first time a packet from a flow not
handled previously, arrives at the switch. This occurs so subsequent packets that
match the same flow entry do not have to be handled by the user space module
again.

Today, Open vSwitch is very popular mainly due to its integration with
OpenStack Networking service and it is also accepted as the genuine standard
OpenFlow implementation.

Figure 2 offers an overview of the Open vSwitch architecture and its main
components.

6 Challenges and trends for sampling-based monitoring in SDN

Controller
Southbound

Management

Protocol, OpenFlow

ovsdb-server Vanagement ovs-switchd

Protocol

NetLink
Userspace

Kernel

OVS Kernel Module

Fig. 2. Open vSwitch Architecture

The Open vSwitch kernel module uses Netlink message framing format through
its AF_NETLINK sockets to access the ovs-switchd daemon which implements
and manages all the Open vSwitch devices. The OpenFlow protocol is used to
exchange messages between the Controller and ovs-switchd.

The datapath (ovs kernel module) uses Netlink socket to interact with owvs-
switchd daemon that implements and manages any number of ovs switches on
local system, and the SDN controller interacts with ovs-switchd using OpenFlow
protocol. The ovsdb-server maintains the switch table database (persistent) and
external clients can talk to ovdb-sver using JSON notation.

3 Sampling based monitoring in SDIN

Network monitoring based on traffic measurement is a high demanding task due
to the huge amount of data currently traversing communication infrastructures.
In this way, packet sampling allows retrieving information about the whole net-
work behaviour without the need of analysing all the data, reducing the impact of
monitoring operations in the network. It is widely know that different sampling
strategies lead to distinct performance in diverse network tasks. However, cur-
rently devices only offer a small set of these sampling techniques, which hampers
taking full advantage of sampling features.

With the SDN architecture approach of a centralized point of control that
simplifies management and manipulation tasks in the network together with
OpenFlow providing ways of implementing traffic engineering. OpenFlow-based
SDN are by excellence, a good way to enhance monitoring and sampling while,
at the same time, providing a simplification for the introduction of new network
applications. [15].

Network applications targeting monitoring and sampling can either provide
new functionalities for distinct networking services or improve features previ-
ously provided by OpenFlow-based SDN. These network applications may, not
only perform tasks involving network management and traffic engineering, but
also tasks related to performance evaluation, network security, SLA (Service

Challenges and trends for sampling-based monitoring in SDN 7

Level Agreement) and QoS (Quality of Service) control, being the last two widely
done by ISPs [21].

For better understanding traffic sampling several concepts should be consid-
ered, such as the interval between samples and sample size, described bellow.

— Sample selected network packets used for network parameters estimation.
Can also be referred as an individual action of selecting and capturing packets
from the stream;

— Sample size number of packets selected and captured to constitute a sample.
It can also be a time interval. Sample size is controlled by triggers that delimit
size by packet position into the stream or timestamp;

— Interval between samples Number or time interval of ignored packets of a
stream. Analogous to the sample size, it is also controlled by triggers.

Sample Sample
[a] 2] [14]
I Sample size I Interval between samples 1 Sample size

Fig. 3. Sampling Concepts [23]

The main sampling techniques, deployed or not in network devices, resort
to selection processes using the packet position, through counters or timestamp,
from the stream under observation. These techniques are briefly detailed bellow:

Systematic Count-based

The starting point of a sample and sampling size are operated by the spatial
packet position (resorting to packet counters) using a deterministic function that
results in a periodic behaviour.

Systematic Time-based

The systematic time-based sampling technique, similarly to the systematic
time-based, also used a deterministic function to rule the sample size and interval
between samples. The difference resides in the type of triggers: in this technique,
they are oriented by the packet arrival time [23].

Random n-out-of-N

The packet selection is ruled by a random process, being the simplest and
widely deployed mechanism the capture of n packets from a sequential stream of
N packets (n-out-of-N). A pseudorandom function generates n numbers (between
[1,N]). Then the packets that have a position equal to one of the random numbers
are selected and captured [23]. The probability p (with p = n/N) is applied for
all the N packets to be selected and compose the sample.

Uniform probabilistic

A predefined uniform probabilistic function decides the packet selection to
compose a sample, having all packets the same probability of being selected.

8 Challenges and trends for sampling-based monitoring in SDN

An example of a random uniform probabilistic technique is a count-driven tech-
nique with an independent random variable with distribution of mean 1/p and
successive intervals between samples (with sample size equal to 1 packet) [23].

3.1 Sampling tools for SDNs

Although promising, the use of traffic sampling along with SDN concepts and
architecture is exploited for only few tools, namely sFlow and FleXam.

sFlow ONF (Open Networking Foundation) is focused not only on the dissem-
ination and development of the OpenFlow standard on the network industry,
as many members of the ONF are major network operators and manufacturers.
Some of these members are shared with the sFlow.org industry consortium that
has similar objectives for the sFlow standard, making its support available in
OpenFlow and non-Openflow switches [24].

sFlow proposes that operations such as monitoring no longer be implemented
on the switch, instead sampled packet headers are sent to a separate component
of the control plane, called monitor, that gets packet headers, decodes them and
aggregates the data through a traffic analysis application [25].

Controller Monitor
; A A

Croperrion sFlow

OpenFlow |
Secure Flow Table
Channel |

1 OpenFlow Switch

Fig. 4. sFlow OpenFlow-based SDN Architecture

As it can be noticed on Figure 4, sFlow and OpenFlow work in a partnership.
It is intended that the controller, using OpenFlow, configures the forwarding
tables in switches and sFlow increases the visibility by providing real-time access
into traffic that flows in the network. Having this type of visibility means that

Challenges and trends for sampling-based monitoring in SDN 9

the network can adapt to changing demands [26] [24]. This represents the use of
sFlow when packet forwarding is controlled by OpenFlow.

One major problem regarding sFlow is that its reports do not include the
entire packet, which can be a problem when more packet information is required.
In addition, it only provides uniform sampling methods [21].

FleXam is a per-flow sampling extension for the OpenFlow standard, allow-
ing the controller to access packet-level information. Its priority is to overcome
some problems, which may arise in the use of the OpenFlow alone. One of these
problems is the increase of flow-entries. From OpenFlow version 1.0 to, for in-
stance, OpenFlow version 1.2, a flow entry went from a 12-tuple match to OXM
(OpenFlow Extensible Match) based on TLV (Type-length-value) structures,
that allows switches to support a wider range of header fields (for instance,
OpenFlow 1.4 supports 41 different types, where TLV was also added to ports,
tables and queues) [21, 27, 28].

Packets in FleXam can be sampled stochastically, meaning that a prede-
termined probability is set, or deterministically, which implies a pattern. This
flexibility in sampling is enhanced by the possibility of the controller to define
several rules on the packets, such as which should be sampled, what part of it
should be selected and where they should be sent [27].

FleXam was implemented as a patch to Open vSwitch and enables the ac-
cess to packet-level information at the controller where an application should
run, allowing the installation of rules, processing sampled packets and collect
information.

This sampling extension, in addition to presenting itself with two sampling
techniques, is considered flexible for some reasons such as providing a stochastic
sampling and a generalized version of the deterministic sampling. The stochastic
sampling consists in the selection of packets that are included in a flow, with a
probability of p. On the other hand, the generalized version of the deterministic
sampling is formulated as selecting m consecutive packets from each k consecu-
tive packets, ignoring the first § packets.

The downside of FleXam when compared to sFlow and other sampling tools
is that it offers only a per-flow sampling, without the ability of performing per-
packet sampling.

4 Enhancing Sampling in SDN

In this section all the previously presented elements are taken in consideration
and the most suitable solution for implementing sampling-based monitoring in
SDN is discussed. As a first approach, using what already exists and make it
work such as it is intended is, most of the times, considered and it offers a viable
solution. Moreover, a deeper evaluation of how the network elements interact is
presented and conclusions are drawn.

10 Challenges and trends for sampling-based monitoring in SDN

4.1 Design Goals

To propose a solution that better explores and fits the SDN architecture some
items were defined as design goals:

— Compatibility with popular software for SDN;

Efficient and lightweight implementation without compromising the SDN
proposal;

Explore existing solutions of data and control planes and attach monitoring
to them without the need of brand new software;

Open and standard protocols/software sustention.

4.2 Interaction Between Elements

The goal is to perform packet sampling through count or time intervals using
the Open-Flow specification provides. The concern of knowing or having control
of what happens in the network begun with the first QoS implementation in
OpenFlow 0.8.0, but it was not until version 1.3 that OpenFlow substantially
increased its QoS framework functionality.

After implementing this kind of mechanism there is still work to do in order
to sampling and analysing traffic, particularly at packet-level. In this scope, tools
such as FleXam are used, as OpenFlow itself has nothing to provide. In this work,
it is intended to discuss packet-level sampling applying two possible approaches:
one from the controller to switch and the other from the switch to the controller.
Each strategy is characterized by where and who controls the rules applied for
packet selection.

Controller to Switch Here, the controller is responsible for making sure the
sampling intervals are accomplished and the packet information is stored where it
should be. This means that the controller is responsible for managing the rules of
sampling, with the switch not being aware that a specific selection is being made,
because it is the controller who, in some way, forces that. An example consists
in a controller requesting a specific subset of packets. A generic representation
is shown in Figure 5.

1 - Send rules (o the switch
— e

2- Switch replies
- s

3-Packet

selgction 4 - Send packets back for normal forwarding
_—

Switen

Controller

Fig. 5. Controller to Switch - Minimal Approach

In this context, there were two solutions that appeared to be the best path
to be taken:

Challenges and trends for sampling-based monitoring in SDN 11

1. Sending all packets, being them original packets, or copies of the packets,
matching a flow entry, to the controller [12]. In this solution, every packet
is forwarded to the controller, where they are counted. When the counter
reaches the intended value, the packet is collected. If the packet is not sup-
posed to be collected, there are two options, depending if the packet sent by
the switch is the original or a copy. If it is the original packet, the controller
must send a Packet-Out message containing the packet, injecting the packet
in the data plane. In the other hand, if it is a copy of the packet that is being
handled, discarding the packet is the normal procedure.

Problems identified in this solution:

— Accumulated traffic in the controller;

— Possible bottleneck in the controller;

— Possible delays in the packet forwarding to the switch (this is not a
problem if only a copy of the packet is delivered);

— Possible packet-loss between the controller and switch communications;

2. Request flow statistics from the switch within a pre-set time interval. In case
the statistics packet counter is next to the intended value, change the rule
to send the packet to the controller. This solution can fit both time-based
and count-based sampling.

In the OpenFlow specifications, statistics can be demanded from a controller.
There are several types of statistics that can be requested such as flow and
table statistics. This exchange of information starts by a request message
from the controller, mentioning what statistics are wanted, and is followed
by a reply from the switch containing the requested information, implying
two interactions to get the statistics.

The idea is having a thread which is launched from the controller, from time
to time, making a flow statistics request to the switch. The flow statistics
reply from the switch includes information such as the number of packets
in flow. This value is the one which the controller should pay attention to
as it comes closer to the value pretended. The procedure behaves as follows:
a Flow Modify message would be sent to the switch, followed by a Packet-
In message sent to the controller, so that packets, matching that flow, are
forwarded to the controller. When the packet arrives, it is collected. After
that, another Flow Modify message is sent to the switch and, as the packets
are forwarded normally, counters are reset.

Problems identified in this solution:

— Statistics requests may not match with counter values intended since the
communication between requesting statistics and responding to them
implies delay.

— To obtain higher accuracy with this solution, a previous knowledge of
the network dynamic is essential and, even though it can be obtainable,
it does not guarantee good levels of synchronism.

There could be similar solutions to the ones presented here but all of them rely
in the fact that, to have packet selection/collection, several messages between
the controller and switch communication are involved, which ultimately leads to
lack of performance.

12 Challenges and trends for sampling-based monitoring in SDN

Switch to Controller Conversely, switch to controller interaction consists in
applying rules directly on the switch. In this situation, the role of the controller
is only to set the parameters of sampling required by the application, sending it
to the switch, which in turn, after receive it, will apply it accordingly.

Since it is the switch the one to apply the parameters, this means that switch
will be responsible by the selection and collection of packets, and responsible to
send them automatically to where the controller ordered. It can be to a monitor
or to the controller itself.

To summarize, the controller will only fill a rule with parameters to the switch
and the switch will do the whole work and then redirect the outcome. In Figure
6, a graphic scheme of the interaction is represented.

1 - Send rules (o the switch
2 -Switch replies, sending the sampled packets

Switch

Controller

Fig. 6. Switch to Controller - Minimal Approach

After considering the OpenFlow standard, it comes clear that the option that
could produce a better solution is to implement a sampling mechanism within
the OpenFlow itself by biding the operations on the switch, as presented in this
subsection.

4.3 Proposed Method

The wiser approach for a new solution to control sampling processes in SDN
environments is to create custom actions in the OpenFlow switch to implement
the sampling rules. Those customized actions would be added in the form of
patches to the OpenFlow specification, resembling FleXams implementation.
Opposing to FleXam’s approach, which unifies some sampling techniques in a
single action, the ideal solution for this work would be that a single action
corresponds to a single sampling technique.

For this patch, the OpenFlow version to be used must be at least version 1.0.
The reason behind this choice is that OpenFlow version 1.0 was considered as
the unified version from which all vendors should start adopting the OpenFlow
standard, resulting in a large software support for version 1.0. If the patch is not
implemented in the OpenFlow version 1.0, but instead on a newer version, the
concern is what software should be used to provide support to work with that
version.

Challenges and trends for sampling-based monitoring in SDN 13

The first sampling technique to be implemented (represented in Figure 9)
will be a count-based sampling, where packets will be counted and then sent to
the controller for storage, following selected parameters.

OFPAT_INTERVALC(interface, interval , sample size)

e |

Destination switch interface. Interval between samples

Fig. 7. Switch to Controller - Minimal Approach

OFPAT _INTERVALC represents the action name, that includes two param-
eters: interface and interval. The interface parameter indicates on which switch
interface will the incoming packets be sampled and interval represents the count-
ing interval in which the packets will be selected as sample.

Open vSwitch will be the OpenFlow implementation software where the path
will be developed. Since it is largely used by the OpenFlow community, is widely
supported from SDN software, has a solid OpenFlow implementation and there is
documentation available about how it works. Open vSwitch offers the possibility
to have a usable and practical developed patch.

For this implementation, it is intended to add a counter field in the packet
code structure, first in the userspace datapath of Open vSwitch, and then trans-
port it to the kernel module. With the counting implemented, it is time to
implement a rule for all packets not selected for sampling to be forwarded to
the right path. Selected packets should be duplicated with one copy being sent
to the controller for sampling and another copy to be normally processed and
forwarded.

The environment in which this work will be done is virtual. The Mininet[29]
network emulator allows a user to run several networking elements, such as
virtual hosts and switches, using the same Linux kernel. Mininets particularity of
having switches supporting Openflow and SDN systems, alongside its popularity,
was what raised interest in using it for this work.

An OpenFlows switch implementation will be used. A brief approach to what
is available is required as, to make possible the production of results, the most
suitable for this work is too the most used OpenFlow’s switch version at the
moment, which is Open Flow version 1.3.

5 Ongoing Work

The ongoing work for the proposed solution consists on the development, imple-
mentation and testing of sampling methods. A model of how the first sampling
method can be built is presented on Chapter 4. To make a first functional patch
the following steps are recommended:

14 Challenges and trends for sampling-based monitoring in SDN

1. Implement the sampling action on the Open vSwitch userspace datapath;

2. Test its functionality through the DPCTL tool, which monitors and admin-
istrates OpenFlow datapaths;

3. To have it working on a real network environment, add a patch to a NOS.

6 Conclusion

One of the most important aspects of the SDN architecture is to favour the
introduction of new concepts and its high programmability. This ability to fa-
cilitate the changes in operations is mainly due to the separation between the
control and data layer, allowing a single control on several data elements in the
network.

Monitoring and sampling are essential tasks to perform in any system, and a
system that works under an SDN concept is no different. While taking advantage
of SDN features, the goal is to introduce sampling techniques that will allow to
monitor the network. The data layer SDN protocol OpenFlow focus solely on
the task of forwarding packets meaning that no concerns about monitoring the
state of the network were taken into account when this protocol was designed.
However, there are some tools based on this protocol to perform this kind of
tasks, being the most known sFlow.

To have SDN working on a network, a control module is mandatory, so the
rules can be sent to the data plane to be applied.

This proposal of development emerged after realizing that none of the existing
tools executes monitoring tasks as intended. To begin, an approach based on not
changing any of the network elements standard operations was made. However,
this solution was considered invalid given that the performance decrease would
not allow the solution to work on a real network environment.

Finding a solution on what to do to avoid this problem required a decon-
struction of how the elements operate, and the conclusion was that, for benefit
of the solution, sampling operations had to use the data layer.

As previously said, the solution to be developed must consider that OpenFlow
has limited resources when it comes to monitoring tasks, including sampling.

Throughout the use of SDN network emulator Mininet and, the OpenFlow
implementation, Open vSwitch, both ensuring high programmability of features,
this work proposes the implementation of a patch to the OpenFlow protocol that
enables the sampling of packets, beginning by doing it so in a per-packet count-
based sampling method.

References

1. Kim, H., Feamster, N.: Improving network management with software defined
networking. IEEE Communications Magazine 51 (2013) 114-119

2. Open Networking Foundation: Software-Defined Networking: The New Norm for
Networks. ONF White Paper (2012) 1-12

10.
11.

12.
13.

14.

15.

16.
17.

18.
19.
20.

21.

22.

23.

24.

Challenges and trends for sampling-based monitoring in SDN 15

Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J.,
Viljoen, N., Miller, M., Rao, N.: Are we ready for SDN? Implementation challenges
for software-defined networks. IEEE Communications Magazine 51 (2013) 36-43
Duffield, N.: Sampling for passive internet measurement: A review. Statistical
Science 19 (2004) 472-498

T. Zseby, T.H., Claise, B.: Packet sampling for flow accounting: Challenges and
limitations. Lecture Notes in Computer Science vol. 4979 (2008) 6171

. Tuncer, D., Charalambides, M., Clayman, S., Pavlou, G.: Adaptive Resource Man-

agement and Control in Software Defined Networks. IEEE Transactions on Net-
work and Service Management 12 (2015) 18-33

Voellmy, A., Kim, H., Feamster, N.: Procera: A language for high-level reactive
network control. HotSDN 12, New York, NY, USA, ACM (2012) 43-48

Foster, N., Harrison, R., Freedman, M.J., Monsanto, C., Rexford, J., Story, A.,
Walker, D.: Frenetic: A network programming language. ICFP ’11, New York,
NY, USA, ACM (2011) 279291

Telegraph, N., Corporation, T.: Ryu network operating system.
https://osrg.github.io/ryu/ (2016)

McCauley, M.: Pox. https://github.com/noxrepo/pox (2016)

Erickson, D.: The beacon openflow controller. Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking (2013) 13-18
McKeown, N.: OpenFlow: Enabling Innovation in Campus Networks (2008)
Doria, A., Salim, J.H., Haas, R., Wang, W., Dong, L., Gopal, R.: Forwarding and
control element separation (forces) protocol specification. Technical report (2010)
Halpern, J., Salim, J.H.: Software-Defined Networking : Experimenting with
the control to forwarding plane interface Extending the OpenFlow protocol with
ForCES concepts . 2012 European Workshop on Software Defined Networking
(2012) 91-96

Kreutz, D., Ramos, F.M.V., Verissimo, P., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S., Kreutz, D., Ramos, F.: (Software-Defined Networking: A Comprehensive
Survey) 1-61

Heller, B.: OpenFlow Switch Specification v1.0.0. Current 0 (2009) 1-36

Blaiech, K., Hamadi, S., Valtchev, P., Cherkaoui, O., Beliveau, A.: Toward a
semantic-based packet forwarding model for openflow. In: Network Softwarization
(NetSoft), 2015 1st IEEE Conference on, IEEE (2015) 1-6

Openvswitch: Open vswitch. (https://github.com/openvswitch/ovs)

: Open vswitch. (http://openvswitch.org/)

Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rajahalme, J., Gross,
J., Wang, A., Stringer, J., Shelar, P., Amidon, K., Casado, M.: The design and
implementation of open vswitch. Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation (2015) 117-130

Shirali-Shahreza, S., Ganjali, Y.: Efficient Implementation of Security Applications
in OpenFlow Controller with FleXam. In: 2013 IEEE 21st Annual Symposium on
High-Performance Interconnects, IEEE (2013) 49-54

Joo Marco C. Silva, Paulo Carvalho, S.R.L.: Inside packet sampling techniques:
exploring modularity to enhance network measurements. (29 March 2016)

Silva, J.M.C.: A modular traffic sampling architecture for flexible network mea-
surements. Doctoral thesis, Universidade do Minho, Braga, Portugal (2015)
Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., Maglaris, V.: Com-
bining OpenFlow and sFlow for an effective and scalable anomaly detection and
mitigation mechanism on SDN environments. Computer Networks 62 (2014) 122
136

16

25.

26.

27.

28.

29.

Challenges and trends for sampling-based monitoring in SDN

Phaal, P.: Software defined networking. http://blog.sflow.com/2012/05/software-
defined-networking.html (2012)

Phaal, P.: Openflow and sflow. http://blog.sflow.com/2011/05/openflow-and-
sflow.html (2011)

Shirali-Shahreza, S., Ganjali, Y.: FleXam: Flexible Sampling Extension for Mon-
itoring and Security Applications in OpenFlow. Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking - HotSDN 13
(2013) 167

Shirali-Shahreza, S., Ganjali, Y.: Traffic statistics collection with FleXam. Pro-
ceedings of the 2014 ACM conference on SIGCOMM - SIGCOMM ’14 (2014)
117-118

Lantz, B., Heller, B., McKeown, N.: A network in a laptop: Rapid prototyping for
software-defined networks. (2010) 19:1-19:6

