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PREFACE 
 

 

In the past two decades, grid computing have fostered advances in several scientific 

domains by making resources available to a wide community and bridging scientific gaps.  

Grid infrastructures have been harnessing computational resources all around the world 

allowing all kinds of parallelism to be explored. Other approaches to parallel and distributed 

computing still exist like the use of dedicated high-performance (HPC) infrastructures, and 

the use of clouds for computing and storage, but grid computing continues to be the 

predominant technology used for scientific computing in Europe, through the European Grid 

Infrastructure (EGI) and the European Middleware Initiative (EMI). Currently, there is a trend 

towards the use of cloud technologies for computing and storage. In Europe, this trend is 

being followed by taking advantage of all the experience gained on building grid 

infrastructures and the technologies developed around them (resource management 

orchestration, unified job description languages, security, user interfaces, programming 

models, and scheduling policies, among others). As a result, the European Grid Infrastructure 

Federated Cloud is being built on top of the grid infrastructure already available. After almost 

two decades of the development of grid software and components and the emergence of 

competing technologies, now is the time to discuss current trends and to assess future 

prospects. 

When organizing this book, we considered contributions that would review the current 

grid computing scenario as well as contributions that would summarize the main tools and 

technologies used so far. We invited colleagues that had made contributions in the past and 

were very fortunate to have a positive answer from most of them. The chapters in this book 

provide reviews for the following topics: a) performance prediction for parallel and 

distributed computing systems, b) resource sharing on computational grids, c) economic 

models for resource management, and d) programming frameworks. The chapters address 

grid issues such as a) the challenges of designing efficient job schedulers for production grids, 

b) scalability analysis of bag-of-tasks applications, c) the energy efficiency of resource 

reservation-based scheduling, and d) the development of parallel applications using the grid 

environment. Additionally, the following tools are presented: a) a programming framework 

based on the concept of a pluggable grid service that avoids explicit calls to grid services in 

scientific code and b) a desktop grid framework that runs on top of a cloud and can be 

deployed on the fly. 

The authors were each invited to contribute a chapter to this book, which were carefully 

revised and selected based on their originality and the value of their contribution to the 
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discussion of grid computing issues and future prospects. The book comprises seven chapters, 

organized as follows. 

In Chapter 1, Seneviratne et al. present a review of performance prediction systems for 

parallel and distributed computing systems. Such systems are a key feature for enabling 

optimized resource usage decisions by users and Resource Management Systems. A 

taxonomy covers four different perspectives, namely, the prediction approach, the resource 

type, the resource level and the grid-enabled job model. The contribution of this chapter is a 

taxonomy of performance prediction systems that allows for the identification of approaches 

and issues not yet fully explored by researchers. 

In Chapter 2, Barbosa et al. discuss the limitations, with respect to energy, of the 

advanced static reservation of nodes for a workflow job and present the advantages of 

resource sharing. Challenges for grid resource managers, with the intent of achieving energy-

efficient resource sharing, are devised. Moreover, a review of economic models for resource 

management and pricing is also presented, along with a case study. 

In Chapter 3, Klusáček and Tóth discuss the challenges involved in the design of efficient 

job schedulers for production grids. The authors demonstrate that efficient job scheduling is a 

very complex problem when realistic scenarios are considered, in contrast to the popular 

belief that the entire problem can be solved by evaluating a scheduling algorithm using a 

simple system model. Based on their experience with real systems, they enumerate several 

aspects of the problem that must be carefully modeled and evaluated to obtain realistic and 

useful results. 

In Chapter 4, Silva and Senger present a study of the scalability of bag-of-tasks (BoT) 

applications executing on master-slave and hierarchical platforms. Examples of BoT 

applications include Monte Carlo simulations, massive searches, image manipulation 

applications and data mining applications. They conclude that, in general, scalability depends 

on both the communication model and the characteristics of the application with respect to 

input and output files. 

In Chapter 5, Atanassov et al. discuss the development of parallel applications using the 

grid environment. Two strategies are addressed, namely, the batch execution of a large 

number of jobs in a coordinated manner and parallel jobs that require MPI and/or OpenMP. 

Particular attention is given to tools that speedup job execution, such as the Job Track Service 

(JTS), as well as several techniques for the Map Reduce processing model. 

In Chapter 6, Medeiros et al. present a review of current programming frameworks that 

enable the execution of scientific applications on grid platforms and discuss the requirements 

for future programming frameworks that target computational grids. Additionally, a 

programming framework is introduced based on the concept of a pluggable grid service that 

provides seamless access to computational grids using aspect-oriented techniques. The 

authors identify issues of critical importance to enable seamless access to heterogeneous 

resources, preferably requiring the same programming effort as that required to build 

traditional desktop applications. 

In Chapter 7, Kacsuk et al. discuss the usage of desktop grids in the era of cloud 

computing. The authors also demonstrate how virtualization and cloud computing make the 

BOINC desktop grid more generic and how they can be deployed on a time scale of a few 

minutes in the cloud. The authors have developed a Generic BOINC Application Client 

(GBAC) that eliminates the need for porting applications to BOINC. The integration of the 

cloud with BOINC systems solves the tail problem in volunteer desktop grids, and as a result, 
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an increasing number of user communities have begun to adopt the EDGeS@home BOINC 

desktop grid.  

We would like to thank all authors of this book for their contributions and for their efforts 

in addressing the reviewers’ comments and revising their manuscripts to improve the quality 

of the book. 

We hope readers enjoy! 

 

Jorge G. Barbosa 

Departamento de Engenharia Informática 

Faculdade de Engenharia da Universidade do Porto 

Porto, Portugal 

 

Inês Dutra 

Departamento de Ciência dos Computadores 

Faculdade de Ciências da Universidade do Porto 

Porto, Portugal 
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SYSTEMS FOR PARALLEL AND DISTRIBUTED 

COMPUTING SYSTEMS 
 
 

Sena Seneviratne
1,*

, David C. Levy
1
 and Rajkumar Buyya

2
 

1Computer Engineering Lab., School of Electrical and Information Engineering,  
The University of Sydney, Australia 

2Cloud Computing and Distributed Systems Lab.,  
Department of Computing and Information Systems, 
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Abstract 

As Distributed Computing Systems (DCSs) such as Clusters, Parallel Systems, 
distributed database systems, Peer-to-Peer Desktop Systems, Grids and Clouds are 
congregations of geographically distributed heterogeneous resources, the efficient scheduling/ 
utilization of the resources requires the support of sound Performance Prediction Systems 
(PPS). The performance prediction of DCS resources is helpful for both Resource 
Management Systems and users to make optimized resource usage decisions. In this chapter 
we focus on the taxonomy for the Grid PPS architecture. The taxonomy is used to categorize 
and identify approaches which are followed in the implementation of the existing PPSs of 
DCSs such as Clusters, Parallel Systems, Peer-to-Peer Desktop Systems and Grids. The 
taxonomy and the survey results are used to identify approaches and issues that have not been 
fully explored in research. 
 

Keywords: Performance Prediction System, Cloud Computing, Cluster Computing, Grid 
Computing, Resource Management Systems 

                                                        
* E-mail address: ssen2304@uni.sydney.edu.au (Corresponding author) 
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1. Introduction 

As Grids are ever-changing loosely-coupled congregations of dynamic and heterogeneous 
resources, the efficient scheduling and allocation of resources requires the support of a sound 
Performance Prediction System (PPS) [1]. The performance prediction is helpful for both 
Resource Management System (RMS) and grid users to make optimized resource usage 
decisions to meet QoS requirements committed in a Service Level Agreement (SLA) [2]. For 
instance, if the PPS predicts a job task’s future load profiles (runtimes) on the nodes of a 
Grid, the RMS can use such information to schedule a set of job tasks in a time optimal way. 
Alternatively, if the PPS can predict the cost profile of a job task on the nodes of a Grid, then 
an affordable set of nodes can be selected to execute a set of job tasks satisfying the user’s 
budgetary requirements which were specified through the SLA [3]. 

The requirements of the PPS for a Grid span over all of the grid resources in several 
dimensions. They consist of the fundamentally important Application Level Prediction 
(ALP), namely the requirement of forecasting of the runtime of a job task on a specific 
machine for the given input volume, prediction of the availability of a machine and its 
resources for a particular duration of time, prediction of disk storage resources, prediction of 
network bandwidth resources, prediction of overheads of grid resources, prediction of the 
resultant execution time of the workflow, prediction of the reliability of grid resources, 
prediction of the availability of a number of nodes on a cluster/grid and so forth [2]. 
Therefore, the performance prediction in Grids needs to consider different approaches. 

In recent times, different avenues for grid performance prediction are being explored as 
different research communities introduce novel approaches to perform prediction. The 
numerous approaches yield several different performance prediction models. Each model 
addresses a different performance prediction problem. Tables 1 and 2 compare a range of 
features of existing models, which can be used to enhance the efficiency of scheduling in grid 
environments. 

Downey [4], eNANOS [5], DIMEMAS [6], Grid Performance Prediction System [7], 
Modelling Workloads for Grid Systems [8], QBETS [9], Smith et al. [10], Li et al. [11], Minh 
& Wolters [12] and GAMMA [13] focus on performance prediction of job (bag of tasks) 
runtime or queue time either on a cluster or parallel computers with a batch queue system, but 
their models can be modified to address the prediction requirements in both grid and cloud 
environments. In this chapter we survey and discuss about their suitability to the grid 
environment. However the taxonomy and performance prediction models/ algorithms 
discussed in this chapter are applicable to cloud computing environments such as Inter Clouds 
which are distributed geographically [14-15]. 

The prediction approaches can be divided into two main categories. They are the 
prediction approaches that are based on (1) Analytical models (e.g., PACE and LaPIe) and (2) 
Prediction models trained from historical execution (Machine Learning models) (e.g., 
Smith’s, Li’s). An analysis of a wide range of prediction approaches is given in section 4. 

This chapter surveys through numerous PPSs that are currently available and presents 
taxonomy to classify them. The taxonomy covers on four different perspectives: (a) the 
prediction approach, (b) the resource type, (c) the resource level, (d) the job model, and they 
are mapped in tables 1 and 2 to selected PPSs that are designed for both clusters and grids. 
The main objective of this chapter is to provide a basis for categorizing the existing 
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performance prediction models for identifying future development areas such as invention of 
new metrics, common standards for workloads and more efficient prediction algorithms. This 
chapter provides the reader with an understanding of the essential concepts of this research 
area and helps them identify outstanding issues for further investigation. 

This chapter consists of three major parts. The first part focuses on the general challenges 
for the developers of the PPSs. The second part introduces a taxonomy which separates 
existing PPSs. The third part includes the survey of all existing PPSs. The sections of the 
chapter are organised as follows. Section 2 introduces the background and related work, 
section 3 discusses the current challenges for PPS developers and section 4 gives a 
description of various taxonomies for PPSs. Section 5 includes the complete survey of the 
existing PPSs, section 6 includes the analysis of the survey and discussion and section 7 
presents a conclusion and suggestions for future work. 

2. Background and Related Work 

In a grid system design the RMS contains the most fundamental and essential components for 
its management of a Grid [3]. As a fundamental requirement, a RMS needs to have the 
support of sound PPS. Therefore, it is required to design or select a PPS which serves the 
requirement of a particular RMS [16]. 

In designing a large scale distributed computer system, efficient application performance 
and efficient system performance may require two different treatments. For instance it may 
not be possible for the same scheduler to optimise application performance and resource 
performance. One solution to this is to have two RMSs which use an application scheduler 
such as AppLes in conjunction with a resource scheduler such as Globus to form a two-layer 
RMS [17]. This suggests that there should be two different PPSs connected to application and 
resource schedulers respectively. Further, due to the diverse nature and large scale of the 
Grid, the resultant grid RMS is most likely an interconnection of various RMSs and each one 
of them needs the service of a suitable PPS. For example, the computational, data intensive 
and service oriented applications would require different RMS-PPS pairs and so on. 
Therefore, each RMS needs to have a PPS which serves its specialised requirements. Further, 
as the scale of the Grid grows, there can be an interconnection of various RMSs that 
cooperate with one another within a common framework. 

A handful of efforts have been reported for conducting surveys on Grid PPS: 
Venugopal [18] has conducted a lengthy study on various taxonomies of data grids, 

namely Data Grid Organization, Data Transport, Data Replication and Storage, and 

Resource Allocation and Scheduling. The Data Transport, Data Replication and Storage and 
Resource Allocation and Scheduling Taxonomies reflect the need to have the services of 
sound PPSs for the prediction of network bandwidth, resources such as data storage facilities 
and suitable computational resources for processing data on them respectively. 

The CoreGRID [19] has analysed early PPSs using a well organized template that is used 
to describe the prediction models and solutions. The template contains (1) Name and small 
description of the model, (2) Authors, (3) Scope, (4) Estimated values, (5) Predictor inputs, 
(6) Classes of applications or jobs, (6) Classes of resources, (7) Prediction method, (8) 
Prediction quality, (9) Scheduling policies, (10) Software tools, (11) Availability, (12) 
Architecture, (13) Support of technologies, (14) Publications, and (15) Links. Nevertheless, 
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they consider one of the best ways to have good performance on the Grid is through 
performance guarantees (e.g., SLAs). 

They emphasise the fact that as the requirements of PPSs for the Grid span over all of the 
Grid resources, the prediction of resource availability needs to consider different approaches. 
Therefore, if a scheduler needs to have predicted levels of several different resources, which 
have to be done using an integrated infrastructure and this provides access to different PPSs. 
Also, they suggest the PPS developers identify new performance metrics which are relevant 
for the Grid. They reached valuable conclusions such as the importance of the usage of data 
mining and AI techniques in learning prediction systems and the need for better predictors for 
workflow and MPI applications. They also found the necessity to have better predictors for 
bandwidth and data transfer rates. 

Krauter [20] provides several taxonomies for RMSs with classification by Machine 

Organization within the Grid, Resource Model, Dissemination Protocols, Namespace 

Organization, Data Store Organization, Resource Discovery, QoS Support, Scheduler 

Organization, Scheduler Policy, State Estimation and Scheduling Approach. They provide a 
description of scheduling on the Grid in relation to their State Estimation (prediction) 
taxonomy which is relevant to our study.  

Except for CoreGRID’s effort [19], in the previous surveys, Venugopal et al. [2006], and 
Krauter et al. [2002] focus respectively on the Data Grids and RMSs and their interests in the 
PPSs are secondary. The CoreGrid survey provides the reader an abundance of information 
about early PPSs, however they do not classify the PPSs in terms of different levels of the 
resources, nor do they sufficiently identify the prediction approaches along the lines of 
analytical methodology, machine learning and spatio-temporal correlation, nor have they 
classified PPSs according to their ability to use historical information as training samples, 
manually or through automated means. In our survey, not only do we address a large number 
of PPSs, but also classify them using a number of taxonomies that is defined using the above 
mentioned concepts, aiming to expose the missing links of the PPSs with respect to different 
levels of resources and applications and to motivate the researchers to invent novel prediction 
methods. 

3. Challenges 

One of the basic challenges arises due to the heterogeneous nature presented in the grid. This 
happens due to the underlying differences in the diverse type of applications, resources and 
different standards of grid environments. For example, the input or output data for 
embarrassingly distributed application is different from that of MPI application, and the data 
intensive applications require accessing distributed replicas which are stored across the globe. 

The historical data profiles of a particular grid can be archived and would be of great help 
for the forecasting of future profiles. However, past experience indicates their effectiveness 
depends on the cleverness of their usage. Once the data is transformed into information, the 
next challenge is to exploit them effectively and efficiently using one of the prediction 
approaches. The truth is that none of the listed prediction approaches are proven near 100% 
successful in solving the performance prediction problem. Further, it is evident that some 
approaches can be better used to meet a given objective than others. For example, prediction 
of runtimes of parallel batch job tasks in a homogeneous cluster by Modelling Workloads for 
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Grid Systems [8]. Therefore, at this point in time, it is essential to ponder over combining 
several approaches to produce the best results. 

In the past, the input and output point valued parameters might have been acceptable for 
prediction of performance of a short job task. However, a grid job/ application consists of 
long job tasks and therefore such parameters may produce inaccurate results, since they can 
only represent a certain point of time. Therefore it is appropriate to design relevant grid 
performance metrics [21]. 

Therefore, for the success of the PPSs, it is necessary to address diverse and different 
levels of problems which require the answers in terms of the nature of the Grid and they can 
be listed as follows [19]. 

 
1. Prediction of diverse parameters such as runtime, queue time, job resource 

requirement, resource load, communication time of MPIs, data transfer time. 
2. Prediction of possible errors in the prediction of grid resources in the system. If we 

can collect information on possible prediction errors, then it is possible to make 
statistical corrections for the prediction errors of grid resources. 

3. Standardization of application performance models. Though NASA has categorised 
the applications into different application types, still there is no common way to 
express application performance model [22]. 

4. There is not a standard grid workload format. 
5. The PPS should be able to predict even if the input information is incomplete. 
6. The PPS should be extendable for a large scope of applications and resources. In the 

present context and also due to the factors 3, 4 and 8, there is no single PPS to 
address the prediction problem of such a wide spectrum of prediction metrics and 
therefore it is preferable that the several prediction models may be incorporated into 
a single giant prediction system. 

7. If possible, new performance metrics should be proposed to suit the grid. In 
traditional parallel computing, response time and system utilization are a suitable. 
However in the Grid we need to reconsider such traditional metrics, because the Grid 
is dynamic and therefore common metrics like peak performance, throughput and 
point load average may be outdated or not relevant. 

8. The grid environments themselves need to have single standards to be able to 
streamline above 3 and 4. If there is single standard, the comparison of different 
prediction metrics from different PPSs becomes easy. The Computational Grids, 
Data Grids, Service Grids etc. can be streamlined under such a single standard. 
Currently there are different types of grid standards, and therefore interfacing them 
with a certain PPS requires different strenuous adjustments to the PPS. 

9. The PPS should be able to predict the quality of service. 
10. The PPS should be able to predict the overheads of the system. 
11. The PPS should be able to predict the availability of the required data storage. 
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4. The Taxonomy 

Various resource types and target applications motivate the architecture of PPS. Thus PPSs 
have been categorized into four different taxonomies, namely prediction approach, resource 
type, resource level, and job model. 

Taxonomy of Prediction Approach 

The full scale simulation of activities of the grid environments has been successfully done. For 
example MicroGrid [23] which allows the execution of Globus applications using a virtual grid 
environment; SimGrid [24] which is used for simulation of “C” language application 
scheduling; GridSim [25] that facilitate the simulations of different classes of heterogeneous 
resources, users, applications, resource brokers, and schedulers in a single VO [19]. 

While the above effort is suitable for the representation, understanding, and analysis of 
the grid performance for the performance prediction of the Grid, these methods have some 
inherent difficulties. The main problem is that the prediction of grid commodities such as 
resources and services or cost needs to be done online. Predictions need to be calculated 
within a short period of time (< 30s) because in the ever-changing dynamic grid environment, 
the status and cost of the grid commodities are being continuously updated [19]. None of the 
above simulators meets these basic criteria and therefore in their current status they are not 
suitable for the performance prediction of the Grid. 

There are two main categories of prediction methods and they are, 
 
1. Analytical prediction models 
2. Prediction models trained from historical executions. 

Analytical Prediction Models 

In both PACE [26] and TPM [21, 27] the characteristic behaviour of the job task is 
represented by either its code or its CPU /Disk load profile. The characteristic behaviour of 
the hardware environment is represented by the algorithms which mainly models the internal 
workings of the runnable queue and the processors. These two models belong to the school of 
analytical models which is developed after studying the characteristics grid application and its 
hardware environment. Apart from these models there are other analytical models such as 
LaPIe [28] which use the pLogP model to predict the overall communication time of a MPI 
application and the GAMMA model [13], which selects the most suitable cluster for a 
particular embarrassingly distributed application. The analytical models can be based on 
different algorithms and principles, and therefore, there can be numerous analytical models 
with each one having a potential for further development. 

Prediction Models Trained from Historical Executions 

Learning from historic information or trace data to make future predictions using time series 
algorithms has always been a traditionally popular area of study [29]. Previous research by 
Wolski et. al. shows that the CPU load is strongly correlated over time, and therefore the 
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history-based load prediction schemes are feasible [30]. This means that modelling the 
relationship of the historical data is of help in making accurate predictions [31-33]. 

Dinda conducted a complete analysis of statistical properties of host loads through a 
variety of load measurements collected over a wide range of time-shared machines from 
single PCs to clusters [31]. One of his key findings is that while load varies in complex ways, 
it shows high epochal behaviour. This means the pattern of change of load remains relatively 
constant for a relatively long period of time. The existence of epochs is significant for 
modelling future loads. He also found that the load does not exhibit seasonality [31]. This 
means that the load profile does not contain dominant underlying periodic signals on top of 
which are layered other signals. 

Another key observation of Dinda is that the load exhibits a high degree of self-similarity 
with Hurst Parameter [34] ranging from 0.63 to 0.97 with a strong bias towards the top of that 
range. This result indicates that load varies in complex ways on all time scales and has long-
range dependence and the load is difficult to model and predict [31]. 

Dinda carried out a thorough statistical analysis on the load traces and found that there is 
an opportunity to use prediction algorithms even under heavily loaded conditions. According 
to Dinda [35], time series analysis tools such as autocorrelation and periodogram show that 
the past load values have a strong influence on future values, and therefore load prediction, 
which is based on historical loads, is feasible and the linear time series models may be used in 
prediction [36]. 

The statistical analysis can be used on historical data to understand their behaviour. For 
example, Modelling workloads for grid systems [8] and Queue wait time prediction in space 
shared environments [4] are based on the statistical analysis of historical information. The 
workload modelling is introduced to make use of the collected workload traces for analysis 
and simulation in an analytical and manageable way [36-37]. For example, the modeller has 
full knowledge of the workload characteristics and therefore it is easy to know which 
workload parameters are correlated with each other [38]. Also, it is possible to change model 
parameters, one at a time, in order to investigate the influence of each one, while keeping the 
other parameters constant, enabling the measurement of system sensitivity against different 
parameters. Further, a model is not affected by policies and constraints that are particular to 
the site where a trace was recorded. However, the models have their own problems because 
it’s difficult to say to what degree they represent the real workloads that the system will 
encounter in practice [37]. 

Artificial intelligent techniques can be used to dynamically model historical information 
as it provides the basis required for the current and future behaviour of a system. For 
example, according to Kurowski et al. [7] mean, min, max, standard deviation, error values 
are calculated for each workload category. The category is decided by a template which 
consists of command, command argument, number of processors, maximum memory usage, 
host name, queue name, user name etc. Such categories with specific parameters are entered 
into a knowledge database as rules which are used to generate predictions for new jobs. 
Kurowski et al. [7] have designed their prediction system, namely the Grid Performance 
Prediction System (GPRES), which is based on the architecture of the expert systems. 

Data mining rules can be used on historical information to find similar datasets. For 
example, Li [39] uses Distance Function to categorize similar jobs and resources. The Genetic 
Search Algorithm is used to search for certain weights of the nearest neighbours from the 
historical archives [39]. After extracting the sets of information of nearby jobs, the Instance 
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Based Learning (IBL) prediction algorithm [40] is used for the prediction of runtimes and 
queue times. The details of the algorithm are found in the relevant literature [11]. 

The prediction models, which are based on Machine Learning, can be further divided into 
two major types. They are: 

 
1. The Spatial Temporal Correlation Models (STC),  
2. The models that analyse data as independent data tuples (datasets) (IDT). 

For example, Smith’s usage of static templates to categorize data and Genetic 
Algorithm to search the best match and Li’s use of nearest neighbours on the 
independent historical load profiles to categorise similar datasets (i.e., jobs with a 
certain similarity) [11] and Also the Reinforcement Learning (RI) prediction models. 

 

 

Figure 1. Prediction approach taxonomy. 

Figure 1 graphically presents the constituents of the Prediction approach. Another 
classification among the ML models is with respect to the selection of attributes/ data that 
would serve as training samples. The attributes/ data can be manually or automatically 
selected. The attributes/ data can be automatically selected, with the use of additional 
algorithms to select, transform, and filter. 

Resource Type 

There are different types of fundamental resources that are utilized by the grid users. They are 
(1) CPU (Processor time), (2) Memory, (3) Disk (Access cost), and (4) Network bandwidth 
per CPU. The performance prediction of each fundamental resource type can be done 
separately as each one has different characteristics and behaviour and each resource serves a 
different purpose. 

Other complex resource types include PC nodes, Network bandwidth and Disk storage 
units. A cluster can be considered as a single resource type which consists of many 
fundamental resource types. 
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The resources can be shared in two different ways, either time-shared, or space-shared. 
An example of a time shared resource is the manner in which the CPU in a desktop PC shares 
its job tasks. In this case, a few similar priority job tasks are running in round-robin fashion 
during their allocated time slots or time slices. In contrast, the space-shared CPU can only be 
allocated to a single job task at a time. The next job task may be allocated to the next 
available CPU. A good example of this is a Cluster computing system where a number of 
CPUs is managed in a space-shared manner. The Network bandwidth and Disk storage are 
space-shared resources [2]. 

As the resources can be shared in two different ways, the collected historical information 
differs and, therefore, the performance prediction strategies need to be different. For example, 
for a time-shared system, the collection of historical information is based on the load average 
metric because it is the future load average that needs to be predicted. In contrast, for a space-
shared system it is important to predict the number of free CPUs. 

The resources can be either homogeneous or heterogeneous. For example, a cluster can 
have identical PC-nodes which give it the homogeneous character. Also, the resource can be 
centralised or distributed. For example, the Grid is a loosely connected distributed 
heterogeneous resource. Further, the resource can be shared or dedicated. For example, a 
cluster of nodes, which is permanently available for HPC tasks, can be considered as a 
dedicated resource. On the other hand, the Grid contains a collection of PCs that are 
temporarily borrowed from a third party for its use and therefore considered as a shared 
resource. Table 2 contains the details of the PPSs which can be performed on each of the 
above resources. 

 

 

Figure 2. Resource hierarchy. 
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For a particular resource, the resource consumption can be interpreted in several metrics. 
Therefore, it is important to measure these resources with relevant metrics that are easy to 
predict. For example, the CPU resource for a certain job task can be measured as (1) through 
CPU time share allocated to a certain job task within the elapsed second or (2) as the load 
average of the job task. In the OS kernel, the load average is calculated by adding the number 
of tasks in the CPU’s queue and the number of running tasks. Therefore, it measures the load 
on a CPU by supplying crucial information for a prospective user who needs to decide to 
which nodes to submit. 

Resource Level 

Figure 2 shows the different levels of predictability on the Grid. The most fundamental 
resources such as CPU, Memory, Disk space and I/O bandwidth per machine node are on the 
ground level (L-0). Level-1 (L-1) contains Machine/ Node, Network bandwidth and a Disk 
storage unit. Level-2 (L-2) contains the Data storage facility. Level-3 (L-3) contains the 
clusters and the queue. Level-4 (L-4) contains virtual organizations and the Grid. Some of the 
cluster PPSs (Table 2) which can be easily modified to predict on machine/ node resources at 
level-0 are considered to be level-0 predictors. Please read section 6 for more details. 

Level 0 

CPU: CPU, which is available for a new job task (of a parallel application), can be predicted 
on a single node by using Dinda [31], Smith et al. [10], ASKALON [41], OpenSeries & 
StreamMiner [42], DIMEMAS [6], eNANOS [5], MWGS [8], GPRES [7], Li et al. [11], 
PACE [26], PPSKel [43], FREERIDE-G [44], Minh & Wolters [12], FAST [45], Prediction 
of Variance [46], AWP [47], or TPM [21]. This value is important because then the user 
knows how much further the CPU can be loaded. 
Memory: Memory, which is available for new applications, can be predicted on a single node 
by using PACE [26], FAST [45] or OpenSeries and StreamMiner [42]. This value is 
necessary; otherwise the new application would crash without sufficient memory. 
Disk: In FREERIDE-G project [44] the disk space access cost (time) or the data retrieval time 
is predicted by running the Performance Prediction Frame Work on each PC node. 
I/O Bandwidth per Node: Both Network I/Os and Disk I/Os inherit I/O Bandwidth per node. 
(please see next level). 

Level 1 

At this level, there are 3 main resource components that can be predicted either using the 
parameters of the level-0 or directly. 
Machine/ Node: The availability of a machine/ node can be predicted directly using 
historically collected information as the service provider expresses the time intervals in the 
day that the machine is available for Grid users. NWS [30] or OpenSeries & StreamMiner 
[42] predicts the availability of PC nodes. Also the availability of machine/ node can be 
forecast after performing L-0 level predictions on CPU, memory, or disk (access cost) 
resources. 
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Network Bandwidth: Available bandwidth can be predicted by using NWS [30], Faerman et 
al. [48], PACE [26], EDG ROS [49], FREERIDE-G [44], FAST [50], Vazhkudai & Schopf 
[51] or PDTT [52]. 
Data storage unit: In typical data grids, a large amount of replica data is stored in different 
Hierarchical Storage Management (HSM) systems with access latencies ranging from seconds 
to hours [53]. The access latency consists of two major components and they are network 
access cost and storage access cost. In EDG ROS, the prediction of storage access cost is 
performed by CrossGrid data access estimator [49]. If the data storage consists of individual 
machines/ nodes, then after predicting the disk space access cost of each machine at level-0, 
the total data storage access cost can be calculated. 

Level 2 

At this level, there is a single resource component that can be predicted either using the 
parameters of the level-0 and level-1 or directly. 

Data storage facility: The prediction of the access cost of the Data storage facility can 
be done through the prediction of individual data storage units at level-1. If a data storage unit 
consists of several individual machines/ nodes, after predicting the disk space access cost of 
each machine at level-0, the total data storage access time can be calculated. 

Level 3 

At this level there are four cluster resource components that can be predicted either using the 
predicted information of level-0, level-1 and level-2 or directly. 
 
Cluster (Parallel application’s total runtime): DIMEMAS [6] can predict the 
communication and computational times of a MPI parallel application. Smith et al. [10], 
eNANOS [5], Li et al. [11], Minh & Wolters [12] or PQR2 [54] predict the parallel job’s 
runtime. Also MWGS [8] or GPRES [7] predict the parallel job’s runtime. 
Cluster (Parallel application’s required number of nodes): The MWGS [8] or RBSP [55] 
predicts a parallel application’s required number of nodes. The suitability of a parallel 
application to a particular cluster of nodes can be predicted using the GAMMA Model [13] 
therefore, it also belongs to level-3. 
Cluster (Available memory): PQR2 or eNANOS predict the available memory.  
Cluster (Queue wait time): In the available PPSs, the queue waiting time is defined for a 
space-shared cluster of nodes and therefore it belongs to level-3. Downey [4], Smith [1999], 
ASKALON [41], Li et al. [11], QBETS [9] or eNANOS [5] predicts the queue waiting time. 
Also, MWGS or GPRES predict the queue wait time. 

Level 4 

The suitability of a particular VO and the requirements of a particular grid need to be 
predicted using the predicted information of the levels below them (level-0-level-3). Sanjay & 
Vadhiya [56] or HIPM [57] predicts the MPI parallel job’s runtime on a Grid. GIPSY predicts 
the parameter sweep applications runtime on a Grid. LaPIe [58] can predict the total 
communication time of a MPI parallel application on a Grid. 
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Job Model 

Large HPC applications (or jobs) need to be grid-enabled for deployment on a Grid. New 
codes may be written in distributable form, but older applications that were not written for the 
Grid must be grid-enabled, often by being split into multiple tasks with a grid wrapper 
provided for each task [59]. Figure 3 shows the different levels of predictability in grid 
enabled job model taxonomy. At the ground level, there are grid enabled CPU bound tasks (or 
computational tasks), grid enabled Disk bound tasks (tasks with disk IO components) and 
inter task data. In the next upper level, grid enabled job tasks are related to either HPC or 
High Throughput Computing (HTC). The next level contains jobs and MPI parallel 
applications/ workflows.  

 

 

Figure 3. Grid Enabled Job model. 

Also, the Grid applications may consist of various groups of jobs with complex inter-task 
communications, therefore it is necessary to identify them through a Data Flow Graph (DFG). 
Such identification helps the development of generalized prediction algorithms for a 
particular group of MPI parallel applications or workflows. The grid enabled parallel 
applications are categorized into four main patterns of DFGs, in accordance with the NAS 
Grid Benchmarks (NGB) [22]. They are Embarrassingly Distributed (ED), Helical Chain 
(HC), Visualization Pipe (VP) and Mixed Bag (MB) [22]. The NGB suite is based on NAS 
Parallel Benchmarks (NPB) which was originally designed to provide an objective measure of 
the capabilities of hardware and software systems to solve computationally intensive Fluid 
Dynamics problems relevant to NASA. 

At the lowest level, for the prediction of runtime of a CPU bound job task, the PPSs 
namely Dinda [60], Smith [10], ASKALON [41], MWGS [8], GPRES [7], eNANOS [5], 
OpenSeries & StreamMiner [61], PACE [1], PPSkel [43], FAST [45], AWP [47], Li [11], 
Minh & Wolters [12] or TPM [27, 62] can be used. 

For an application that requires data transfer via the network, the PPSs, namely Faerman 
et al. [48] or Vazhkudai and Schopf [51], PDTT [52] or FAST [45] can be used to predict the 
data transfer rate. Either FREERIDE-G or EDG ROS can also be used for this purpose. 
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The performance prediction of a MPI parallel application/ workflow involves both 
computational and communication times. Therefore, it is preferable to predict the combined 
computational and communication time of a task rather than predicting individual 
components. DIMEMAS [6] or ASKALON [41] can be used for the prediction of 
computational and communication time of a MPI parallel application or a workflow. The 
MWGS [8] and GPRES [7] predict the total runtime of the parallel application. 

The RBSP [55] predicts the cluster size for the MPI parallel application and the GAMMA 
model [13] can be used to predict the suitability of any parallel application/ workflow to a 
cluster. 

At the highest level, HIPM [57] or Sanjay & Vadhiyar [56] can be used for the prediction 
of computational and communication time of a MPI parallel application on the Grid. Also 
LaPIe [58] predicts the total communication time of a MPI parallel application on a Grid. 

5. The Survey 

This section includes a description of existing PPSs that have been proposed by researchers 
for various computing platforms such as clusters, grids, parallel and distributed systems, peer-
to-peer (p2p) and distributed databases. In the next section 6, the taxonomy that is explained 
in the previous section 4 is used to classify these existing PPSs. Table 1 and 2 provide the 
summary of the analysis of the survey that is conducted using these taxonomies. 

The PPSs for the survey are selected based on several criteria. Firstly, the survey should 
be concise and include a sufficient number of PPSs to demonstrate how the taxonomy can be 
applied effectively. Secondly, the selections of different resource types are considered for 
prediction. Thirdly, the selected PPSs are fairly recent work or performance prediction 
models that are currently in use, so that the survey creates an insight into the latest 
development in research. 

Descriptions of the Prediction Models 

Descriptions of the Analytical Models 

PACE (Clusters & Grids): The PACE toolkit [26] for the performance evaluation and 
prediction is developed by adapting the standard methodology of the software engineering 
performance analysis to provide a representation of the whole system in terms of three 
modular components, namely the software execution module, parallelization module and the 
hardware module. These three modules are fed through the evaluation engine which runs the 
simulation of the application on a faster time scale to make required predictions. The runtime, 
memory and bandwidth of the future application are the major prediction metrics that can be 
calculated through simulation by PACE. 

Prediction quality: The average runtime prediction error is 7%. 
 

The Task Profiling Model (TPM) (Clusters & Grids): The Task Profiling Model for Load 
Profile Prediction is proposed [27, 62], which forecasts the load profiles of job tasks of 
individual machines based on current and immediate past information. The Free Load Profile 
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(FLP) or footprint of a job task on a load free node is a necessary input to the proposed 
Performance Prediction Model. TPM predicts the load profile (runtime) of future job tasks on 
the nodes of a Grid. Also, it predicts the load profiles of all currently running job tasks on 
each node, thereby giving an opportunity for the scheduler to protect the user set time limits 
of currently running job tasks. The predictions are performed by the software agents running 
on the nodes of a Grid. The predicted data, thus obtained, aids in choosing the most suitable 
set of computers for the deployment of the tasks in time-optimal manner. 

Prediction quality: The average runtime prediction error is below 7%. 
 

DIMEMAS (Single Machines/ Clusters): The DIMEMAS [6] simulator reconstructs and 
predicts the total runtime which is the computation and communication time for a MPI 
application on a cluster. The inputs are the trace-file of the previous run of the application (a 
set of computation bursts and calls to the MPI primitives), description of the architecture and 
the model for the collective MPI primitives [19].  

Prediction quality: The average prediction error versus the measured value ranges 
between 8% and 17%. 

 
LaPIe (Clusters and Grids): The LaPIe [58] predicts the overall time of a collective 
communication. It first subdivides the Grid network into homogenous subnets or logical 
clusters to handle each cluster individually and later aggregate them to form the Grid. The 
pLogP model is used to construct the prediction models. It consists of the communication 
latency –L, the message gap according to the message size –g(m) and the number of 
processes –P. It first establishes the performance models for a number of different 
communication strategies in order to select the better performing strategy for each different 
logical cluster. Thereafter, the best communication strategy is selected in each logical cluster. 
Through the analysis of the inter-clusters and intra-cluster performance predictions, it is 
capable of defining a communication schedule that minimises the overall execution time. 

Prediction quality: The average prediction error is 5-10% for real communication 
experiments with varying message sizes (0- 1 MB), number of processes (1-50) and for 
different network infrastructures such as Fast Ethernet, Giga Ethernet and Myrinet. 

 
ASKALON (Single Machines/ Clusters): In the ASKALON [41], G-prophet performs the job 
execution and waiting time based on the minimum training set and the historical information. 
The execution times and different input data sizes to the job task are measured from previous 
job runs on a machine. If the job task with the same input data size is submitted to a similar 
machine, then the future execution time is predicted using the background load and memory. 
However, if the job task is submitted to a machine with different characteristics (e.g., 
different CPU speed) then the new execution time on the new machine is estimated and the 
future execution time is predicted using the background load and memory. Mathematical 
models have been used in making adjustments and predictions to the execution times. 

Prediction quality: The average runtime prediction error is 10%. 
 

GAMMA (Clusters): In the GAMMA model [13], for a particular parallel application and for 
a set of available clusters, a set of Г factors and the total functioning costs are calculated. The 
cluster with the least functioning cost and that best satisfies the condition Г > 1 is selected for 
the deployment of the parallel application. This model is integrated into ISS VIOLA meta-
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scheduling environment. The cluster with the highest Г factor and the least cost may be 
selected for the MPI parallel application. 
Prediction quality: They have experimentally demonstrated the ability to select the most 
suitable cluster for a particular parallel application. 
 
Performance Prediction with Skeletons (PPSkel) (Clusters and Grids): Sodhi et al. [43] 
have proposed a methodology that runs the scaled down simulation of the actual distributed 
system. The scaled down job tasks are automatically generated by using execution traces of 
CPU usage, and message exchanges. Their procedure is summarised as follows, 
 

a. Record job task’s execution trace 

b. Compress execution trace into an execution signature 

c. Generate performance skeleton program from the execution signature  
 
The scaled down simulation is run on a particular node where the prediction of runtime 

needs to be performed. The evaluation of the model is done using NAS grid benchmark 
programs. They have successfully tested the model for both CPU bound and MPI 
applications. 

Prediction quality: For all benchmark programs throughout the time range 0.5s- 10s, the 
average error is 6.7% 

 
Performance Prediction Model for FREERIDE-G (Grids): Glimcher and Agrawal [44] 
have developed an analytical prediction model for Grid-based data mining applications. 
Frame work for Rapid Implementation of Data-mining Engines in the Grid (FREERIDE-G) 
middleware supports the high level interface for developing data mining and scientific data 
processing applications that involve data stored in remote repositories. Its prediction model 
helps to achieve the following two tasks: 

(a) Choosing the best one among multiple replicas of data 
(b) Finding the best computing resources for processing data. 
This is achieved by predicting (a) data retrieval and communication times and (b) data 

processing times and selecting the replica and computing configuration pair where the data 
processing can be performed with minimum cost (time). 

Prediction quality: System performs within 5-12% when execution time is dominated by 
data processing time and within 4-7% when execution time is dominated by remote data 
retrieval time. 

 
Fast Agent’s System Timer (FAST) (Grids): FAST [45] is a software package allowing 
client jobs to get an accurate forecast of communication and computation time and memory 
use which uses LDAP for reading and searching static data. It also uses NWS for dynamically 
monitoring network and hosts. The FAST dynamically acquires the CPU speed, available 
memory, BW, Latency, topology etc and depends on its well-targeted API library which 
depends on linear algebraic algorithms to perform shortened calculations and combine static 
and dynamic data for the purpose of forecasting. The forecasts can be summarised as follows: 
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fast_comm_time(data_description, source, dest): The time needed to transfer the data 
from its location to the host on which the computation will be done. 

fast_comp_time(host, problem, data_description): The time needed for the computation 
on a given host. 

fast_comp_size(host, problem, data_description): memory space required for the 
problem. 

fast_get_time(host, problem, data_description, localization): This function aggregates the 
results of others functions and forecasts the time needed to execute the given problem on a 
host for the data described by data_description, taking the prior localization of data and the 
time to get them on a host. 

Prediction quality: Average prediction error is 10% 
 

Prediction of the QoS (Grids): Carvalho et al. [63] make an effort to predict the Quality of 
Service of a peer-to-peer desktop grid by determining the amount of resources available to a 
particular grid consumer at a certain future time tp. Their model can be briefly explained as 
follows. In a peer-to-peer grid, the two peers are considered, namely donating peer Pd and 
consumer peer Pc. When Pd and Pc interact, the resource balance with Pd goes down to a 
minimum of zero and this guarantees that it provides a defence against whitewash attack. In 
contrast, the resource balance with Pc goes up, proportionally to the amount of resources 
donated by Pd. 

When the Pc submits a bag of tasks to the Grid, it needs to gather information from each 
peer of the Grid. The goal is to predict the amount of resources Pc is able to obtain from the 
Grid by the future time tp. The prediction has to be performed with information gathered just 
prior to the submission of the tasks. Therefore, it is assumed that the balance of resource of Pc 

and each of the Pd s (all the other peers of the grid and Pc) do not change between the time of 
submission and tp. 

The error is defined as (ER-OR). The ER is the ratio between the estimated and requested 
amount of resources. The OR is the ratio between the obtained and requested amount of 
resources. 

Prediction quality: Mean prediction error, how much of resource a peer will get from grid 
7.2% 

EDG Replica Optimization Service (ROS) (Grids): The task of the ROS [49] is to select 
the best replica with respect to network and storage access latencies because the best replica 
must be accessed by an application programme. In Data Grids, a large amount of data is 
stored across the world in different storage systems with access latencies ranging from 
seconds to hours. Therefore, the data access prediction needs to be done through the cost-
estimation service which consists of estimation of the access costs of the network and storage 
systems. 

For example, if a replica is a single file, 
 
 storagetheoftaccessnetworktheoftaccessttransferFile coscoscos   (1) 
 
For estimating the access cost of the network, the EDG Network Cost-Estimation Service 

is used and for the access cost of the storage, the CrossGrid Data Access Estimator is used. 
Prediction quality: The average estimated access cost error 6.9% 
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Descriptions of ML Models: STC 

Wolski (Distributed resources, clusters and grids): According to Wolski et. al., the Network 
Weather Service1 (NWS) [30] provides one-step-ahead predictions for any time-series fed to 
its prediction module. Its prediction strategies include running average, sliding window 
average, last measurement, adaptive window average, adaptive window media, media filter, 
a-trimmed mean, stochastic gradient and autoregressive strategies. Its predicted values 
include CPU availability, TCP end-to-end throughput and TCP end-to-end latency. 

Prediction quality: The CPU availability is predicted with an absolute mean error of less 
than 10%. The mean-based predictors are better for throughput time series. The median based 
predictors are better for latency time series. It is shown that mean percentage errors are less 
than 2.5%. The best methods have the mean percentage errors less than 0.8%. 

 
Dinda (Clusters and grids): On a typical shared unreserved host, Dinda [31] estimates the 
runtime of a computer-bound task, given the task’s CPU demand and AR(16) time series 
prediction of the load on the host. A prediction is presented to the application/ scheduler as a 
confidence interval that neatly expresses the error associated with the measurement and the 
prediction processes-error that must be captured to make statistically valid decisions. 

Prediction quality: Almost 90% of the tasks are completed in their computed confidence 
intervals. The target confidence interval of 95% has been used. 

 
Modelling Workloads for Grid Systems (MWGS) (Parallel Computers with Batch Queue 
Systems): Song et al. [8] use the statistical analysis and Markov-chain to predict estimation of 
the arrival time of a job, parallelism of a job (number of nodes) and user estimated job 
runtime. In their strategy, they first classify workload traces similar to Smith and then further 
model the workloads using Markov-chains. A Markov chain matrix has been created for each 
user group to model its individual behaviour and thus to predict the work loads of future jobs. 

Prediction quality: The Standard Workloads are used to create the corresponding Markov 
chains. Thereafter using those Markov chains new workload traces are created (forecast). The 
KS test [64] revealed high degree of similarity. Then the model is compared with Lublin/ 
Feitelson model and it is found they are almost similar [65]. 

 
Prediction of Variance (Grids): Yang et al. [66] have previously developed one-step-ahead 
tendency based time predictor for the prediction of CPU load as a point value. They use NWS 
one-step-ahead predictor for this purpose. They [46] further improved that time series based 
predictor to predict both mean and variance over some future time interval.  

Prediction quality: 3 metrics are used to successfully compare the predictor with others. 
Please refer to the cited literature for details. 

 
Prediction of Data Transfer Time (PDTT) (Data Grids): Yang et al. [52] have predicted the 
data transfer times using predicted means and variances in the shared networks. They use 
NWS one-step-ahead predictor for this purpose. They predict the effective bandwidth using 
the following formulae 

 

                                                        
1 Wolski’s NWS project provides a multifaceted prediction approach for short tasks. 
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 BWSDTFBWMeanWEffectiveB   (2) 
 

where BWMean is the predicted mean in end-to-end bandwidth that the data will encounter 
during the transfer, BWSD is the predicted variance in end-to-end bandwidth that the data will 
encounter during the transfer, and TF is a per link Tuning Factor used to scale the impact of 
the BWSD on the effective bandwidth. In fact TF regulates the EffectiveBW. For example, if 
the variance becomes higher for a particular link, TF becomes lower and helps reduce the 
EffectiveBW for that link. 

Prediction quality: 3 metrics are used to successfully compare PDTT with others. Please 
refer to the cited literature for details. 

 
Adaptive Workload Prediction in Confidence Window (AWP) (Grids): Wu et al. [47] 
have proposed a prediction methodology, Adaptive HModel (AHModel), which is based on 
Auto-Regression. HModel uses a fixed historical data interval as an input to predict the load n 
time steps ahead, within a confidence window. However, in the AHModel, the historical data 
interval is calculated to minimise the mean square error in the work load, before predicting 
the load over certain look ahead span n time steps. In other words, when the load fluctuates 
rapidly, the AHModel changes the historical data interval to improve the prediction accuracy. 

They also use a Kalman filter to reduce the measurement errors and thereby improve the 
prediction accuracy. A Savitzky-Golay filter is used to smooth the spikes of the workload 
data in several steps of the prediction process. 

Prediction quality: Mean Squared pred. error is 0.04- 0.73 as the confidence window 
increases from 10-50 steps. 

 
QBETS (Parallel Computers with Batch Queue Systems): Nurmi et al. [9] have named their 
method as Queue Bounds Estimation from Time Series (QBETS). They consist of four main 
strategies: (a) Percentile estimation; (b) Change point (of history data profile) Detection; (c) 
Similar job clustering; and (d) Machine availability interference. 

They focus on space-shared batch job tasks and propose a user friendly metric to express 
queue wait times. According to them, the queue delay is represented to the potential users as 
quantified confidence bounds rather than as a specific point value prediction, because then the 
users can feel the probability that the job will fall outside the range. They use two metrics, 
namely correctness and accuracy to explain the delay. The correct prediction should be one 
that is greater than or equal to a job’s actual queuing delay and therefore the correct predictor 
should be one for which the total fraction of correct predictions is greater than or equal to the 
success probability specified by the target percentage. The RMS error is only calculated for 
over-predictions as a measure of accuracy. 

The other important fact is that instead of inferring from a job execution model the 
amount of time the job tasks will wait, a job wait time inference is made from the online 
actual job wait time data itself. They use time series based methods for the prediction of 
confidence bounds. 

Prediction quality: The system predicts bounds correctly for 95% or more individual job 
wait times. Non-parametric Binomial percentile estimator is more effective than others. 

Complimentary Contributor Copy



A Taxonomy of Performance Prediction Systems … 19 

Descriptions of ML Models: Usage of Independent Data Tuples (IDT) 

Downey (Clusters): Downey’s statistical approach [4] predicts a job queue time in space 
shared environments. It is found that for cluster jobs up to 12 hours, the cumulative 
distribution function (CDF) of lifetimes for jobs is nearly uniform on a logarithmic x-axis [4]. 
Using this approximation, Downey simplifies the calculation of distribution of job lifetimes 
conditioned on the current age of a process. He derives formulae to calculate the median/ 
mean remaining lifetime of a job as a function of its current age. 

For example, if there are p processes running with ages ai, and cluster size ni he predicts 
the mean/ median value of Q(n’) which is the time until n’ additional nodes become available. 
This calculation is straightforward because if one knows the age of a process and number of 
nodes, then using the above mentioned information he can calculate the remaining lifetime of 
the process [4]. 

Prediction quality: The average time saving per job is 13.5 minutes (Average job duration 
is 78 minutes). The coefficient of correlation between predicted queue times and the actual 
queue times from the simulated schedules is between 0.65 and 0.72. 
 

Smith (Single Machine/ Cluster): In previous work by Smith et al. [10, 67] the historical 
runtimes of similar applications are used to predict the future runtime of the job in the parallel 
computer systems. 

Smith et al. [67] use a rich search technique to determine the application characteristics 
that yield the best definition of similarity for the purpose of making predictions. According to 
them, the job tasks may be judged as similar because they are submitted by the same user, at 
the same time, on the same computer, with the same arguments, on the same number of 
nodes, and so on. They use a genetic algorithm and a greedy search, looking for similar 
templates [68]. Eventually, they find that their technique provides more accurate runtime 
estimates than the techniques of other researchers. For example, they achieve mean errors that 
are 14 to 49 percent lower than those obtained by Gibbons [69], and 23 to 60 percent lower 
than those by Harchol-Balter and Downey [70]. 

Prediction quality: The mean prediction errors are between 40% and 59% of mean 
application runtimes. 

Krishnaswamy [71] and Ali [72] further improve on Smith’s work by introducing new 
techniques for data definition and search. 
 
Li’s data mining method (Clusters): Li et al. [11] present a new prediction technique for the 
prediction of a job task’s queue wait time and runtime using the Instance Based Learning 
(IBL) techniques [40]. They use data mining algorithms, namely K-Nearest Neighbour and 
Genetic Search to find similar datasets in a history database. Li categorizes similar jobs using 
a distance function [73] and makes improvements on Smith et al. [10]. After extracting sets of 
information from nearby jobs, Instance Based Learning Algorithm is used for the prediction. 

Prediction quality: The majority of jobs have relative error between -0.5 and 0.5 with the 
largest percentage centred around 0. 

 
eNANOS (Clusters): eNANOS [5] prediction service uses a set of predictors which are based 
on statistical techniques and data mining techniques. Similar to the predictions of Smith, 
eNANOS classifies the historical information of job tasks according to static templates (user, 
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group, number of processors etc.). Therefore, the prediction of runtime and memory is done 
using the statistical estimators namely mean, median, linear regression and standard 
deviation. 

The prediction of runtime can also be calculated using the clustering algorithms of the K-
Nearest Neighbours, K-Means and X-Means and the above mentioned statistical estimators. 
In this case, instead of using a set of static templates like Smith et al. [67], for a certain job 
task, a set of job task typologies are created for each ß seconds using the above mentioned 
clustering algorithms. Thereafter, a set of predictors, based on the statistical techniques, is 
used on each topological group to make the predictions. 

The queue waiting times are predicted using data mining algorithms of decision trees [5]. 
Prediction quality: In the evaluation of e-NANOS for parallel jobs, it has been compared 

with other RMSs and schedulers such as IBM backfilling scheduler. This system has shown a 
remarkable improvement in reducing runtime. 

 
OpenSeries and StreamMiner (Desktop grids): OpenSeries and StreamMiner framework 
[61] which is interfaced with the Weka 3.4 data mining library, uses data mining techniques 
such as Various classifiers, Decision trees, Bayesian and Support Vector Machines and AI 
techniques such as Fuzzy rules and Genetic algorithms for the prediction of machine loads, 
percentage of free virtual memory (memory load) and availability of machines. 

Prediction quality: The workload and memory is predicted as a value between 0%-20%, 
20%-40% and so on. In the first 2 cases Mean Squared Error is below 0.5 and for the 
availability of machines MSE is below 0.1. 

 
GPRES (Clusters): The GPRES model [7] proposes a similar approach as it groups similar 
jobs based on static or dynamic templates for the prediction of job’s runtime, queue time and 
total runtime. The mean, min, max, standard deviation and error values of predicted 
parameters are calculated for each group. Thereafter, the groups with specific parameters are 
inserted into the knowledge database as rules. The reasoning system (e.g., expert systems) 
selects rules from the Knowledge Database and generates the requested predictions. 

Prediction quality: The average runtime error is 25%. The average total runtime error  
is 35%. 

 
Faerman (Collection of distributed resources): Faerman et al. [48] use linear regression for 
prediction and combine NWS measurements with instrumentation data obtained from 
previous application executions to predict the data transfer performance of an application. 

Prediction quality: The reported Normalized Mean Absolute Errors for file transfer 
throughputs using Adaptive Regression Modelling (AdRM) are less than 12%. 

 
Vazhkudai and Schopf (Data Grids): Vazhkudai and Schopf [51] have performed the 
prediction of large data transfer for efficient access of databases. The recent increase of usage 
of distributed databases provides an environment for the researches to share, replicate and 
manage access of copies of large datasets. It is important to know which replica can be 
accessed most efficiently. Therefore, fetching data from one of the several replica locations 
requires an accurate prediction of end-to-end data transfer. The large data transfers can be 
predicted using univariate and multivariate regression techniques. The multivariate predictors 
are combined with GridFTP logs, disk throughput observations and network throughput data. 
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Prediction quality: The univariate predictors have an error of at most 25%. When the 
multivariate predictors are combined with GridFTP logs, disk throughput observations and 
network throughput data, it provides gains up to 9% of that of univariate predictor. 

 
PQR2 (Clusters): This machine learning prediction methodology [54] is based on PQR which 
is an algorithm that generates a binary tree that can combine a variety of classifiers. 
Matsunaga et al. [54] have further developed PQR [74] by allowing the leaves of the tree to 
select the best training regression algorithm from a pool of known methods. Although any 
regression algorithm can be placed on the pool when the fast predictions are required, the 
preference should be given for the parametric methods and therefore Linear-regression and 
Support Vector Machine (SVM) are used. 

The PPS is developed to predict application’s runtime, memory and disk space on a 
cluster using a considerable large number of applications and system specific attributes. 

Prediction quality: PQR2 proved the best and required a few minutes for training /create a 
new model and few milliseconds to produce a single prediction. Please refer to the cited 
literature for details. 

 
Sanjay and Vadhiyar (Grids): Sanjay and Vadhiyar [56, 75] have developed a PPS which is 
suitable for tightly coupled parallel applications that are run on non-dedicated computer 
systems where the background load can change during the application execution. Their 
prediction system periodically measures the loads on the processors and network links during 
the executions. The total runtime which is computational and communicational is predicted 
using a single equation. 

Prediction quality: In general, the average prediction error is below 30%. 
 

Minh and Wolters (backfilling parallel systems): Minh and Wolters [12] have improved the 
previous method by Li by dividing the historical jobs into big, medium, and small groups and 
have determined required parameters for each group to predict a job’s runtime on a 
backfilling parallel system. The parameters include a template to categorise jobs, historical 
database size (N), the number of nearest neighbour jobs K, the factor α, and the factor β. 
During the training of the model the genetic algorithm is used to find the parameters. 

Prediction quality: Comparing with Li, they reduced underestimated jobs by 20%, mean 
absolute error by 6.25% and Weighted absolute error by 17.5%. 

 
Hybrid Intelligent Prediction Model (HIPM) (Grids): Duan et al. [57] propose a hybrid 
intelligent method for performance modelling and prediction of the execution time of the 
workflow activity on the Grid. They combine the functionality of the neural and Bayesian 
networks using the methods used by Petri, to achieve high accuracy in prediction of runtimes 
of the workflow activities with almost negligible training times. The training time of the 
predictor is very low due to the introduction of the Bayesian networks. They have shown that 
the combined Bayesian-Radial Basis Function-Neural Network (Bayesian-RBF-NN) 
predictor is better than the normal RBF-NN or SVM or REP Tree. 

Prediction quality: The average accuracy is 91.5% 
 

Regression-Based Scalability Prediction (RBSP) (Clusters): Barnes et al. [55] propose a 
multivariate regression to predict the ideal number of machines required for parallel 
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application. The number of machines depends on the application, input variables, and 
machines under consideration. They propose three different techniques and they are as 
follows: 
 

a. Total execution time (TOT) 
b. Maximum per-processor computation (Max) 
c. Global critical path (GCP) 

 
Prediction quality: Median prediction error is less than 13%. 
 

Grid Information Prediction System (GIPSY) (Grids): Verboven et al. [76] focus only on a 
particular class of applications, namely the parameter sweep, when developing their PPS. 
They select any of the following statistical/ML methods for modelling the final engine for the 
prediction of runtime. They are Polynomial approach [77], Radial basis functions [78], 
Kriging methods [79],Neural networks [80], Support vector machines [81], Nearest neighbour 
predictions [40] and Techniques of Iverson [82]. 

Prediction quality: The predictor helped the normal scheduler to improve its efficiency by 
13.74%. 

 
RL Based Scheduling Strategies (RLSS) (Grids): Costa et. al.[83] had further improved the 
multi-agent Reinforcement Learning (RL) algorithm which was proposed by Galstyan et. al. 
[84]. In Galstyan’s, the resource selection is done firstly using greedy by calculating the 
highest score of each resource and then among the resources with equal low scores the 
selection is done randomly. Modified Galstyan’s [83] is better than the normal Galstyan’s et. 
al. [84] because now it is able to select the best resource which has the best efficiency with a 
high confident level of 85%. 

Also they had improved the Multiple Queues with Duplication (MQD) Algorithm which 
was proposed by Lee and Zomaya [85] by modifying the MQD resource evaluation function 
by enabling it to use RL to compute relations of performance among resources which is 
entirely new feature in MQD.  

They had modified Gridbus Broker to contain a new parameter which would contain the 
RL calculated resource performance and this helps them to select the best resource.  

Prediction quality: The two improved scheduling strategies had made significant gains 
compared with the standard scheduling algorithm based on round-robin. Please see the 
literature for detailed results[83].  

6. Analysis of the Survey 

Introduction  

In this section, we investigate the results of the survey. We also analyse the results of the 
existing prediction solutions in terms of their exploitation in grid scheduling. In the analysis 
of about 33 different PPSs, which are tabulated in the Tables 1 and 2, it is understood that the 
accurate estimation of the prediction information in the heterogeneous grid environment is a 
complex and challenging task. 
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In the survey, the majority of PPSs (18 of them) predict a job task’s runtime or CPU 
resource. Eight PPSs predict the parallel job’s queue waiting time on a cluster. Seven PPSs 
predict the parallel job’s runtime on a cluster. A single PPS (DIMEMAS) predicts MPI 
parallel job’s combined computational and communicational time on a cluster. Two PPSs 
predict the available cluster memory. Two PPSs predict MPI parallel job’s combined 
computational and communicational time on a Grid. Eight PPSs predict only the 
communication time between two points. One PPS predicts the total communication time on 
the Grid (LaPIe). Three PPSs predict the node memory. Four PPSs predict the availability of 
a PC or available number of PCs. One PPS predicts the suitability of a parallel application to 
a cluster (GAMMA model). 

Also, there is a prediction effort on Quality of Service of the resources [63]. The statuses 
of the current resource balance of the nodes are assumed to be the future resource balance of 
the nodes. Therefore this methodology can be further improved by using the historical 
resource balance values to predict the future resource balance of the node. 

Meeting the Challenges  

Appropriate Performance Metrics for the Grid: 

It is necessary to introduce the metrics that are relevant to the behaviour of grid-enabled 
applications. In the survey, there is a handful of PPSs which introduce novel metrics. For 
example, instead of predicting the CPU load at a certain point in time, Yang et al. [46] have 
predicted the average CPU load over a certain time interval and variation of CPU load over 
some future time interval. They have used a set of stochastic scheduling algorithms to 
evaluate such predictions of future availability and variability when making resource mapping 
decisions. 

Yang et al. [52] have proposed a Tuned Conservative Scheduling Technique that uses 
predicted mean and variance over the duration of the data transfer. They predict the effective 
bandwidth over the time interval of the data transfer using the equation (6 ). TF regulates the 
predicted EffectiveBW. 

Instead of predicting a point load value ahead of n steps, Wu et al. [47] predict the load 
profile across the n time steps within a certain confidence window. Also, its AHModel 
predictor considers the fluctuations in the historical loads and changes the historical interval 
(w time steps) accordingly. The Mean Square Error of prediction is calculated over n and w 
steps, and therefore this prediction model is much relevant to the Grid. 

Seneviratne and Levy [21, 27, 62] use TPM to forecast the new metric individual load 
profiles of the future job tasks. The profiles include CPU and Disk IO intervals. The inputs to 
the model are the new metrics Free Load Profiles and Disk I/O maps of the currently running 
job tasks. 

The GAMMA model [13] computes the GAMMA factor which is directly related to the 
efficiency of a MPI parallel application on a cluster, and helps predict the most suitable 
cluster for a particular MPI parallel application. 

LaPIe [58] predicts using a novel metric, namely total communication time of a bag of 
MPI tasks or workflow on the Grid. 
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Also, it is relevant to include a new metric that is used by the QBETS [9] project to report 
the delay times on the queue. Instead of producing the average delay of recorded queue 
waiting times, they use the probability of past queue wait times reaching the confidence level 
(95%) of the predicted queue wait time to inform the clients about the prospective delays that 
one may have to experience. If the queue wait time exceeds its predicted value, it is 
considered to be an incorrect result. For example, the information that there is a 75% chance 
that the job task will execute within 17 minutes tells the client more about what kind of delay 
his job task will experience, than the information that the expected wait time of a particular 
job task is 30 minutes.  

Prediction of the Network Bandwidth 

The prediction of network bandwidth has been achieved by fewer PPSs than that of job task’s 
run time. Faerman et al. [48] have implemented the prediction of data transfer using the linear 
regression at resource level L-1. NWS predicts TCP end-to-end bandwidth, latency and 
connection time [30] at resource level L-1. NWS uses auto-regressive methods which predict 
the next step or data set of the collected series of data samples [30]. Therefore, for an 
application with long communication times, this method alone cannot provide successful 
predictions. Vazhkudai and Schopf [51] use multivariate regression predictors, while Yang et 
al. [52] predict means and variance of the network bandwidth over a certain future time 
interval. The latter effort is better for the Grid job tasks than the first because it predicts the 
result over a period of time. Since the development of NWS, there has been a good effort to 
predict the communication time. PACE [1] predicts the communication time of a certain job 
task at resource level L-1. Also, it is encouraging to see how LaPIe [58] predicts the total 
communication time of a bag of MPI tasks or a workflow at resource level L-4 with a 
reasonable accuracy. One of the major drawbacks with LaPIe is that it focuses on limited 
scenarios where there is no background network traffic. Also, FAST [45] predicts 
communication time without considering the background congestion. However, the univariate 
and multivariate regression predictors and methods used in NWS, take into account the 
history of network traffic when predicting the future BW. 

Prediction of Multiple Metrics: 

There are integrated PPSs which predict multiple parameters and they focus on predicting 
several diverse parameters. For example, GPRES, eNANOS, and PACE belong to this 
category. When the classes of applications which require prediction solutions become large, a 
larger number of multiple parameters may be predicted. This is applicable for grids 
containing heterogeneous resources where a wide range of various applications can be run. As 
they do not specialise in a particular resource type, their prediction accuracy may be low. 
However, where a grid scheduler needs to use several parameters for scheduling, it would 
have to use multiple Performance Prediction solutions to provide the required parameters. 

Prediction of Data Access: 

The prediction of data access time or the time required to access replicated data from any 
location on the Grid, consists mainly of the access time of the storage system and access time 
through the network. Through experience with data grids, it is known that Hierarchical 
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Storage Management (HSM) systems are the main bottleneck rather than network links [53]. 
Therefore, the prediction of the access times for the HSM systems is critical to the 
effectiveness of the user application for reading data efficiently. In the survey, there are two 
PPSs for the prediction of data access. They are EDG Replica Optimization Service [49] and 
Prediction Model for FREERID-G [44]. 

 Taxonomy 

Resource Type and Resource Level Taxonomies: 

There are many resource types which are required to be predicted for efficient and effective 
scheduling in the grid and each resource type consists of several levels. Therefore, if required, 
the prediction can be conducted at all the levels of a certain resource. In the resource level 
tree of Figure 2, the predictions which are conducted at a lower level can be transferred to a 
higher level without the loss of information because the nodes of the lower level are 
dependencies of the higher level. For example, the Level-0 predicted usage values of CPU, 
Memory and Disk can be used to predict the availability of a machine/ node which is at 
Level-1. In contrast, the prediction information such as CPU capacity or Memory capacity 
may not be directly derived from the value predicted at Level-1. Similarly, if you predict the 
required number of nodes or a suitable cluster (at level-3) for a parallel application, this value 
cannot be transferred down the tree to extract the predicted CPU capacity, Memory capacity 
or Disk access cost of a particular node. The reason is that the information is tightly entangled 
at the upper levels of the tree and therefore accurately separating them is either extremely 
difficult or impossible [31, 62]. 

It is important that the parameter at the lowest level is fundamental and thus not a 
combination of any other basic parameters. Therefore, it is independent of any other metrics 
and it can be measured directly. Also, its characteristics and runtime environmental details 
can be easily understood and measured (e.g., a CPU resource). Therefore, the overall result is 
directly related to this fundamental resource. For this reason, the accuracy of prediction of the 
parameter at the lower level is better than that of higher levels (e.g., Dinda, PACE, PPSKel 
and TPM). Therefore, more predictors are developed to predict at the lowest level of the tree 
and transfer the results to the top level. 

A resource at the higher level depends on the several types of metrics at the lowest level, 
and therefore its behaviour becomes complex. This makes it difficult to analyse or predict its 
behaviour. For example, a cluster of heterogenous nodes depends on its numerous CPUs, 
Memories, Disk access capabilities, and BWs which are at the lowest level of the tree (Figure 
2). Therefore, it is harder to analyse or predict the behaviour of a cluster of heterogeneous 
nodes which is multi-dependant than a CPU or a memory. 

If you compare the parameters of Table 2 and the prediction quality from each prediction 
method in section 4, you find that at the higher levels of the resource tree (Figure 2), it is 
difficult to make predictions accurately, and for this reason there are only a few predictors 
available for making predictions at the highest levels for the Grid. For example, at level-4, 
only Sanjay and Vadhiyar, or HIPM is capable of prediction of total runtime which is an 
aggregate of the computational and communication times of a MPI parallel application or a 
workflow.  
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At level-1 NWS, Faerman, EDG ROS, FREERIDE-G, FAST, Vazhkudai and Schopf, 
PDTT or PACE can predict the communication time between two points. NWS or 
OpenSeries and StreamMiner predict the availability of a machine/ node. EDG ROS or 
FREERIDE-G can predict the data storage access time. 

At level-0, there are 18 PPSs (Dinda, OpenSeries and StreamMiner, DIMEMAS 
ASKALON, PACE, TPM, AWP, PPSKel, FREERIDE-G, RLSS, Prediction of Variance, and 
FAST, Smith, Li, Minh and Wolters, eNANOS, GPRES and MWGS) for the prediction of CPU 
resource or job task’s runtime. The last six PPSs are originally developed for the clusters to 
predict job runtime (at level-3), however they can be easily modified to predict the CPU 
resource at level-0. Also, available memory on a node can be predicted by either PACE or 
OpenSeries and StreamMiner. 

Unlike a homogeneous cluster of nodes, a Grid is made of heterogeneous resources; 
therefore it is better to perform prediction at the lowest level because the prediction of 
independent resource is easy. If we try to predict a resource at a higher level, a collection of 
heterogeneous resources (e.g., Cluster of heterogeneous nodes) are going to behave in more 
complex manner with several dependencies; therefore prediction is going to be complex. 
However, if the relevant application’s historical data, its characteristics and its runtime 
environmental characteristics are not accessible to the predictor at the lowest level, the higher 
level prediction may be chosen. 

Prediction Approach Taxonomy: 

Table 1 classifies the PPSs according to the nature of their basic design, i.e., whether they 
belong to Analytical or ML category. The ML category has two major subdivisions and they 
are STC family and the group of predictors that analyses individual data sets (tuples). There 
are 11 analytical models, 8 ML-STC models and 14 ML-Independent Data Tuple models. 

The PACE, TPM, DIMEMAS, ASKALON, PPSkel, FREEDRID-G, FAST, EDG ROS, 
LaPIe, GAMMA and the Prediction of QoS are the analytical models. Among the analytical 
PPSs, the PACE uses the job tasks’ source code and machine’s hardware configuration to 
simulate the predictions. Although exposing the source code is not a popular option in the 
competitive IT world, this model is capable of making multiple predictions with good accuracy. 
For example, to predict a grid job task’s runtime, memory, disk access cost and communication 
time with an error less than 8%, is a remarkable achievement [26]. The TPM has more in 
common with the prediction models that use source code and machine hardware configurations 
as inputs rather than history based predictors. This first category of models is not popular in the 
industry as exposing source code is a poor business practice. Therefore the TPM which uses 
FLPs instead of source code to reflect the behaviour of both CPU and disk loads could be a 
useful option. The other novel analytical approach is GAMMA that forecasts the level-3 
resource, the suitability of a parallel application to a cluster. The novel procedure of LaPIe also 
attracts the attention of the reader, because it focuses only on network BW metric. 

In the ML category, the automation of the collection of the training data is vital to the 
efficiency and effectiveness of the predictor because, for the industrial scale predictors where 
there are hundreds of tuples or data sets, it is not possible to collect them manually. The 
automation process includes extraction of data from the same prediction system or similar 
prediction systems and populates the real-time database with them by using awk or purl script 
or another software package. For parametric ML methods such as linear regression, the 
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training data is used to calculate the model parameters and thereafter stored training data may 
be deleted. Usually, the process of training takes a few minutes and critics who do not want 
ML predictors to be part of PPSs for the Grid, point out this fact often. The positive side is 
that ML models are comparatively faster than analytical ones. However, for non-parametric 
ML methods, such as K-NN, a collection of data sets is continuously used for the prediction. 

The prediction approach should be applied at the most suitable level of the resource tree 
(Figure 2). For example, for a cluster, job runtime and queue time can be predicted at level-3, 
by using Smith et al. [10, 67] or Li et al. [11] or PQR2 [54]. However we cannot apply the 
same strategy for a virtual organization or a Grid at the level-4 because they are a collection 
of heterogeneous resources (nodes). In a similar effort to predict the job runtime on a Grid, 
Sanjay and Vadhiyar [56] measure inputs at the level-0, therefore this method belongs to the 
level-0 as much as to the level-4. Therefore for a Grid we need to apply these methods at 
level-0 to separately predict job task’s runtime on each node. 

The only exception to this is that when HIPM [57] makes an effort to predict the job 
runtime on the Grid at the level-4. It measures the inputs at the level-4, for example its inputs 
are Activity type, Activity name, Arguments, Queue time, Execution time, Number of 
processors etc. The problem is that the Grid is dynamic and heterogenous collection of 
resources (nodes), therefore considering it as a single entity may be simplistic because unlike 
a cluster, the Grid is a very complex system. 

Prediction Models and Grid Scheduling  

In this section, the existing performance prediction solutions are investigated in terms of their 
application in grid scheduling. To this end, firstly the models and their usability for grid 
scheduling are studied. Secondly the availability of software is investigated. 

Applicability 

The requirements of the PPSs result from the heterogeneity and dynamic nature of the grids. 
The main requirements that must be taken into consideration during the analysis of models 
applicability are listed below. 
 

1. Prediction of important parameters. (such as runtime, queue waiting time job 
resource requirement, resource load, communication time, data transfer time.) 

2. Information about errors. 
3. Performance guarantees and /or small prediction errors. 
4. Performance prediction based on incomplete and/or imprecise information. 
5. Large scope of handled applications and resources. 
 
The parameters predicted by PPSs which are included in the survey are presented in the 

4th column, under predicted metrics of Table 2. The information, the number of PPS solutions 
that support the particular parameters is summarised in section 6. 

If a scheduler needs to use multiple parameters for scheduling, it would have to employ 
multiple performance prediction solutions to obtain required predicted parameters. In section 
6 under Prediction of Multiple Metrics, this solution has been discussed. Similar conclusions 
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have been made based on the analysis of different classes of applications and their input 
parameters handled by the considered solutions. 

There are prediction solutions which are more generic and provide predictions of great 
number of parameters for a wide class of applications. For an example, GPRES, eNANOS  
[5, 7]. However generic solutions that take general input parameters from available data 
archives can be relatively poor when compared with specialised performance prediction 
models which require more detailed description of application and resources. Those latter 
prediction models include DIMEMAS and Gamma [86-87].  

Availability of Software 

In addition to requirements concerning performance prediction models themselves, there are 
other practical issues such as that influence the usability of particular solution. They are 

 
1. Software availability 
2. Availability of easy to use and generic interface. 
3. Ability to integrate with common resource management and grid technologies. 

 
There are a few proficient software packages available such as NWS [30], the Intelligent 

Grid Scheduling System (ISS) which implements the Gamma model [87] and Grid-Prophet 
which implements ASKOLON [41]. But most of them are not sufficiently mature to satisfy 
the customer’s/ user’s specific needs. This is a major hurdle in taking advantage from 
available PPS. Therefore the above mentioned problems need to be discussed with the 
software creators because the licensing rights for versioning and maintaining of each PPS 
software belong to them. 

7. Conclusion 

In this chapter, taxonomy is proposed to characterize and categorize various aspects of PPSs 
that can support the preparation of efficient and effective application schedules for the Grid. 
The taxonomy covers four different perspectives: (a) the prediction approach, (b) the resource 
type, (c) the resource level and (d) the grid enabled job model. A survey is also conducted 
where the taxonomy is mapped in Tables 1 and 2 to selected PPSs that are designed for both 
clusters and grids. The prediction approach taxonomy is used to identify certain 
characteristics of machine learning and analytical models and their critical parameters are 
mapped in Table 1. The application model taxonomy separates various levels of a grid 
enabled application and it is mapped in the last column of Table 1. The resource type and 
resource level taxonomies have been used to identify the PPSs that are implemented at 
various levels of the same resource (Table 2). The survey is helpful to us to analyse the gap 
between what is already available in existing PPSs and what is still required so that we can 
identify the research requirements which can be implemented in future projects. 

When one compares the identified expectations in section 3 with the survey results of the 
PPSs, there are only few achievements of which one can be proud. Dinda, PACE, TPM, 
DIMEMAS, ASKALON, OpenSeries and StreamMiner, PPSkel, AWP, RLSS or FAST make 
the predictions of CPU resource at the level-0 and can be considered as the most reliable. 
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Prediction of a parallel job’s runtime and queue waiting time (level-3) on a cluster can be 
achieved by several predictors. It is not possible to use the same methodology on a Virtual 
Organization or a Grid (level-4) because of their heterogeneity. However, it is explained that 
the predictors which predict the job’s runtime on a cluster can be modified to predict a job 
task’s runtime on a node (level-0) and therefore, there are 18 predictors (level-0) to forecast 
CPU resource on a node of the Grid. Also it is evident from the survey and taxonomies that 
the prediction on a Grid, should preferably be done at the lowest level of the tree (Figure 2). 
Thereafter the prediction results of each node can be transferred from the lowest level to the 
highest level of the resource tree (Figure 2). 

The usage of regression based techniques for the prediction of data transfer times has 
become a fair trend. Yang et al. [52] is based on the NWS [30] predictor, making predictions 
over a certain time duration, making it more relevant than others [51] for the Grid. Steffenel 
[58] has taken a different approach for predicting the most suitable BW for a MPI parallel 
application on the Grid. His methodology namely LaPIe [58] helps to select the scheduling 
strategy to minimise the overall communication time on the Grid. 

Although a few new performance metrics are proposed by some PPSs, the same old 
metrics are used by many PPSs because their underlying algorithms are not changed to 
capture some of the vital characteristics of Grid applications. In contrast, in the TPM, the 
metric the Free Load Profile captures total behaviour of the job tasks. Yang et al. [46, 52], 
AWP, GAMMA and LaPIe can be identified as other initial contributors in this area. 

The other major problem is the lack of global standards for the Grid. Under such common 
standards, both application performance model and workload formats can be categorised. 
Currently, NASA grid bench marks have introduced some application types and this may be a 
good starting point [22]. 

The other important need is to have a single framework which addresses the prediction of 
several different parameters. Currently, there are few PPSs which have a limited capability of 
doing so (e.g., GPRES, eNANOS, and PACE). However, the major problem that would arise 
from such a massive integration is that the bigger the framework the more complex and 
slower it will be, because at this point of time such a single framework has to be developed by 
integrating several different PPSs. 

Also the prediction of required data storage for a certain application requires the 
assistance of PPSs. 

None of the PPSs has made an effort to perform the prediction when their required input 
information is incomplete. There are no reliable PPSs for the prediction of overheads of the 
Grid. Therefore, these three areas still remain wide open for the researchers who explore 
further and evaluate how influential their results would be for the completion of good grid 
schedules. 
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Table 1. Classification of Performance Prediction Approaches 

Performance 

prediction model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 

Analytical 

model STC IDT 

Selection of data 

(Man. / Auto.) 

Man. Auto. 

Downey [4]  Yes  Yes  

Jobs’ historical runtimes, queue times, cluster size 
and details of their processors are collected from 
the similar sites to plot the distribution of total 
allocation time of jobs in log space. 

Queue  Parallel jobs 
(space)  

Dinda [31] Yes   Yes  
(1) Historical host load data is automatically 
stored. (2) Free load runtime of the new job task 
needs to be recorded. 

CPU 
short j. tasks 
(100ms-10s) 
(time) 

NWS [30] Yes   Yes  
Historical values of CPU usage, Memory usage, 
TCP end-to-end bandwidth and latency, and 
connection time are stored automatically. 

CPU 
availability, 
BW 

parallel j tasks 
(time) 

Faerman [48]  Yes   Yes  

Historical information of data transfer. 
NWS measurements such as TCP end-to-end 
bandwidth and latency and the connection time are 
automatically stored. 

BW 
Appli. with data 
transfer infor. 
(time) 

Vazhkudai & 
Schopf  
[51] 

Yes   Yes  GridFTP logs, disk throughput observations and 
network throughput data are automatically stored. BW 

Appli. with data 
transfer infor. 
(time) 

Smith [67]  Yes  Yes  Sets of template attributes and their profiles of 
historical workload are automatically stored. 

CPU, 
Queue 

 Parallel job 
(space) 

DIMEMAS [6]     Yes Sets of computation bursts and calls to MPI 
primitives. Descript. of application architecture. CPU & BW  MPI parallel jobs 

(space) 
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Performance 

prediction model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 
Analytical 

model STC IDT 
Selection of data 

(Man. / Auto.) 
Man. Auto. 

Predict. of 
Variance [66] Yes   Yes  CPU load time series is automatically and online 

stored on each node. CPU  Parallel jobs 
(time) 

LaPIe [58]     Yes Communication latency, message gap according 
to message size and number of processors. BW   MPI parallel jobs 

(time) 

ASKALON[41]  Yes  Yes  

Job tasks’ historical information such as, job task 
names, runtimes, input parameter sizes, processor 
speeds are automatically stored from previous 
actual runs. If the historical information is not 
available then it is manually supplied from one of 
the identical machines. 

CPU, 
CPU (total) & 
Queue 

Parallel jobs 
(time) 

Li [11]  Yes  Yes  The profiles of historical workloads are 
automatically stored. 

CPU,  
Queue 

Parallel jobs 
(space) 

PDTT [52] Yes   Yes  
Network bandwidth time series is automatically 
and online recorded at constant width time 
intervals. 

BW Data intensive 
appli. (time) 

eNANOS [5]  Yes  Yes  

Statistical and data mining predictors need the 
same inputs: job name, user name, group name, 
no. of processors, job & script names 
automatically stored as load profiles.  

CPU, 
Memory, 
Queue 

MPI parallel jobs 
(space) 
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Table 1. Continued 

Performance 

prediction model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 

Analytical 

model STC IDT 

Selection of data 

(Man./ Auto.) 

Man. Auto. 

OpenSeries & 
StreamMiner 
[61] 

 Yes  Yes  

Historical values of workload such as CPU 
idleness, percentage of free virtual memory, 
machine availability (switched on or off) and user 
presence indicator (logged on or off). The attribute 
selection process which has 3 phases can be semi-
automated.  

CPU, 
Memory 
& CPU 
availability 

Parallel jobs 
(time) 

GPRES[7]  Yes  Yes  

Historic jobs are categorised according to static or 
dynamic template attributes. Then the mean of 
values estimated parameters are calculated for 
each category. Categories with specific set of 
values fed to knowledge database as rules & this 
can be automated. 

CPU, 
Queue 

Parallel jobs 
(space) 

MWGS [8] Yes   Yes  

User-name, submission time, job ID, number of 
nodes requested, user-predicted job runtime, actual 
job runtime are the input to generate two Markov 
chains for the runtimes & num of nodes. Data 
collection & generation process can be automated. 

Queue, 
No. of nodes, 
CPU (total) 

Parallel jobs 
(space) 

GAMMA [13]     Yes 
Computational and network traffic information of 
the application and the cluster and costing 
parameters 

Cluster Parallel job 
(space) 

PACE [26]     Yes Software code of the applications and machine and 
environmental details. 

CPU, 
Mem, 
BW, 
Queue 

 MPI parallel job 
(space/ time) 
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Performance 

prediction model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 

Analytical 

model STC IDT 

Selection of data 

(Manual/ 

Automated) 

Man. Auto. 

TPM [21]     Yes FLPs of the job tasks and machine environmental 
details. Disk IO maps of the job tasks. 

CPU, 
Disk  

Parallel job 
(space/ time) 

PPSkel [43]     Yes 
The records of execution activities of the CPU 
usage, Memory consumption and MPI message 
exchanges are taken from the same program. 

CPU, 
BW 
Mem., 

MPI parallel jobs 
(time) 

EDG ROS [49]     Yes Characteristic details of CPU, network and 
storage. 

Disk, 
BW 

Remote data 
processing appli. 
(time) 

Sanjay & 
Vadhiyar [56]  Yes  Yes  

Available CPUs & Available BWs are 
automatically measured for all processors and 
links at periodic intervals. The calculated 
coefficients are used in the total runtime equation. 

CPU &  
BW 

MPI parallel jobs 
(time) 

PQR2 [54]  Yes  Yes  

Application and system-specific attributes such as 
cluster name, CPU clock, amount of memory, 
location of data, CPU speed, memory speed, disk 
speed, number of threads. The data sets can be 
collected automatically.  

CPU,  
Mem, Disk 

MPI parallel jobs  
(space) 

QBETS [9] Yes     Historical data profiles of similar jobs. The data is 
collected online: collection can be automated. Queue Parallel jobs 

(space) 

 

 

Complimentary Contributor Copy



 

Table 1. Continued 

Performance 

prediction 

model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 

Analytical 

model STC IDT 

Selection of data 

(Manual/ 

Automated) 

Man. Auto. 

FREERIDE-G 
[44]     Yes 

No. of storage nodes, dataset size, network 
bandwidth, execution speed, disk speed, no. of 
computing nodes, & the corresponding values of 
the outputs. 

Disk, 
BW, 
CPU 

Remote data 
processing appli. 
(space) 

Minh & Wolters 
[12]  Yes  Yes  

Original inputs: user_name, group_name, 
queue_name, job_name, 
Intermediate parameters: historical database size 
(N), no of nearest neighbour jobs K, the factor α 
and β. 
Training parameters: user_name, group_name, 
queue_name, job_name, point_of _separate, N, K, 
α, β. 
The traces are collected automatically and training 
parameters are calculated automatically.  

CPU Parallel jobs 
(space) 

HIPM [57]  Yes  Yes  

Data/ Activities of the workflow application, such 
as type (e.g., metric multiplication), name, 
arguments, problem size, preparation time, user 
name, grid site, submission time, queue time, 
external load, processors, execution time can be 
automatically collected and the predictor can be 
trained fast using Bayesian network.  

CPU & BW Workflow job 
(time) 
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Performance 

prediction 

model 

Category of the predict model 

Input metrics/training data Res. type 

Class of job 

(time / 

space shared) 

Machine learning model 

Analytical 

model STC IDT 

Selection of data 

(Manual/ 

Automated) 
Man. Auto. 

RBSP [55]  Yes  Yes  

Job’s input variables, number of machines under 
consideration are inputs to the regression equation. 
The collection of the training data can be 
automated. 

Cluster MPI Parallel jobs 
(time) 

AWP [47] Yes   Yes  Historical workload points are collected online CPU Parallel 
jobs(time) 

FAST [45]     Yes Dynamically collected data such as CPU speed, 
workload, BW, available memory, batch system. 

CPU, 
Memory, BW 

Parallel jobs 
(space) 

GIPSY 
[76]  Yes  Yes  

(a) Initial Training sample selection can be 
automated. 
(b) Selection of the model may be automated 
subjected to the condition. The selected models 
can be run until the predicted runtime error 
converges, and then the most suitable model will 
be selected.. 

CPU 
Parameter sweep 
jobs 
(space) 

Prediction of the 
QoS 
[63] 

    Yes The current measurement of the balance of 
resources of all the nodes (CPU, Mem etc). CPU, memory Parallel jobs 

(space ) 

RLSS [83]  Yes  Yes  Training sample selection can be automated. CPU Parallel jobs 
(space ) 
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Table 2. The Classification of the Resource Types 

Prediction model Res. type Res. level Predicted metrics 
Centralized/ 

Decentralised 

Homogeneous/ 

Heterogeneous 

Dedicated/ 

Shared 

Downey [4] Queue L-3 Queue time Centralized Homo Dedicated 

Dinda [31] CPU L-0 
L-0 

Host load, 
Job task’s runtime  both both both 

NWS [30] CPU availability, 
BW 

L-1, 
L-1, 
L-1 

CPU availability, TCP end-to-end 
throughput, TCP end-to-end latency. Decentralised Hetero Shared 

Faerman [48]  BW  L-1 Data transfer rate. Decentralised Hetero Shared 
Vazhkudai [51] and 
Schopf BW  L-1 Data transfer rate. Decentralised Hetero Shared 

Smith [67] CPU & Queue L-3, 
L-3 Job’s runtime, Queue time Centralized Homo Dedicated 

DIMEMAS [6] CPU & BW L-3 Job’s runtime Centralized Homo Dedicated 

Prediction of 
Variance [66] CPU L-0 CPU load mean & variance over a time  Decentralised Hetero Shared 

LaPIe [58] BW L-4 MPI job’s communication makes span Decentralised Hetero Shared 

ASKALON [41]  
CPU, 
CPU (total) & 
Queue 

L-0 
L-3 
L-3 

Job task’s runtime, 
Job’s runtime, 
Queue time. 

Centralized Hetero Dedicated 

Li [11] CPU, 
 Queue 

L-3 
L-3 

Job’s runtime, 
Queue time. Centralized Homo Dedicated 

PDTT [52] BW L-1 Data transfer time between 2 nodes Decentralised Hetero Shared 

eNANOS[5]  
CPU, 
 Memory, 
 Queue 

L-3, 
L-3, 
L-3 

Job’s runtime, 
Memory, 
Queue time 

Centralized Homo Dedicated 

OpenSeries & 
StreamMiner 
[61] 

CPU,  
Memory,  
CPU availability 

L-0 
L-0 
L-1 

Idle % of CPU, 
Memory, 
Availability of PCs  

Decentralised Hetero Shared 
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Prediction 

model 
Res. type Res. level Predicted metrics 

Centralized/ 

decentralised 

Homogeneous/ 

Heterogeneous 

Dedicated/ 

Shared 

GPRES [7] CPU,  
Queue 

L-3 
L-3 

Job’s runtime, 
Queue time Centralized Homo Dedicated 

MWGS [8] 
Queue, 
No. of nodes, CPU 
(total) 

L-3 
L-3 
L-3 

The arrival time of job, 
No. of nodes,  
Job’s runtime 

Centralized Homo- Dedicated 

GAMMA 
Model [13] Cluster L-3 1. For each cluster Г (γa / γm)  

2. Total usage cost. Centralized Homo- Dedicated 

PACE [26]  

CPU, 
Memory, 
BW, 
Queue 

L-0, 
L-0, 
L-1, 
L-3 

Job task’s runtime,  
Memory, 
Communication. Time, 
Queue time. 

Decentralised Hetero Shared 

TPM [21]  CPU, 
Disk 

L-0 
L-0 

Load profiles of future Job tasks. 
Disk access time Decentralised Hetero Shared 

PPSke [43] CPU, BW, 
Memory, L-0, L-0, L-0 MPI Job task’s runtime (CPU, 

communication and memory). Decentralised Hetero Shared 

EDG ROS [49] Disk, 
BW 

L-1 
L-1 

Data retrieval time & communi. 
Time Decentralised Hetero Shared 

Sanjay & 
Vadhiyar [56] 

CPU & 
BW L-4 Job’s runtime Decentralised Hetero Shared 

PQR2 [54]  CPU, Memory, 
Disk  

L-3, L-3, 
L-3, 

Job’s runtime, Memory, 
Disk space Decentralised Hetero Shared 

QBETS [9]  Queue L-3 

Probability of past queue wait times 
reaching the confidence level (95%) 
of the predicted queue wait times 
and the RMS error of job tasks that 
delays less than the predicted value  

Centralized Homo Dedicated 
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Table 2. Continued 

Prediction 

model 
Res. type Res. level Predicted metrics 

Centralized/ 

decentralised 

Homogeneous/ 

Heterogeneous 

Dedicated/ 

Shared 

FREERIDE-G 
[44] 

Disk, 
BW, CPU 

L-0, 
L-1, L-0, 

Data retrieval time, commun. time, 
& data processing time. Decentralised Hetero Shared 

Minh & Wolters 
[12] CPU L-3 Job’s runtime  Centralized Homo Dedicated 

HIPM [57] CPU & BW L-4 Job’s runtime Decentralised Hetero Shared 
RBSP [55] Cluster  L-3 No of machines Centralized Homo Dedicated 
AWP [47] CPU L-0 Load profile Decentralised Hetero Shared 

FAST [45] CPU, 
Memory, BW 

L-0, 
L-0, L-1 

Processing runtime, Memory, 
Communication time Decentralised Hetero Shared 

GIPSY [76] CPU L-4 Job’s runtime Decentralised Hetero Shared 
Prediction. of 
QoS [63] CPU, Mem etc L-0, L-0 Future available balance of 

resources (CPU, Mem etc) Decentralised Hetero Shared 

RLSS [83] CPU L-0 Job’s runtime Decentralised Hetero Shared 
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Abstract

Many scheduling algorithms for workflow applications target a single application
at each time. The degree of parallelism of the application depends on the workflow
structure, and for a task parallelism approach, the degree of parallelism will determine
the degree of utilization of the resources reserved for the application. As today’s com-
puting nodes have several cores and considerable computing power, the single appli-
cation approach may lead to higher computational costs when considering the energy
spent. A plausible alternative is to share resources among applications, avoiding static
reservation of resources, so that the energy spent by a job is minimized. In this chapter,
we demonstrate the advantage of resource sharing and present a review of algorithms
that have been successfully proposed for concurrent workflow scheduling. Challenges
for grid resource managers, to accomplish an energy efficient resource sharing, are
devised. Moreover, a review of the economic models for resource management and
pricing, together with a case study, are also presented.

Keywords: scheduling, grid resource manager, utility model, budget, deadline, Quality of
Service

AMS Subject Classification:68M20

1. Introduction

Grid and HPC resource managers reserve in advance the resources specified by users for
their jobs, based on runtime estimations, and assign exclusively those resources to the user
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application for a given period of time. Users tend to overestimate the required resources
to guarantee that their jobs are not stopped before completing the required computations
[1]. Therefore, the reservation strategy leads to a waste of resources and to an increase
in the energetic running costs of the jobs. Energetic costs are currently a main concern
for resource providers as the running costs surpass the installation and acquisition costs of
a computer infrastructure. Therefore, energy efficiency in the context of computing has
recently become a hot topic for academia and industry. Systems ranging from portable
devices to large-scale distributed systems are all constrained to operate within a tight en-
ergy budget. To regulate the resource allocation procedure by users, the utility model [2],
whereby users are allowed to submit their jobs to different resources based on the compu-
tational cost and jobs deadline, is adequate for non-profit grids as well as for market grids.
The grid-computing model evolved from the non-profit model whereby users or institutions
contribute with resources to form a grid in which resources are geographically distributed,
and users from the participating institutions can access a wider range of resources than those
available locally. The utility model is useful to regulate the infrastructure usage and to keep
operational costs inside a given budget, whatever the profit model used. In this chapter, we
analyze the energetic cost for running workflow scientific applications and provide evidence
of the drawbacks of the conservative utility model that makes static reservation in advance
for user jobs.

The chapter is organized as follows: In section 2, the energetic costs of running jobs
using the static reservation model are discussed; section 3 reviews the literature on resource-
sharing algorithms and discusses the challenges of grid schedulers to include the resource-
sharing model; chapter 4 discusses and reviews economic models of resource management
and pricing together with a case study regarding the public grid; section 5 concludes the
chapter.

2. Limitation of Reservation Based Scheduling

Scientific jobs are commonly represented as workflow applications that consist of many
tasks, with logical or data dependencies, that can be dispatched to different compute nodes.
A typical workflow application can be represented by a Directed Acyclic Graph (DAG), a
directed graph with no cycles. In a DAG, an individual task and its dependency is repre-
sented by a node and its edges. A dependency ensures that a child node cannot be executed
before all its parent tasks finish successfully and transfer the required child input data. The
task computation time and communication time are modeled by assigning weight to nodes
and edges, respectively. A DAG can be modeled by a tupleG(V,E), whereV is the set
of v nodes and each nodevi ∈ V represents an application task, andE is the set of com-
munication edges between tasks. Each edgee(i, j) ∈ E represents the task-dependency
constraint such that taskvi should complete its execution before taskvj can be started. In
a given DAG, a task with no predecessors is called anentry task, and a task with no suc-
cessors is called anexit task. We assume that the DAG has exactly one entry taskventry
and one exit taskvexit. If a DAG has multiple entry or exit tasks, a dummy entry or exit
task with zero weight and zero communication edges is added to the graph. For a given
computing environment withp processors, given that the system may be heterogeneous, the
data transfer rates between the processors, i.e., bandwidth, are stored in a matrixB of size

Complimentary Contributor Copy



Resource Sharing for Scientific Workflows on Computational Grids 47

p × p. The communication startup costs of the processors, i.e., the latencies, are given in
a p-dimensional vectorL. The communication cost of theedge(i, j), which transfers data
from taskvi, executed on processorpm, to taskvj , executed on processorpn, is defined as
follows [13]:

ci,j = Lm +
datai,j
Bm,n

. (1)

wheredatai,j is the amount of data to communicate. When both tasksvi andvj are sched-
uled on the same processor, the communication cost is zero.

Tasks may have a different execution time on each processor type. It is common that
processors of different generations or of different types may be available, such as multicores
and GPUs. Then, computation costs on each processor are represented as a matrixW of
sizev × p, in whichwi,j represents the execution time to complete taskvi on processorpj .
The average execution time is commonly used to compute the priority ranking for the tasks,
and for taskvi, it is defined as follows:

wi =

p∑

j=1

wi,j

p
. (2)

Theschedule length of a DAG, also calledMakespan, denotes the finish time of the last
task in the scheduled DAG and is defined by:

makespan = max{AFT (nexit)} (3)

whereAFT (nexit) denotes theActual Finish Timeof the exit node. In the case in which
there is more than one exit node and no redundant node is added, themakespanis the
maximum actual finish time of all exit tasks.

Concerning scientific workflows, there is a set of representative applications [3] that are
used to evaluate the performance of scheduling algorithms and their implementations. Here,
we will consider two applications, namely,MontageandEpigenomics, to evaluate the level
of resource usage and energetic costs of the execution maps generated by state-of-the-art
scheduling algorithms.

The Montageworkflow [4] was created by NASA/IPAC, and it stitches together mul-
tiple input images to create custom mosaics of the sky [5]. Figure 1 displays theMontage
workflow.

Applications represented by a workflow present a level of parallelism that is commonly
not constant along all graph levels. This leads to an uneven CPU load along the execution
time period. To illustrate this behavior, we present in Figure 2 the CPU load obtained
for Montage workflows of 25, 50 and 100 nodes when using 20 processors. We can see
that for 25 nodes, only 8 processors are used, and for 50 nodes, there are 6 processors
with a utilization rate below 16%. For the Montage with 100 nodes, the usage rate is
evenly distributed but with a processor usage rate below 55% for all processors, except for
processor 13, which has a usage rate of 98.5%.

Considering the processors usage rate, the main question is to know how many pro-
cessors should be allocated to each user job that satisfies both user and provider. Attending
only to processing time, the user may attempt to select as many processors as possible. This
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Figure 1. The Montage workflow from [5]. Vertices represent tasks andeach color repre-
sents tasks of different types.
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Figure 2. Processor usage rate when executing Montage workflows of size25, 50 and 100
nodes on 20 homogeneous processors.

may lead to idle processors during the job execution, although these processors may be nec-
essary for other users. From the provider point of view, it may represent higher operational
costs and a lower rate of processed jobs.

Operational costs are mainly energetic costs. To estimate the energy consumed in each
job execution, we use the high-level energy model described in [6] that uses the CPU usage
rate as the only parameter. The authors indicated that the cubic model, represented in
equation 4, obtained a mean error estimation below 3% for an AMD Opteron based system.
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Figure 3. Relative processing time of Montage with 100 nodes when using 1, 5,10, 15 and
20 homogeneous processors and their relative increase of energetic cost.

Equation 4 represents the power consumed per CPU, whereRCPU is the CPU usage rate.

Ptotal = 168.3 + 3.529RCPU − 0.05098R2
CPU + 0.0002705R3

CPU (4)

The application of the cubic power model to the execution of the Montage workflow
with 100 nodes, when running on 1, 5, 10, 15 and 20 homogeneous processors, is displayed
in Figure 3.

From Figure 3, we can observe that the execution time decreases significantly when
going from 1 processor to 5 processors. This represents a reduction of 76.5% in the execu-
tion time, and for 10 processors, the reduction is 86.3%. After that point, the time reduces
marginally to 88.6% and 90.5% for 15 and 20 processors, respectively. Concerning energy,
we can observe that the most economic execution is using a single processor. All other con-
figurations increase the energetic cost. However, the time obtained for one processor may
not be acceptable for the user. The energy spent increases by 13.2%, 27.5%, 56.5% and
70.8% for 5, 10, 15 and 20 processors, respectively. From Figure 3, we can conclude that
there are two configurations that are a good compromise between users and providers, that
is, using 5 and 10 processors. Using more than 10 processors would reduce just marginally
the execution time while increasing substantially the energetic cost of running the job.

The analysis made so far is related to a particular workflow, but that behavior is com-
mon to many other workflow applications. The Epigenomics workflow, used for genome
sequence processing, is a very regular workflow as indicated in Figure 4.

Figure 5 displays the relative execution time for 1 to 20 processors in relation to the
execution time for 1 processor. Again, there is a significant reduction in processing time
from 1 to 5 processors and also only marginal improvements are achieved when using more
than 10 processors. In terms of energy, again the most energy efficient solution is obtained
for 1 processor. For the Epigenomics workflow, the energy spent increases at a lower rate
with the number of processors used, obtaining an increase of 49.2% for 20 processors in
comparison to 1 processor execution. The same interval of 5 to 10 processors is obtained
as the configurations with better compromise between execution time and cost.
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Figure 4. The Epigenomics workflow from [5]. Vertices represent tasks andeach color
represents different types of tasks.

The results obtained for the applications Montage and Epigenomics indicate that the
common reservation policy used by the general Grid schedulers, such as PBS [7], Maui [8]
and Moab [9], leave to the user the responsibility of selecting the number of processors for
their applications. Due mainly to the aim of reducing the job’s processing time, users are
pushed to reserve processors without measuring the trade-offs of execution time and cost.
Therefore, there is still space for improving actual state-of-the-art schedulers to regulate
user requests for resources, reduce running costs and, ultimately, reduce the costs imputed
to the users. Next, there are the revised approaches to sharing resources among user jobs
without requiring static allocation of resources.

3. Algorithms for Resource Sharing

Many of the scheduling algorithms address the single application case, such as [10, 11, 13],
considering that an application has a set of resources available for the execution, which are
commonly reserved in advance. Resource sharing means that more than one application
will use the same set of processors, that is, several applications will share the same set of
resources.

The common formulation considers time optimization constrained to resource avail-
ability. Additionally, a cost constraint may be added so that users can limit the cost of the
produced schedules. Considering time and cost, two Quality of Service (QoS) quantities,
we callQoS constrainedscheduling to the formulation, whereby one QoS quantity is opti-
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Figure 5. Relative processing time of Epigenomics with 100 nodes when using 1,5, 10, 15
and 20 homogeneous processors and their relative increase of energetic cost.

mized and the other is a constraint [14]. The other approach that optimizes time and cost,
calledQoS optimizationscheduling, is a bi-objective formulation in which the scheduling
maps produced are a suitable balance of the QoS quantities [15, 16, 17]. This formulation
can produce schedules with shorter makespans, but the cost cannot be limited by the user
when submitting the work. In this chapter, we address only theQoS constrainedscheduling
problem.

3.1. Time Optimization and Non-budget Constrained Scheduling

Time optimization scheduling corresponds to the problem formulation that defines the ob-
jective function as the minimization of the application finish time. In this section, we review
algorithms that do not consider execution costs as a problem constraint. These algorithms
are presented in two groups, offline and online scheduling, that correspond to two distinct
execution models.

3.1.1. Offline Algorithms for Resource Sharing

The following algorithms have in common the particularity of considering that all applica-
tions to be scheduled are available before the execution starts, that is, at compile time. After
a schedule is produced and the execution initiated, no other application is considered. This
methodology is applied by the most common resource management tools, whereby a user
requests a set of nodes to execute his/her jobs exclusively. This approach is named static
or offline scheduling [18]. One of the first algorithms was proposed by Iverson et al. [19],
in which the performance of the system when several applications compete for the same
resources is compared. They present a hierarchical matching and scheduling framework
whereby each application makes its own scheduling decisions. No centralized scheduling
resource is required so that applications do not need direct knowledge of the other appli-
cations. This knowledge is inferred indirectly through load estimates of processor queue
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lengths. The evaluation compares the average completion time of all submitted applica-
tionsand does not measure individual metrics.

To address individual performance, several algorithms were proposed with the main
concern of achieving fair resource sharing while minimizing the individual completion time
of each application. Zhao et al. [20] define Fairness based on the slowdown that each appli-
cation would experience (the slowdown is the ratio of the expected execution time for the
same application when scheduled together with other applications to that when scheduled
alone). Two algorithms were proposed, one fairness policy based on finish time and an
additional fairness policy based on current time. The procedure is to evaluate the slowdown
value of each application after scheduling a task and make a decision regarding which ap-
plication should be selected to schedule the next task, so that all applications experience the
same ratio of slowdown.

N’takpé et al. [21] proposed strategies based on the proportional sharing of resources.
The main feature of these strategies is to statically assign to each application a subset of
processors proportional to: a) critical path length; b) graph width; and c) work of each
application. A weighted proportional sharing was also proposed that represents a better
tradeoff between fair resource sharing and makespan reduction of the applications. The
strategies were applied to mixed parallel applications, whereby each task could be executed
on more than one processor. The results indicated that fairness resource sharing and shortest
makespans are not achieved at the same time. Thework basedproportional sharing resulted
in the shortest schedules, on average, but was also the least fair with regard to resource
usage.

Bittencourt et al. [22] proposed a path clustering heuristic that combines the clustering
scheduling technique to generate groups or clusters of tasks and the list scheduling tech-
nique to select tasks and processors. Based on this methodology, four algorithms were
proposed: a) sequential scheduling, whereby applications are scheduled one after another;
b) gap search algorithm, which is similar to the former but searches for spaces between
already-scheduled tasks; c) the interleave algorithm, whereby pieces of each application
are scheduled in turn; and d) group applications, whereby the applications are joined to
form a single graph and then scheduled. The evaluation was made in terms of schedule
length and fairness and concluded that interleaving the applications leads to lower average
makespan and higher fairness. The results presented lack analysis of the impact of the delay
on each application compared with exclusive execution, as only the average makespan is
reported.

Casanova et al. [23] extensively evaluated algorithms for concurrent parallel task graphs
on a single homogeneous cluster. Applications that have been submitted by different users
share a set of resources and are ready to start their execution at the same time. The goal is to
optimize user-perceived notions of performance and fairness. The authors proposed three
metrics to quantify the quality of a schedule related to performance and fairness among the
parallel applications.

Carbajal et al. [24] proposed two algorithms designated multiple workflow grid
scheduling, MWGS4 and MWGS2, with four and two stages, respectively. The four-stage
version comprises labeling, adaptive allocation, prioritization and parallel machine schedul-
ing. The two-stage version applies only adaptive allocation and parallel machine schedul-
ing. Both algorithms schedule a set of available and ready jobs from a batch of jobs. These
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strategies were demonstrated to outperform other strategies in terms of mean criticalpath
waiting time and critical path slowdown.

3.1.2. Online Algorithms for Resource Sharing

Online scheduling algorithms are applied to dynamic systems to which users can submit
jobs at any time. Here, we consider the case of time optimization and non-budget con-
strained.

Yu and Shi proposed a planner-guided strategy, named RankHybd, that dynamically
schedulesworkflow applications that are submitted by different users at different moments
in time. In each step, the algorithm reads the ready tasks from all applications and selects the
next task to schedule based on their rank. If the ready tasks belong to different applications,
the algorithm selects the task with the lowest rank; if the ready tasks belong to the same
application, the task with the highest rank is selected. Tasks are ranked using the metric
ranku [11], which represents the length of the longest path from taskvi to the exit node,
including the computational cost ofvi, and is expressed as follows:

ranku(vi) = wi + max
vj∈succ(vi)

{ci,j + ranku(vj)}, (5)

wheresucc(vi) is the set of immediate successors of taskvi, ci,j is the average communica-
tion cost ofedge(i, j), andwi is the average computation cost of taskvi. For the exit task,
ranku(vexit) = 0.

RankHybd allows the application with the lowest rank (lower makespan) to be sched-
uledfirst to reduce its waiting time in the system. However, this strategy does not achieve a
great deal of fairness among the applications because it always gives preference to shorter
jobs, postponing the longer ones. For instance, if a longer job is being executed and several
short jobs are submitted to the system, the scheduler postpones the execution of the longer
job to give priority to the shorter ones.

Hsu et al. [26] proposed the online workflow scheduling algorithm (OWM). OWM se-
lects a single ready task from each application, the task with the highest rank (ranku). Then,
until there are unfinished applications in the system, it selects the task with the highest pri-
ority from the ready list. Then, it calculates the earliest finish time (EFT) for the selected
task on each processor and selects the processor that will result in the smallest EFT. If
the selected processor is free at that time, the OWM algorithm assigns the selected task to
the selected processor; otherwise, the selected task stays in the ready list to be scheduled
later. From the results presented in [26], OWM outperforms RankHybd in dynamically
schedulingconcurrent applications.

Both RankHybd and OWM algorithms use a fairness strategy that selects and schedules
tasksfrom the longer applications first. OWM has a better strategy by filling the ready list
with one task from each workflow so that all of the workflows have equal chance to be
selected in the current scheduling round. In [18] it was demonstrated that OWM performs
worse than RankHybd for higher loaded systems, that is, when the number of applications
is higherthan the number of processors.

Arabnejad et al. [27] proposed the fairness dynamic workflow scheduling (FDWS)
algorithm for online scheduling. As with OWM, it first selects a single task from each
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concurrent application to form a pool of ready tasks. The same priority rank,ranku from
eq. 5, is used in this step. The second step, which selects from the ready pool one task to
be executed, is what makes the major difference to the algorithms RankHybd and OWM.
Thesealgorithms did not consider any relative measure among applications to increase
fairness in resource sharing. On the contrary, FDWS attributes a new rank to the tasks in
the ready pool, based on the execution status of each application to which the tasks belong.

To select tasks from the ready pool,rankr for taskvi belonging toAppj is computed,
as defined by eq. 6, and the task with highestrankr is selected:

rankr(vi,j) =
1

PRT (Appj)
×

1

|CP (Appj)|
. (6)

Therankr metric considers the percentage of remaining tasks (PRT) of the application
and its critical path length (|CP |). The PRT gives higher priority to applications that are
nearly completed and only have a few tasks to execute. The use of CP length gives higher
priority to application graphs with smaller|CP | values, independently of the width of the
application graph. The reason for considering CP length instead of the remaining processing
time needed to execute all remaining tasks of the application, as in [28], is that a wider graph
has a shorter|CP | than other graphs with the same number of tasks, although it also has
a lower expected finish time. In [18], it is reported that FDWS generated better solutions
more often, with lower distribution for the turnaround time, which is the elapsed time from
the submission to the completing execution time of each application.

Ferreira da Silva et al. [29] proposed a workflow fairness control for non-clairvoyant
distributed computing platforms. Non-clairvoyant means that the execution time of a task
on a given computing resource and resource characteristics are unknown. The fairness con-
trol is implemented by prioritizing tasks in workflows in which the unfairness degree is
greater than a threshold. The context of this work is slightly different from previous al-
gorithms, and it partially targets the same objective, which is to increase fairness among
workflows. The results present average performances from a set of workflows and do not
assess individually the workflow executions. Four different applications were evaluated on
production conditions, and a reduction in slowdown variability was obtained when com-
pared to the first-come-first-served approach.

3.2. Budget Constrained Scheduling

The algorithms described previously do not take into account the cost factor of executing an
application or an available budget to run an application that cannot be exceeded. Here, we
consider theQoS constrainedscheduling problem whereby time is optimized constrained
to a budget value.

Processors are rated with a cost per unit of time [30], and the cost of executing task
vi on processorpj is given byCost(ni, pj) = wi,j .P rice(pj), wherewi,j is the estimated
execution time andPrice(pj) is the processor price. After assigning a specific processor to
execute the taskvi, it is definedAC(vi) asAssigned Costof taskvi [14]. The total cost of
executing an application is defined asTotalCost =

∑
vi∈V

AC(vi).
In this context, theobjectiveof the scheduling problem is to determine an assignment

of tasks of a given application to processors such that theMakespanis minimized, subject
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to the budget limitation as expressed in equation 7:

∑

vi∈V

AC(vi) ≤ BUDGET (7)

TheBUDGET value must be defined, by the user, in a range that is feasible for the system
to run the job.

In theQoS constrainedscheduling, there is the single application scheduling problem
and the concurrent application scheduling problem. Both are revised next.

3.2.1. Single Application Scheduling

Several works have been proposed for scheduling a single application under the QoS
constrained scheduling model. The Hybrid Cloud Optimised Cost scheduling algorithm
(HCOC)[31] and a cost-based DAG scheduling algorithm called Deadline-MDP (Markov
Decision Process) [32] address the problem of minimizing cost while constrained by a
deadline.

An Ant Colony Optimization (ACO) algorithm to schedule large-scale workflows with
QoS parameters was proposed by [33]. Reliability, time, and cost are three different QoS
parameters that are considered in the algorithm. Users are allowed to define QoS constraints
to guarantee the quality of the schedule. In [34], a budget constraint workflow scheduling
approach was proposed that used genetic algorithms to optimize workflow execution time
while meeting the users budget. This solution was extended in [35] by introducing a genetic
algorithm approach for constraint-based, two-criteria scheduling (deadline and budget). In
[36], the Balanced Time Scheduling (BTS) algorithm was proposed, which estimates the
minimum resource capacity needed to execute a workflow by a given deadline. Although
the algorithm has some limitations, such as homogeneity in resource type and a fixed num-
ber of computing hosts, BTS achieves good performance with workflows having MPI-like
parallel tasks.

The algorithms LOSS and GAIN [37] construct a schedule that optimizes time con-
strained to a budget. Both algorithms use initial assignments made by other heuristic algo-
rithms to meet the time optimization objective; a reassignment strategy is then implemented
to reduce cost and meet the second objective, the budget. In the reassignment step, LOSS
attempts to reduce the cost, and GAIN attempts to achieve a lower makespan while attend-
ing to the budget limitations. Three versions of LOSS and GAIN were proposed. The LOSS
algorithms obtained better performance than the GAIN algorithms. All of the versions of
the LOSS and GAIN algorithms use a search-based strategy for reassignments; to obtain
their goals, the number of iterations needed tends to be high for lower budgets in LOSS
strategies and for higher budgets in GAIN strategies.

All the previous algorithms apply guided random search or local search techniques
that require considerable processing time to produce good solutions when compared to the
following algorithms that are heuristic based and that have a lower time complexity.

A budget-constrained scheduling heuristic calledgreedy time-cost distribution
(GreedyTimeCD) was proposed by [38]. The algorithm distributes the overall user-defined
budget to the tasks, based on the estimated task average execution costs. The actual costs
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of allocated tasks and their planned costs are also computed successively atruntime. This
is a different approach, which optimizes task scheduling individually. First, a maximum
allowed budget is specified for each task, and a processor is then selected that minimizes
time within the task budget.

The Budget-constrained Heterogeneous Earliest Finish Time(BHEFT) was proposed
in [39] for the context of execution for which the environment is characterized by multiple
and heterogeneous service providers; BHEFT defines a suitable plan by minimizing the
makespan so that the user’s budget and deadline constraints are met while accounting for the
load on each provider. An adequate solution is one that satisfies both constraints (i.e., budget
and deadline); if no plan can be defined, it is considered a mapping failure. Therefore, the
metric used by the authors was the planning success rate: the percentage of problems for
which a plan was found.

The Heterogeneous Budget Constrained Schedulingalgorithm (HBCS) was proposed
in [14], which minimizes execution time while constrained to a user-defined budget. The
algorithm starts by computing two schedules for the application: a schedule that corre-
sponds to the minimum execution time that the scheduler can offer (e.g., produced with
PEFT [13]) and the highest cost and an additional schedule that corresponds to the least
expensive schedule cost on the target machines. With the least expensive assignment, the
user knows the minimum cost and corresponding deadline to execute the job; with the high-
est cost assignment, the user knows the minimum deadline that can be expected for the job
and the maximum cost that should be spent to run the job. With this information, the user
is able to verify whether the platform can execute the job before the required deadline and
within the associated cost range. If these parameters satisfy the users expectations, he/she
specifies the required budget. From the results presented, it was demonstrated that HBCS
outperforms LOSS, GAIN, GreedyTimeCD and BHEFT by achieving lower makespans for
any given budget.

3.2.2. Concurrent Applications Scheduling

Concerning computational grids, which are dynamic systems, the online execution model
is the most relevant. For the problem of online scheduling of concurrent applications with
the formulation ofQoS constrainedscheduling, Hamid et al. proposed in [40] adaptations
to two state-of-the-art online scheduling algorithms, namely, RankHybd [25] and FDWS
[27]. These algorithms are named Budget RankHybd (B-RankHybd) and Budget FDWS
(B-FDWS).

Both algorithms first select tasks from all running applications to the ready pool and,
afterwards, select a single task from the ready pool to be schedule, as described above in
section 3.1.2. B-RankHybd usesranku to select the task to be schedule, and B-FDWS
selects a task from the ready pool using the priority rankrankB. Each taskvi in the ready
pool that belongs to applicationj is assigned the priority valuerankB defined by equation
8:

rankB(vi,j) =
1

TPj

×
1

BPj

(8)

Thetask with highestrankB is selected to be scheduled. TherankB value is the product
of two factors: a) the inverse of the fraction of the applicationj that is remaining in the
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system; and b) the inverse of Budget Proportion. This priority factor giveshigher priority
to the applications that have a lower percentage of tasks unscheduled and to applications
that have higher budgets when compared to the cheapest cost to run the application. The
rational for the first factor is to give higher priority to applications that were submitted
earlier, so that a longer application with several tasks already executed may have priority
over a short and recent application. In addition, the rationale of the budget factor is that
the scheduler will first consider tasks that spend more of the budget, and therefore, they
will select more expensive and faster processors, resulting in a lower finish time for the
application. The fraction of the applicationj that is remaining in the system is given by
equation 9:

TPj =
unscheduled number of tasks

Total number of tasks
(9)

andthe Budget Proportion (BPj), equation 10, expresses the ratio of the Remaining Cheap-
est Budget (RCBj) to the Remaining Budget (RBj):

BPj =
RCBj

RBj

(10)

RCBj is the budget required to execute the remaining task of applicationj using the cheap-
est processors, andRBj is the remaining budget available to complete the execution of
applicationj.

For processor selection, algorithm B-FDWS introduces a quality measureQ(vsel, pi) to
be assigned to each processorpi when running the selected taskvsel, so that the processor
with highestQ is selected. The quality measure allows, first, that more processors are
considered as affordable and, therefore, selected; second, the selected processor may not be
the one that guarantees the earliest finish time. The quality measure that combines time and
cost factors for the selected task allowed better performances.

To the best of our knowledge, B-RankHybd and B-FDWS are the first algorithms pro-
posedto dynamically schedule workflow applications in the context of minimizing individ-
ual finish time (turnaround time) constrained to a user defined application budget.

3.3. Challenges for Future Grid Resource Managers

The algorithms described above, B-RankHybd and B-FDWS, can accomplish individual
budgetconstraints for each application but still lack for ensuring an individual deadline that
may also be a quality measure for users.

In grid resource management today, users request a fixed amount of CPUs for a period
of time; those processors are allocated to the user even if the user application is not able
to use all processors; and this reservation policy leads to an overallocation of resources,
while many of those resources stay idle and consume energy. As demonstrated in section 2,
the CPU usage rate depends on the application graph. It is also demonstrated by Figures 3
and 5 that, for a given graph type and size, there is a range of configurations for which the
trade-off of execution time and cost are better balanced. For the case of the Montage and
Epigenomics applications, the configurations range from 5 to 10 processors.

The future challenges of grid schedulers, on the one hand, to regulate and motivate
adequate resource reservations by users and, on the other hand, to reduce the operational
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costs of the grid, in particular for non-profit models, are as follows: a) the introductionof
credit accounts that users should manage to run jobs in the grid, which, when consumed,
may be recharged with costs for the user or users group; b) Quality of Service concerning
processing time and cost must be ensured; users may request a minimum set of processors
according to the profile of the application they want to run, so that a hard deadline can be
guaranteed by the system and, users also may specify a maximum budget they want to spend
for that job; and c) the scheduler should guarantee the minimum number of processors to the
user job so that the Quality of Service is achieved but may assign more processors if there
are free processors and the user budget allows it, resulting in a reduction in the processing
time without exceeding the budget.

4. Economic Models for Resource Management

In a grid computing environment, a service is typically considered access to the system
resources, such as a CPU, disk or other resources. The entities that constitute the grid
ecosystem are usually independent, a fact that makes decisions regarding resource alloca-
tion a challenging problem. Resource management, which is an important aspect of the
grid middleware, is a complex undertaking due to different usage policies, cost models,
varying load and availability patterns. Traditional models and approaches give emphasis on
system-centric resource management, according to which a scheduling component decides
which jobs are to be executed at which resource. The corresponding cost functions are
driven by system-oriented metrics such as utilization and system throughput [41]. In future
grids, however, the technical focus shifts toward business, and requirements are based on a
user-centric service provisioning perspective. Consequently, resource management is sup-
posed to follow economic-based approaches, focusing on delivering maximum utility to the
individual user of the grid. Decisions should therefore be steered by the user valuation of
their results, and price dynamics must be taken under consideration as a key deciding factor
in resource use. The use of market-like techniques regulates the supply and demand for
resources, provides an incentive for providers, and motivates the users to make trade-offs
between deadlines, budgets and the required level of quality of service [42].
An economic basis for resource sharing can provide [43]:

1. Flexibility: Resources can be obtained by users when they need them;

2. Efficiency: Resource price reflects resource value;

3. Scalability: New budget entities and users can be added easily, preserving flexibility
and efficiency;

4. Feedback for budget and investment decisions: Prices for resource use and value of
resource uses over time can be used to guide management decisions in terms they are
familiar with, i.e., money and Net Present Value.

In general, grids need to use dynamic and competitive economic models, as different
resource providers and consumers have different objectives, strategies, and requirements,
which can change over time. A market-oriented model can be used in solving distributed
resource management problems, such as the cost-management problem. This is the problem
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that grid resource providers face in supporting seamless management of different requests
from different users simultaneously. In an economic-based grid computing environment,
resource management systems need to provide mechanisms and tools that allow resource
consumers (end users) and providers (resource owners) to express their requirements and
facilitate the realization of their goals [44, 45]. From the standpoint of the resource con-
sumers, there are the following needs:

1. A utility model, which describes consumer demand for resources and specifies con-
straints, such as deadlines and budget constraints, along with optimization parame-
ters, as, for example, optimization for time;

2. A broker agent, which supports resource discovery and strategies for application
scheduling on distributed resources dynamically at runtime, depending on their avail-
ability, capability and cost, along with user-defined QoS requirements. The broker
must also dynamically adapt to changes in resource availability at runtime to meet
user requirements.

From the resource provider standpoint, the needs include:

1. Tools and mechanisms that support price specification and generation schemes to
increase system utilization, and

2. Protocols that support service publication, trading, and accounting.

For the market to be competitive and healthy, coordination mechanisms are required to
help reach the equilibrium price - the market price at which the supply of a service equals
the quantity demanded, maximizing the social surplus. In general, the price should not
be arbitrarily set, but the pricing function must fulfill four essential requirements [46]. As
a first requirement, it should be flexible so that it can be easily configured to modify the
pricing of resources to determine the level of sharing. Second, the pricing function has to
be fair, in the sense that resources should be priced based on actual usage by the users. This
means that users who use more resources pay more than users who use fewer resources. The
third requirement indicates that the function should be dynamic. The price of each resource
is not static and changes depending on the operating condition. Finally, the pricing function
needs to be adaptive to changing supply and demand of resources and should compute the
relevant prices accordingly. For instance, if demand for a resource is high, the price of
the resource should be increased to discourage users from overloading this resource and to
maintain equilibrium of supply and demand of resources.

4.1. Pricing the Grid Ecosystem

In the grid environment, as in any other market, the goal is the maximization of both the
resource owner and user surplus. Following the principles of competitive market structures,
pricing policies should attract users and utilize the consumed resources efficiently, which in
turn need to be accounted for and charged. Pricing structures are built upon the following
approaches:

• Prepaid Pay and use;
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• Use and pay later;

• Pay as you go;

• Grants based.

In general and despite the fact that a fixed price model is a simple pricing scheme, it
cannot meet the demand for Quality of Service (QoS), which may vary among the users
or with the executed applications and time. Following this, a number of approaches were
studied, and corresponding pricing schemes were proposed [44] including, among others:

• Flat price models (the same cost for applications and no QoS like in todays Internet);

• Competitive economic models (e.g., auctions and contract-net);

• Usage timing (peak, off-peak, lunch time like pricing telephone services);

• Usage period and duration (short/long);

• Demand and supply;

• Foresight-based (based on model and predict responses by competitors);

• Loyalty of Customers;

• Historical data;

• Bulk Purchase, etc.

The service items charged and accounted for depend on the resource requirements of
the applications (CPU intensive, I/O intensive or a combination). In general, charging is
based on the following resources, either individually or in combination of two or more:

• CPU - User time and System time (consumed by and while serving user App, respec-
tively);

• Memory;

• Maximum resident set size - page size;

• Amount of memory used;

• Page faults;

• Storage used;

• Network bandwidth consumption;

• Signals received, context switches;

• Software and Libraries accessed (particularly required for the emerging ASP world).
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Table 1. Economic models in grid computing

Economic Model Characteristics
Commodity market Resourcesare priced appropriately, seeking to maintain the equi-

librium between supply and demand. There are two types of Com-
modity market model in general:

• flat pricing model (fixed);

• supply and demand based pricing model (variable).

The supply and demand model is more popular because it has the
capability to maintain equilibrium between resource supply and
demand by changing price behavior.

Posted Price Similar to the commodity market model. Their difference is that
it advertises special offers, seeking to attract (new) consumers to
establish market share or motivate users to consider using cheaper
slots.

Double Auction (DA) Providers are arranged in ascending order and users in descending
order, in terms of demand and budget, respectively. If a users re-
quest matches with a provider’s offer, the trade is performed. There
are two types of DA:

• Continuous Double Auction (CDA), according to which
users post their requirements and budgets, and service
providers post their offers at any time during the trading
period;

• Periodic DA, in which the auction continues for a specific
time period as defined by the auctioneer.

CDA is the usually employed approach in the grid literature.
English auction Usersare free to increase their bids overtaking others. The auction

ends when nobody offers an increase in price. The highest bidder
is then declared the winner. Bids can be proposed for a single item
(single attribute) or for multiple items (multi attributes).

Bargaining It is based on the assumption that users seek to obtain a lower ac-
cess price and higher usage duration, whereas providers like to ob-
tain more profit through bargaining. Users might start with a very
low price and providers with a higher price. Bargaining may con-
tinue over multiple attributes, such as price, deadline/job execution
time, etc.

Proportional share based auc-
tion

This is similar to the English auction, except, after the auction pro-
cess, resources are shared among the participants according to their
bids.

Proportional resource share Thepercentage of the resource share allocation to the user’s appli-
cation is proportional to the bid value in comparison to the other
users’ bids.

First price sealed bid auction A numberof users submit their bids only once to obtain a service,
without knowing other bids. The highest bidder wins the service at
the price that was bid.

Contract net protocol (CNP) Accordingto this model, a user is called a manager and a provider
is called a contractor. The manager declares his/her requirements
and invites bids from available contractors. Interested contractors
evaluate the demands and respond by submitting their bids. The
manager evaluates the bids and selects a contractor to proceed.
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Numerous economic models based on microeconomic and macroeconomic principles
have been proposed in the literature, and they can be applied over the grid environment
[47]. They belong to the following main categories:

• commodity market model;

• posted price model;

• bargaining model;

• tendering/contract-net model;

• auction model;

• bid-based proportional resource sharing model;

• community/coalition/bartering model;

• monopoly and oligopoly.

In a more recent survey [48], a number of market-oriented approaches are presented,
evaluating corresponding scenarios, such as the survey performed in which suitable eco-
nomic models for grid computing were investigated. The analysis covers the most popu-
lar models proposed since the inception of grid computing, provides discussion regarding
strengths and weaknesses and indicates that no substantial work exists considering multiple
economic models and switching between them for varying scenarios in a grid environment.
The developed economic models are different from one another, depending on the way
they are used for interaction among users and providers, for pricing and their ability to
adapt to the different requirements. Among the crucial criteria for evaluating their strengths
and weaknesses are computation, resource allocation and economic efficiency, handling of
large number of users, decentralization, price stability, etc. A summary of the most popular
models is presented in Table 1.

The commodity marketand thedouble actionare the most widely used models in the
grid. In the commodity market model, resource owners specify their service price and
charge users according to the amount of resources they consume. The pricing policy is
based on various parameter services and priced in such a way to maintain market equilib-
rium, which is crucial for any market-oriented grid environment. Maintaining supply and
demand by regulating price behavior ensures a higher probability of delivering the requested
QoS, as well as an increased system performance. According to this model, if demand for
a resource exceeds supply at a particular state, the price of that resource increases in a way
such that the demand function shifts to the point closer to the available supply, a new equi-
librium point. A number of approaches have been proposed for the determination of the
equilibrium price, and they are usually based on:

• Flat fee;

• Usage Duration (Time);

• Subscription;
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• Demand and Supply-based.

Theresource value is defined as a function of many parameters:
Resource Value = Function (Resource strength, Cost of physical resources, Service

overhead, Demand, Value perceived by the user, Preferences).
In the case of theposted pricemodel, which is quite similar to the commodity market,

brokers need not negotiate directly with service providers for price, but they rather use
posted prices as they are generally cheaper compared to regular prices [44]. Although the
posted-price offers may have usage conditions, they might be attractive for some users. For
example, during holiday periods, when demand for resources is likely to be limited, service
providers can post tempting offers or prices to attract users to increase resource utilization.

Theauctionmodel supports one-to-many negotiation between a service provider (seller)
and many consumers (buyers) and reduces negotiation to a single value (i.e., price). The
auctioneer sets the rules of auction that are acceptable for the consumers and the providers.
Auctions use market forces to negotiate a clearing price for the service, and they can be
conducted as open or closed. This depends on whether they allow back-and-forth offers
and counter offers.

The Double Auction (DA)model has a decentralized nature and the ability to handle
large number of users. It is the primary economic model for the trading of equities, com-
modities, and derivatives in stock markets. In the double auction model, buy orders (bids)
and sell orders (asks) may be submitted anytime during the trading period. If at any time
there are open bids and asks that match or are compatible in terms of price and requirements,
such as quantity of goods or shares, a trade is executed immediately. In grid computing,
users and providers are self-interested entities and appear with their individual optimiza-
tion strategies. Hence, DA supports them by sorting their valuations and thus expediting
the trading phase without any requirement of global information. The model has a high
potential for grid computing.

In theEnglish auctionmodel, the auctioneer seeks to obtain the true market value of the
source that has been set for auction. Users are free to increase their bids exceeding others
for the resource that they are competing for. When no bidder is willing to increase their
bids, the auction ends, and the auctioneer checks its reservation price with the last highest
bid and determines the winner. This model is suitable for increasing revenue because it
supports competition among users, selecting the user who bids the highest by using an
iterative bidding policy. It also helps to identify the demand of a particular resource in the
market. The main drawback of the model is that, due to its high communication demand,
it may produce network congestion. Because the English auction is by nature an iterative
model, too many messages are exchanged during the auction process.

An additional model that requires high communication demand is thebargainingmodel,
which may not be a suitable choice in the case of many users. In the context of this model,
users and providers can optimize their preferred interests by negotiating their preferences
and reach a satisfactory SLA. Resource brokers bargain with service providers for lower
access prices and higher usage duration. Both brokers and service providers have their
own objective functions, and they negotiate with each other as long as their objectives are
met. Negotiation stops as soon as they reach a mutually agreeable price or one side is not
willing to negotiate any further. The objective functions are built upon preferences such as
budget/job-execution-cost, deadline/job-execution-time, etc.
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4.2. Case Study: Resource Costs in a Public Computing Grid

Public-resourcecomputing, also known as Global Computing, Volunteer Computing or
Peer-to-peer computing (P2P), is a type of distributed computing in which computer owners
donate their computing resources (such as processing power and storage) to one or more
”projects” [49]. This computational model uses resources belonging to the general pub-
lic, such as personal computers and game consoles, to perform scientific supercomputing.
This paradigm enables previously infeasible research and encourages public awareness of
current scientific research [50]. P2P systems provide the opportunity to expand PC grid
computing to pool large amounts of distributed resources to enable Internet-scale applica-
tions using millions of compute engines [51]. Probably the most well-known collaborative
application on these peer-to-peer networks is file sharing. Apart from file sharing, the dis-
tributed resources in P2P systems can also enable large-scale computing projects, seeking to
aggregate the computing power in these networks to construct a large-scale parallel system.
A list of the most well-known P2P systems can be found in [52].

Public resource computing depends on the availability of computing resources con-
tributed by individuals. These resources can be increased by creating incentives to users,
such as providing payment for the offered resources. However, there are costs associated
with the provision of resources, and it is important that these costs are calculated to estimate
the level of the payment to be offered, with a profit for the provider. These costs include,
among others, opportunity costs, future value costs, penalties, utility costs, and fixed costs.
A detailed analysis and calculation of these costs for the public grid model can be found
in [51]. By defining a full accounting of the cost structure, the resource provider can de-
termine whether it is profitable to participate in a public resource computing market. The
main costs are as follows:

• fixed costs;

• utilization costs;

• time dependent costs;

• quality of service penalties.

Fixed costsare mainly identified as the capital costs to purchase the computing equip-
ment. The expected revenues from public resource computing are usually small, so
providers are unlikely to proceed with buying new infrastructure for the needs of the grid.
So, equipment is typically purchased for another purpose while supplying computing re-
sources to the grid. As a result, fixed costs can be usually ignored.

Utilization costsare variable costs associated with the actual use of the service. They
are derived by adding together:

• Power consumption(up). It can be expressed as follows:up = cp ∗ p ∗ T , wherecp
is the energy cost per joule,T is the time that the resource is being utilized, andp is
the wattage differential, i.e., the difference in power consumption between standby
and normal modes. The last factor is added because the service is available when the
computer is idle and likely in standby mode;
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• Network bandwidth(un). Bandwidth provision is usually charged on a fixed cost ba-
sis regardless of its utilization, as in a typical home broadband connection. Corporate
connections, on the other hand, may have a bandwidth cost. Therefore, network uti-
lization cost can be expressed as follows:un = (cbw ∗ b+ cn) ∗ T , wherecbw is the
bandwidth cost,b is the average bandwidth utilized by the client andcn the network
cost per unit time;

• Wear-and-tear(uw). They correspond to the cost caused by the failure of the infras-
tructure as a result of usage. Although a number of sophisticated methods exist to
determine this cost, a simple but reliable approach is to express it as a function of the
mean time to failure (MTTF) metric. In this case, theuw function can be expressed
as follows:uw = (cr/MTTF ) ∗ T , wherecr is the cost of the source.

• Resource utilization(ur). They are derived as a result of the dedication of a limited
resource, and they are inversely related to the availability of the resource. It is ex-
pressed as a function of the amortized fixed cost of the resource and the fraction of
resources that are being used by the public computing grid. Simple models are linear,
but more realistic models would make the cost inversely proportional or logarithmi-
cally related to the resource availability.

Time dependentcosts are related to the costs that are the result of time scheduling proce-
dures and the allocation of resources. In this context, there are a number of methodologies
to be presented in the corresponding literature, a simple one being the heuristic according
to which the more difficult a contract makes scheduling, the higher is the price.

Finally, quality of servicecosts are related to the availability and the reliability of the
resources and the penalties to be accounted due to the lack of fulfilling the agreements.
Penalties are set to give incentives to providers to become more reliable. Apart from the
availability of the system, penalties may be set according to the availability of bandwidth,
of CPU time, of memory, or any other resource.

Conclusion

This chapter discusses the resource usage rate and associated costs when processing sci-
entific applications on the grid and also presents a user-centric approach and an economic
basis for resource management and scheduling, together with the most widely used pric-
ing methodologies in the grid ecosystem. The calculation of the resource costs in a public
computing grid was considered as an example.

CPU usage rate depends on the application graph characteristics, such as the degree of
parallelism, leading to resources that are partially idle and still consuming energy. Resource
sharing among applications is a feasible solution to improve the systems usage rate and
reduce costs. A review of the algorithm for resource sharing is presented here and is divided
into two categories: a) time optimization and non-budget constrained scheduling and b)
budget constrained scheduling. The former optimizes processing time without limiting the
cost, and the latter optimizes time but is limited by a user defined budget.

Challenges to future grid resource managers are proposed, which consist mainly in ap-
plying Quality of Service scheduling, ensuring user deadlines and budgets by introducing
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flexibility to the resource manager, so that the amount of processors assignedto each job
may change dynamically, and by introducing an economic model. The economic approach
provides several additional advantages over conventional ones, including incentives for re-
source owners and resource users to obtain profit, and promotes the grid as a platform for
mainstream computing.

Among the benefits of the grid economy is that it helps regulate the supply and demand
for resources, offers uniform treatment of all resources, allows building a highly scalable
system, as the decision-making process is distributed across all users and resource owners,
and supports a simple and effective basis for offering differentiated services for different
applications at different times.
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ON THE CHALLENGES IN THE DESIGN

OF EFFICIENT JOB SCHEDULING POLICIES

FOR PRODUCTION HPC AND GRID ENVIRONMENTS
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Abstract

Resource management and job scheduling in large and heterogeneous systems like

HPC clusters and Grids is still a very challenging task. During the past two decades

many new approaches and scheduling algorithms have been proposed, yet only few are

widely used in practice. Particularly, significant portion of the research has concen-

trated on heavily sanitized models of systems used in production. While this allows

for a straightforward analysis of the proposed models and approaches, it severely lim-

its the applicability of such solutions. In this chapter we describe the main problems

a researcher should consider when developing or modifying a scheduling algorithm.

Production systems generally represent a complex multi-criteria optimization problem

combined with a set of operational constraints. We highlight several common prob-

lems that appear when simple or incomplete system models are used. Furthermore,

even if accurate models are used, they do not guarantee that the proposed solutions

will be truly useful, unless an appropriate evaluation is performed. For this purpose,

we present several rules that must be followed in order to obtain realistic evaluation

and/or simulation results. Throughout the chapter we provide several practical ex-

amples, in which we describe and demonstrate how an existing or newly developed

solution should be analyzed, modeled and evaluated. We demonstrate, that the final

solution is often achieved by using a set of various interacting scheduling policies,

algorithms and carefully selected optimization criteria.
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1. Introduction

Current HPC and Grid [16] systems are often distributed and decentralized computer en-

vironments composed of a large number of heterogeneous resources which are managed

by different owners like companies, universities or another business or scientific organiza-

tions. Such resources may be of different type such as computational machines, data storage

nodes, databases, scientific tools, etc; interconnected by (high speed) communication net-

work. These systems tend to have high dynamicity in time, mainly due to the changing load

of the system, available network bandwidth and also due to other dynamic events such as

resource or network failures and recoveries [16, 27].

The main goal of a resource manager and underlying middleware is to manage this

large and heterogeneous environment while allowing easy access to its resources for var-

ious users. It allows them to submit their jobs into the system, guaranteeing nontrivial

Quality of Service (QoS), meanwhile hiding the complexity of the system itself by provid-

ing powerful but simple interfaces [16]. Moreover, not only users but also resource owners

should be satisfied, i.e., the system should be safe and efficient, thus allowing proper uti-

lization of its resources. Clearly, if both users’ and resource owners’ goals are to be met,

multi-objective criteria have to be used. To meet these goals automated and sophisticated

scheduling techniques should be applied.

1.1. Complexity of Job Scheduling

Unfortunately, job scheduling in such a highly dynamic, distributed, heterogeneous and de-

centralized environment is an extremely difficult task if good performance, nontrivial QoS,

scalability, etc., are required. There are several reasons why efficient job scheduling is so

demanding. First of all, it is well known that finding optimal schedules in large systems is,

in general, NP -hard [44, 62]. For example, the Grid scheduling problem is a generalized

reformulation of the Multiprocessor Scheduling [SS8]1 problem which has been shown to

be NP -hard [18]. In fact, since HPC and Grid environments are highly dynamic, it is often

impossible to even define the optimality of scheduling [60], as it is defined in combina-

torial optimization. In these systems, the scheduler runs as long as the system exists and

thus the performance is measured not only for particular applications but also in the long

run [60]. Moreover, it is easy to show that even significantly simplified subproblems are

intractable [28]. To illustrate this fact, let us consider one machine with several CPUs which

corresponds to several identical machines in parallel, denoted as P . A simplified subprob-

lem involves one machine, sequential jobs, and the makespan as a single objective2. Let us

assume that the problem is to be solved at the given time, thus the release dates of jobs can

be omitted as well. Using the Graham’s α|β|γ classification scheme of scheduling prob-

lems [21] — where α describes the machine environment, β provides (optional) details of

the processing characteristics and the constraints, and γ specifies the optimality criterion —

this problem is formulated as P ||Cmax. Even this heavily simplified problem is known to

be NP -hard [53], i.e., intractable for larger instances.

In contrast to that, the real issues faced when operating HPC or Grid systems are far

1The code in square brackets is a reference to the classification used in Garey and Johnson [18].
2The makespan is the completion time of the last job, often denoted as Cmax.
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more complex, as we will describe closely in Sections 3-5. As a result, all mainstream

schedulers applied in practice are using suboptimal scheduling techniques, typically a com-

bination of several simple heuristics.

1.2. The Impact of Research on Existing Systems

For many years, researchers have been searching for a perfect job scheduling algorithm

that would improve the performance of HPC and Grid-like systems. Still, there are few

algorithms that are being used in practice [47] as can be seen in many production sched-

ulers applied in nowadays general resource management systems. For example, the core

of the system is generally based on the trivial first come first served (FCFS) approach and

backfilling is typically the most advanced option available [1, 2, 41, 47]. Since backfilling

was proposed in 1995 [37], it is obvious that there is some misunderstanding between the

research community and system administrators concerning “what is really important”.

The main reason is that classical research papers usually considered too simplified, thus

unrealistic models. Therefore, their results are hardly achievable in production systems.

Using our experience from the Czech National Grid Infrastructure MetaCentrum [38] we

explain several additional challenges that appear when searching for a functional solution.

For example, real life systems have to focus on maintaining fairness among users of the sys-

tem [26, 59], rather than just trying to optimize simple criteria like the average slowdown or

the makespan. In practice, it quickly turns out that those widely used “theoretical” models

and optimization goals are mostly impractical in real life [17, 47].

1.3. Chapter Overview

In this chapter, we describe several important features that must be considered when devel-

oping a functional and realistic scheduling approach. First of all, we discuss the hierarchy

of Grid and HPC scheduling and provide a detailed insight into a real, complex job schedul-

ing system. In detail, we explain several important features that current resource managers

offer to a system administrator in order to establish robust, efficient and fair computing in-

frastructure. Based on this description, we show the main parameters of a realistic system

model, that are necessary in order to guarantee reasonably realistic outputs of this model,

e.g., by means of simulation or analysis. Next section discusses the process of choosing

proper optimization criteria. Finally, we show how results of the analysis or a simulation

should be interpreted and presented in order to obtain realistic and useful outputs.

2. Hierarchy of Scheduling

By definition, HPC and especially Grid systems are distributed, decentralized, heteroge-

neous and highly dynamic computer environments consisting of various resources which

are interconnected by a computer network [16], although some of these attributes are not

always present in all systems. It is worth noticing, that job scheduling may also be dis-

tributed both physically and logically. For example, we may distinguish between cen-

tralized and decentralized scheduling. By centralized scheduling we usually understand

scheduling approach based on a single Local Resource Management System (LRMS) such
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as PBS Pro [41], TORQUE [3] or Sun Grid Engine [19]. In this case, a set of computers or

clusters (HPC system) or the whole Grid is managed by a single scheduler which has full

control of all jobs and resources (see the Centralized layer in the bottom of Figure 1).
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Figure 1. Hierarchy of Grid scheduling systems.

Decentralized scheduling usually applies some hierarchical model as depicted by Fig-

ure 13. Here the scheduling process is broken down into a set of separate decisions on

different levels, although some cooperation for effective solution is often required. Decen-

tralized scheduling is often managed by one or more so called Metaschedulers or Brokers

like GridWay [22] or Unicore [45]. These brokers often manage different underlying cen-

tralized LRMSs [54]. Moreover, several brokers may communicate together, establishing

a global Grid consisting of several local Grids or resources [54]. In this case, one or more

so called P2P Brokers can be applied to interconnect different Grids, allowing truly global

Grid infrastructure. In such an environment it is often possible to submit jobs at different

levels — local users prefer their local LRMS while brokers are used by the users from the

outside [54].

Still, the problem of efficient scheduling cannot be handled satisfactory unless LRMSs

are properly setup. Therefore, we will further discuss those centralized scheduling systems

only, assuming that their schedulers have full control of all jobs and resources.

3. Main Components of a Resource Management System

The common mistake of many research papers is that they only focus on the scheduling pol-

icy, i.e., on the mechanism how jobs are selected for execution. However, typical resource

management systems are far more complicated, containing several other components with

3Figure 1 is based on the scheme proposed in [54].
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various functionalities and features that may easily represent a bottleneck that causes inef-

ficient behavior of the whole system. Therefore, this section closely describes major parts

of a typical resource management system, discussing their goals, interactions and possible

problems that may appear if these parts are not configured properly.
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Figure 2. Main components of a common (local) resource management system.

A typical scheme of a resource management system is shown in Figure 2. The system

consists of one or more queues, where waiting jobs are stored until they are chosen by a

scheduling policy for execution. The system as a whole is often configured so that jobs are

ordered within a queue(s) using a special queue ordering policy. Different queue configu-

ration may be applied for queues, reflecting the needs of the system provider. Once a job is

selected for execution, target machine(s) is chosen by a resource selection policy.

3.1. Queue Ordering Policy

Queue ordering policy determines the order of jobs in which they are then processed by

a scheduling policy. Resource management systems usually provide a set of static order-

ing policies (ordering between two jobs does not change once established) as well as dy-

namic policies. Jobs can be either kept in the order of their arrival (static First Come First

Served ordering), or can be ordered dynamically according to their length (Shortest Job

First, Longest Job First), according to their resource requirements (Largest CPU/Memory

Requirements First) or their (user configured) priority. Combinations of ordering policies

are also possible [1, 24].

3.1.1. Fairshare

Fairshare is a dynamic priority ordering policy designed to provide user-to-user fairness.

Job ordering is usually based on users previous resource consumption [24, 30]. Typically,

the more resources are consumed by a particular user, the lower his/hers priority becomes.

More precisely, if user A and a user B have identical priorities, they will receive the same

amount of resources, when averaged over a reasonably long time period [24]. This is of
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course only true when both user A and user B actually request these resources. Fairshare

self-balances itself around an equilibrium where all users have consumed the same amount

of resources. Practical implementations of fairshare also reflect aging [24] by periodically

decreasing all recorded consumption using the so called decay factor [1]. This is suitable

for systems with faster job turnaround times (submission to completion) that puts a higher

emphasis on more recent resource consumption.

3.1.2. Queue Selection Policy

Not only jobs, but also queues may be ordered. If multiple queues are present in the system,

a separate policy is used to define the order in which queues will be selected by a scheduling

policy. Typically, queues are selected in a fixed (priority-based) sequential order, or using

a Round-robin-like algorithm [41]. Once the ordering is established, the scheduling policy

either attempts to run one job from each queue or all jobs from the currently selected queue

are checked before the next queue is processed. Also the combination of these approaches

can be used [41]. Queues are typically selected according to their priorities which are set

up by a system administrator.

3.2. Scheduling Policy

Resource management systems are rather conservative in their choices of scheduling poli-

cies and mostly rely on well established and robust approaches [47]. Due to the complex

nature of the job scheduling problem, all mainstream resource managers are using some

kind of heuristic-based policies, i.e., techniques to obtain high quality solutions in reason-

able time. A heuristic does not guarantee that an optimal solution will be found, good

solutions in (relatively) short time are preferred instead. However, in some situations we

cannot reach a good solution or even decide how far or close the generated solution is from

the optimal solution [43]. In practice, only few scheduling policies are used in mainstream

systems. These range from trivial First Come First Served (FCFS), aggressive backfilling

(no reservations), to EASY [37] or Conservative backfilling [24], each with its own short-

comings.

3.2.1. First Come First Served

All systems support a basic First Come First Served (FCFS) scheduling policy [1, 41, 48].

FCFS always schedules the first job in a queue, checking the availability of resources re-

quired by such a job. If all the resources required by the first job in a queue are available, it

is immediately scheduled for execution, otherwise FCFS waits until all required resources

become available. While the first job is waiting for execution none of those remaining jobs

can be scheduled, even if required resources are available. The pseudo code of FCFS is

shown in Algorithm 1.

Despite its simplicity, the FCFS approach presents several advantages. It does not re-

quire estimates of jobs processing times and it guarantees that the response time of the first

job does not depend on the processing times of the remaining jobs. On the other hand, if par-

allel jobs are scheduled then this fairness-related property often implies a low utilization of
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Algorithm 1 First Come First Served

1: stopping condition := false;

2: while stopping condition = false and queue is not empty do

3: j := first job in queue;

4: if j in queue can be executed then

5: remove j from queue and execute it;

6: else

7: stopping condition := true;

8: end if

9: end while

system resources, that cannot be used by some “less demanding” job(s) from a queue [51].

Approaches applied to solve this problem are described in the following Section 3.2.2.

3.2.2. Algorithms Using Backfilling

Algorithms using backfilling are an optimization of the FCFS algorithm that tries to max-

imize resource utilization [37]. Backfilling generally requires that each job specifies its

estimated execution time, so that the scheduler can predict when jobs will be finished.

We start with EASY (Extensible Argonne Scheduler sYstem) backfilling [48] algorithm

that is shown in Algorithm 2. It works as FCFS but when the first job in the queue cannot

be scheduled because the specified amount of resources is not yet available (line 9), it

calculates its earliest possible starting time using the processing time estimates of running

jobs. Then, a resource reservation is made, starting at the pre-computed job start time

(line 11). Next, it scans the queue of waiting jobs and schedules immediately every job

not interfering with the reservation of the first job [37] (lines 4-8). Clearly, instead of

strictly following the job order as mandated by the ordering policy it only guarantees the

earliest possible start for the first job. The notions of “first job” and the order of jobs are

mandated by the ordering policy as was described in Section 3.1. Backfilling increases

resource utilization, since idle resources are backfilled with suitable jobs, while decreasing

the average job wait time. The algorithm finishes when the whole queue has been tested

(line 16).

EASY backfilling takes an aggressive approach that allows short jobs to skip ahead

provided they do not delay the job at the head of the queue. The price for improved utiliza-

tion of EASY backfilling is that execution guarantees cannot be made because it is hard to

predict the size of delays of jobs in the queue. Since only the first job gets a reservation,

the delays of other queued jobs may be, in general, unbounded [39]4. EASY backfilling is

supported by all major production systems including Moab [2], Maui [24], PBS Pro [41],

LSF [42] or Condor [52].

While EASY backfilling makes a reservation for the first job only, Conservative back-

filling [11, 36, 49] makes the reservation for every queued job which cannot be executed at a

4If a job is not the first in the queue, new jobs that arrive later may skip it in the queue. While such jobs do

not delay the first job in the queue, they may delay all other jobs. Therefore, the system cannot predict when a

queued job will eventually run [39].
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Algorithm 2 EASY backfilling

1: stopping condition := false; reservation := null; job index := 1;

2: while stopping condition = false and queue is not empty do

3: j := job at position job index in the queue;

4: if job j can be executed not colliding with reservation then

5: remove j from queue and execute it;

6: if job index = 1 then

7: reservation = null;

8: end if

9: else

10: if job index = 1 and reservation = null then

11: reservation := make reservation for j;

12: end if

13: job index := job index + 1;

14: end if

15: if job index > size of queue then

16: stopping condition := true; (the whole queue has been tested)

17: end if

18: end while

given moment as shown in Algorithm 3. It means that backfilling is performed only when it

does not delay any previous job in the queue. Here the scheduling decisions are made upon

job submittal, thus we can predict when each job will run, giving users execution guaran-

tees. Users can then plan ahead based on these guaranteed response times. Obviously, there

is no danger of starvation as a reservation is made for every job that cannot be executed

immediately. This places greater emphasis on predictability [11, 39].

Algorithm 3 shows the pseudo-code of Conservative backfilling. Unlike EASY back-

filling, it makes a reservation for every job that cannot start at a given moment (see line 10),

by calculating its earliest possible starting time using the processing time estimates of run-

ning jobs. The duration of a reservation period is based on a job’s estimated processing

time. These reservations are stored in a set (reservations). No job being scheduled for

execution can collide with some reservation from this set (see line 4). When some job

having a reservation is finally scheduled for execution its reservation is removed from the

reservations set (line 7). The algorithm terminates when all jobs in the queue were either

scheduled for execution or reservations for them were established (line 15).

3.2.3. Job Starvation

Job starvation is an undesirable condition where a particular job (or a user) is subject to ex-

cessive wait time due to the configuration of policies. The notion of excessive is of course

subject to interpretation. For example, fairshare ordering priority will deliberately cause

starvation of users with recent high resource consumption, which is however considered de-

sirable. FCFS and Conservative backfilling algorithms provide anti-starvation mechanisms,

guaranteeing that jobs are not excessively delayed. More aggressive forms of backfilling
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Algorithm 3 Conservative backfilling

1: reservations := ∅; stopping condition := false; job index := 1;

2: while stopping condition = false and queue is not empty do

3: j := job at position job index in the queue;

4: if job j can be executed not colliding with existing reservations then

5: remove j from queue and execute it;

6: if ∃reservationj ∈ reservations for job j then

7: reservations := reservations \ reservationj;

8: end if

9: else

10: reservationj := make reservation for j;

11: reservations := reservations
⋃

reservationj

12: job index := job index + 1;

13: end if

14: if job index > size of queue then

15: stopping condition := true;

16: end if

17: end while

like EASY or aggressive backfilling need to be combined with other mechanisms to prevent

starvation, as they can delay the execution of certain jobs without any bounds [39].

3.3. Resource Selection Policy

When a job is chosen by the scheduling policy, it means that all resources it requires are

available. If there are multiple choices (i.e., nodes or clusters) to execute that job a pro-

cess called resource selection policy is used to select the “best resource” from the list of

all currently suitable resources. Again, this process involves some heuristic that makes this

decision. First Fit (FF), Best Fit (BF), Min Load First (MLF) or Fastest Resource First

(FRF) are some of many policies which are used for this purpose in the production sys-

tems [2]. First Fit schedules jobs onto the first suitable resource, while Best Fit chooses

the node that has the fewest available resources but still enough to successfully execute the

job while respecting all job constraints. This helps to keep large nodes free for large jobs

and lowers resource fragmentation. Min Load First does the exact opposite, i.e., the clus-

ter with the highest number of idle CPUs is chosen [7, 2]. Fastest Resource First selects

the fastest available resource. Again, a combination of policies is possible, and the final

decision usually depends on the internal decisions of the responsible organization.

3.4. Queue Configuration

Previously presented policies provided by resource management systems are relatively sim-

ple. As such, a single policy cannot cover the usually complex requirements used in produc-

tion systems. To deal with more complex requirements, resource management systems pro-

vide the concept of independently configurable queues. Then, it is the interaction between
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queue-specific policies and the global system policies that dictates the overall behavior of

the system.

Queues can handle different policies, that are mostly represented by a set of various

limits [1, 2, 41] that apply to jobs executed from that queue. These limits usually cover per-

user, per-group and per-queue limitations concerning the maximum number of running jobs

and/or amount of particular resource type (e.g., CPU cores). Also, the maximum execution

time of jobs can be limited by imposing a global queue limit. Another possibility is to limit

the queues to have access only to a subset of available resources, e.g., limiting a queue to

a particular cluster of machines. Such policy establishes pools of resources, where several

queues can compete for a limited set of resources, thus preventing a (potentially dangerous)

saturation of the entire system.

While such configuration can increase resource fragmentation [24], it is necessary when

dealing with different classes of users accessing the system. We need to be very careful

when saturating the system with jobs from a single user, or even when saturating the system

with a single class of jobs. For example, it would be very dangerous to saturate the system

with long running jobs (i.e., jobs with expected runtime of several weeks). Such a situation

would naturally lead to great deterioration in performance characteristics of the system

(e.g., huge wait times for shorter jobs), as it would take several weeks before any other job

would be executed.

3.5. Summary

Efficient setup of a local resource management system is very important. For example,

queues and their limits are used to guide the access of users and their jobs to existing

computational resources while fairshare is responsible for fair job ordering. The problem is

how to find an efficient setup of a local resource manager.

As it turns out, there is no generally acceptable solution that would suit all systems.

Still, there are some known best practices that one can build upon when searching for a

good solution. For example, MetaCentrum uses several queues with different limits to

balance the amount of resources available to different classes of jobs. The basic rule is

that the number of available CPU cores is inversely proportional to the maximum execution

time of jobs [32], limiting the problems related to long jobs while keeping low wait times

for shorter jobs. Also, several modifications covering anti-starvation policy, fairshare and

queue ordering have been made recently, significantly improving the overall performance

of MetaCentrum [32]. An interesting fact is that the improvement was solely based on

modifications that were not related to the actual scheduling policy.

Another example comes from the Zeus cluster in PL-Grid. Here all long jobs as well

as jobs that require whole node(s) are planned ahead using reservations which enables a

forward detection of potential problems [15].

In the Ohio Supercomputer Center several combined approaches are used together. For

example, long serial jobs are only allowed if a user is able to reasonably explain why he

or she needs to run such a long experiment [40]. Moreover, parallel jobs have in general

smaller maximal runtime limits compared to sequential jobs. Also, per-user and per-group

limits are used together with fairshare accounting [40].

A different, rather strict approach is used in the DAS-4 system in Netherlands. The
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default run time for jobs on DAS-4 is 15 minutes, which is also the maximum for jobs on

DAS-4 during working hours. Only during the night and on the weekend, when DAS-4 is

regularly idle, it is allowed to run longer jobs. In all other cases, a user will first have to

negotiate advanced permission from the system administrators to make sure that he or she

will not cause too much trouble for other users [57].

Obviously, there are several ways how to achieve good performance. Although we

have shown some of them in the previous text and some further details can be found in,

e.g., [32], a detailed study concerning suitable combinations of global policies and queue

configurations is probably still missing.

4. Realistic Simulations Using Adequate System Model

When a researcher or a system administrator is trying to optimize an existing solution or

develop a new one, the crucial starting point is to use a realistic system model. The model

of the system shall follow all important parameters that are typical for the target system

(see Section 3). Without doing so, the outcome of simulations will have limited or even

no relevance, since they will probably provide misleading results [33, 47]. While Section 3

demonstrated the purpose and interactions of various parts of real resource management

systems, this section discusses how such systems should be modeled in simulation. Espe-

cially, we mention some of those typical shortcomings that should be avoided in order to

obtain a reasonable system model. These include resources, jobs, system dynamics and

additional system-specific features like queue configuration or specific job requirements.

4.1. Detailed Resource and Job Models

Many problems are related to simplified resource and job models. Therefore, we now de-

scribe some of the most common problems related to these two areas, including real-life

and experimental examples.

4.1.1. Resources

Concerning system resources, researchers usually use a simple model, where the system is

composed of one or more computer clusters and each cluster is composed of several ma-

chines. Often, all machines within one cluster have the same parameters, e.g., the number

of CPUs and the machine’s CPU speed.

Together, a typical model of resources describes the number o clusters, machines and

related number of CPUs and their speeds. However, there are several additional parameters

that are very important and should be used in simulations, e.g., the number and type of

GPUs, the size of machine’s RAM, a local hard disk’s capacity, parameters of network

interconnections, etc. For starters, we would strongly suggest to consider at least RAM, as

it is equally important as CPUs. It should be a rather easy task as many existing workload

logs provide us with such data [12].
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4.1.2. Jobs

Job represents a user’s application. Commonly, a job is modeled by its length (execution

time), arrival time, and by the number of requested CPUs. A job may require one (sequen-

tial) or more CPUs (parallel). Such a specification is very common, however it is far from

reality.

For example, an actual runtime is typically unknown to a scheduler until a job com-

pletes. Instead of that, only an estimated runtime is usually known in advance. In a real

system, a runtime estimate or a queue time limit is the maximum time limit that a job can

execute. In case that the actual job runtime is longer than the estimate, the job is killed

since it exceeds its available runtime. This is essential to ensure that reservations are re-

spected [55]. Therefore, users usually overestimate the job runtime to avoid premature

termination of their jobs [39], making them very inaccurate [39, 55]. Therefore, if avail-

able, such an estimate should be always used by the scheduling algorithm instead of an

actual execution time.

Furthermore, actual resource managers like Maui, Moab, PBS Pro, etc., are using more

complicated job specifications. A job is specified by its per-node requests, instead of spec-

ifying aggregated resources. For example, instead of saying that a job requires 8 CPUs

and 32 GB of RAM, a job requests two nodes each having 4 CPUs and 16 GB of RAM.

Moreover, different per-node specifications are also allowed [1, 41]. Again, if available,

these complex specifications should be used in simulations as they further increase their

reliability.

Also, researchers often ignore other job requirements such as RAM or GPUs. How-

ever, these should be considered too. To illustrate the importance of considering RAM, we

provide the following real-life example which is based on a real workload coming from

the Zewura cluster, a part of MetaCentrum [38]. Zewura consists of 20 nodes, each having

80 CPUs and 512 GB of RAM. Figure 3 (left) shows the heterogeneity of CPU and RAM

requirements of jobs that were executed on this cluster. Clearly, there are many jobs that

use a lot of RAM while using only a fraction of CPUs. Similarly, Figure 3 (right) shows

an example of CPUs and RAM usage on a selected node within the Zewura cluster. For

nearly two weeks in July 2012, jobs were using at most 10% of CPUs while consuming all

available RAM memory. Then, the remaining 90% of CPUs could not be used by other jobs

due to the lack of available RAM. This example illustrates the importance of using complex

job and cluster specification. If we would ignore the RAM and its usage in our experiments,

we would obtain totally different results, i.e., very optimistic and completely wrong.

4.1.3. Queue Configuration and Specific Job Requirements

So far we have defined typical parameters that are used to describe jobs and machines. Here

the given job can be executed on any cluster that offers sufficient amount of CPUs (and

RAM). However, this is a very basic constraint which is rarely sufficient in real life, where,

e.g., a queue configuration as described in Section 3.4 is further applied. In heterogeneous

environments, users often specify some subset of machines or clusters that can process their

jobs. This subset is usually defined either by a resource owners’ policy (a user is allowed

to use such cluster), or by a user who requests some properties (library, software license,

execution time limit, etc.) offered by some clusters or machines only. Also, the combination
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Figure 3. Heterogeneity of jobs CPU and RAM requirements (left) and an example of CPU

and RAM utilization on one Zewura node (right).

of both owners’ and users’ restrictions is possible [27].

First of all, each cluster may have additional parameters that closely specify its proper-

ties. These parameters typically describe the architecture of the underlying machines (e.g.

Opteron or Xeon), the available software licenses (e.g. Matlab or Gaussian), the operat-

ing system (e.g. Debian or SUSE), the list of queues allowed to use this cluster and their

various limits, the network interface parameters (e.g. 10Gb/s or Infiniband), the available

file systems (e.g. nfs or afs) or the cluster owner. Clearly, different clusters may support

different properties.

Users may closely specify which cluster(s) is (are) suitable for their jobs by specifying

required machine architecture, requested software licenses, operating system, network type,

file system, etc. In other words, by setting these requirements, users can prevent a job from

running on some of the cluster(s). In real life, there are several reasons to do so. Some users

have strong security demands and do not allow their jobs (and data) to use “suspicious”

clusters which are not managed by their own organization. Other users may need special

software which is not available everywhere. Some clusters are dedicated for short jobs only

and a user wanting more time is not allowed to use such cluster, and so on.

All these requests and constraints are often combined together and have to be included

into the decision making process to satisfy all specific job requirements. If no suitable clus-

ter is found, the job has to be canceled. Clearly, the specific job requirements cannot be used

when the corresponding cluster parameters are not known. Without them, consideration of

“job-to-machine” suitability is irrelevant. Therefore, it is very important to use complex

workload traces that provide such data, e.g. from the Parallel Workloads Archive [12].

4.2. System Dynamics

It is important to notice that modeled systems are dynamic, which means that the state of

the system is not static but changes dynamically in time. Hence, also the studied problem

is dynamic since it changes over the time. We will closely discuss two major influences

that affect the state of the system. Those are machine failures and restarts as well as user

activity. As it turns out, both may have high impact on the performance of the system [27].
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4.2.1. Machine Failures and Restarts

Actual systems consist of many machines that — naturally — are not immune against occa-

sional failures or necessary maintenance and upgrade periods. Also, the size of the system

is not fixed throughout the time as the number of connected machines may change. It is a

common feature that machines are added or removed from the system as the time passes.

Machine failure means that either one or more machines within a cluster are not available

to execute jobs for some time period. Such failure may be caused by various reasons such

as a power failure, a disk failure, a software upgrade, etc.

4.2.2. Influence of Users

In the same unpredictable fashion as failures influence the number of available machines,

activities of users have impact on the number of jobs currently present in the system. An

arrival time is determined by a user in most cases and can be influenced by both external

and internal influences. An external influence is, e.g., current time. In geographically

small systems, user activity is usually higher during the day causing higher load of the

system compared with the off-peak night hours [10]. While such an influence is covered

by existing workloads, additional system and scheduler-related (internal) influences are not

usually covered by these workloads. For instance, if several scheduling algorithms are

tested, then in the real world the submission pattern of a user may change if he or she

knows that more resources are available at a particular moment [47]. Therefore, it is often

useful to model users submission patterns separately, using original historic workload only

as an input which is further (dynamically) modified.

4.3. Summary

To conclude this Section, let us now demonstrate how complex models including system

dynamics, i.e., specific job requirements and machine failures, influence results of simula-

tions. For this purpose we have used a complex MetaCentrum workload [27], that allows us

to simulate both machine failures and specific job requirements. Figure 4 shows how sim-

ulation results concerning average job wait time evolve when more complex system mod-

els are applied. Clearly, the simple model does not show any dramatic difference among

considered scheduling algorithms. However, as soon as more complex models involving

either failures or specific job requirements or both (complex model) are applied, the differ-

ences among algorithms start to show up very clearly. Especially the tragic performance of

plain FCFS algorithm is largely visible. This example demonstrates that — if available —

complex simulation models should be used as they are more likely to show “interesting

behavior”.

5. Optimization Criteria and Corresponding Metrics

So far, we have described what the common features and constraints of resource managers

and schedulers are and why it is important to incorporate them into the model. However,

there is one very important aspect left — how to measure the quality of generated solu-

tions? Most importantly, this question relates both to simulations as well to real, production
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Figure 4. Example of various simulation results according to the complexity of applied

simulation model.

systems. A common way is to use a set of optimization criteria, expressed in a form of ob-

jective functions (metrics) that are to be either minimized (e.g., the wait time) or maximized

(e.g., the system utilization).

In the following text we present several common optimization criteria and discuss their

suitability for realistic evaluation. As we demonstrate, the process of choosing proper met-

ric and its interpretation is in fact a very challenging task. We start with criteria that are

often applied to measure the performance of the system. Next, job related as well as user

related criteria are presented.

5.1. System Aware Metrics

Probably the most popular system aware metric is the machine usage/utilization [14, 50,

60]. It expresses to what extent is the resource capacity utilized over the time and as such

is a very common criterion used by resource owners who generally desire to maximize

the utilization of their system. Since Grid and HPC systems often contain heterogeneous

machines, these systems commonly employ a weighted machine usage criterion to represent

the performance of machines [28], or another — even subjective — factor that reflects the

relative importance of a particular machine [8]. For example, when a choice is to be made

between two machines, it is better to highly utilize the fast machine rather than the slow

machine since the fast machine computes more operations in the given time than the slow

one. It is important to notice that such a scenario is not covered by the classic machine usage

criterion where only the proportion of used and available CPUs is measured disregarding

their relative performance.

There are several other system aware metrics that try to incorporate the overall effi-

ciency of the system by focusing on its energy demands or its environmental impact. For

example, Power Usage Effectiveness (PUE) is the metric used to determine the energy effi-

ciency of a system. PUE is determined by dividing the amount of electric power entering a

system by the power used to run the computer infrastructure within it [6].

Finally, the makespan (Cmax) which denotes the completion time of the last executed

job in the system is widely used in the literature [61, 60]. Although it is a job aware metric,
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some authors use it to measure the general productivity of the system. As pointed out by

Xhafa and Abraham in [60], small values of makespan mean that the whole workload is

processed in short time, i.e., the scheduler is providing good and efficient planning of jobs

to resources.

5.1.1. Problems with System Aware Metrics

Sadly, both makespan and machine usage are somehow problematic. As defined, makespan

is suitable only for “off-line”, static problems where all jobs are already known. If the

system is running for months or even years, it makes little sense to optimize the makespan,

since it cannot be even properly computed. The problem is that we do not know when

the last job will arrive or complete. Of course, one can consider the otherwise dynamic

problem as a static one, measuring “partial makespan” at each given time, considering only

currently present jobs. Still, the usefulness of makespan is quite limited as it optimizes only

the upper bound of the jobs completion times. Therefore, additional objectives should be

applied [60].

Similar problems relate to machine usage. Typically, machine usage is measured in an

aggregated fashion, expressing the average utilization of resources in a long time period.

However, such an approach causes that the resulting values are very similar for all consid-

ered algorithms. This is not a surprising fact [17, 34] because common workloads used for

algorithm evaluation usually represent several months of execution. At the same time, the

average processing time of a job is much lower. In such case, the resulting makespan —

which is used to calculate the maximal possible usage — is not controllable by the sched-

uler since it can never be smaller than the arrival time of the last job plus its processing

time. Then, the utilization is rather a function of users activity than of scheduler’s perfor-

mance [17]. Moreover, as the infrastructure is becoming more and more heterogeneous,

CPUs may not be the most restricting resource [20]. GPUs, RAM, etc., are also very im-

portant, therefore it is questionable whether CPU utilization is still a relevant measure.

To conclude, when the overall system performance is to be measured, it is important to

choose a proper metric which is of course a highly individual— site-specific — problem.

For example, the problems related to the “pure” machine usage criterion can be solved by

considering (A) machine weights, (B) other users demands including, e.g., the RAM con-

sumption and (C) adjusting the computation with respect to actual users demands. In case

of (B), the good candidate is the so called Processor Equivalent (PE) metric [24], which

allows to combine CPU and, e.g., RAM consumptions, translating job’s multi-resource con-

sumption requests into a scalar value. PE is based on the application of a max function that

determines the most constraining resource for each job and translates it into the equivalent

processor count. In case of (C), the problem related to users activity can be minimized

by considering modified utilization metric proposed in [51]. Unlike the original machine

utilization metric which uses the total number of CPUs in the system when computing the

usage, the modified metric divide the amount of used CPUs by a value which is the min-

imum of the total number of CPUs in the system and number of CPUs requested by jobs

present in the system at that time. Therefore, the modified metric is tolerant to situations

when there are no or only a few jobs in the system.
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5.2. Job Aware Metrics

Typical and widely used metrics are those that consider overall job performance. Among

them, the most popular are the average response time, the average wait time or the average

slowdown.

The average response time measures the mean time from job submission to its termina-

tion. The average wait time is the mean time that jobs spend waiting before their execution

starts. The slowdown is the ratio of an actual response time of a job to a response time if

executed without any waiting. While the response time only focuses on a time when a job

terminates, the slowdown measures the responsiveness of the system with respect to a job

length, i.e., jobs are completed within the time proportional to jobs demands [13]. The wait

time supplies the slowdown and the response time. Short wait time prevents the users from

feeling that the scheduler has “ignored” their jobs.

Although widely used, these job-related metrics are based on several assumptions that

no longer hold in heterogeneous, multi-user, HPC and Grid-like environments, as we ex-

plain in the following text.

5.2.1. Problems with Job Priority

One of the main assumptions of standard job-related metrics is that a shorter job should

receive higher priority in the system (see, e.g., the slowdown or the response time). Shorter

jobs are easier to schedule and users with more complex (longer) requests are therefore to

expect longer wait times.

This assumption is problematic on several levels. Firstly, as long as we are measuring

the total job penalty or the average value (e.g., total/average slowdown/response time) this

“shortest job first” priority advantage will remain absolute. This can very easily lead to

huge starvation of (few) long jobs. Production systems usually employ a certain type of

anti-starvation technique (see Section 3.2.3). Since this approach goes directly against the

order suggested by the job-related metric, it naturally leads to skewed results [58]. HPC and

Grid systems are indeed dynamic systems and the number of jobs submitted by a single user

is, to a certain degree, proportional to the number of jobs successfully processed. Given the

total job length dispersion (from several minutes to a month) [9, 39], users with extremely

long jobs would hardly ever get their requests fulfilled.

Secondly, the correlation between the absolute job length and the job urgency is little

to none. Again, due to the large dispersion of job lengths, the notion of a “short job” has

very different meaning to different users. The increased benevolence towards wait times

for long jobs is simply due to the increased absolute users runtime estimation error (10%

imprecision on a month long job equates to 3 days) [58].

5.2.2. Problems with Resource Requirements

Similar issues occur when dealing with different job resource requirements. If one can

split a large CPU demanding job into a set of smaller jobs, these will obtain a higher pri-

ority. This problem was previously addressed by normalizing the selected metric using the

number of CPU cores a job is requesting [10, 25], as a weight.
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Resource1 Job1 Job2

Resource2 Job3 Job4

Job5

Job6

(a) Wait time optimized schedule

Resource1 Job1 Job2 Job3 Job4

Resource2 Job5 Job6

(b) Fair resource allocation

Resource1 Job1 Job2 Job3 Job4

Resource2 Job5 Job6 Job7 Job8

Resource3

Resource4 Job1

Job10 Job11 Job12 Job13

(c) Fair resource allocation

Figure 5. Examples of optimal schedules.

Unfortunately, nearly no metric is designed to reflect combined consumption of mul-

tiple resources [31] such as CPUs, RAM, GPUs, HDD, etc. When multiple resources are

concerned, further measures need to be employed, like dominant resource [20] or processor

equivalent [24] to properly reflect other than CPU-related job requirements.

5.2.3. Why Users Matter

We now demonstrate that job aware metrics are often impractical in real systems. Let us

consider an example of a schedule optimized according to the average wait time (see Fig-

ure 5a). In this schedule we have two users (light-grey and dark-grey) and the optimization

criterion favors the jobs of the dark-grey user due to their shorter length5. The total penalty

for this schedule according to the average wait time would be 0+0+1+1+2+2

6
= 1. Unfor-

tunately, the light-grey user will clearly not consider this schedule optimal. He or she is

requesting the same amount of resources as the dark-grey user, but has to wait until all jobs

of the dark-grey user are processed.

Let us consider a different schedule, this time using fair resource allocation among

the dark-grey and the light-grey user (see Figure 5b). In this case both users receive one

resource exclusively for their jobs and both users receive the complete results of their jobs at

the same time. The total penalty for this schedule according to the average wait time would

be 0+1+2+3+0+2

6
= 4

3
, which is more than in the previous example. Indeed, we would get

similar results for both the response time and the slowdown.

An analogous unfair allocation occurs when we simulate a different situation where,

instead of job runtimes, overall resource requirements are considered (see Figure 5c). Again

the presented fair resource allocation among the dark-grey and the light-grey user is not

considered optimal according to standard job aware metrics.

5.3. User Aware Metrics

User aware metrics aim at maximizing “benefits” regarding the users of the system. Very

often, the metric applied for such a goal is related to fairness. In production environments,

some type of fairness guaranteeing process/metric is usually provided (see Section 3.1.1).

5
Resource1 and Resource2 represent resources, e.g., CPU cores.
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These measures are highly dependent on the system itself and range from simple measures

that try to maintain the order in which the requests entered the system [46] to much more

complicated measures concerned with the combined consumption of various resources [20].

5.3.1. Job-to-job Fairness

Fairness is often understood and represented as a job-related metric, meaning that every

job should be treated in a fair fashion with respect to other jobs [46, 35, 49]. For example,

a fair start time (FST) metric [46, 35] measures the influence of later arriving jobs on the

execution start time of the current waiting jobs. FST is calculated for each job, by creat-

ing a schedule assuming no later jobs arrive. The resulting “unfairness” is the difference

between FST and the actual start time. Similar metric is so called fair slowdown [49].

The fair slowdown is computed using FST and can be used to quantify the fairness of a

scheduler by looking at the percentage of jobs that have a higher slowdown than is their fair

slowdown [49]. Sadly, these job-to-job metrics do not guarantee fair behavior with respect

to different users.

5.3.2. User-to-user Fairness

Instead of job-to-job fairness, the resource management systems frequently prefer to guar-

antee fair performance to different users. One of the commonly employed techniques is

fairshare, which we have closely described in Section 3.1.1. Fairshare-based fairness is

supported in many production resource management systems such as in Moab, Maui [1],

TORQUE [3], Quincy [23], PBS Pro [41] or in Hadoop Fair and Capacity Schedulers [5, 4].

While the methods applied in production fairshare algorithms are well documented [24],

there is — surprisingly— no common agreement on how to actually measure, i.e., evaluate,

analyze or even compare, the level of (un)fairness for such user-to-user approaches. Authors

that need to employ such methods usually rely on measuring the variability (using, e.g., the

standard deviation) of user-agnostic metrics [56, 29] such as slowdown or wait time.

For example, the so called normalized user wait time can be used [29], where a nor-

malized user wait time is the total user wait time divided (normalized) by the total utilized

CPU time of that user (a sum of products of the job runtime and the number of requested

processors). Such a normalization is used in order to prioritize less active users over those

who utilize the system resources very frequently [26], while considering their wait times as

well. Next, the normalized user wait time is measured for each user of the system and, e.g.,

the arithmetic mean and the standard deviation are computed. In this case, the interpretation

is as follows. The closer the resulting values of all users are to each other (lower deviation),

the higher the fairness. Moreover, the lower the average value is, the more time users spent

computing instead of waiting, which is advantageous.

5.4. Summary

To conclude this section, we would like to stress that scheduling in HPC or Grid environ-

ments is typically a multi-objective optimization problem. Therefore, several criteria are to

be followed simultaneously. For a researcher, it is very desirable if he or she can find out

those critical criteria that are meaningful for the actual system that is analyzed or modeled.
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It is not an easy task, as very often even the owners or the users of those systems do not have

a clear idea of what they want. However, the closer a researcher’s model follows the actual

needs of system users and administrators, the higher is the chance that his or her research

will be useful.

6. Interpretation of Experimental Results

This section discusses how the results of experiments should be interpreted in order to

provide realistic, detailed and non skewed outcomes. As we explained in the previous text,

it is quite challenging to properly analyze or simulate a complex resource management

system. There are several problems to be addressed, including the appropriate level of

detail a simulation or an analysis should capture. Also, it is crucial and nontrivial to choose

a proper set of optimization criteria. Once these problems are solved and the analysis or a

simulation is completed, a researcher has to interpret the results. Sadly, even this process

can be quite tricky, and — if underestimated by a researcher — can make the whole outcome

worthless. Therefore, we now present some basic rules that should be followed in order to

avoid this situation.

6.1. Problems with Simple Statistical Measures

The most common problem when presenting the results of an experiment is the use of either

too simple or inappropriate statistical measures [17]. Typically, researchers collect a per-job

or per-user data and then compute, e.g., the arithmetic mean, which is then presented in their

paper. Sadly, such results shall not be taken seriously unless closer analysis is performed.

The problem with average values is that the distribution of the original data typically has a

very long tail [17, 33]. Then, the resulting value is likely to be heavily influenced by those

(few) extremes. Many further details and other examples covering these issues can be found

in the following literature [17, 33, 47].

From this point of view, it is fair to look at the original data in greater detail. For

example, it is fair to show a cumulative distribution function (CDF) of recorded values for

each tested setup or scheduling algorithm. In order to demonstrate how misleading those

simple statistical measures can be, let us demonstrate an example where the average job

wait time is of interest6. We consider a scenario when a system administrator wants to

select a scheduling algorithm for an existing system. For this purpose, he or she takes a

historic workload7 and uses it as an input for the simulator. Four different algorithms are

tested, EASY and Conservative backfilling and their “fair” variants where jobs in a queue

are dynamically reordered according to fairshare-based priorities. At first, the results of the

experiment are presented using simple average job wait time as shown in Figure 6 (left).

Second, the results are plotted as CDFs. Here, CDF is an f(x)-like function showing a

fraction of jobs (y-axis) that have their job wait times less than or equal to x. The steeper

the resulting curve, the sooner it reaches the maximum (y = 1.0) and the better is the

performance of a given algorithm. As the resulting distributions have very long tails, the

x-axis is not linear. The resulting CDFs are shown in Figure 6 (right).

6Of course, other measures, e.g., those presented in Section 5.2 can be used for this purpose.
7In this case the CTC SP2 workload log from the Parallel Workloads Archive [12].
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Figure 6. The benefits of using CDFs (right) instead of average values (left).

As we now show, the analysis based on average values (see Figure 6 (left)) is naive

and leads to misleading conclusions. For example, it appears that there is a little difference

between EASY backfilling without fairshare-based priorities and Conservative backfilling

with fairshare-based priorities as their average wait times are very close (see the first and the

last column in Figure 6 (left)). However, when we take a look at the corresponding CDFs

in Figure 6 (right) we quickly realize, that for most of the jobs, EASY backfilling without

fairshare-based priorities performs much worse, compared to Conservative backfilling with

fairshare-based priorities. On the other hand, EASY backfilling has a shorter tail without

those few huge extremes that are visible in case of Conservative backfilling with fairshare-

based priorities. Clearly, simple statistical measures like the arithmetic mean are dangerous

when the underlying distributions are far from being “normal”.

6.2. Performance Heatmaps

In real systems, it is crucial to really understand “what is going on” before a new setup

of the scheduling system is brought into operational status. In such a situation, even those

cumulative distribution functions presented in the previous section may not be sufficient.

Then, a highly detailed analysis tool can be very useful. A simple but powerful way to

obtain such desired insight is to use the so called performance heatmaps [33, 58].

Let us once again consider the example from Section 6.1. So far, our analysis showed

that for that particular workload, EASY backfilling with fairshare-based priorities is the

best algorithm from those four considered when the wait time is used as a criterion. How-

ever, in real life we usually have to consider several criteria simultaneously, as discussed in

Section 5. For example, we have to check that the solution is fair with respect to users. The

problem is that neither the average value nor the CDF from Figure 6 allow us to verify that

“fair” EASY backfilling is really a more fair solution than classical EASY backfilling. For

such purpose we can use some simple metric measuring fairness (see Section 5.3), but the

results may be misleading for similar reasons (the underlying distribution is not normal).
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Instead, we will use heatmap as shown in Figure 7.

In this heatmap, we use the x-axis for time (1 unit represents two days) and the y-axis

for users of the system. A color at the given coordinates then corresponds to the average

wait time (minutes) of user’s jobs that arrived during that point in time (see the legend

on the right side of each heatmap). The heatmaps clearly show how the more fair variant

decreases job wait times for most of the users. Clearly, many dark spots indicating huge

wait times for particular users that are visible for classical EASY backfilling are eliminated

as soon as fairshare-based priorities are applied. Still, two users (marked with ids 38 and

53 in the workload) have high average wait times in both configurations. A closer look at

those two users quickly reveals that they are very active users with a lot of job submissions

and high system utilization. Therefore, it is quite natural that they both have to wait longer

compared to other users.

6.3. Summary

In this section we mentioned some problems that should be prevented when evaluating the

results of an analysis or an experiment. The fact is that even a perfect experiment can be

useless if its results are interpreted in a wrong way. The good news is that there is a lot of

works that specifically address these issues [17, 33, 47, 58]. Although a good, deep analysis

Figure 7. Heatmaps showing the average wait time wrt. users and time for classical EASY

backfilling (top) and “fair” EASY backfilling with fairshare-based priorities (bottom).
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is a challenging task, it is absolutely necessary when the tested scenario is a candidate for

practical application in a production system.

Conclusion

We have shown that efficient job scheduling is a very complex problem when realistic sce-

narios are considered. In contrast to the popular belief that the whole problem can be solved

by evaluating a scheduling algorithm using a simple system model, we have provided a de-

tailed insight into the complexity of the problem, using several real-life based examples.

We have stressed how several particular components of the system interact together and in-

fluence the resulting performance of the system. Using our experiences from a real system,

we have mentioned several parts of the problem that must be carefully modeled and evalu-

ated in order to obtain realistic and useful results. We hope that this chapter may help other

researchers as well as practitioners to properly model, evaluate and/or develop functional

scheduling solutions for real systems.
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[28] D. Klusáček and H. Rudová. Efficient Grid scheduling through the incremental

schedule-based approach. Computational Intelligence, 27(1):4–22, 2011.
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[34] C. B. Lee. On the User-Scheduler Relationship in High-Performance Computing. PhD

thesis, University of California, San Diego, 2009.

[35] V. J. Leung, G. Sabin, and P. Sadayappan. Parallel job scheduling policies to improve

fairness: a case study. Technical Report SAND2008-1310, Sandia National Labora-

tories, 2008.

[36] B. Li and D. Zhao. Performance impact of advance reservations from the Grid on

backfill algorithms. In Sixth International Conference on Grid and Cooperative Com-

puting (GCC 2007), pages 456 –461, 2007.

[37] D. A. Lifka. The ANL/IBM SP Scheduling System. In D. G. Feitelson and L. Rudolph,

editors, Job Scheduling Strategies for Parallel Processing, volume 949 of LNCS, pages

295–303. Springer-Verlag, 1995.

[38] MetaCentrum, July 2014. http://www.metacentrum.cz/.

[39] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on

Parallel and Distributed Systems, 12(6):529–543, 2001.

[40] Ohio Supercomputer Center. Batch Processing at OSC, February 2014.

https://www.osc.edu/supercomputing/batch-processing-at-osc.

[41] PBS Works. PBS Professional 12.1, Administrator’s Guide, January 2014.

http://www.pbsworks.com.

[42] Platform Computing Corporation, Canada. Administering Platform LSF, 6.2 edition,

2006.

[43] C. R. Reeves. Moder heuristic techniques. In V. J. Rayward-Smith, I. H. Osman, C. R.

Reeves, and G. D. Smith, editors, Modern Heuristic Search Methods, chapter 1, pages

1–25. Wiley, 1996.

[44] G. Ritchie and J. Levine. A hybrid ant algorithm for scheduling independent jobs in

heterogeneous computing environments. In PlanSIG2004: Proceedings of the 23rd

annual workshop of the UK Planning and Scheduling Special Interest Group, 2004.

[45] M. Romberg. UNICORE: Beyond web-based job-submission. In Proceedings of the

42nd Cray User Group Conference, pages 22–26, 2000.

[46] G. Sabin, G. Kochhar, and P. Sadayappan. Job fairness in non-preemptive job schedul-

ing. In International Conference on Parallel Processing (ICPP’04), pages 186–194.

IEEE Computer Society, 2004.

[47] U. Schwiegelshohn. How to design a job scheduling algorithm. In Job Scheduling

Strategies for Parallel Processing, LNCS. Springer, 2015. To appear.

[48] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY – LoadLeveler API project.

In D. G. Feitelson and L. Rudolph, editors, Job Scheduling Strategies for Parallel

Processing, volume 1162 of LNCS, pages 41–47. Springer, 1996.

Complimentary Contributor Copy



On the Challenges in the Design of Efficient Job Scheduling Policies ... 97

[49] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective reser-

vation strategies for backfill job scheduling. In D. G. Feitelson, L. Rudolph, and

U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel Processing, vol-

ume 2537 of LNCS, pages 55–71. Springer Verlag, 2002.

[50] D. Talby and D. G. Feitelson. Supporting priorities and improving utilization of the

IBM SP scheduler using slack-based backfilling. In IPPS ’99/SPDP ’99: Proceed-

ings of the 13th International Symposium on Parallel Processing and the 10th Sympo-

sium on Parallel and Distributed Processing, pages 513–517. IEEE Computer Society,

1999.

[51] A. D. Techiouba, G. Capannini, R. Baraglia, D. Puppin, and M. Pasquali. Backfilling

strategies for scheduling streams of jobs on computational farms. In Making Grids

Work, pages 103–115. Springer, USA, 2008.

[52] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, G. Fox,

and T. Hey, editors, Grid Computing: Making the Global Infrastructure a Reality.

Wiley, 2002.

[53] V. T’kindt and J.-C. Billaut. Multicriteria Scheduling, Theory, Models and Algorithms.

Springer, second edition, 2006.

[54] N. Tonellotto, P. Wieder, and R. Yahyapour. A proposal for a generic Grid scheduling

architecture. In S. Gorlatch and M. Danelutto, editors, Proceedings of the Integrated

Research in Grid Computing Workshop, pages 337–346. University di Pisa, 2005.

[55] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling user runtime estimates. In D. G.

Feitelson, E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, editors, Job Schedul-

ing Strategies for Parallel Processing, volume 3834 of LNCS, pages 1–35. Springer,

2005.

[56] S. Vasupongayya and S.-H. Chiang. On job fairness in non-preemptive parallel job

scheduling. In S. Q. Zheng, editor, International Conference on Parallel and Dis-

tributed Computing Systems (PDCS 2005), pages 100–105. IASTED/ACTA Press,

2005.

[57] Vrije Universiteit Amsterdam. DAS-4 Job Execution, June 2014.

http://www.cs.vu.nl/das4/jobs.shtml.

[58] Šimon Tóth and D. Klusáček. User-aware metrics for measuring quality of parallel

job schedules. In Job Scheduling Strategies for Parallel Processing, 2014.

[59] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to

unfairness in an M/GI/1. In 2003 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, pages 238–249. ACM, 2003.

[60] F. Xhafa and A. Abraham. Computational models and heuristic methods for Grid

scheduling problems. Future Generation Computer Systems, 26(4):608–621, 2010.

Complimentary Contributor Copy



98 Dalibor Klusáček and Šimon Tóth
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1. Introduction

In this chapter, we study the scalability of Bag-of-tasks (BoT) applications executing on
master-slave and hierarchical platforms. We also consider several contention scenarios in-
volving input and output data transfers. BoT applications are composed of sequential and
independent tasks which present no communication or dependencies (as observed in embar-
rassingly parallel applications). The input for each task is composed of one or more files,
and one file can be input for more than one task. Each task generates a set composed of one
or more output files. Examples of BoT applications include Monte Carlo simulations, mas-
sive searches (such as for breaking cryptographic keys), image manipulation applications
and data mining applications. They are frequent in areas such as bioinformatics, astronomy,
high-energy physics, and others. Note that BoT applications are often referred in the litera-
ture as Parameter-Sweep applications [1]a. For instance, a significant fraction of jobs in the
workloads observed in real distributed systems is submitted in the form of BoT applications
in LHC Computing Grid (LCG), NorduGrid, TeraGrid, and Open Science Grid [35].
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Figure 1. A BoT application composed of 9 tasks and 7 input files.

For thesake of illustration, a BoT application can be represented as a bipartite graph
in which one set of nodes represent input files, the other set represents tasks, and links
represent dependencies among tasks and files [3] (e.g. see Figure 1). In this chapter we
consider that both the size of the input files and the dependencies among input files and
tasks are known in advance.

Because of task independence and the absence of communication among tasks, BoT
are ideal applications to execute on loosely coupled platforms such as computational clus-
ters and grids, and master-slave and hierarchical topologies have been widely employed to
execute BoT applications in such distributed platforms [11, 12]. In master-slave platforms,
there is one master node which is responsible for scheduling computations among a set of
working nodes, dubbed slave nodes. Usually, the master node is also responsible for trans-
mitting input files to the nodes where tasks will be executed, as well as for collecting the
resulting data [11,12]. Whenever it is possible, the whole scheme can overlap computation
and communication, i.e., both the master and slave nodes can perform computation at the
same time that input files are transmitted to slave nodes and output files are sent back to the
master.

The master-slave paradigm has well known limitations. Either the communications
between the master and slave nodes or the contention due to the access to a centralized file
repository may become performance bottlenecks and severely limit the scalability. In this
chapter we pay special attention to the impact of contention in the completion phase on
scalability.

Hierarchical platforms are multiple-node machines where the nodes are organized as a
multiple level tree (e.g., as illustrated in Figure 2). In hierarchical platforms, a root node (su-
pervisor) is responsible for scheduling computation tasks among the several master nodes
and collecting the results. The masters are non-leaf nodes which receive workloads from
upper level nodes (e.g., from the root node) and schedule computations among the lower
level nodes in the hierarchy. The leaf nodes in the hierarchy are defined as slaves and they
only perform computations. We also consider that all input files are initially stored in the
root node of the hierarchical platform, which serves as the repository of all input and output
files. Each input file required by a task has to be transferred from the root node to the pro-
cessing node on which the task is scheduled, but only if the file does not exist in that node.
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Non-root nodes have a local disk where temporary files can be stored. Examples of real
implementationsof hierarchical platforms include high performance computing platforms
such as clusters, multi-clusters and grids.

Figure 2. Example of a hierarchical platform.

Contention in thecompletion phase may happen when individual tasks send the results
of its computation back to the master or supervisor node. Depending on the characteristics
of the platform, the impact of this type of contention on scalability may be significant.
Contention may be caused, for instance, by disk write serialization of large output files in
a Master node or concurrent access to a common input port. Contention in the completion
phase increases the total makespan of a job and reduces parallel execution efficiency. In
this chapter, we assess the impact of contention in the completion phase on scalability for
several different scenarios.

In a previous paper, we studied the performance and scalability of real data mining ap-
plications executing as BoT application on a cluster of PCs [4]. Further, we demonstrated
that the execution of BoT applications whose tasks share files can be remarkably more scal-
able on hierarchical platforms than in a pure master-slave platform [5]. In [6], we proved
the scalability lower bound on the isoefficiency function for BoT applications executing on
master-slave platforms. For the sake of simplicity, we prove such lower bounds while as-
suming that the underlying communication paradigm is the one-port model. In this model,
at any given time there are at most two communications involving a given server, one sent
and the other received. As pointed out by [2], the one port model is nicely suited to LAN
network connections. In the same paper, we also showed how scalability of real applica-
tions can be improved by means of task grouping, by proposing theDynamic Clustering
Algorithm. In [36] we demonstrate the scalability limits for a set of multi-level hierarchi-
cal platforms that extend the pure master-slave paradigm. In a subsequent paper, we have
stated the lower bounds on the isoefficiency function for a master-slave platforms under sev-
eral communication paradigms other than the one-port communication model, e.g., when
data transfer is carried out over TCP links [38]. In this chapter, we review, summarize and
discuss several results presented in the papers mentioned in this paragraph.

The remainder of this chapter is organized as follows: section 2 presents the related
work. In section 3 some useful definitions are stated, among them the definitions of scala-
bility and isoefficiency function. In section 4 we define the concept ofInput File Affinityand
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state several lower bounds on the isoeficiency function for master-slave platforms. Section
5 includes several theorems related to scalability lower bounds for hierarchical platforms.
In this section the problem of contention in the completion phase on hierarchical platforms
is also discussed. Section 6 presents several simulation results, while section 7 presents an
overall discussion about the theoretical and experimental results of this chapter and section
8 contains our final remarks.

2. Related Work

The class of BoT applications composed of independent tasks with file sharing has been
studied in several papers in the literature such as in [1, 3, 6, 10–18]. Because of their rele-
vance, specialized tools which aim to facilitate the execution of large BoT applications on
computational grids and clusters have been proposed, such as the AppLeS Parameter Sweep
Template (APST) [11] and MyGrid [12].

Because of its simplicity, the master-slave framework is widely employed to exe-
cute BoT applications composed of independent tasks on computational clusters and grids
[3, 10]. In this framework, slave processors execute application tasks under the centralized
supervision of a master processor. For this reason, the framework has two fundamental lim-
itations: both the communication between master and slaves, and access to file repositories
may become bottlenecks to the overall scheduling scheme, causing scalability problems.

Casanova et al. [1] proposed scheduling heuristics which consider file sharing, so that
the files required by every scheduled task which have been previously transmitted to the
processors do not need to be retransmitted. This improvement allowed for a reduction of
the bottleneck in the master processor. Additional examples of scheduling heuristics which
aim at reducing the master’s bottleneck by means of improving scheduling efficiency and
reducing communication can be found in [3].

In [20], Chaintreau presents a scalability analysis applied to distributed systems. The
author describes a model where the graph describing task dependencies is organized as
Euclidean lattice. The main assumption of this work is that the precedence relation between
these tasks is invariant by translation, so that the evolution of the system follows Uniform
Recurrence Equations. The author proves that, under these special circumstances and by
definition of a criterion called ”sharpness”, the system is scalable.

In [39], Yero and Henriques present a scalability analysis of masterslave heterogeneous
clusters. Despite some similarities with this work, all models considered in that paper are
different from the ones considered in this chapter. Indeed, the authors initially disregard the
effects of communication contention in the execution model. When the authors explicitly
consider contention, they conclude that the system is not scalable when contention is pro-
portional to the number of processors. In this chapter we demonstrate that the execution of
BoT applications on master-slave and hierarchical platforms may be scalable, even when
contention is proportional to the number of processors, in several scenarios.

In a previous paper we have studied the scalability of BoT applications executing on
master-slave platforms [6]. In that paper we proposed a scheduling algorithm which is
oblivious to task execution times dubbed Dynamic Clustering (DC). We have shown that
the scalability performance of the DC algorithm is similar to the scalability obtainable by
non-oblivious algorithms in several circumstances. In the same paper, we assessed the
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scalability of BoT applications executing on master-slave platforms that adopt the one-port
communicationmodel, and proved that the lower bound on the isoefficiency function is
Ω(P2). In [36] we have demonstrated the scalability limits for a set of multi-level hier-
archical platforms that extend the pure master-slave platforms, for several communication
paradigms. We also presented a brief analysis of the scalability of heterogeneous hierar-
chical platforms. In this paper we proved that hierarchical platforms can be more scalable
than master-slave platforms. An example of a recent work that has confirmed this conclu-
sion specifically for cloud platforms is [39]. In another paper [38] we further elaborate on
the scalability study of BoT applications on master-slave platforms whose communication
follows the multiplexed and broadcast models. We also evaluate the impact of output file
contention on the scalability of the pair master slave platform/BoT application under the
one-port model.

3. Background and Preliminary

Scalability may be defined as ”the system ability to increase speedup as the number of pro-
cessors increase” [21]. Another definition that is not based in the concept of speedup is the
following: ”An algorithm-machine combination is scalable if the achieved average speed
of the algorithm on the given machine can remain constant with the increasing number of
processors, provided that the problem size can be increased with the system size” [22]. This
later definition is important because it relates the scalability to the combination of a machine
and an algorithm, instead of being a property of either the machine or the algorithm.

Kumar and Rao proposed the concept of isoefficiency function [23] to characterize the
scalability of an algorithm on a given architecture. The basic idea is to fix the efficiency to a
certain value and to measure by how much the work must be increased to keep the efficiency
unchanged as the machine scales up. The amount of workW is defined as the sum of the
amount of computation of all tasks composing the application. The isoefficiency function
f (P) relates machine size (P) to the amount of work needed to maintain the efficiency,
which can be defined as follows.

One limiting factor for the scalability of parallel systems is the overhead. LetTP be
the time spent for a parallel execution to solve the problem on a parallel computer withp
processors. Then, the total time collectively spent by all the processing elements ispTP

time units.TS time units are spent with useful work, and the remainder is overhead. Thus,
the total overhead of a parallel system can be expressed by anoverhead functionas follows

T0 = pTP−TS (1)

wherepTP is the total time spent byp processors to solve the problem, andTS is the runtime
of the fastest known sequential algorithm to solve the problem on a sequential computer.
Let theproblem size Wbe equal toTS, then we can define parallel runtime as

TP =
W+T0(W, p)

p
, (2)

whereT0(W, p) is the system overhead for a workloadW executing withp processors.
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Scalability may be defined as ”the system ability to increase speedup as the number of
processorsincrease” [23]. This notion of scalability can be measured by speedup as:

S=
W
TP

=
pW

W+T0(W, p)
.

(3)

Then, efficiency can be denoted as

E =
S
p

=
W

W+T0(W, p)

=
1

1+ T0(W,p)
W

(4)

For scalable parallel systems, efficiency can be maintained at some desired level (be-
tween 0 and 1) if the ratioT0(W,p)/W can be maintained at some fixed value as the number
p of processors is increased. IfW needs to grow only linearly withp, then the system is
highly scalable. Thus, for some desired levelE of efficiency,

E =
1

1+ T0(W,p)
W

,

T0(W, p)
W

=
1−E

E
,

W =
E

1−E
T0(W, p).

(5)

With this idea on mind, Kumar and Rao proposed the isoefficiency concept [48]. The
basic idea is to fix the efficiency and measure how much work must be increased to keep
the efficiency unchanged as the machine scales up. The expression for theisoefficiency
functioncan be defined as

f (p) =KT0(W, p), (6)

whereK = E
(1−E) is a constantvalue dependent on the desired efficiency level. Thus, the iso-

efficiency function f(P) relates machine sizep to the amount of work needed to maintain the
efficiency. It shows the growth rate ofW necessary to maintain the desired efficiency value
as p increases. Notice thatf (p) does not exist for an unscalable system, since efficiency
cannot be maintained at any fixed value asp increases, no matter how fast the problem size
W is increased. A small value off (p) means that a small increment in the amount of work
is enough to maintain high efficiency asp increases. On the other hand, a large value of
f (p)means that even with large increases on the workloadW cannot maintain efficiency as
the number of processors increase.
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4. Bounds on Scalability of BoT Applications Running
on Master-Slave Platforms

We begin this section by describing the models considered in the theoretical scalability
analysis presented. We also introduce in this section theInput File AffinityMeasure.

4.1. Platform Model

We assume a set ofP= {p1, . . . , pp} processors. One processor is the master and the other
processors are slaves. Communication among master and slaves is carried out through a
shared link, and the master can only send files through the network to a single slave at
a given time. We assume that the communication link is full-duplex, i.e., the master can
receive an output file from a slave at the same time it sends an input file to another slave.
Note that this communication model corresponds to the one port model: at any given time
there are at most two communications involving a given server, one sent and the other
received. The main reason for choosing the one port model is its simplicity, that allows us
to abstract from a myriad of complex and unnecessary details, while capturing the essential
behavior of a master slave platform. Furthermore, as pointed out by Yang et al. [2], the one
port model is nicely suited to LAN network connections. Further, in section 6 we present
some experimental results that demonstrate that the scalability bounds for more realistic
communication model.b We also assume that computation on a slave node begins as soon
as the input files are completely received. This assumption is coherent to BoT master-slave
platforms that are currently available [35].

4.2. Application Model

Typically, a BoT application is composed of independent tasks{T}i=t1..tt . From the stand-
point of workload scheduling, we assume that tasks constitute the basic workload unit, i.e.,
tasks cannot be subdivided, and each taskti has an associated computational cost denoted
by comp(ti). In practice,comp(ti) could be a measure of the total number of instructions,
or the floating point operations to be executed. We also assume thatcomp(ti) may vary for
each taskti , and it is not known in advance. Clearly, in this scenariocomp(ti) is fixed for
any given taskti , since the amount of computation associated toti does not change. In other
words, we cannot arbitrarily changecomp(ti) it is the case for divisible loads application
model [2].

Each task depends on one or more input files for execution. The communication cost of
each task, denoted bycomm(ti), is the total amount of input data that must be transmitted
to the node before taskti can be executed. Clearly, since the same file can be input for
more than one task, transmission cost for a group of tasks can be amortized when two or
more tasks that share files can be grouped together and scheduled to execute in the same
processor. For instance, if a taskt j will execute afterti in the same processorpk (assume that
pk has a local storage) and these two tasks share one or more files, thencomm(Tj) can be
amortized becausecomm({ti , t j}) < comm(ti)+ comm(t j). Thus, the communication cost

bFor theinterested reader, more details about the impact of communication models on the scalability of BoT
applications on master slave platforms can be found in [38]
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of a group of taskscomm({ti , .., t j}) (and the cost of an entire application) may be affected
by scheduling decisions.

4.3. Execution Model

Typically, each BoT application task goes through three phases during its execution:

• An initialization phase (tinit ), where the necessary files are sent to the slave node and
the task is started. Note that this phase includes the overhead incurred by a master to
initiate a data transfer to a slave. There is a queue of waiting tasks in the master node.

• A computation phase (tcomp), where the task processes the parameter file at the slave
node and produces an output file. Any additional overhead related to the reception of
input files by a slave node and writing input files to a local file system is also included
in this phase.

• A completion phase (tend), where the output file is sent back to the master and the task
is completed. This phase may require some processing at upper level nodes, mainly
related to writing output files received from lower level nodes to a disk. Since this
writing may be deferred until the disk is available [25], under specific conditions it
is possible to assume that this processing time is negligible. Therefore, we consider
initially that the initialization phase of one slave can occur concurrently with the
completion phase of another slave node.

Regarding the duration of the completion phase for a given task, two possibilities are
considered: in the first one, time to transfer the output files from one node to the upper
level node depends on the number of nodes in the same level, i.e., the number of lower level
nodes directly connected to the upper level node. This situation may happen when there is
contention related to the transfer of output files from the lower-level nodes to the master.

The second possibility is when there is no contention, i.e., the duration of the completion
phase is constant, independently of the number of lower level processors. In this case,
typically, there is an underlying distributed file system on which output files are written,
such as in [37]. Indeed, for the best case in [37], aggregate write rates are increase linearly
the number of clients grows.

We assume, in the following sections, that the communication link is full-duplex, i.e.,
the master can receive an output file from a slave at the same time it sends an input file to
another slave. We also assume that computation on a slave node begins as soon as the input
files are completely received.

4.4. The Input File Affinity Measure

In this section we introduce the input file affinity (Ia f f ) measure. In order to do so, first
we describe a simplified execution model that clarifies several issues related with the exe-
cution of BoT applications on dedicated, homogeneous masterslave platforms. It should be
stressed that several assumptions presented in the model described in this section have been
simplified for clarification purposes, aiming to introduce the concept of input file affinity in
a more concise form. However, it should be noted that the concept of input file affinity is
seamlessly applicable to the more general model described in the introduction of the paper.

Complimentary Contributor Copy



Scalability Analysis of BoT Applications ... 107

As detailed in the previous subsection, each task goes through three phases duringexe-
cution of a parameter-sweep application:

• An initialization phase, with duration equal totinit .

• A completion phase, with duration equal totend.

• A computation phase on a particular processor, with duration equal totcomp.

Given these three phases, the total execution time of a task is equal to

ttotal = tinit + tcomp+ tend (7)

For the sake of simplicity and without loss of generality, we consider in this section
that there is no contention related to the transmission of output files from slave nodes to the
master. Indeed, it is possible to merge the computation phase with the completion phase
without affecting the results of this section. Therefore, we merge both phases ast ′comp in the
equations that follow.

A slave node is idle when it is not involved with the execution of any of the three phases
of a task. For the equations below, the task model is composed of T homogeneous tasks.
All tasks and files have the same size, and each task depends upon a single non-shared file.
Note that the problem of scheduling a BoT application where each task depends upon a
single nonshared file, all tasks and files have the same size and the masterslave platform is
homogeneous, has polynomial complexity [3], with the optimal scheduling algorithm being
the simple greedy round-robin algorithm. These simplified assumptions are considered in
the analysis that follows, since they provide absolute lower bounds on the isoefficiency
function [38].

We define theeffective number of processors(Pe f f) as the maximum number of slave
processors needed to run an application with no idle periods on any slave processor. Taking
into account the task and platform models described in this section, a processor may have
idle periods if:

t ′comp< (P−1)tinit (8)

Pe f f is then given by the following equation:

Pe f f = ⌊
t ′comp

tinit
+1⌋ (9)

The total number of tasks to be executed on a processor is at most

M = ⌈
T
P
⌉ (10)

For a platform with Pe f f processors, the upper bound for the total execution time
(makespan) will be

⌈tmakespan⌉= M(tinit + t ′comp)+(P−1)tinit (11)
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The second term in the right side of Eq. 11 shows the time needed to start the first
(P−1) tasksin P−1 processors. Note that Eq. 11 corresponds to the maximum makespan
of all P individual processors. If we have a platform where the number of processors is
larger thanPe f f, the overall makespan is dominated by communication times between the
master and the slaves. We then have

⌈tmakespan⌉= MPtinit + t ′comp (12)

It is worth noting that Eq. 11 is valid when slaves are constantly busy, either performing
computation or communication. Eq. 12 is applicable when slaves have idle periods, i.e.,
are not performing either computation or communication. Remember that, as we have idle
periods whenP>Pe f f using a round-robin scheduling algorithm, Eq. 8 holds. Eq. 8 occurs
mainly in two cases:

• For very large platforms (Plarge).

• For applications with a smalltcomp

tinit
ratio,such as fine-grain applications.

In order to measure the degree of affinity of a set of tasks concerning their input files,
we introduce the concept of input file affinity. Given a setG of tasks, composed ofK tasks,
G= {T1,T2, ...,TK}, and the setF of theY input files needed by the tasks belonging to group
G, F = { f1, f2, f3, ..., fY}, we defineIa f f as follows:

Ia f f(G) =
∑Y

i=1(Ni −1)| fi |

∑Y
i=1Ni | fi |

(13)

where| fi | is thesize in bytes of filefi andNi(1 ≤ Ni ≤ K) is the number of tasks in
groupG which have filefi as an input file. The term(Ni −1) in the numerator of the above
equation can be explained as follows: ifNi tasks share an input filefi , that file may be sent
only once (instead ofNi times) when the group of tasks is executed on a slave node. The
potential reduction of the number of bytes transferred from a master node to a slave node
considering only input filefi is then(Ni −1)| fi |. Therefore, the input file affinity indicates
the overall reduction of the amount of data that needs to be transferred to a slave node, when
all tasks of a group are sent to that node. Note that 0≤ Ia f f < 1. For the special case where
all tasks share the same input fileIa f f =

K−1
K , whereK is thenumber of tasks of a group,

and fi = F for all i, F fixed (see Eq. 13). Note that, in this particular case,Ia f f → 1 as
K → ∞. An input file affinity of zero indicates that there is no sharing of files among tasks
of a group.

4.5. A Lower Bound for the Isoefficiency Function of BoT Applications

The purpose of our study is to assess scalability limits of BoT computations in the best pos-
sible case. Such limits can be expressed by the lower bounds on the isoefficiency function
under specific circumstances. We assume a BoT application composed ofT tasks execut-
ing onP homogeneous and dedicated processors that communicate through a homogeneous
interconnection network (e.g., similar to computers in a cluster). Then, we propose the def-
inition of Scalable Bag-of-Tasks Applications (SBA).
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Definition 1. Scalable Bag-of-Tasks Applications (SBA): A SBA is composed by T homo-
geneous tasks that are evenly distributed among P homogeneous processors for execution.
Thus, we consider that computational cost cost(ti) is the same for every task ti (1≤ i ≤ T).
We assume round-robin scheduling, that is optimal and minimizes execution time in such
scenario. Since T is significantly larger than P (i.e., T≫ P), we can assume (without loss
of generality) that T is multiple of P, thus each processor executes the same amount of work
T/P·cost(ti). In other words, we assume perfect load balancing among the processors.

Furthermore, we assume that communication costs for the whole application is also
minimum. This can be achieved when all tasks share the same input file (or the same
set of input files). In this scenario, the set of input files is transmitted only once for a
given processor pi before the processor can execute any task. However, when the input
files are transmitted for pi to execute its first task, all the remaining tasks assigned to the
same processor can be executed with no retransmission of the input files. This definition is
important since we focus on the highest possible scalability in ideal conditions.

Given this definition, we can find a lower bound on the isoefficiency function for BoT
applications as follows.

Theorem 1. The lower bound on the isoefficiency for a BoT application running on a
homogeneous master-slave platform with P processors isΩ(P2). c

Proof. Consider a SBA program running on an homogeneous master-slave platform with
P processors. Under such circumstances, the number of tasksT must grow at leastΘ(P),
otherwise processors will eventually become idle asP increases. Then, the amount of work
assigned to each processor can be executed in timeΘ(T·comp(ti)/P), which reduces toΘ(1)
becauseT = Θ(p) andcomp(ti) is constant. However, parallel execution time must also
take into account the time to transmit input files to every processorP·comm(ti). In the other
hand, serial execution time can be estimated as the execution time for the best sequential
algorithm to executeT tasks, which isΘ(T · comp(ti)) = Θ(P). Thus, substituting these
costs in Equation 1 we can find an expression for the overhead function as

T0 = P.TP−TS (14)

= P
(

Θ
(

P·comm(ti)+
T ·cost(ti)

P

))
−Θ(P)

= P
(

Θ(P)+
Θ(P)

P
)
)
−Θ(P)

= Θ(P2)+Θ(P)−Θ(P)

= Θ(P2).

And the isoefficiency function for SBA programs under such conditions can be defined as
f (P) =KT0(W, p) (according to equation 6), whereK = E

(1−E) is a constantvalue dependent
on the desired efficiency level. Hence, we conclude that the isoefficiency function for any
BoT application running on a master-slave platform isΩ(P2).

cFormally,Ω, andΘ may be defined as follows:Ω(g(n)) = { f (n) : for any positive constantc> 0, there
exists a constantn0 > 0 such thatcg(n)≥ f (n) for all n≥ n0}. Θ(g(n)) = { f (n) : for any positive constants
c1,c2 > 0, andn0 > 0 such that 0≤ c1g(n)≤ f (n)≤ c2g(n) for all n≥ n0}.
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Theorem 1 defines the lower bound on scalability achievable by BoT applications run-
ning on masterslave platforms. However, it does reveal one necessary condition so that
BoT applications can be effectively scalable. The next theorem shows that the lower bound
on the isoefficiency function is only achievable for applications having maximum input file
affinity.

Theorem 2. The lower bound for the isoefficiency function for a homogeneous BoT ap-
plication running on a homogeneous, dedicated masterslave platform isΩ(P2) for BoT
applications having maximum Input File Affinity

Proof. In this case allT tasks share common input files, and the set ofT tasks can be
grouped intoK groups of tasks, where ”larger” means that at least one of theK tasks in-
cludes at least two of the originalT tasks. It takes a timetinit to send the files necessary to
one of theK tasks to one node. Consider also that the new average task cost is z,z= W

K .
ClearlyK = Θ(P) since the number of ”larger” tasks has to be of the same order of magni-
tude of the number of processors. Note thatz is also given byΘ(P), in order to maintain the
efficiency at a predefined levelα when the number of processors of the platform increase.
Since the input file affinity of the application isT−1

T , we have to sendΘ(P) sets of input
files to processors inΘ(z) time. Since the transfer of each set of input files takestinit time,z
has to grow at a rate higher thanΘ(tinit P). Considering thatW =Kzwe get the isoefficiency
function to beW = Θ(P2).

4.6. Contention in the Completion Phase

This subsectionconsiders contention in the completion phase, i.e., in this section we do
not consider the duration of the completion phase as constant, independently of the number
of processors. The objective of this section is to assess the impact of completion phase
contention (due to transmission of output files back to the master node) in the scalability of
BoT applications running on master-slave platforms.

Contention may be caused, for instance, by disk write serialization of large output files
in a Master node or concurrent access to a common input port. Contention in the comple-
tion phase increases the total makespan of a job and reduces parallel execution efficiency.
Therefore, contention in the completion phase may have a significant impact on the isoef-
ficiency function and may change the lower bounds stated in the previous subsection. For
the results presented in this subsection we assume without loss of generality two possible
scenarios regarding the contention in the transmission of the output files:(i) in this scenario
we assume each individual task produces an output file of small, fixed size (this is true for
several real BoT applications, e.g. in [17], whose individual task receives input files of
arbitrary size, and produces an output file whose size typically ranges from a few dozen
to some hundred bytes). In this scenario, all the output files produced in one node can be
grouped and sent to the master node as a single aggregated output file immediately after the
processor completes the execution of its local tasks; and(ii), a scenario composed of BoT
applications whose individual tasks produce output files of arbitrary size, whose completion
phase is subject to severe contention conditions. For the theorems below we refer to these
two scenarios as fixed size output files and large output files, respectively.
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Theorem 3. If the one-port model and output files of fixed size are assumed, the lower
bound on the isoefficiency function for a BoT application running on a master-slave plat-
form with P processors isΩ(P2).

Proof. Assume an application composed ofk subtasks, and that it takes at mostτ time
units to transfer the necessary files between two nodes (output and input files). It is possible
to decomposeτ asτi + τs, whereτi is the time needed to transfer input files andτs is the
time needed to transfer output files. Also, consider that the average task size isz,z=W/k.
Clearlyk = Ω(P) since the number of tasks has to be at least of the order of magnitude of
the number of processors. This is necessarily true; otherwise the efficiency will decrease as
the number of processors increase. Since it takesτ time units to transfer files,zhas to grow
at a rate higher thanΘ(τiP+ τsP), whereτiP is the time needed to transfer the input files
from the master to theP slaves; andτsP is the time it takes for theP slaves to transfer the
P aggregated output files to the master (one aggregated file at a time). Now, sinceW = kz,
substituting lower bounds fork andz, we get the isoefficiency function to beW = Ω(P2).

For the next theorem we assume that each task produces an output file of arbitrary size.
Whentasks finish their computation phase the output files produced are transmitted to the
master one at a time.

Theorem 4. For the scenario in which one-port model and output files of arbitrary size are
assumed, the lower bound on the isoefficiency function for a BoT application running on a
master-slave platform with P processors isΩ(P2).

Proof. Assume an application composed ofk subtasks, and that it takes at mostτ time
units to transfer the necessary files between two nodes (output and input files). It is possible
to decomposeτ asτi + τs, whereτi is the time needed to transfer input files andτs is the
time needed to transfer output files for each task. Also, consider that the average task
size isz,z= W/k. Since it takesτ time units to transfer files,z has to grow at a rate
higher thanΘ(τiP+ τsP), whereΘ(τi) is the time needed to transfer the input files from
the master to theP slaves (it is worth noting that input files are sent only once for each
node); andΘ(τsP) is the time it takes to transferk output files from the slaves to the master
node (it is worth noting that there is at least one output file per completed task). Now,
sinceW = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(k(P+k)). Clearly,k= Ω(P) since the number of tasks has to be at least of the order
of magnitude of the number of processors. This is necessarily true; otherwise the efficiency
will decrease as the number of processors increase. Then we can writeW = Ω(k2). In this
case, there are two possibilities for the asymptotical behavior ofk:

• In the best possible case,k grows equal thanP (i.e., k = Θ(P)): in this case, since
W = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(k.(P+k)) = Ω(P2);

• Another (much more realistic) possibility is that the growing ofk is at least one order
of magnitude higher thanP (i.e.,k= ω(P)) (see note on small omega notationd). For

dFormally,small omega can be defined asω(g(n)) = { f (n) : for any positive constantc> 0, there exists a
constantn0 > 0 such that 0≤ cg(n)≤ f (n) for all n≥ n0} [33].
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instance, consider without loss of generality, thatk = (PlogP). In this case, since
W = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(P2(logP)2) (see footnotee). In order to simplify our analysis, the asymptotic
behavior for the isoefficiency function in this case is significantly higher than in the
previous case.

5. Bounds on Scalability of BoT Applications Running
on Hierarchical Platforms

In this section we present bounds on the isoefficiency function for hierarchical platforms.
Two main topologies are considered in the theorems that follow: 2-level hierarchical plat-
forms (as shown in Figure 2 and n-ary trees. 2-level hierarchical platforms represent
multi-cluster platforms. In this case we consider an upper level front end (a supervisor
node) which has access to a number of clusters, each one with its own front end. This
particular topology is quite common today, and it is representative, for instance, of sev-
eral multi-clusters and multi-cluster grid infrastructures. Such large distributed systems
are typically implemented by several clusters composed of multiple-processor nodes in-
terconnected by high performance hardware, such as InfiniBand, Myrinet, Crossbar, and
SP Switch (www.top500.org). Inter-cluster communication can be implemented either by
specialized interconnection hardware or WAN networks [34,36].

N-ary trees were included because they define the lowest achievable bound for several
configurations, as it is proved in the following sections. It is worth noting that those topolo-
gies may be deployed either physically or logically. For instance, a multi-cluster platform is
an example of topology defined by the interconnection of its nodes. On the other hand, it is
possible to deploy a n-ary tree of resource managers on Warehouse-Scale Computers [41],
which is composed of a large number of nodes in just one site.

5.1. Scalability of BoT Applications Running on Hierarchical Platforms

For the following theorems we assume the one-port communication model, and that there is
no contention in the completion phase, when output files are transferred back to the upper
level node.

The first theorem is stated below. It defines the lower bound on the isoefficiency func-
tion achievable for a class of 2-level hierarchical topologies. The objective when stating
Theorems 1 and 2 is to highlight the relation between hierarchical topologies and scalabil-
ity. Depending on how processors are organized, some hierarchical topologies provide bet-
ter scalability than other different hierarchical topologies. In Theorem 5, a specific 2-level
topology (similar to the platform illustrated in Figure 2 ) is considered, as stated below:

Theorem 5. If there is no contention in the completion phase, the lower bound on the
isoefficiency function for a BoT application running on a 2-level hierarchical platform with

eIn [32], authors show that a possible ordering of complexity functions is: logn,
√

n,nlogn,n2,n3, · · ·,2n.
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P processors, when either the number of master nodes or the maximum number ofslave
nodes per master is limited, isΩ(P2).

Proof. Assume an application composed ofk subtasks, and that takes at mostτ time units
to transfer the necessary files between two nodes (output and input files). It is possible
to decomposeτ asτi + τs, whereτi is the time needed to transfer input files andτs is the
time needed to transfer output files. Also, consider that the average task size isz,z=W/k.
Clearlyk = Ω(P) since the number of tasks has to be at least of the order of magnitude of
the number of processors. This is necessarily true; otherwise the efficiency will decrease
as the number of processors increases. Two different possibilities for the behavior ofz are
discussed below:

• If the number of masters is limited by a constantM(P>M), the scalability is bounded
by the maximum number of slaves per master, which is equal to⌈P/M⌉. Since it
takesτi time units to transfer input files andτs time units to transfer output files,z
has to grow at a rate higher thanΘ(τiM+ τiP/M), whereτiM is the time needed to
transfer the input files from the supervisor to theM masters, andτiP/M is the time
it takes to transfer input files fromM masters to theP slaves. Since no contention
is considered and output files can be sent to the user machine after the application
has been completed,τs is not considered here. Now, sinceW = kz, substituting lower
bounds fork andz, we get the isoefficiency function to beW = Ω(P2).

• If the maximum number of slaves per master is limited by a constantS(P> S), scal-
ability is bounded by the number of masters, which is equal to⌈P/S⌉. Since it takes
τi time units to transfer input files andτs time units to transfer output files,z has to
grow at a rate higher thanΘ(τiP/S+ τiS) , whereτiP/S the time to transfer input
files from the root node to the⌈P/S⌉ masters, andτiS is the time it takes to trans-
fer the input files from any of the⌈P/S⌉ masters to the S slaves (it is worth noting
that in the best case input files are sent only once for each processor). Now, since
W = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(P2).

Theorem 6. The lowerbound on the isoefficiency function for BoT running on a hierarchi-
cal platform organized as a balanced n-ary tree isΩ(PlogP).

Proof. Assume an application composed ofk subtasks, and that it takes a timeτ to transfer
the necessary files between two nodes (upper and lower levels). Consider also that the
average task size isz, z= W/k. Clearly k = Ω(P) since the number of tasks has to be
at least of the order of magnitude of the number of processors. Note thatz is given by
Ω(logP). This is due to the fact that, in a hierarchical system organized as a n-ary tree, at
leastn messages should be sent from a upper level node to lower level processors inΘ(z)
time. It is also worth noting that, in this particular case, the number of transfers from an
upper level node to a lower level one is always bounded byn, which is not the case for
theorem 5. Since the transfer of input files takesτi time units, and the number of levels of
the tree is limited by⌈logP⌉, z has to grow at a rate higher thanW = Ω(nτi logP). Now,
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sinceW = kz, substituting lower bounds fork andz,we get the isoefficiency function to be
W = Ω(PlogP).

Theorem 7. For theone-port model, the lower bound on the isoefficiency function achiev-
able by BoT applications running on hierarchical platforms isΩ(PlogP).

Proof. Consider a master (i.e., a non-leaf) node in the hierarchy, and its children (i.e.,
the nodes in the lower level that are directly connected to the master). Under the one-
port model, the time needed to transfer input files from any master to its children will
always be a function of the number of children processors below the master. This happens
because, under the one-port model, any master can only send one message (i.e. a file) to one
child node at a given time-step. Considering that the average task size isz, z= W/k, and
k= Ω(P), to have a lower bound of the isoefficiency function ofΩ(P) the communication
time between any node and its children should be a constant, independently of the number
of processors. As stated before, this is not possible under the one-port model.

5.2. Hierarchical Platforms - Contention in the Completion Phase

This sectionconsiders contention in the completion phase, i.e., in this section we do not
consider the duration of the completion phase as constant, independently of the number of
processors in a given level. The objective of this section is to assess the impact of comple-
tion phase contention (due to transmission of output files back to the root of the hierarchy)
in the scalability of BoT applications running on hierarchical platforms. The relevance of
output file contention is attested either by the support provided by several execution man-
agement systems (such as in [12,32]), and by studies on the impact of transmission of output
files in performance (such as in [10,19,31]).

The analysis of this section focus on the one-port communication model. Contention
may be caused, for instance, by disk write serialization of large output files in a Master node
or concurrent access to a common input port. Contention in the completion phase increases
the total makespan of a job and reduces parallel execution efficiency. We consider in this
subsection the same scenarios described in subsection 4.6.

For the next theorem, we assume output files with a small, fixed size. This scenario
is representative for applications (such as in [17]), whose tasks produce small output files
(typically of dozens to a few hundred bytes) containing results and summarized data. In
this case, lower level processors can group the output files produced by its local tasks and
send them altogether to the upper level nodes when all its local tasks have been executed.
According to the one-port model, each master can receive output files from one slave pro-
cessor at a time, as well as the supervisor can receive output files from one master at a time.
Thus, in this scenario the completion phase is subject to contention.

Theorem 8. If the one-port model and output files of fixed size are assumed, the lower
bound on the isoefficiency function for a BoT application running on a 2-level hierarchical
platform with P processors, when either the number of master nodes or maximum number
of slave nodes per master is limited, isΩ(P2).
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Proof. Assume an application composed ofk subtasks, andthat takes at mostτ time units
to transfer the necessary files between two nodes (output and input files). It is possible
to decomposeτ asτi + τs, whereτi is the time needed to transfer input files andτs is the
time needed to transfer output files. Also, consider that the average task size isz,z=W/k.
Clearlyk = Ω(P) since the number of tasks has to be at least of the order of magnitude of
the number of processors. This is necessarily true; otherwise the efficiency will decrease
as the number of processors increases. Two different possibilities for the behavior of z are
discussed below:

• If the number of masters is limited by a constantM(P>M), the scalability is bounded
by the maximum number of slaves per master, which is equal to⌈P/M⌉. Since it takes
τi time units to transfer input files andτs time units to transfer output files,z has to
grow at a rate higher thanΘ(τiM + τiP

M + τsP
M + τsP), whereτiM is thetime needed

to transfer the input files from the supervisor to theM masters;τiP
M is the timeit

takes to transfer input files fromM masters to theP slaves;τsP
M is the timeit takes to

transfer backP aggregated output files to theM masters; andτsP is the time needed
to theM masters to transferP aggregated output files to the supervisor. Now, since
W = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(P2).

• If the maximum number of slaves per master is limited by a constantS(P> S), scal-
ability is bounded by the number of masters, which is equal to⌈P

S⌉. Since ittakes
τi time units to transfer input files andτs time units to transfer output files,z has to
grow at a rate higher thanΘ(τi

P
S + τiS+ τSS+ τSP) , whereτi

P
S the timeto transfer

input files from the supervisor to the⌈P
S⌉ masters;τiS is thetime it takes to transfer

the input files from any of the⌈P/S⌉ masters to the slaves;τSS is the time it takes for
the⌈P

S⌉ masters toreceive the aggregated files from lower level nodes; andτsP is the
time needed to theM masters to transferP aggregated output files to the supervisor.
Now, sinceW = kz, substituting lower bounds fork andz, we get the isoefficiency
function to beW = Ω(P2).

For the next theorems we assume that each task produces an output file of arbitrary size.
Whentasks finish their computation phase the output files produced are transmitted to the
upper level one at a time. According to the one-port model, each master can receive output
files from slave nodes one at a time, as well as the supervisor can receive output files from
one master at a time. Thus, in this scenario the completion phase is subject to contention.

Theorem 9. For the scenario in which one-port model and output files of arbitrary size are
assumed, the lower bound on the isoefficiency function for a BoT application running on a
2-level hierarchical platform with P processors, when either the number of master nodes or
maximum number of slave nodes per master is limited, isΩ(P3).

Proof. Assume an application composed ofk subtasks, and that takes at most aτ time units
to transfer the necessary files betweenn two nodes (output and input files). It is possible
to decomposeτ asτi + τs, whereτi is the time needed to transfer input files andτs is the
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time needed to transfer output files. Also, consider that the average task size isz, z=W/k.
Clearlyk = Ω(P) since the number of tasks has to be at least of the order of magnitude of
the number of processors. This is necessarily true; otherwise the efficiency will decrease
as the number of processors increases. Two different possibilities for the behavior of z are
discussed below:

• If the number of masters is limited by a constantM(P>M), the scalability is bounded
by the maximum number of slaves per master, which is equal to⌈P/M⌉. Since it takes
τi time units to transfer input files andτs time units to transfer output files,z has to
grow at a rate higher thanΘ(τiM+ τiP

M + τsk
M + τsk), whereτiM is thetime needed to

transfer the input files from the supervisor to theM masters;τiP
M is the timeit takes to

transfer input files fromM masters to theP slaves;τsk
M is the timeit takes to transfer

backk output files fromP slaves toM masters; andτsk is the time needed to theM
masters to transferk output files to the supervisor. Now, sinceW = kz, substituting
lower bounds fork andz, we get the isoefficiency function to beW = Ω(P2k). In the
best possible case, we havek= Θ(P) andW = Ω(P3)

• If the maximum number of slaves per master is limited by a constantS(P> S), scal-
ability is bounded by the number of masters, which is equal to⌈P

S⌉. Since ittakes
τi time units to transfer input files andτs time units to transfer output files,z has to
grow at a rate higher thanΘ(τi

P
S + τiS+

τSk
P/S+ τSk) , whereτi

P
S the timeto transfer

input files from the supervisor to the⌈P
S⌉ masters;τiS is thetime it takes to trans-

fer the input files from any of the⌈P/S⌉ masters to the slaves (Sslaves per master);
τSk
P/S is the timeit takes to transfer back k output files from P slaves to⌈P

S⌉ masters;
andτsk is the time needed to transferk output files to the supervisor. Now, since
W = kz, substituting lower bounds fork andz, we get the isoefficiency function to be
W = Ω(P2k). In the best possible case, we havek= Θ(P) andW = Ω(P3)

Theorem 10. The lowerbound on the isoefficiency function for BoT applications running
on a hierarchical platform organized as a balanced n-ary tree isΩ(P2 logP), when there is
contention in the completion phase for the one-port communication model.

Proof. As in the previous theorem, when contention is taken into account,τ = Ω(k), where
k is the number of tasks of the application. Again, the average task size is z,z= W/k.
Clearlyk = Ω(P) since the number of tasks has to be at least of the order of magnitude of
the number of processors. Note that z is given byΩ(logP). This is due to the fact that, in
a hierarchical system organized as a n-ary tree, at least n messages should be sent from an
upper level node to lower level processors inΘ(z) time. Since the transfer of files (input
and output) takesτ time units, and the number of levels of the tree is limited by⌈logP⌉, z
has to grow at a rate higher thanΩ(nτlogP). Now, sinceW = kz, substituting lower bounds
for k and z, we get the isoefficiency function to beW = Ω(P2 logP).
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5.3. Heterogeneous Platforms

The theoremsof the previous subsections considered only homogeneous platforms, i.e., all
processors having the same computing power. In this section we briefly analyze the impact
of processor heterogeneity in the previously stated lower bounds. The main question asso-
ciated with this section is to determine whenever heterogeneity may impose lower bounds
different from those stated in the previous section. In order to investigate this question one
should consider the heterogeneity-aware variations of current scalability metrics described
in the literature (e.g. see [42,43] for isoefficiency and [44] for isospeed).

For the analysis of this section, given a P processors heterogeneous platform, we
propose an equivalent homogeneous platform based on the concept of Homogeneous-
Equivalent Computing Rate (HECR) as defined in [45]. In the following analysis, it is
assumed that there is no contention in the completion phase.

Definition 2. Given a heterogeneous platform with P processors, an equivalent homoge-
neous platform is defined as a P processors homogeneous platform where the processing
power corresponds to the Homogeneous-Equivalent Computing Rate (HECR) as defined
in [45]. The interconnection network of both platforms are the same.

Essentially, the equivalent homogeneous platform is capable of completing the same
amount of work of its heterogeneous counterpart inL time units under the FIFO work-
sharing protocol [45, 46]. That is, both the heterogeneous platform and its HECR coun-
terpart should have the same X-measure, as defined in [45]. It is worth noting that the
X-measure ”tracks” how much work is completed inL time units. If we defined the amount
of work a particular platform withP processors complete inL time units asW(L,P), then
W(L,P1) ≥ W(L,P2) if and only if X(P1) ≥ X(P2). Note also that in the definition of the
Cluster Exploitation Problem, that guides the derivation of the X-measure, all tasks of the
application have the same complexity (i.e. can be considered homogeneous) and requires
the distribution of a single package of work for each computing node in a single message
Therefore, we can consider that the amount of data transferred between upper level and
lower level nodes is constant, independently of the number of tasks mapped on a processor.
Scalability is then maximized due to the applications highIa f f , which is directly related to
a low communication-to-computation ratio (ccr).

The theorem below proves that, for a given dedicated heterogeneous platform and a
maximum IFA BoT application executed with efficiency levelα, it is always possible to
achieve an efficiency equal or higher thanα in an equivalent homogeneous platform for the
corresponding BoT application. Therefore, the bounds defined in the previous sections are
valid for both homogeneous and heterogeneous dedicated platforms.

Theorem 11. Considering a maximum IFA application executed on a dedicated heteroge-
neous platform with efficiency levelα, there is an equivalent homogeneous platform where
the same application can be executed with efficiency equal or aboveα.

Proof. As defined in [42, 43], the efficiency of a parallel (either homogeneous or hetero-
geneous) system can be defined as the ratio between the best response time achievable for
solving a specific problem in that system and the real response time achieved during al-
gorithm execution. The best response time will be obtained when the workload is evenly
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distributed among all nodes and the overhead time is minimized. For this best case we have:

EF =
W

TR∑i
Wi
Ti

(15)

where EFis the efficiency (α), W is the total amount of work,TR is the total response time,
Wi is the amount of work done by processori andTi is the time required for processorI to
completeWi . Note that the ratioWi

Ti
corresponds tothe processing power of processor Pi.

On the other hand, an application where all tasks share the same input file (Maximum
Ia f f ) minimizes the execution overhead since the input file needs to be sent only once to
each node, if not already locally stored. Therefore, for an application with maximum IFA
we can consider that:

EFHETER=
WHETER

TR∑i
Wi
Ti

(16)

Since theapplication execution is perfectly load-balanced, we have:

Ti = TR (17)

∑
i

Wi =WHETER (18)

For the corresponding HECR platform we have:

EFHECR=
WHECR

TR∑i
Wi
TR

(19)

where∑i Wi = WHECR. Since the X-measure of the HECR platforms may be larger than
or equal to the X-measure of the heterogeneous platform [45], we can consider that both
platforms execute the same amount of work in a timeTR. Therefore:

WHECR=WHETER (20)

We can conclude thatEFHECR= EFHETER.

6. Experimental Results

In this section, we confirm the results presented in sections 4 and 5 twofold. First, we
present simulation experiments that validate previous analytical results. Second, we further
discuss the results presented in the previous sections, clarifying choices and assumptions
and how they impact the results. We also comment on the impact of the results of this
chapter on platform topology definition and application design.

Regarding the choice of presenting simulation results instead of actual platform exper-
imentation, it is worth noting that the motivation for the current study comes from back-
ground acquired in previous experimental studies [5,17,18]. However, experimental studies
are likely subject to the influence of specific characteristics of the platform/application and
several conditions that may not be controlled, in particular for a large number of processors
as required for a scalability analysis.
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For the present study, we consider that each task has an associated computational cost,
whichcannot be changed. Also, each task has an associated communication cost that is due
to input and output file transfer. It is considered that the communication cost of each task
cannot be changed. Such assumptions are consistent with other solid studies on scheduling
BoT applications (e.g., in [3,10,19]).

Various studies on scheduling BoT applications (e.g., in [3]) adopt a measure to express
the ratio between the communication and computation costs, dubbed the communication-to
computation ratio (ccr). It is worth noting that the present study focuses on BoT applications
in which both the execution times and communication times are influential factors for the
application makespan. We do not consider only the case where the ccr is close to zero (i.e.,
we do not consider the case of negligible communication times, for instance). Under this
perspective, the ccr is likely to affect the isoefficiency function of a bag-of-tasks application.
However, it affects the isoefficiency function only by some constant value. The ccr does not
change the asymptotic behavior of the isoefficiency function for BoT applications running
on hierarchical or master-slave platforms. This aspect is illustrated in the simulation results
of this section.
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Figure 3. Isoefficiency function (i.e., the number of tasks needed to maintain the efficiency
at 0.99) for the execution considering the input file affinity.

For the simulation experiments presented in this section, we assume that both the pro-
cessors and communication links are homogeneous and dedicated. We assume that both
the amount of time units to transmit the input and output files and the time units to exe-
cute an application task are related according to the communication-to-computation ratio
(ccr). This is important for the evaluation of applications with different characteristics (i.e.,
different levels of ccr). Our simulator implements a round robin strategy to map tasks to
processors because the round-robin strategy is optimal for running homogeneous BoT ap-
plications on homogeneous and dedicated masterslave platforms [3]. Such assumptions are
important, since our experiments aim at validating the lower bounds presented in previous
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Figure 4. Isoefficiency function (i.e., the number of tasks needed to maintain the efficiency
at 0.99) for the execution without considering the input file affinity.

sections.

6.1. Master-slave Platforms - Experimental Evaluation of Scalability Bounds

In this section, we present experimental results to compare the scalability of two schedul-
ing algorithms, with and without taking into account the input file affinity. Our objective
in this section is to confirm the analytical results presented in section 4. The experiments
whose results are presented in this section were generated using the SimGrid package [47].
First we present results of the execution when the input file affinity is explicitly taken into
consideration. The platform simulated was composed of up to 400 homogeneous and ded-
icated processors, and the application was composed of a variable number of tasks sharing
one single input file. Each task takes 8 time units to complete (tcomp), and the amount of
time needed to send the input files (tinit ) varies in order to obtain different values of the
communication-to-computation ratio (ccr), which can be computed asccr = tinit

tcomp
. In the

following experiments we simulated the following ccr: 1/2, 1/4, 1/8, 1/16 and 1/32. It is
worth noting that these ratios indicate the granularity of the tasks that compose the BoT ap-
plication. The efficiency is kept around 0.99 for all ratios. Figure 3 shows the corresponding
isoefficiency functions. By analyzing the curves shown in Figure 3 it becomes clear that
the execution of applications with high input file affinity is scalable independently of the
granularity of the tasks, if the input file affinity is explicitly considered. It is also clear that
the curves shown are coherent with theorems presented in section 4. We also executed the
same application when the input file affinity is not taken into consideration. In this case
a round robin strategy was used to map tasks to processors. As stated in section 4, the
round-robin strategy is optimal for running homogeneous BoT applications on masterslave
platforms that are homogeneous and dedicated [3]. For those executions the input files are
sent to slave nodes before each task execution. Figure 4 shows the corresponding isoeffi-
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ciency functions, for efficiencies around 0.99. It can be seen that the executionof a BoT
application without considering the input file affinity is not scalable. It is worth noting that
each execution can keep the efficiency to platforms up toPe f f processors. For a number
of processors larger thanPe f f it is simply not possible to maintain the efficiency, indepen-
dently of the granularity of the tasks. This result is also coherent to Theorem 2 and the
observations of Section 4.

6.2. The Scalability for a Master-Slave Architecture - TCP links

The experiments described in this section were carried out on a machine with two Intel
Xeon E5420 2.50 GHz quad core processors with a 6MB cache and memory of 16 GB. For
instance, the simulation of a master-slave platform with 1,000 nodes consumed 68,821 sec-
onds (more than 19 hours) in the above mentioned machine. For this particular experiment
instance, it was necessary to simulate about 1,345,510 tasks in order to keep the efficiency
above 0.9. Experiments simulate the allocation and utilization of resources such as commu-
nication links, the master, and slave nodes for the execution of tasks and the transmission
of files on the master-slave platform according to the communication models. In our exper-
iments, the efficiency level was set as 0.9 in order to compute values of the isoefficiency
function, i.e., our experiments searched for the minimum number of tasks that is neces-
sary to maintain the computational efficiency above this threshold, which can be acceptable
for real master-slave implementations such as grids and clusters. For instance, setting effi-
ciency as 0.99 could rise the computational cost to run our simulation experiments without
the corresponding benefits in accuracy (as the efficiency level dos not change the asymptotic
behavior of the isoefficiency function).

The next experiment assesses the scalability of BoT applications running on master-
slave platforms implemented with TCP links. Our objective is to verify experimentally if
bounds found for the one-port model are valid also for other communication models. Such
experiments explore Simgrid capability of simulating both local TCP links, and multi-hop
routes over wide area TCP links. Results from this experiment are depicted in Figure 5.

As illustrated in Figure 5, the lower bound on the isoefficiency functionF(P) is O(P2)
for master-slave platforms with TCP links. These results show thatO(P2) is lower bound on
the isoefficiency function for master-slave platforms deployed over the Internet. A log-log
scale graphics is provided to illustrate the asymptotic behavior of the isoefficiency function,
and curves forP, PlogP, andP2 are also provided for reference.

6.3. Hierarchical Platforms

For the first experiment presented in this subsection, we considered a 2-level hierarchical
architecture with a fixed number of masters (M = 10) and a binary tree, and no contention
in the transmission of output files. Figure 6 illustrates the results for our experiments on the
isoefficiency function for these two architectures under the one-port communication model.
Experiments simulate three ccr levels to evaluate communication-bound applications (ccr =
0.1), CPU-bound applications (ccr = 10.0), and balanced applications (ccr = 1.0). As illus-
trated in Figure 6, under the one-port model the lower bound on the isoefficiency function
F(P) present the same growth rate asΩ(P2) for 2-level hierarchical platforms, and the
lower bound for a n-ary hierarchical platform present the same growth rate asΩ(PlogP) .
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Figure 5. The isoefficiency function for the pair BoT applications/master-slaveplatforms
with communication infrastructure based on multi-hop TCP links implemented on the top
of WAN networks, with no output file contention. The log-log scale highlights the growth
rate of each curve. Parallel lines means that they have similar growth rates. For instance,
the isoefficiency bounds for 2-level tree present growth rate taht is equivalent toP2 line,
while the isoefficiency curves for binary tree present growth rate similar toPlogP.

These results confirm theoretical results presented in section 5, regardless of the ccr of the
application. A loglog scale graphics was provided to illustrate the asymptotic behavior of
the isoefficiency function, and curves forP, PlogP, andP2 are also provided for reference.

Considering contention in the completion phase, Results presented in Fig. 7 confirm
that the lower bound on the isoefficiency functionF(P) for 2-level hierarchical platforms
under the one-port model isΩ(P2), when tasks with output files of fixed size are consid-
ered. Likewise, results of this experiment confirm that the lower bound on the isoefficiency
function F(P) for 2-level hierarchical platforms under the oneport model isΩ(P3), when
tasks with output files of arbitrary size are considered. In fact, it is possible to observe
from this experiment that, for a given number of processorsP, the ccr affects the actual
value ofF(P). This behavior is expected, since it will be necessary more tasks to maintain
the computational efficiency at a given threshold for applications with larger values of ccr.
However, it is worth noting that the asymptotic behavior ofF(P) is not affected by the ccr.
In other words, results stated in subsection 5.2 hold, regardless of the ccr.
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Figure 6. The isoefficiency function for the 2-level hierarchy and binary treetopologies un-
der the one-port communication model, with three levels of communication-to-computation
ratio (ccr).

7. Discussion

When output file contention should be taken into consideration, is worth noting that the
relative scalability performance of different topologies does not change from the case with
no completion phase contention. For instance, for the one-port communication model, the
balanced n-ary tree will always have a lower bound on the isoefficiency function when com-
pared to 2-level platforms for the cases with no contention, fixed size output file contention
and arbitrary size output file contention. However, some adjustments in BoT application de-
sign may be necessary in order to guarantee application execution scalability. For arbitrary
size output file contention the application designer should keep the number of tasks in the
same order of magnitude of the number of nodes to ensure application execution scalability.

It was also formally demonstrated in this chapter that homogeneous BoT applications
with maximumIa f f can achieve the lower bounds on the isoefficiency function in homoge-
neous and dedicated platforms. In order to approximate this lower bound it may be neces-
sary to combine a number of techniques and mechanisms for BoT application scheduling
and execution that have already been proposed in the literature. Therefore, so that an ap-
plication can achieve maximum scalability on homogeneous and dedicated platforms, the
workload should be evenly distributed among tasks, and input files should be shared among
tasks as much as possible. Another useful technique is to group tasks that share common
files in order to reduce the communication-to-computation ratio, as discussed in [6]. What
becomes clear from the results presented in this chapter is that, regarding scalability, the
combination of these strategies is better than simply deploying a single one.
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Figure 7. The isoefficiency function for the 2-level hierarchy under the oneport commu-
nication model,with two scenarios of contention in the output file transmission (output
files of fixed size and output files of arbitrary size) and three levels of communication-to-
computation ratio.

Conclusion

This chapter presents an analysis of the scalability of BoT applications running on master-
slave and hierarchical platforms for the one-port communication model, with and without
contention in the completion phase. In general, scalability depends on both the communi-
cation model and on the characteristics of the application with respect to input and output
files.

Completion phase contention may also have a direct impact on BoT application execu-
tion when output files have arbitrary size. In this particular case, it is important that the total
number of tasks be of the same order of magnitude of the number of processors. Otherwise
BoT application execution may not be scalable at all.

The previous results were derived for homogeneous platforms. Platform heterogeneity
does not have a direct effect on the isoefficiency function lower bound assessment. How-
ever, for an average case analysis, heterogeneity may impact scalability execution. A thor-
ough investigation of this issue will be the subject of future work.
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Abstract 

In this chapter we discuss the development of parallel applications using the Grid 
environment. Two alternative strategies are widely used: (i) executing large number of batch 
jobs in a coordinated way, and, (ii) executing parallel jobs (using MPI and/or OpenMP). The 
chapter starts with a short description of the parallel computing and MPI standard, then goes 
on to present and discuss various parallelization strategies in Grid environment, including 
integration of MPI in the Grid middleware. A special attention has been given to tools which 
speed-up the job execution, such as a service developed by us called JTS (Job Track Service), 
as well as some techniques for the map-reduce processing model. Finally, the Grid application 
SALUTE (Stochastic Algorithms for Ultrafast Electron Transport) is presented as a case 
study, in order to illustrate some practical aspects of the above topics, covering the Grid 
implementation schemes with and without MPI, graphical interface, use of reservation 
services, visualization and scalability results.  

Since in practice a large part of the computational resources, interconnected in Grids, is 
used for various types of Monte Carlo simulations, many of the tools and services that we 
describe are geared towards such problems. In order to support the execution of such 
computations, researchers use frameworks, libraries and services for launching, monitoring 
and output gathering. In our scientific research we have great experience with using Monte 
Carlo Methods in various applied areas. Our experience with the successfully used tools and 
techniques is also presented in this chapter.  
 

Keywords: grid computing, parallel computing, Message Passing Interface (MPI), grid 
services, Monte Carlo Grid applications 
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1. Parallel Computing and MPI 

1.1. Parallel Computing 

The parallel computing philosophy is based on the idea of using many processing units in 
parallel in order to accomplish a computing task faster. Many techniques have been 
developed in order to achieve efficient parallel execution. The “divide and conquer” paradigm 
is used when the initial task can be divided into independent smaller tasks. When these tasks 
are similar, it is more common to speak of the “map-reduce” paradigm [28], where the 
aggregation of results of the tasks also can be done in parallel. Many of the techniques for 
parallel computing require tighter coordination of the computations, e.g., “domain 
decomposition” involves regular exchange of information around the interfaces.  

The separate computational processes are usually executed on separate processors. In 
general, parallel codes run on shared memory multiprocessors, distributed memory multi-
computers, clusters of workstations or heterogeneous systems that combine some of the 
above. The parallelization approach differs depending on the type of the target hardware 
architecture. Parallelism on shared memory systems (ranging from workstations to large 
supercomputers) is usuallybased on using compiler directives, following standards such as 
OpenMP [52]. On the other hand, MPI (Message Passing Interface) [35] is a standard that 
specifies operations for information exchange that can be used with distributed memory as 
well as with shared memory model. With recent innovations and multi-core machines 
becoming the norm, today's HPC (High Performance Computing) systems can optimally 
employ both of the above programming approaches, thus making hybrid parallel 
programming (MPI+OpenMP) perhaps the most efficient approach for solving large scale 
problems. 

1.2. MPI Standard 

This section is devoted to the usage of MPI in a GRID environment, which is supported by 
the operating system and middleware. First of all it has to be noted that MPI is not a 
programming language, but rather a specification (standard) of the parallel programming 
interface which each MPI implementation has to fulfill.  

The implementations of the interface come as libraries of functions that can be invoked 
from user codes. Although the standard specifies Fortran/C bindings, many popular 
implementations support the use of C++. Because of the usefulness of the MPI paradigm, 
bindings are also available for other popular programming languages, like Python, R, Java, 
although they do not have the same level of support.  

There are a number of open-source MPI implementations such as MPICH, LAM, 
OpenMPI etc., with varying degree of support for the standard versions. Commercial vendors 
like Intel, IBM, PGI, etc. also provide MPI implementations.  

In general terms the idea of MPI is to offer a standard way of developing highly scalable 
parallel applications, using the message passing paradigm. Throughout the years the MPI 
standard has evolved offering relatively low-level access to advanced communications 
hardware. Two types of operations are available in MPI, collective and point-to-point. 
Although collective communications can be implemented with series of point-to-point 
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communications, MPI implementations strive to achieve better performance using hardware 
features where such are available. They also allow for more concise and easy to read 
programs. As a first step towards understanding MPI, one can consider developing parallel 
applications using only the following functions: 

 
 MPI_Init and MPI_Finalize for starting and finishing the parallel program;  
 MPI_Send and MPI_Recv for sending and receiving messages.  
 
Later-on one can add collective operations where it is suitable. One important issue for 

achieving acceptable parallel performance is to overlap communications and computations, 
which is usually done using non-blocking operations.  

The most important hardware characteristics that determine the efficiency of parallel 
execution are bandwidth and latency. Consequently the parallel applications can be divided in 
two classes, bandwidth- and latency-sensitive. 

1.3. Message Structures and MPI Data Types 

An MPI message consists of useful data (payload) as well as envelope, which contains 
information about the source of the message, the destination, tag and communicator.  

The tag is a way of marking different messages so that the target process can wait for 
messages with a specific tag. The communicator denotes a group of processes that participate 
jointly in collective operations. Communication between processes can be “blocking” or 
“non-blocking”. Semantically the call to a blocking operation returns only after the operation 
is completed in the sense that the send buffer can be safely reused or the receive buffer is 
filled with valid data. The non-blocking calls may return before the communication is 
finished and the status of the operation should be checked with additional calls. While the use 
of non-blocking point-to-point operations is widespread, non-blocking versions of the 
collective operations became available in the newest versions of the MPI standard. 

It should be noted that MPI standard is portable across different computer architectures 
and even at runtime it is possible to use machines with substantially different processor 
architectures, e.g., of different endianness. In such case MPI guarantees that data is correctly 
converted on-the-fly. The MPI data types are created to support such kind of portability. The 
correspondence between MPI data types and the C data types is shown below: 

 
 MPI_INT - signed int.; 
 MPI_UNSIGNED - unsigned int.; 
 MPI_FLOAT - float; 
 MPI_DOUBLE - double; 
 MPI_CHAR - char. 
 
There is a possibility for users to create their own types, combining the basic types, 

which is useful in order to aggregate several MPI operations into one. MPI operations are 
performed over arrays of basic or user-defined types. In order to maximize bandwidth 
utilization, one should strive to use larger messages. 
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2. Parallelization Strategies in Grid Environment 

2.1. ‘Conversion’ of a Serial into a Parallel Algorithm 

In most practical cases the application developers have an already developed sequential 
algorithm as a starting point and prefer to use the same algorithm for the parallel execution. 
The conversion of a serial into a parallel algorithm goes through several stages - planning, 
analysis and re-synthesis.  

An important point during the planning stage is to decide on the acceptable trade-offs and 
the target systems for the parallel execution. Since the Grid is usually heterogeneous, it can be 
expected that the application will use only certain parts of the available Grid resources. 
Conceptually one can distinguish between parallel execution on one machine (frequently 
called “worker node”), one cluster or several clusters. The case of “one machine” is the 
simplest since the difference between executing on the developer's machine and the Grid 
worker node will come mainly from the hardware, plus the overhead of launching a Grid job. 
The precise hardware configuration of the target system can be obtained from the Grid 
information system. For example, on the EGI grid infrastructure [41] the information system 
has detailed information about CPU and RAM available through ldap queries.  

The case of using a single cluster is perhaps the most common one and will be considered 
in detail. The case of combining multiple clusters is also important for large scale computing 
tasks, but it involves solving significant challenges. We shall consider the two main 
characteristics of the parallel system in this case: bandwidth and latency. The bandwidth in 
this case will be limited by the bandwidth of the WAN connection being used. It should be 
noted that a cluster with 1Gbps or 10Gbps Ethernet connection between the nodes may 
achieve acceptable parallel performance, especially when non-blocking switches are used, 
because the total amount aggregate bandwidth of the system is much more than the bandwidth 
of a single link. However, when two clusters are interconnected over WAN this connection 
becomes effectively a bottleneck and thus the algorithms should be aware of the network 
topology for maximum efficiency. 

In terms of latency the situation is similar. Inside a cluster one can deploy advanced 
interconnects like Infiniband which offer latencies in the order of 1 microsecond, while using 
WAN connections. One has to take into account that messages may pass through several 
routers and switches in their way, plus the fact that messages cannot travel faster than the 
speed of light.  

Users should also consider the possibility of saturation of the network link, which can 
lead to queuing of packages and even package loss, which is highly undesirable. Since it is 
natural to have different hardware configurations at the different Grid sites/clusters, the 
balanced distribution of the computational loads among them will be a non-trivial problem.  

Based on these considerations, we can expect that most applications will be targeting 
either single worker node or single cluster on the Grid, reserving the case of multiple clusters 
for applications with much higher computational requirements.  

Now we concentrate on the process of developing a Grid application that uses parallel 
execution. Initially we explain a simple way towards parallelising an algorithm. 

Although some algorithms require advanced techniques to achieve efficient parallel 
version, there are many practical cases where this approach will be sufficient: Finding parts 
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of the serial algorithm which can be executed in parallel, i.e., at the same time. This 
requires a thorough understanding of the initial algorithm functioning and rewriting the 
algorithm by using: 

 
 Functional decomposition:Division of the problem in smaller chunks which can be 

executed (processed) in parallel; 
 Data decomposition:Division of the data used by the algorithm in smaller chunks; 
 
Frequently it is easier to perform data decomposition than functional decomposition; In 

any case one should be aware of any interdependency between the resulting tasks. The stages 
during the development of the programme (future application) are: 

 
 Choice of programming paradigm; 
 Choice of the hardware/ middleware environment; 
 Communication harmonisation:Communication means and modes, communication 

frequency, synchronisation, communication overhead adaptation etc; 
 External execution control; 
 Debugging, optimisation; 
 Application wrapping based on the developed programme, required libraries, starting 

scripts, etc. 

2.2. Exploiting Parallelism on the Grid 

There are various approaches for using parallel computing on the Grid environment. Apart 
from MPI one can use other inter-process communication libraries or one can use 
multithreading. With regards to multithreading one can use OS-agnostic or OS-specific 
libraries or rely on the OpenMP standard, which has rich features and it is supported by 
compilers and tools. Multithreading may be preferable on SMP systems [55], but is limited to 
a single machine. Apart from MPI there are other standards, tools and libraries that support 
inter-process communication between multiple machines. The Advanced Message Queuing 
Protocol [39] is an evolving standard with support from multiple vendors. Libraries like 
ZeroMQ [63] may also be used. Some technologies attempt to hide the fact that one is using 
multiple machines, providing single system image or unifying the memory of the distributed 
system.  

Overall we discern several possibilities for running parallel applications on the Grid: 
 
 Single-job, single-site parallel application; 
 Single-job, multi-site parallel application; 
 Single-job, parameter study application; 
 Workflow application with single-site parallelism; 
 Workflow application with multi-site parallelism; 
 Parameter study at workflow level. 
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Parameter study application means an application which has to compute results over a set 
of input parameters. A workflow application is an application that has several stages that have 
dependencies between them. 

2.2.1. Single-Job, Single-Site Parallel Application 

Parallel Grid applications result either from parallelization of existing sequential code or 
creating from scratch a new parallel application. Because of the difficulty in debugging 
applications that run on the Grid one can use a local cluster for developing the application. If 
the access to local cluster is not available, a workstation can also be used, if the amount of 
memory is not a problem.  

Obviously one has more freedom when creating a new parallel application, but in any 
case using the MPI standard is a good choice. Many developers find OpenMP to be easier to 
use, but this will limit the size of problems that can be solved mostly due to the amount of 
available RAM.  

At this stage it is important to understand the memory requirements of the application - as 
a whole and per process so that these requirements can be fulfilled during Grid execution.  

It is also necessary to perform some initial benchmarking in order to understand the 
optimal number of processes and worker nodes that should be requested.  

Since usually Grid jobs are processed as batch jobs, i.e., they do not stream information 
back to the user, during development and testing one can use messaging technology, for 
example via AMQP [39] or ZeroMQ [63], in order to be able to observe in near real-time the 
progress of the job and collect some monitoring information. 

2.2.2. Single-Job, Multi-Site Parallel Application 

An MPI application can be executed on several Grid sites in a parallel way. There are 
different ways how to launch such an application. From the point of view of program logic, 
the parallel application is an ordinary MPI application. However, care should be taken to 
avoid cross-site communications as much as possible. Thus applications that run on multiple 
sites should be aware of the network topology and should be less latency sensitive. There are 
different combinations of middleware that can achieve the launch of such application. When 
the previous versions of the Globus Toolkit [43] were used as grid middleware, it was 
possible to launch using the MPICH-G2 software [51]. A more general way to launch such a 
cross-site job is to start an mpd daemon process (from the MPICH2 or Intel MPI 
implementation) on one node with external connectivity and to make all nodes in the multi-
site configuration to connect to it, joining the MPI ring. We should note that there were 
efforts to develop or use other protocols instead of TCP for MPI communication between 
different clusters. For example some implementations of MPI make it possible to use the 
SCTP protocol, which is message-oriented (like UDP) but also reliable and with congestion 
control (like TCP). We should note that use of protocols like SCTP may require 
administrator's assistance (for example, the standard deployment of Linux OS on the 
European Grid Infrastructure [41] did not enable SCTP protocol). For TCP-based MPI 
communication to work, one also has to take care of the firewall restrictions. Since usually 
incoming communication is possible in the port range 20000-25000, one should make sure 
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that ports are opened only in this port range. Obviously, it will be hard to interconnect clusters 
that have worker nodes behind a NAT.  

2.2.3. Single-Job, Parameter Study Application 

One of the most promising ways of exploiting the large number of Grid resources is the use of 
parameter studies on the Grid. A parameter study is performed when the same code is 
executed with many different sets of parameters. Since the computations are independent, all 
these runs can be done simultaneously, exploiting different Grid resources. The code to be 
executed in the parameter study can be sequential or parallel on its own. In the latter case the 
grid broker should select only resources where the required number of processors is available 
(SMPs, clusters or supercomputers). There are many frameworks that help in launching, 
monitoring and gathering of the results of such applications. Examples are the DIANE 
framework [45], the GANGA framework [46], portals like P-GRADE which has become WS-
PGRADE [60] etc. 

2.2.4. Workflow Application with Single-Site Parallelism 

Workflow applications can be considered as a combination of interdependent operations, 
which are represented by graphs, where the nodes of the graphs are jobs or Grid services and 
the directed arcs represent the job execution dependencies and/or the necessary file transfers 
among the component jobs. Workflow applications are used widely on the Grid since the 
different components (jobs) can be executed on different Grid sites. 

Workflow applications enable the exploitation of parallelism at two levels: 
 
 Inside a workflow node. 
 
If a node of the workflow is a multi-threaded and/or MPI job, this job is assigned to a 

Grid site where the necessary number of processors is available. It is executed, using several 
available nodes/processors on the Grid site. In this way it uses intra-node (e.g., inside an SMP 
worker node) and/or intra-site (e.g., inside a cluster) parallelism. 

 
 Among several workflow nodes. 
 
If there is a parallel branch inside the workflow, then the nodes of the parallel branches 

can be executed in parallel at different Grid sites. This is often called inter-site (multi-cluster) 
parallelism. If the parallel branches contain multi-threaded and/or MPI jobs, then both intra-
node/intra-site and inter-site parallelism can be exploited at the same time. 

2.2.5. Workflow Application with Multi-Site Parallelism 

If communication between sites is possible on a particular Grid, then multi-site parallelism of 
MPI nodes of the workflow is available, as described in 2.2.2. However, there are additional 
options when the workflow engine can orchestrate the simultaneous execution of several MPI 
applications that communicate through other protocols, for example using AMQP or 
ZeroMQ. Embarassingly parallel applications can run with less modification in such a setting, 
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while more complex applications need an extra layer at the top. An example of such 
application is optimization using genetic algorithms, which is described in [15]. The 
additional complexity of implementing this type of parallelism means that it should be used 
only if the size of the problems justifies the efforts.  

2.2.6. Parameter Study at Workflow Level 

As already mentioned, the parameter study approach is a very important class of Grid 
applications and hence it should be supported not only at the job level but also at the 
workflow level.  

The simplest approach of supporting parameter studies at the workflow level is based on 
the “black box” execution semantics. It means that we consider a workflow as a black box 
that should be executed with many different parameter sets. 

2.3. Use of Grid Services to Speed-up Job Execution  

One of the problems that we have not discussed before is the scheduling of parallel jobs. If a 
parallel job is created out of a combination of single-CPU job, e.g., by having the single-CPU 
jobs launch a process that joins the MPI ring, we may have to wait until sufficient number of 
processes have joined. If a parallel job is started as one job in the batch queue, we have to 
consider that it may have to wait until sufficient number of free resources are found. This 
waiting time may effectively destroy the advantage of an MPI job versus a single processor 
job. That is why services are developed that allow for smoother execution of parallel jobs in 
Grid environment. For example, the Job Track Service (JTS) [6] is a new Grid service for 
administration of user reservations, which manages requests for reservations from users 
automatically, in order to ensure that a parallel job will have resources ready when it is 
submitted.The service tries to ensure adequate priorities and faster start of the users‟ jobs. The 
users of the Grid are authenticated with their voms proxy [59] certificates and request in 
advance Grid resources and manage these reservations. The service provides Quality of 
Service in the Grid infrastructure, which is otherwise unavailable, since Grid usage is mostly 
opportunistic. The service was tested on the regional Grid infrastructure in South Eastern 
Europe, used by several Grid applications with high resource requirements. 

The service is based on the messaging paradigm and uses standard protocols like AMQP 
(Advanced Message Queuing Protocol) [39] and XMPP (eXtensible Messaging and Presence 
Protocol) [62] for real-time communication, while its security model is based on GSI 
authentication with voms proxies [59]. It enables resource owners to provide the most popular 
types of Quality of Service (QoS) of execution to some of their users, using a standardized 
model.  

In the next subsections we describe in detail the architecture of this service and its main 
features and advantages. Examples from real-life use of the service by parallel applications 
are provided. 

2.3.1. Motivation for Development of JTS 

The idea to develop the Job Track Service (JTS) comes from experience in operating or using 
Grid clusters from the Grid infrastructures, offered by the Enabling Grids for E-SciencE 
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(EGEE) and SEE-GRID infrastructures [54]. Currently, these two grid infrastructures form 
the European Grid Infrastructure (EGI) [41, 44]. In these types of Grid infrastructures the jobs 
are sent to Grid clusters (also called Grid sites) through a Computing Element (CE), which is 
a standard Grid service that contrls the access to a batch queuing system, which in turn 
controls the access to the Worker Nodes (WN). In large percentage of the clusters the batch 
system is torque [58] and the jobs are scheduled at the site level using the maui scheduler 
[48]. Both torqueand mauiare open source products, developed by Cluster Resources, Inc. At 
the highest level in these Grid infrastructures, the scheduling is performed by a so-called 
Workload Management System (WMS), which distributes the jobs towards Computing 
Elements following the resource requirements, imposed by the user. The predominant types 
of jobs that run on these clusters are sequential jobs, especially those sent from Virtual 
Organizations (VOs) related to the LHC experiment at CERN [47]. Some virtual 
organizations, related to bioinformatics or Earth Science, submit also MPI jobs. 

In this situation it is usually the case that the series of sequential jobs take over the 
clusters and prevent MPI jobs from running, especially when the required number of 
processors of the MPI job is high with respect to the total number of CPUs in the cluster. 
Considering the fact that some of the CERN-related jobs can take a few days to complete, it is 
understandable that parallel jobs may be locked out. It is hard for system administrators to 
take measures against such situations, since they risk the under-utilization of the equipment. 
In this way the high waiting time becomes the main source of MPI job failures and results in 
user dissatisfaction with the service. These issues are studied in more detail in [29]. The 
performance of the regional Grid infrastructure has been studied also in [23]. Different 
methodologies are used in [22]. 

An interesting comparison that underlines the point about losing the benefit of parallel 
execution in case of high waiting times can be seen in [34]. Our test cases were problem 
instances from environmental modeling and prediction, where a typical job involves at least 8 
CPUs with an optimal number of allocated CPUs either 16 or 32.  

These works motivated the search for an interface that could allow a user to request 
certain number of CPUs for a period of time or to dynamically adjust the Quality of Service 
(QoS) for his or her jobs, depending on the membership and roles in the VOs. The availability 
of dedicated resources greatly enhances the user experience, particularly during development 
or testing of Grid applications. This is especially important if an application is being 
developed directly on the Grid, when researchers do not have local resources of the same size. 

For example, in order to verify a certain model one may need to execute several hundred 
jobs, each one using approximately 8 hours on 8 CPU cores. This can be done on a powerful 
Grid cluster of medium size in a few days, while it will take a month on a small local cluster. 

The principles of the Grid architecture are outlined in [12, 14] while in [1, 30, 38] we can 
see other approaches at ensuring QoS in Grid context. 

The main advantage of using this service is that the mauiconfiguration is updated 
dynamically, based on the limitations specified by administrators, thus relieving them of the 
need to make frequent manual adjustments. Taking into account our experience and 
application requirementswe developed a Grid service which allows the users to perform 
advanced reservations and manage Quality of Service for their jobsin our particular Grid 
environment, thus relieving site administrators from the task of monitoringand adjusting the 
maui configuration in order to achieve good overall result. In the next sections we describe in 
detail the architecture of the service and its features and advantages. 
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2.3.2. Architecture of the JTS 

The service is based on exchange of messages, based on the developing standard in 
messaging middleware called Advanced Message Queuing Protocol (AMQP). More 
information about this protocol can be obtained from [39]. This protocol is still under active 
development. We should note that version 1.0 is substantially different from the 0.8 version, 
upon which we based our work. We choose the RabitMQ [53] implementation because of its 
interoperability and robustness. It is written in the Erlang programming language [40] which 
has certain features that enable load balancing and fault tolerance. 

There are well known examples of Erlang applications that achieve exceptionally high 
availability and we believe basing the Grid services onsuch foundation can be beneficial in 
the long run. In [10] one can see how services written in Erlang may be enhanced with Grid 
authentication/authorization. The RabbitMQ messaging broker has a module which can 
interoperate with instant messaging clients using the XMPP protocol. This protocol is used by 
the Jabber services and also by GoogleTalk/Gmail applications.  

In our previous work [5] we have used the RabbitMQbroker to organize reliable 
execution of job workflows and to communicate progress reports back to the user. Our 
experience was positive and we concluded that interfacing with the broker is a relatively 
straightforward process. 

In this way we put at the core of our architecture a RabbitMQ broker (collocated with 
JTS server on Figure 1). The Computing Elements connect with the Broker and register their 
corresponding queues. The clients connect with the broker on behalf of the user and interact 
with the Computing Elements via messages. The messages are always signed and encrypted 
using the corresponding keys and both parties authenticate following the usual scheme in the 
gLite middleware [42]. 

 

 

Figure 1. JTS working scheme. 
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There is a certain freedom in the development of clients for the service and we will see 
later more information about our implementations. When developing the service that is to be 
deployed on the Computing Elements, we tested to make sure it does not interfere with the 
components that are already working there. 

In our experience the main sources of failures of the Computing Elements deployed in the 
regional South Eastern Grid infrastructure is the high CPU load and/or batch system 
instability. Taking into account that there are two supported client software stacks for access 
to the RabbitMQ broker - one in Java andone in C#, we decided to investigate the use of the 
C# bindings via the Mono open source framework [50]. We also considered the possible ways 
to store information about requests that are being handled. Since they are persistent across 
possible restarts of the Computing Element, we added a lightweight database back-end to the 
service, based on SQLite [57]. The requests to the service are divided in two categories. The 
requests of the first category require certain number of working nodes for a given period of 
time.The requests of the second category change the default QoS for the user for a defined 
period of time into one of several possibilities. 

Three grid-wide QoS types are defined: high, low and bonus. The precise meaning of 
these QoS are not yet established, thus administrators are free to map these names into local 
names, which they implement as they see appropriate. 

It is expected that jobs with high priority will have faster start-up, while jobs with low 
priority will have slower start-up and users may tolerate larger delays. The bonus jobs are 
those where the users can tolerate job failures. Such jobs allow the administrators to give 
priority to other jobs by preempting the execution of the bonus jobs. In return for that the 
users expect better overall throughput. 

The requests are processed by the server following the local policy. We use an xml file 
for storing policy information. Three levels of granularity are defined - user, VO and total. 
For each user or virtual organization the site administrator describes the kinds of QoS that are 
allowed for them, as well as the number of Worker Nodes that they can pre-allocate. It is also 
possible to set a limit on the total number of Worker Nodes that can be allocated. 

If a request is granted following the policy a reply is sent to the user and corresponding 
entries are inserted in the database. 

If the request is about reserving worker nodes, a connection with the maui scheduler is 
performed and corresponding command is issued. 

In order to achieve that, we follow the maui socket protocol, described in [48]. The JTS 
component does not have to run with root privileges, but only to use the appropriate key for 
authentication. In the other case, when the user specifies a QoS, the server first maps the grid-
wide QoS (currently high, low, bonus) into a locally defined QoS name, following the local 
policy. A record in the database is inserted, setting the default QoS for this user. The actual 
change happens when the jobs from the user arrive. All user jobs pass through the so-called 
torque submit filter. This filter is usually a perl script specified in the torque configuration 
file. In our case we added a connection with the database to check if there is a record for that 
user. If there is such record and it is valid for this point in time, the QoS for the job is changed 
and then the job proceeds to submission. Reports about success/failures of the QoS requests 
are sent back to the core JTS server via AMQP messages. 

Our experience with this architecture of the server at the Computing Element is positive 
and we believe that such modifications to Grid services are necessary when there is 
substantial number of MPI jobs. 
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The clients for the service need to use AMQP and to be able to perform a rather minimal 
set of tasks, like submission of requests and reception of acceptance/rejection messages. We 
found out that the C# bindings provided by RabbitMQ can be used to write a GUI client, that 
supports all the features that we require and hasa nice look due to use of wxWidgets library 
[61]. A screenshot of the client can be seen in Figure 2. 

In this way we obtain an executable file that can be used in Linux as well as Windows, 
since wxWidgets and Mono have versions for both platforms and thus the executable works 
without modification. A command line client which may be more usable in some situations 
(for instance for writing scripts) has been implemented in Python. In this way we have 
implemented a Grid service providing useful functionality and providing appropriate 
interfaces for use by users and applications, while remaining extendable in the sense that 
more clients and new types of requests can be added.  

 

 

Figure 2. JTS client user interface. 

2.3.3. Initial Experiences 

The service has been tested initially on several Bulgarian Grid sites, which are part of the 
European and regional production Grid infrastructures [41, 54] serving more than 15 different 
virtual organizations. These sites are typical medium size Grid clusters, as follows: 

 
 BG01-IPP - heterogeneous site with 576 CPUs; 
 BG03-NGCC - homogeneous site with 200 CPUs; 
 BG04-ACAD - homogeneous site with 80 CPUs. 
 
All of these clusters have Worker Nodes with Intel Xeon or AMD CPUs and have 

deployed gLite middleware [42]. 
The current set of features is a result of taking into account user's experience with the 

beta versions. It is notable that the running of this service did not interfere with the 
availability and reliability of the Computing Elements. 

For example, the BG01-IPP grid site is frequently rated in the top ten reliable sites and it 
achieved 99% reliability and availability [49]. The service has been enabled for use by 
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members of the env.see-grid-sci.eu Virtual Organization and it greatly improved their 
perception of the Grid. 

For this Virtual Organization the parallel multi-CPU jobs are the norm, with medium 
number of nodes used equal to 8. Using the JTS service users from this VO take over several 
worker nodes in a Grid site and use them until they complete a given simulation. It has also 
been used to fill-up the gaps that happen because of allowing certain jobs from another virtual 
organization (meteo.see-grid-sci.eu) to run at a given time period for 2 hours each day. For 
the site administrators the benefit was mostly in the improved utilization of the site and 
reduced administrative burden of dealing with users' requests and complaints. 

Overall we believe that our goals to achieve certain functionality without adding 
heavyweight deployment requirements have been successfully attained.  

2.3.4. Further Considerations 

We believe that such services that improve the observed behaviour of the Grid infrastructure 
when launching parallel jobs can be of benefit to users, while having little impact on overall 
operations of the clusters. Depending on user demand, they can be enhanced with more 
collaborative features, enabling users to share reservations.  

3. SALUTE: MPI Grid Application 

We have chosen to present an application that uses Monte Carlo methods as this type of 
applications are very popular in grid environment. 

Monte Carlo (MC) methods are based on the simulation of stochastic processes, whose 
expected values, are equal to quantities of interest. MC methods are constructed naturally 
when a physical process is being modeled, for example when considering evolution of 
dynamical systems. There are wide classes of problems where MC methods are the only 
known computational methods of solution. MC methods form the computational foundation 
for many fields of science and engineering including transport theory, quantum physics, 
computational chemistry, finance, etc. 

Here we describe a Grid application, which solves a computationally intensive problem 
arising from semiconductor physics. The underlying stochastic algorithms are of Monte Carlo 
type. The application is called SALUTE (Stochastic Algorithms for Ultrafast Electron 
Transport) for simplicity. 

When using MC method, a set of computational random numbers has to be generated and 
used to statistically estimate a quantity of interest. The probabilistic convergence rate is 
known to be approximately O(N-1/2), where N is the number of computed random samples 
(random walks). A serious drawback of MC methods is that achieving higher accuracy is 
increasingly harder due to the slow rate of convergence. Many methods and techniques have 
been developed with the aim to accelerate the convergence rate of the MC methods. Variance 
reduction methods, like antithetic varieties, stratification and importance sampling [20], 
reduce the variance, which is a quantity that measures the probabilistic uncertainty. Another 
way to improve the convergence is to use quasi-random sequences instead of pseudo random. 
While pseudo random numbers are constructed to imitate the behavior of the truly random 
numbers, quasi-random sequences are deterministic and constructed to be as uniform as 
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possible at the cost of correlation. The quality of the distribution of quasi-random numbers is 
measured with quantities that are defined in different ways. The most popular such measure is 
the discrepancy, which is why we are speaking of low-discrepancy sequences. 

Parallelism is an alternative way to achieve the results of a MC computation faster. If n 
processors execute an independent copies of a MC computation, the accumulated result will 
have a variance n times smaller than that of a single copy. Due to the nature of MC methods, 
it is appropriate to have as many executions as possible to reduce the overall statistical error. 
On the other hand, for a distributed MC application: once a distributed task starts it can 
usually be executed independently with almost no inter-process communications. Due to this 
natural parallelism it may happen that an MC algorithm is preferable than a deterministic 
algorithm with faster convergence by worse parallelism. The subsequent growth of computing 
power, especially that of the parallel computers and distributed systems, allowed for 
distributed MC applications to carry out more and more ambitious calculations [24, 27]. 
Actually, many MC applications and software packages in science and engineering, for 
example, CHARMM [11] for macromolecular dynamics simulation implemented using MPI, 
PMC [36, 37] for nuclear physics simulation on Livermore Message Passing System, and 
MESYST for simulation of 3D tracer dispersion in atmosphere, have already taken advantage 
of the power of parallel systems to achieve a more accurate description of the problem or 
better performance of the computations. 

In order to implement correctly the principle of parallel execution of MC computations, it 
is necessary to use independent random number streams in each subtask. The main techniques 
used in parallel random number generators to distribute sequentially generated random 
number sequences among different processors include sequence splitting and leapfrog. One 
problem with the sequence splitting and leapfrog techniques is that one must either assume 
that the number of nodes is fixed or at least bounded which will prevent the use of 
dynamically scaling distributed MC computations. Another way to generate parallel random 
number sequences is to produce independent sequences by parameterizing the pseudo random 
generators in an appropriate way [26]. The SPRNG (Scalable Parallel Random Number 
Generators) library [56] is designed to use parameterized pseudo random generators to 
provide independent random streams. Some generators in SPRNG can generate up to 231-1 
independent random number streams with sufficiently long periods and good quality[56]. 
These generators meet the requirements of most grid-based MC applications.  

The intrinsically parallel aspect of MC applications makes them an ideal fit for the grid-
computing paradigm. In general, grid-based MC applications can divide the MC task into a 
number of subtasks and utilize the grid‟s scheduling services to dispatch these independent 
subtasks to different nodes [25]. We should point out that the same Grid environment may 
offer different ways to access the computational resources, for example, directly choosing the 
target clusters or leaving the choice to the grid scheduler services. The grid connectivity 
services provide communications options when two grid nodes need to communicate. The 
execution of a subtask takes advantage of the storage services of the grid to store intermediate 
results or to store each subtask‟s final or partial result. When the subtasks are completed, a 
collection service may be used to gather the results and generate the final result of the entire 
computation. 

The inherent characteristics of MC applications motivate the use of grid computing to 
effectively perform large-scale MC computations. Furthermore, within this MC grid-
computing paradigm, we can use the statistical nature of MC computations and the 
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cryptographic aspects of random numbers to reduce wall clock time and to enforce the 
trustworthiness of the computation. 

We should point out that MC algorithms that are based on independent trajectories are 
resilient to failures, which is a desirable property in the Grid environment, since various types 
of failures may happen.  

3.1. Description of the Application SALUTE 

Many problems of interest in transport theory and related areas can be cast as a Fredholm 
integral equation of the second kind. It is instructive to rewrite such an equation as: 

 
 f =K f +φ, 
 

where K is an integral operator, and f, φ are functions in a Banach space of integrable 
functions.  

We present the integral equation in a form that shows the explicit appearance of 
application of the kernel, K, as a linear operator. Monte Carlo methods are merely 
probabilistic ways of applying linear operators. With suitable K's the formal solution of the 
equation is presented as a Neumann series. With MC methods the conventional integral 
equations problems are to calculate linear functional of the solution of the form:  

 

 J (f) = 
D

 h(x) f(x)dx = (h,f), 

 
with h(x) a given function. In order to develop a Monte Carlo method for this problem one 
has to define a suitable random variable, whose mathematical expectation is equal to the 
solution, to determine appropriate initial and transition probability densities (usually, using 
the kernel of the integral operator with some transformations) for the chosen random process, 
to apply one or more variance reduction techniques to reduce the statistical error, and, finally, 
to ensure the accumulation in the appropriate statistical estimator. 

The development and application of the MC methods for simulation of quantum transport 
processes in semiconductors and semiconductor devices has been initiated with works like 
[13, 19]. The stochastic approach relies on the numerical MC theory applied to the integral 
form of the generalized electron-phonon Wigner equation. The evolution at such a time scale 
cannot be described in terms of the Boltzmann transport and therefore a quantum description 
is needed [31]. The importance of active investigations in this field is underlined by the fact 
that nowadays nanotechnology uses devices and structures where the carrier transport occurs 
at nanometer and femtosecond scales. 

A Wigner equation for the nanometer and femtosecond transport regime has been derived 
from a three equations set model based on the generalized Wigner function [32]. The full 
version of the equation poses serious numerical challenges. A simplified version of the 
equation (in the homogeneous case: the Levinson or Barker-Ferry equation, [16, 17]) is 
analyzed using SALUTE. The physical model describes a femtosecond relaxation process of 
optically excited electrons which interact with phonons in single-band semiconductor. The 
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interaction with phonons is switched on after a laser pulse creates an initial electron 
distribution (results are shown in Figure 3).  

 

 

Figure 3. Intracollisional field effect in GaAs. MC solutions |k|f(0,kz,t) versus |k|21014 m-2, at positive 
direction on the z-axis and different values of the electric field E. The evolution time t is 300 fs and the 
number of the random walks per point is N=24 millions. 

 

Figure 4. Evolution of optically generated distribution of electrons in a quantum wire. The Wigner 
function solution at 180 fs presented in the plane z × kz. The electric field is 15 kW/cm along to the 
nanowire. The number of the random walks per point is N=10 millions. 
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Another version of the Wigner equation considers inhomogeneous case when the 
electron-phonon interaction described on the quantum-kinetic level depends on the energy 
and space coordinates [18, 33]. The problem is relevant, e.g., for description of the ultrafast 
dynamics of optically generated carriers. Particularly we consider a quantum wire, where the 
carriers are confined in the plane normal to the wire by infinite potentials. Here we assume a 
Gaussian initial condition both in energy and space coordinates and allow for an electric field 
to be applied along the wire. The MC methods can be used successfully for solving this limit 
case of the equation. The obtained simulation results over Grid characterize the space and 
energy dependence of the evolution time (Figure 4). 

The SALUTE application integrates a set of Monte Carlo algorithms for simulation of 
ultra-fast carrier transport in semiconductors considered in above mentioned versions of the 
Wigner equation. A detailed description of the algorithms can be found in [7, 17, 18]. Since 
development of grid-specific features of an application requires certain programming effort, it 
is important to be able to re-use parts of the code-base for different tasks. 

In all cases we explore the regime of early time evolution of the initially excited 
electrons. Experimentally, such processes can be investigated by using ultra-fast 
spectroscopy, where the relaxation of electrons is explored during the first hundreds 
femtoseconds after the optical excitation.  

In our model we consider a low-density regime, where the interaction with phonons 
dominates the carrier-carrier interaction. Two cases are studied using SALUTE: electron 
evolution in presence and in absence of electric field. Innovative results for GaAs /gallium 
arsenide/ material parameters are obtained using the BG01-IPP grid site. The intracollisional 
field effect is clearly demonstrated as an effective change of the phonon energy, which 
depends on the field direction and the evolution time (see Figure 4). 

The numerical results discussed in Figures 3-4 are obtained for zero temperature and 
GaAs material parameters: the electron effective mass is 0.063, the optimal phonon energy is 
36meV, the static and optical dielectric constants are εs = 10.92 and ε∞ =12.9. The initial 
condition at t=0 is given by a function which is Gaussian in energy, scaled in a way to ensure, 
that the peak value is equal to unity. The initial condition is a product of two Gaussian 
distributions of the energy and space. The k2

z distribution corresponds to a generating laser 
pulse with an excess energy of about 150 meV. The z distribution is centered around zero. 
The side of the wire is chosen to be 10 nanometers. The values of the Wigner function f(z, kz, 
t) are estimated in a rectangular domain (-Q1,Q1) x (-Q2,Q2), where Q1 =400x109 m-1 and Q2 
=66x107 m−1 consisting of 800×260 points. The stochastic error for this case is relatively 
large. The relative mean squared error is in order of 10−3.  

3.2. Grid Implementation 

SALUTE solves an NP-hard problem concerning the evolution time, since the complexity is 
superexponential. On the other hand, SALUTE consists of Monte Carlo algorithms which are 
inherently parallel. Thus, SALUTE is a very good candidate for grid clusters with MPI 
support [2, 3, 4,9, 21]. 

It is proved [16, 17] that the stochastic error has order O(ect/N1/2), where t is the evolution 
time, N is the number of samples of the MC estimator, and c is a constant depending on the 
kernels of the quantum kinetic equations. This estimate shows that when t is fixed and N → ∞ 
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the error decreases, but for N fixed and t large the factor for the error is prohibitive. That is 
why the problem of estimating the electron energy distribution function for long evolution 
times with small stochastic error requires combining both MC variance reduction techniques 
and distributed or parallel computations. 

By using the grid environment supported by the gLite middleware, we were able to 
reduce the computing time of Monte Carlo simulations of ultra-fast carrier transport in 
semiconductors. The simulations are parallelized on the Grid by splitting the underlying 
random number sequences.  

Successful tests of the application were performed at the Bulgarian grid sites using the 
Resource Broker (WMS). The MPI implementation was MPICH 1.2.6, and the execution is 
controlled from the Computing Element via the Torque batch system.  

These initial tests were performed when the sizes of grid clusters were rather small. 
However, they already show some limitations, e.g., the sites must have MPI support enabled 
and the jobs may spend time in the queue waiting for enough resources to be acquired. On the 
other hand, it is difficult to predict what number of CPUs should be requested, since the grid 
information system does not provide directly information on MPI job with what size will start 
immediately. 

 

 

Figure 5. Grid implementation scheme for SALUTE. 

Grid Implementation Scheme (Figure 5): 

 On the User Interface (UI) computer the scientist launches the Graphical User 
Interface (GUI) of the application. The job submission, monitoring and analysis of 
the results is controlled from there. The GUI is written using PyQt, pyopengl and the 
python bindings for the grid functions (mainly the wmproxymethods module 
provided by gLite). 

 The Web Service computer (WS) provides a grid-enabled secure gateway to the 
MySQL database, so that no direct mysql commands are ever run by the user or from 
inside the grid jobs.  
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 The AMGA (ARDA Metadata Catalog) is used to hold metadata information about 
the results obtained so far by the user – for example input parameters, number of jobs 
executed, execution date etc.  

 The user selects input parameters and queries the AMGA server to find if data for 
these parameters are already present or not.  

 If a new run is necessary, the user submits request to the WS computer for 
calculation. 

 The user also selects from the GUI the sites that will run the jobs, and how many jobs 
to be sent to every site. The purpose of this step is to eliminate any known “bad 
sites”, where jobs are simply lost. From the GUI the jobs are sent to the Workload 
Management System (WMS) and information about them is stored at the MySQL 
database via WS invocation. 

 The WMS sends the job to the selected sites.  
 When the job starts, it downloads the executable, which implements the Monte Carlo 

algorithm, from the dCache storage element. The executable is responsible fоr 
obtaining the input parameters from the WS, performing the computations and 
storing the results in the local Storage Element, which may be of any type. After 
finishing the store operation, it calls the WS computer in order to register the output 
and the fact that the run was successful. 

 The jobs are monitored from a monitoring thread, started from the GUI, and 
information about their progress is displayed to the user.  

 Another thread run from the GUI is responsible for collecting the output results from 
the various Storage Elements to the local dCache server. For each output file a 
request for transfer is sent to the File Transfer Service (FTS) computer.  

 The FTS is used in order to limit the number of files that are transferred 
simultaneously, because of the limited bandwidth available. In this way we also 
avoid some scalability limitations of the middleware and we try not to overload the 
Storage Elements. This approach is efficient, because in most cases it will not lead to 
increase of the total time necessary for completing all transfers, since they compete 
for the same network resource. Additional benefit of the FTS is that it provides 
reliable transfer of the files, by retrying the transfers if necessary. This step may be 
omitted, if the sizes of output files are relatively small or alternative options may be 
used. For example, the Globus Toolkit provides other means for reliable file transfer.  

 After a file has been transferred to the dCache, it is registered in the MySQL 
database (by WS invocation).  

 A special computational job is run at a local WN and it is responsible for gradual 
accumulation of the outputs of all jobs into one final result. It checks the MySQL 
database for new results and if they are available at the dCache server, it retrieves 
them locally and performs the accumulation. At regular intervals the accumulated 
results are registered to the dCache and made available for the user.  

 The User can see how the results accumulate in a window, part of the GUI, and thus 
decide if perhaps more computations are necessary in order to achieve the desired 
accuracy. In such case more jobs can be launched. 
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We utilized several programming languages and technologies: Java and tomcat for the 
web services, mysql as a database back end, python with the Qt and OpenGL bindings for the 
GUI, MPI for parallel execution, SPRNG for the random number generation, etc. 

This implementation scheme (Figure 5) offers several important advantages: 
 
 Easy to use Graphical User Interface (Figure 6); 
 Avoids duplication of effort and fosters collaboration between people, interested in 

the same problem via the registration of results in the metadata catalog; 
 Uses the new improved Application programming interfaces, offered by the gLite 

middleware; 
 Uses powerful yet easy to understand scripting language (python) for the GUI, which 

simplifies further developments; 
 Uses efficient C language code for the heavy computations; 
 Fast deployment of the GUI via virtual machines; 
 Control of storage and bandwidth utilization via the FTS; 
 Fault-tolerance - aborted tasks do not present a problem for achieving the final 

results. 
 
Figure 7 shows how the number of jobs successfully executed on the grid increases with 

time, when the new scheme was used for submission of 420 jobs.  
Because of the nature of Monte Carlo computations it is not necessary for the user to wait 

until all jobs are completed. In such case the user can cancel the unnecessary jobs. Normally, 
the execution times of the jobs at the different sites are similar, and the delay in starting is 
caused by lack of free Worker Nodes. Thus our new scheme allows the user to achieve the 
maximum possible throughput. 

The SALUTE grid implementation scheme makes heavy use of many different kinds of 
grid services for solving important scientific problems. In this way bottlenecks and problems 
of the infrastructure can be revealed and investigated. Because of the fault-tolerance of the 
scheme these problems are not critical for achieving the desired results.  

Alternative schemes for performing such kinds of computations were also developed. The 
use of AMQP also proved to be effective, simplifying some of the steps, due to the queuing 
features in the AMQP. 

3.3. Implementation Using Hyperthreading and GPUs 

We should point out that different kinds of organizations of MPI-enabled Grid clusters are 
possible. A cluster that is based on Intel CPUs can have the hyperthreading feature enabled or 
disabled. Since usually enabling hyperthreading does not yield 100% improvement, 
applications should be carefully tested wether they benefit at all and how they should be 
launched. In the gLite middleware there is the option to request full worker nodesthrough the 
wholenodes=yes option. In such case the user can decide how to optimally use the hardware. 
For example, if there is no benefit from hyperthreading, one can launch with less parallel 
processes than the number of available logical CPUs. 
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Figure 6. Graphical User Interface (GUI) for submission and monitoring of SALUTE jobs, and 
accumulation and visualization of their results. 

For our test cluster we also measured the performance of the parallel SALUTE code with 
and without hyperthreading. It is well known that hyperthreading does not always improve 
the overall speed of calculations, because the floating point units of the processor are shared 
between the threads and thus if the code is highly intensive in such computations, there is no 
gain to be made from hyperthreading. Our experience with other applications yields such 
examples. But for the SALUTE application we found about 30% improvement when 
hyperthreading is turned on (see Table 1), which should be considered a good result and also 
shows that our overall code is efficient in the sense that most of it is now floating point 
computations, unlike some earlier version where the gain from hyperthreading was larger. 
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Figure 7. Progress in number of jobs completed after submission of 420 jobs to 21 SEE-GRID sites. 

Table 1. CPU times for all 800 × 260 points, the speed-up, and the parallel efficiency for 

SALUTE execution on MPI-enabled Grid site (BG01-IPP) 

 
 
The GPGPU computing uses powerful graphics cards for power and cost efficient 

computations. State-of-the-art graphics cards have large number (even thousands) of cores. 
For NVIDIA cards one can use CUDA for parallel computations. Parallel processing on such 
cards is based upon splitting the computations between grid of threads. We use thread size of 
256, which is optimal taking into account relatively large number of registers. Generators for 
the scrambled Sobol sequence and modified Halton sequences have been developed and 
tested [8, 9]. For Monte Carlo simulation we use CURAND generator. On the grid the use of 
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GPUs is still not fully supported, but one may first find GPU enabled resources, through the 
information system, and then launch parallel MPI jobs that request whole worker nodes and 
then discover and use the GPGPU devices available. 

Here we present some results using NVIDIA CUDA version 4. Main target system: two 
servers HP ProLiant SL390s G7: 

 
 2 Intel(R) Xeon(R) CPU E5649@ 2.53GHz; 
 96 GB RAM; 
 With 16 NVIDIA Tesla M2090cards. 
 
The properties of the M2090 GPU device (Fermi): 
 6 GB GDDR5 ECC RAM, 177 GB/s memory bandwidth;  
 512 GPU threads; 
 665 Gflops in double precision/1331 Gflops in single precision. 
 
Our codes work on devices with support for double precision (devices with capabilities 

1.3 and 2.0 used). Observations from running the GPGPU-based version. 
 
 Threadsize of 256 seems optimal; 
 Significant number of divergent warps due to logical operators;  
 
Timing results for solving the problem with electric field, for 180 fs, and using same 

discretization as above show that it takes 67701 seconds on one NVIDIA M2090 card, which 
means that one card‟s performance is comparable to that of 3 blades with hyperthreading 
turned off. We believe that this result can be improved, because there could be some warp 
divergence due to logical statements in the code. This issue can be mitigated by changes in 
the way the samples are computed by the threads to make sure that the divergence is limited. 
We also tested the algorithm when running on several GPU cards in parallel. When 6 Nvidia 
M2090 cards from the same server were used to compute 107 trajectories, we obtained about 
93 % parallel efficiency, achieving better performance than 16 blades of the cluster without 
hyperthreading and slightly slower than 16 blades with hyperthreading enabled. For such 
relatively small number of trajectories, the main source of inefficiency is the time spent in the 
cudaSetDevice call in the beginning of the computations. 

Although the advanced kinds of processors like GPGPU devices or Intel Xeon Phi are 
gradually entering in the Grid environment, we believe that the substantial savings in energy 
and cost will make them ever more popular.  

Conclusion 

The Grid environment is a powerful way of aggregating heterogeneous computational 
resources. There are various strategies for parallel execution and the concrete choice should 
be made depending on the performance requirements of the application, taking into account 
practical constraints like the desirable start-up time and requirements for reproducibility or 
robustness, that should be decided beforehand. The Grids interconnect heterogeneous 
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resources and increasingly adopt modern energy-efficient computing technologies like 
GPGPU computing and Many Integrated Cores, which motivates the further evolution of the 
tools, techniques and algorithms.  
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Abstract

Adapting applications for computational grids requires approaches to develop ap-

plications that can effectively leverage available computing resources. This chapter

surveys current programming frameworks to enable scientific applications to run on

grid platforms and discusses the requirements for future programming frameworks that

target computational grids. It focuses on how to enable applications to be distributed

across multiple computing resources and how to support adaptability to available com-

puting resources. The chapter introduces a programming framework based on the con-

cept of pluggable grid service that provides seamless access to computational grids,

using aspect-oriented techniques. Pluggable grid services avoid explicit calls to grid

services in scientific codes, localize grid-specific concerns into well-defined modules

and can be (un)plugged (into)from scientific codes. In consequence, domain-specific

code becomes oblivious of grid issues, allowing scientists to focus on domain-specific

issues and to manage grid issues by composing grid-specific modules.

Keywords: Java, grid, multicore, GPU

1. Introduction

Many applications require computational power that is increasingly harder to be provided

by a single machine. Computational grids enable the access to virtually unlimited compu-

tational power, by aggregating resources provided by multiple organizations [1].

In the latest years, the trend has been on migrating to cloud computing. However, com-

putational grids remain an attractive way to improve the usage of computational resources

in organizations, by pooling available resources, thus providing a cost-effective solution.

Grid infrastructures are built upon computing nodes. In recent years there was a shift

in the characteristics of those nodes. Computing nodes now include multiple processing

cores (i.e., CPUs with many cores) and there is an increasing number of nodes supporting

∗E-mail address: jls@di.uminho.pt
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graphics processing units with generic programming capabilities (GPGPU). These units can

be used to accelerate the processing time of certain computational tasks within applications.

In the future it is expected to see an increasing number of cores per node and a wider variety

of units providing special purpose processing capabilities that can accelerate certain tasks

within applications.

A grid middleware (e.g., Globus, gLite) is a set of components, services and protocols

that enable uniform access to distributed resources in a grid. Grid Programming Frame-

works (GPFs) aim to simplify the development of applications that can run on grid infras-

tructures. These frameworks are built upon the grid middleware in order to automate typical

tasks related to the execution of applications in a grid.

Early GPFs targeted parameter sweep applications, where the application was executed

several times using different parameters. Thus, early frameworks rely on command line

interfaces where the user specifies the parameters for each run, e.g., a Job Description

Language [2]. Grid-enabling codes that do not rely on parameter sweep entail an additional

burden to decompose the application into a set of independent tasks that can be executed

on remote computing nodes. Moreover, parameter sweep may not be appropriate for some

kinds of applications because some tasks may depend on others.

This chapter focuses on GPFs supporting the development of desktop-like applications

that can be enabled to run on computational grids with minimal programming effort. These

exclude frameworks to develop workflow-based applications [3], deploying applications as

grid services and command line tools.

GPFs are essential when the usage of grid computing resources entails execution of

a massive amount of computational tasks. This contrasts with the early usage of grid re-

sources where users submitted a few tasks, which could be easily managed by a command-

line based tool (e.g., a script). Thus, one key functionality of a modern GPF is to help the

programmer to coordinate the execution of a massive amount of grid tasks.

This chapter classifies and discusses the functionality provided by a GPF based on two

dimensions:

• front-end support for the generation of parallel tasks, by exposing parallelism in the

application; this requires the division of the application functionality into independent

tasks, along with the data division across those tasks and the collection of the results

computed by each task;

• back-end support for execution of parallel tasks into remote resources which is com-

monly known by job submission; this includes the selection of appropriate grid re-

sources, deploying the executable on those resources, copying the required input data

into the selected resources, running the application and copying the resulting data

from the remote resources.

Grid computing resources differ from cloud resources in many aspects. One key aspect

that may be effectively addressed by a GPF is the grid resources’ volatility. Grid resources

often cannot be taken for granted during execution. Certain computing resources can be-

come inaccessible during the execution, either due to a fault or due to the necessity to run

a higher priority task. Note that in cloud computing normally a service level agreement en-

sures that the provider delivers the requested computing power during the entire execution

time frame.
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Designing a GPF requires a trade off among different aspects. On one hand, framework

components (e.g, the front-end and back-end) should work in a tightly coupled manner to

provide efficient execution. On the other hand, framework components should be used and

developed in a loosely coupled manner in order to be able to integrate a large set of services

and to make the task of the programmer easier. The most common way to organize the func-

tionality provided by a GPF is to use a classical layered approach (Figure 1): framework

services are organized by levels, ranging from hardware level (lower-level) up to applica-

tion level (upper-level). Within this organization the information flows between levels by

using well-defined Application Programming Interfaces (APIs).

Figure 1. Layered framework.

The classic layered framework organization imposes limitations concerning composi-

tion of services and the support of optional services, since requests must go through all

layers, even if the layer only passes the information. This chapter also presents a GPF that

implements traditional grid functionality through pluggable services, avoiding the explicit

use of API calls among layers.

The next section discusses back-end support in GPFs, starting by back-ends for lo-

cal execution on multi-cores and GPUs, and reviewing several back-ends that support task

execution on grid environments. This section also discusses the difficulty in composing

services in traditional layered frameworks. Section 3 discusses front-end services and their

implementation with pluggable services. Section 4 presents performance results, whereas

section 5 discusses related work. Section 6 concludes the chapter.

2. GPF Back-ends

This section presents various execution back-ends. For illustrative purposes a matrix mul-

tiplication case study is presented, where Matrix C = Matrix A x Matrix B. The sequential
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code is provided in Figure 2. To simplify the discussion and the presented code all matrices

are assumed to be square.

1 for (int row=0; row<size; row++) { // for each row of matrix a

2 for (int col=0; col<size; col++) { // for each column of matrix b

3 sum = 0;

4 for (int k=0; k<size; k++) // dot product of row of A with a column of B

5 sum += matrixA[row][k] * matrixB[k][col];

6 matrixC[row][col] = sum;

7 }

8 }

Figure 2. Base code for matrix multiplication.

In this illustrative case, the innermost loop (lines 4 - 5 in Figure 2) computes a dot

product of a row of matrix A with a column of matrix B. The col loop (line 2) performs this

dot product of a row of matrix A with all columns of the matrix B, storing the results into

the corresponding row of the matrix C.

In order to effectively use a computational grid, a given program must be decomposed

into a set of independent tasks that can be executed in parallel. Hence, the first step in this

case study is to identify those tasks. For the illustrative example, it was decided, among

many options, to compute each row of the resulting matrix C in parallel. Thus, computing

each iteration of the outermost loop in parallel (line 1). In this case, each task generates a

row of the matrix C, reads a single row of matrix A and reads the entire matrix B (Figure

3).

Figure 3. Parallel matrix multiplication.

2.1. Shared Memory Back-ends

After defining the parallel tasks, the next step is to code those tasks into a specific execu-

tion back-end. When the target is a shared memory system (e.g., a multi-core system) the

matrices A, B and C can be shared among tasks.

One simple approach is to use OpenMP as an execution back-end. In this case, a pragma

directive is enough to parallelize the outermost loop (line 1 in Figure 4).

In the case of a Java back-end each task must be encapsulated into a Runnable object.

Moreover, the parallel execution must be enabled by creating a Thread object to run each

task (Figure 5).

Lines 01-20 of Figure 5 declare a Runnable object that specifies the task. Lines 3-5

relate task specific data: input row of matrix A, matrix B and the resulting row of matrix
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1 #pragma omp parallel for shared(matrixA,matrixB,matrixC)

2 for (int row=0; row<size; row++) {
3 // .... matrix multiplication code ...

4 }

Figure 4. Parallel OpenMP code for matrix multiplication.

1 public class MyTask implements Runnable {

2

3 private double[] RowA = null; // Declaration of instance variables

4 private double[][] MatrixB = null;

5 private double[] RowC = null;

6

7 public MyTask(double[] rowA, double[][] matrixB, double[] rowC) { // constructor

8 this.RowA = rowA;

9 this.MatrixB = matrixB;

10 this.RowC = rowC;

11 }

12 public void run() {

13 for (int col=0; col<size; col++) {

14 double sum = 0;

15 for (int k=0; k<size; k++)

16 sum += RowA[k] * MatrixB[k][col];

17 RowC[col] = sum;

18 }

19 }

20 }

21 // main

22 ...

23 // create a thread to process each task

24 for (int row=0; row<size; row++) {

25 MyTask tk = new MyTask(matrixA[row], matrixB, matrixC[row]);

26 Thread t = new Thread( tk );

27 t.start();

28 }

29 ... // wait for threads to complete

Figure 5. Parallel matrix multiplication code with Java Threads.

C to compute. Those parameters are initialized (lines 7-11) at task creation time (line 25).

The computation is performed within the run() method (lines 12-19) which is executed by

the corresponding thread when the start() method is invoked (line 27). In this example,

threads can share the access to A, B and C so each task will receive a pointer to the input

matrix/row and a pointer to the corresponding row in the resulting matrix C (line 25).

In this example each task consists of a single row, which may generate a huge amount of

parallel tasks. To obtain the best performance, a trade off between the number of tasks and

the available resources is generally required. Therefore, each task should compute several

rows of the resulting matrix C. In the previous example it can be addressed by changing the
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task implementation to compute a set of rows of the matrix C, which requires the insertion

of a row loop into the run() method.

The matrix multiplication example is well suited to illustrate the mapping into a GPU

back-end. In a GPU multiple threads execute the same instruction flow in a lock-step (i.e., in

a single instruction multiple data fashion). A GPU version of this case study can be derived

if a GPU thread is assigned to each task (i.e., to compute a row of matrix C). This chapter

illustrates such implementation using the APARAPI 1 back-end, a Java based framework

that generates GPU kernels in OpenCL 2 by translating Java bytecode.

Figure 6 shows the APARAPI implementation (note: for simplicity the code in figure

uses a matrix syntax, but the APARAPI only supports single dimension arrays). The im-

plementation will execute the kernel with as many threads as the number of rows (line 21).

Each GPU thread will execute the kernel run() method (lines 9-17), computing a single row

of matrix C (line 10). The call getGlobalId() returns the current GPU thread id (a number

between 0 and size -1).

1 public class MyGPUTask extends Kernel {
2

3 // ... Declaration of instance variables ...

4

5 public MyGPUTask(double[][] matrixA, double[][] matrixB, double[][] matrixC,

6 int size) {
7 // ... Class constructor ...

8 }
9 public void run() {

10 int row = getGlobalId();

11 for (int col=0; col<size; col++) {
12 double sum = 0;

13 for (int k=0; k<size; k++)

14 sum += MatrixA[row][k] * MatrixB[k][col];

15 MatrixC[row][col] = sum;

16 }
17 }
18 }
19 // main

20 MyGPUTask k = new MyGPUTask(matrixA,matrixB,matrixC,size);

21 k.execute(size);

Figure 6. APARAPI code for matrix multiplication.

Current GPUs have a disjoint address space from the CPU. The APARAPI framework

is in charge of data copying between these address spaces: before kernel execution, matrix

A and B will be copied to the GPU; after the kernel execution the matrix C will be copied

from the GPU to CPU.

1code.google.com/p/aparapi
2www.khronos.org/opencl
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2.2. Grid Back-ends

A grid back-end delegates task execution to computational grid infrastructures. This section

illustrates the concept of a framework offering a grid back-end with the JPPF framework3,

which is a Java framework that supports application execution into a set of remote machines.

Figure 7a illustrates the base JPPF architecture: client entry points provide an API to sub-

mit jobs; server(s) receive jobs from clients and dispatch work to nodes; nodes provide the

processing capabilities to execute requested tasks. In order to avoid a single point of fail-

ure, JPPF also supports a peer-to-peer network of multiple servers, each server managing

multiple nodes. In such case, clients can submit jobs to different servers.

Grid back-ends offer the so-called scheduling functionality (Figure 7b): tasks submitted

by clients are scheduled into available nodes, which may include the execution of tasks into

multiple remote nodes. The framework dispatches each task to an available remote machine

(i.e., grid processing node). In order to enable remote execution, the framework must copy

the task executable and the required data into the remote machine (stage-in); execute the

task remotely and, when the task execution completes, copy the resulting data back to the

client machine (i.e., stage-out).

(a) JPPF (b) Execution steps

Figure 7. GPF architecture and execution mode.

The JPPF framework offers a clean API to execute jobs in a computational grid. The

JPPF client API is mainly based on three classes: Task, Job and Client (see Figure 8).

A Job is a set of tasks, which is submitted for execution using the Client interface. A

Task is a Java class implementing the Runnable interface and supporting serialization (i.e.,

implementing the Serializable Java interface). The Java-based approach simplifies three

important activities performed by a GPF in order to provide remote execution of tasks: data

stage-in and stage-out, executable deployment and remote execution.

To illustrate the use of these classes Figure 9 provides the task implementation of the

matrix case study in JPPF. This example is similar to the initial example with Java threads,

with a few key differences:

1. the task class now extends a JPPF task (which already implements the Runnable and

Serializable interfaces);

2. the memory storage for the computed row is allocated when the task executes (inside

the run method).

3www.jppf.org
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Figure 8. JPPF class diagram.

1 public class MyJPPFTask extends JPPFTask {
2

3 // ... Declaration of instance variables ...

4

5 public MyJPPFTask(double[] rowA, double[][] matrixB) {
6 // ... Class constructor ...

7 }
8 public void run() {
9 this.RowC = new double[size];

10 for (int col=0; col<size; col++) {
11 double sum = 0;

12 for (int k=0; k<size; k++)

13 sum += MatrixA[k] * MatrixB[k][col];

14 rowC[col] = sum;

15 }
16 }
17 public double[] getResult() {
18 return RowC;

19 }
20 }

Figure 9. JPPF task code for matrix multiplication.

The former (item 1) provides a strategy to automatically define the task’s input / out-

put (I/O) data and task executable. Thus, the task is automatically serializable and, using

dynamic remote loading of class bytecode, a remote JVM can load the task data (i.e., by

deserializing the task object), executing the task (i.e, executing the run method of the loaded

bytecode) and saving the resulting data (serializing, again, the task object after execution) in

order to send the results back to the client. The latter item (item 2) is particularly important

to reduce the sent and received data to/from a remote node. When allocating the rowC in

the run method, only data from MatrixA and MatrixB is initially transmitted from the client

to the remote node.

The task interface provides a clean way to specify the work to be performed within a

task and its I/O data. In JPPF, a job consists of a set of tasks and it is submitted for execution

using the client API. Figure 10 shows a complete example.

As stated previously, the Java built-in serialization and code/data portability simplifies

the programmer’s work related to the task definition (including deployment and execution)

and task I/O. To illustrate the additional complexity when these mechanisms are not avail-

able, it is presented the pseudo-code of the same example in the GMarte framework [4]
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1 JPPFClient client = new JPPFClient();

2 JPPFJob job = new JPPFJob();

3

4 for (int row=0; row<size; row++) {

5 MyJPPFTask t = new MyJPPFTask(matrixA[row],matrixB);

6 job.add(t);

7 }

8 // blocks until the job has completed

9 List<Task<?>> results = client.submit(job);

10 ... // process result

Figure 10. JPPF example code.

(Figure 12). A simplified UML diagram of GMarte classes is presented in Figure 11.

Figure 11. GMarte class diagram.

A job is a GridTaskStudy that encapsulates a set of GridTask (those are similar to Job

and Task in JPPF). Each task has to specify its GridExecutableFile and the set of I/O files.

A GMarte task is executed as follows:

1. the application and its dependent input files are transferred via GridFTP from the

client to the remote machine;

2. the application is started in the remote machine via the Globus Resource Allocation

Manager (GRAM) service;

3. when the execution finishes, the output files generated are transferred to the client

machine via GridFTP.
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Figure 12 illustrates a simple code that must be generated in GMarte in order to re-

motely execute a method called compute. The code consists in two parts: the client side

and the server side code. The client side code is in charge of redirecting the execution of the

compute method to remote resources by writing the request to a file that is staged-in to the

remote resource. The GMarte framework is responsible for staging-in this file, for copying

the code of the remote worker (e.g., in this case a jar file), for starting the remote worker and

for staging-out the resulting file. The server side code reads the file containing the request,

executes the requested method and writes a file with the result of the compute call. The

GMarte framework is responsible for copying the required I/O files to the resource where

the worker is executed. If the target language is not Java (e.g., C) additional problems may

arise due to incompatibility between executable and data formats.

1 // client code

2 GridTask gt = new GridTask("worker");

3 GridInputFileSet gifs = new GridInputFileSet();

4 gifs.addGridFile("myapp.jar"); // remote executable jar file

5 gifs.addGridFile(/* RPC request file name */);

6 gt.setGridInputFileSet(gifs);

7 GridOutputFileSet gofs = new GridOutputFileSet();

8 gofs.addGridFile(/* result file name */);

9 gt.setGridOutputFileSet(gofs);

10 TestBed tb = new TestBed();

11 Scheduler scheduler = new OrchestratorScheduler(tb, gt);

12 scheduler.start();

13 scheduler.waitUntilFinished();

14 ... // read result from staged-out file

15

16 // server code

17 public static void main(String args[]) { // remote task to execute

18 Object myData = ... // read data from file staged in by GMarte

19 Object result = compute(myData);

20 ... // save result into output file to be staged out by GMarte

21 }

Figure 12. GMarte example of code.

2.3. Composing Back-ends

Traditional approaches to grid-enable applications require a large programming effort.

Starting with the example of Figure 2 (base sequential matrix multiplication) the program-

mer must create JPPFTask objects and submit them for remote execution. Moreover, the

application becomes grid-dependent by inserting calls to the GPF API into the source code,

the application cannot run without the grid framework, e.g., to run the application solely on

the client machine.

To run applications on modern grid nodes (e.g., which provide multi-core CPUs or/and

GPUs) the burden is heavier, since each task must include also multithreading and/or GPU

related code. For instance, to run tasks on remote GPUs, the developer must create a task

class that extends the JPPFTasks and this task should create a new GPU task that extends
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the Kernel class. This becomes even more complex if the programmer wants to use the

computation power of both CPUs and GPUs.

Simultaneously with the coding of tasks, the developer also has to find out how to

partition the workload into multiple levels of tasks. In the matrix multiplication case study

the original matrix must be initially decomposed into JPPF tasks and each of them must be

further decomposed into GPU or multi-core parallel tasks.

3. GPF Front-ends

A GPF frond-end provides mechanisms to specify potential parallel tasks to execute on

a computational grid. Most tools for gridification [5] enforce invasive and non-reversible

modifications to applications (e.g., to specify parallel tasks and to execute them on a grid

environment) making grid-enabled codes dependent on a grid infrastructure. In addition,

decomposing an application into a large set of independent tasks and submitting them to a

grid constrains application specific optimizations, such as application-level self-scheduling

or fault tolerance. Moreover, current tools focus only on executing applications solely on

grids, without taking advantage of the growing number of cores on every computing node.

This section presents a grid-programming framework that is based on the Java lan-

guage and on the concept of pluggable service in order to simplify the process of migrating

base programs into computational grids. The Gaspar framework aims to grid-enable Java

applications in a non-invasive manner, through a set of pluggable services [6]. These ser-

vices can be composed with a given base program in order to meet the requirements of

each application/target platform. Current services include parallelization, load-distribution

(scheduling), fault-tolerance, remote execution and monitoring.

The framework aims to be a lightweight framework for non-invasive gridification of

Java applications. It relies on minimalist interfaces among services that can be extended to

match application requirements, through a set of pluggable components. Figure 13 presents

an overview of the framework architecture.

The framework is centred on the domain specific code whose functionality can be ex-

tended by ”plugging” a set of services:

1. the parallelization service is responsible for the generation of a set of independent

tasks that can be scheduled into a set of local or remote resources;

2. the load-distribution service performs a more fine-tuned resource selection, based on

the specificities of each resource;

3. the fault-tolerance addresses faulty resources by resubmitting a task for execution

when it fails;

4. the remote execution service manages task execution on remote nodes, which is cur-

rently delegated to JPPF;

5. the monitoring service can manage the progress of tasks execution.

Parallelization service generates tasks to be executed on computational resources, such

as applications that are grid-enabled by the approach. However, it is also possible to use
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Figure 13. Framework layout.

other task providers, for instance by directly (i.e., invasively) creating tasks within the

source code, or by using a skeleton framework [7]. These tasks can be executed on a set of

resources provided by execution services.

The Java language was selected since it provides many benefits:

• a large range of applications today are written in Java;

• performance of the JVM has greatly improved in recent years, being very close to

other traditionally high-performing languages, such as C and Fortran;

• the language provides automatic object serialization and portability across platforms,

both at the level of the data representation and the level of the executables (Java

bytecode);

• the language offers many high level features, for instance, bytecode can be trans-

formed at load-time in order to adapt to specific running conditions.

3.1. Pluggable Services

The key strength of the Gaspar framework is the ability to bind services to base programs in

a non-invasive manner, making it possible to (un)plug these services into/from programs at

any time during and after the gridification process. In addition, connections among services

are also performed in a non-invasive manner, minimizing coupling among services. This

approach makes it feasible to develop grid-enabled applications that do not depend on a

particular:

1. set of services, as services can be plugged only at request to meet certain execution

requirements;

2. target platform, as the code can be tuned to meet (some) specific hardware configu-

rations, such as multi-core machines or machines with a GPU.
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For instance, to run an application on a local multi-core machine, remote execution and

fault-tolerance services are not required. This also presents a performance advantage, since

services can be removed from the system build.

Non-invasive composition of services relies on aspect-oriented programming (AOP) [8].

Two fundamental concepts of AOP are quantification and obliviousness [9]. Quantification

is the ability of an aspect (or service provided by the framework) to specify a set of exe-

cution points where aspect specific behavior can be attached. For instance, a service for

remote execution can attach that behavior to certain procedure calls in Java applications.

Obliviousness is the ability to apply a mechanism to code that was not specifically prepared

for that purpose.

To illustrate these two concepts, consider a pluggable service that prints the name of

every method called. The code in Figure 14 specifies how to apply this aspect to all method

calls (line 1) and print the method name before its call (lines 3-5). The thisJoinPoint con-

struct was used in this case to specify the name of each intercepted execution point (line

4). Both quantification and obliviousness can be observed in this example. First, the set of

method calls to intercept is specified in the pointcut construct (quantification). Second, no

special adaptations are required to the basic code to attach this feature (obliviousness).

1 pointcut events2print() : call(* *.*(..));

2

3 before() : events2print(){

4 System.out.println(thisJoinPoint.getSignature());

5 }

Figure 14. Example of an aspect.

3.2. Parallelization Service

Pluggable services avoid making explicit calls to a parallelization API, replacing those calls

by coding conventions (e.g., using setter and getter methods for each object field). This

brings the benefit of improving the composition of services. After writing the base program

following the required coding conventions, multiple services can be “plugged” without fur-

ther changes to the base program.

The grid parallelization service generates a set of tasks that are executed in parallel using

a map/reduce pattern of computation. The idea is to specify for loops in the base program

that can run in parallel (e.g., each sub-range of the loop iterations becomes a parallel task),

identify the input data required for each task and how the tasks outputs are collected (e.g.,

combined into a single data item).

The coding conventions currently required by the Gaspar framework are:

• task I/O data is stored as object data fields;

• the for loop is encapsulated within a method.

The parallelization service requires the specification of a joinpoint that corresponds to

a method with a for loop and the specification of a scatter and a gather/reduce method. The
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scatter method specifies how the data of the original object is scattered into independent

parts (e.g., when processing an array of data, this method can create several smaller arrays

of data; in a simulation it can generate different parameters for each task). The reduce (or

gather) specifies how the results are combined after executing the map method.

Figure 15 illustrates the coding conventions for the matrix multiplication case study.

Matrix A, B and C are stored into three object fields (line 3). The method compute performs

the actual matrix multiplication, by reading the object field and storing the resulting matrix

into another object field.

1 public class MMult {

2

3 // ... Declaration of instance variables ...

4

5 public MMult(double[][] matrixA, double[][] matrixB, double[][] matrixC,

6 int size) {

7 // ... Class constructor ...

8 }

9

10 public void compute() {

11 for (int row=0; row<size; row++) {

12 // .... matrix multiplication code ...

13 }

14 }

15 }

Figure 15. Matrix multiplication code.

Figure 16 shows how to plug a parallelization service into this example. The implemen-

tation extends the generic service to specify the map method (calls to the compute method,

in this case, line 3); how multiple instances of class MMult are created (line 5) and how

multiple results are combined (line 7).

1 public aspect MMultParallelization extends ParallelizationService {

2

3 pointcut map() : call(void MMult.compute());

4

5 List<MMult> scather(MMult) { ... // create several MMult clones ... }

6

7 MMult reduce(List<MMult>) { ... // merge several MMult objects ... }

8 }

Figure 16. Aspect for matrix multiplication.

The base parallelization service (Figure 17) will plug, on each call to the compute

method in the base program, additional code to call the method scatter, invoke the orig-

inal compute method multiple times, one on each object returned by the scatter method and

combine the multiple results after the execution. The scatter method can invoke the method

getNumberOfTasks() in order to get access to the number of tasks.
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1 around(Object target) : map() {

2 ArrayList tasks = scatter(target);

3 for(int i=0;i<getNumberOfTasks(); i++)

4 proceed( tasks.get(i) );

5 target = reduce(tasks);

6 }

Figure 17. Parallelization service implementation.

3.3. Execution Services

The framework provides several execution services and can be composed with the paral-

lelization service [10] to map parallel tasks into different execution back-ends. Once that

all execution services are “pluggable services” they can be composed with the base program

without requiring any further changes.

3.3.1. Remote Execution

The remote execution service dispatches task execution to resources in computational grids.

The service is currently implemented on top of the JPPF framework. Thus, when the remote

execution service is composed with the parallelization service each generated task will be

dispatched to the JPPF framework, which takes care of all steps involved in the execution.

The implementation of the remote execution service is quite simple with AOP-based

services and it works as follows (see Figure 18 for a pseudo code of the implementation):

1. the base MMult class is transformed into a JPPFTask;

2. each call to the compute method generated by the parallelization service generates a

new task that is added to the current JPPF job; when all tasks have been generated,

the job is submitted for execution;

3. the reduce function merges the results from the job submission.

1 around(Object target) : map() {

2 currentJob.add(target);

3 currentNumberOfTask++;

4 if (currentNumberOfTask == getNumberOfTasks()) {

5 client.submit(currentJob);

6 // ... wait for completion and process tasks ...

7 }

8 }

Figure 18. Remote execution on JPPF implementation.

In this case, the JPPF framework will take care of transferring the I/O data required for

each task, using the standard Java serialization mechanism.
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3.3.2. CPU/Java Threads

The Java threads execution service dispatches each task to a new local thread (or, alterna-

tively, to a local executor service in order to reduce thread creation overhead). When all

tasks have been dispatched the service waits for all threads to complete. Figure 19 shows

the pseudo code of this service.

1 around(Object target) : map() {

2 currentNumberOfTask++;

3 Thread t = new Thread() {

4 void run() {

5 proceed( target);

6 }

7 };

8 t.start();

9 if (currentNumberOfTask == getNumberOfTasks()) {

10 // ... wait for completion and process tasks

11 }

12 }

Figure 19. Java Threads.

In this case the data can be shared among CPU threads (e.g., matrix A, B and C can be

shared among threads to avoid redundant data copies).

3.3.3. GPU/OpenCL

The GPU execution service dispatches task execution to GPUs, based on the APARAPI

framework. The code is similar to the map, but it creates a new APARAPI kernel. Moreover,

the loop in the base program is rewritten in order for each thread to compute a part of the

task. The rewrite of the base program is presented in Figure 20.

1 public void compute() {

2 for (int row=threadid; row<size; row+=totalGPUthreads) {

3 // .... matrix multiplication code ...

4 }

5 }

Figure 20. GPU mapping.

Each GPU thread will execute iterations of the outer loop in a cyclic fashion. The

APARAPI framework will take care of the data copy to/from the GPU memory.

3.3.4. Hybrid CPU/GPU

In certain cases performance can improve by using both CPU and GPU to execute tasks.

However, in such cases, dynamic scheduling is required, since each GPU task can be faster

(or slower) than a similar task when executed on a CPU.
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To deploy a hybrid CPU/GPU execution with pluggable services it is simply necessary

to deploy both CPU and GPU execution services. In such case, CPU thread with id 0 will

be in charge of dispatching tasks to the GPU.

Dynamic scheduling between GPU and CPU on a local node is simply obtained by

selecting an executor service that dynamically assigns tasks to threads.

3.3.5. Compositions of Services

There are several interesting compositions of services:

1. a local execution on CPU, GPU or Hybrid CPU/GPU, by deploying the parallelization

service with the CPU, GPU or both services;

2. remote execution on a single GPU or CPU, by composing the remote execution ser-

vice and the GPU or CPU service;

3. more complex compositions are possible by composing the parallelization service

more than once.

For instance, to deploy remote parallel tasks (e.g., grid tasks where each task is a parallel

task) the first level of parallelization generates a set of tasks that are dispatched to remote

nodes by the remote execution service and a second level of parallel tasks are executed by

local threads.

3.4. Fault-tolerance and Adaptation Services

Migrating scientific applications to computational grids can decrease the execution time.

However, as the number of machines increases also the probability of a fault increases.

Hence, a system that offers fault-tolerance mechanisms is crucial.

One well-known technique to implement fault-tolerance is checkpoint and restart

(CPR). Basically, it consists on periodically saving the application state (checkpointing pro-

cess), which can be subsequently used for restarting the application state (restart process)

in case of fault.

In heterogeneous systems of large dimension, such as computational grids, portability

and optimization are two fundamental requirements that must be guaranteed by the fault-

tolerance mechanism. In grids, applications should also efficiently deal with the resources

volatility, once the resources allocated to a given application can change during its execution

(increasing or decreasing). In more extreme cases applications are forced to restart in a

completely different set of resources. In order to deal with these problems, and at the

same time guarantee portability and efficiency, one should opt for an application level CPR

mechanism adding run-time resource adaptation features. Moreover, the files produced by

application level CPR mechanism can be used to provide a resource adaptation mechanism.

For example, an application may be running on a given machine with 2 cores (e.g., the only

machine available at the time), but if later a 24-core machine is released, it can be stopped

and restarted on the new machine using the latest checkpoint files.

The Gaspar framework provides an AOP mechanism to support fault-tolerance and

adaptation [11]. The state of each task is periodically saved into a safe storage in such
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a way that it can be restarted later. Thus, it will be not necessary to re-execute the complete

task. In order to minimize the overhead, the frequency of checkpoint is selected based on

a trade off between the overhead of the checkpointing process and the expected probability

of a fault.

One key feature of the Gaspar framework is the ability to checkpoint parallel tasks,

which provides an effective mechanism to support adaptation to resources. The basic idea

is to use the CPR service for this purpose. During the restart process the number of threads

can increase or decrease according to the target system. This is feasible since an application-

level CPR is used and all CPR functionalities are provided by pluggable services (i.e., no

changes to the base program are required). The CPR package was built based on four

requirements:

1. portable among different operating systems;

2. minimize the information saved;

3. functional in multiple environments (sequential/parallel);

4. non-intrusive.

Gaspar uses an application level CPR approach. Such approach avoids modifications

to the grid computational middleware along with portable and optimized checkpoint files.

Portability is also extensible to parallel applications. The Gaspar CPR also takes advantage

of AOP, in order to minimize any modifications to the application source code. Furthermore,

the generated code is portable.

Gaspar CPR works as a library that automates checkpoint and restart processes leaving

to the programmer the specification of the local, content and frequency of the checkpointing

along with the methods that can be ignored during the restart phase. Furthermore, for

each of these tasks Gaspar has well defined guidelines to help the programmer throughout

this process. Thus, reducing both the time to restart the application and the amount of

information that will be saved in disk during the checkpointing. In parallel applications

the checkpointing local must be an execution point on the source code where there are

no active synchronization mechanisms during the saving of the application state in disk

(recovery line). Such local is defined as a safe point, even in sequential applications.

During the checkpointing, along with a recovery line, it is also saved the number of safe

points intercepted. During the restart process, in order to reconstruct the stack the library

will execute only the methods that cannot be ignored until the number of safe points saved

is reached.

In shared memory applications, the checkpointing is performed using a coordinated

blocking algorithm, where all threads will call a barrier before and after the master thread

saves the application state to disk. The restart process is performed in a sequential manner,

where thread constructors are also executed. Every thread calls a barrier while waiting for

the master thread to finish loading the recovery line from the disk.

Figure 21 presents a high level overview of the Gaspar CPR packages. The darker

rectangles represent aspects whereas the white ones represent classes.

The aspect CPR Control will verify, at the begin of each execution, if the last execu-

tion terminated successfully. If so the checkpointing process is activated, otherwise the
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Figure 21. CPR layout.

restart process is initiated. All the data to be saved during the checkpointing is specified

in the aspect Allocation. The programmer specifies in the Ignore Method all the methods

that can be skipped during the restart process. The Safe Points aspect is responsible for

counting the safe points and for verifying the appropriate moment for saving/loading the

application state. This moment is determined by the checkpointing frequency defined by

the programmer.

In order to extend the CPR mechanism to shared/distributed memory and grid systems,

without any modification to the CPR base package, Shared Memory, Distributed Memory

and Grid aspects were created. Each one of these aspects adds extra instructions in a non-

intrusive manner to the Base package aspects.

3.5. Profiling and Monitoring

Monitoring and profiling are two services that have been traditional flagship services of

AOP. The Gaspar framework monitors the occurrence of compute methods (e.g., instances

of map executions) in order to monitor the application progress. Additionally, it provides

an AOP library to profile the execution time of methods specified by the programmer.
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4. Evaluation

This section illustrates and evaluates the Gaspar framework with three applications which

were grid-enabled using this framework:

1. matrix multiplication;

2. computation of the Mandelbrot set;

3. molecular dynamics simulation based on the Java Grande Forum implementation

[12].

The first two case studies were selected as representatives of two extremes of computational

properties of grid applications: the matrix multiplication requires a large amount of data,

that increases with the number of tasks; the Mandelbrot set requires less data per task, since

it performs a large amount of computation per data point. However, it suffers from load

balance problems, since each task performs a different amount of work. The third case

study corresponds to typical applications of grid environments.

All applications were non-invasively parallelized. The non-invasive nature of the frame-

work implies that no overhead is introduced into the original code, as gridification modules

can be plugged at any time during and after the gridification process. Thus, when sequen-

tially executing the code no overhead is observable.

For the benchmarks it was used two different sets of platforms:

1. A small local grid with a client machine (Mac Book Air i5 running at 1.7 Ghz) and

two compute nodes, connected by a 100 Mbit network: 1) MacPro with dual Xeon

5130 at 2.0GHz with an ATI HD5770, running OS X 10.6.8; 2) Intel workstation

with dual Xeon E5-2603 at 1.8GHz, running Windows 8.1.

2. 4 machines of the Search cluster4 : 1) 311-1 machine with 8 cores, Intel Xeon CPU

E5420 2.50GHz and 6144 KB cache size; 2) 401-1 and 3) 401-2 both with 16 cores

each, Intel Xeon CPU E5520 2.27GHz and 8192KB cache size ; 4) 601-1 machine

with 24 cores, Intel Xeon CPU X5650 2.67GHz and cache size 12288KB;

All systems used the JPPF 4.2 framework and the OpenJDK 1.7.0. All presented times

are the median of 10 executions.

4.1. Matrix Multiplication

The matrix multiplication case study follows the parallelization strategy presented in section

3. Each grid task computes a set of rows of the resulting matrix C, which requires a subset of

the rows of matrix A and a complete copy of matrix B. Performance figures were collected

with two different matrix sizes: 2000x2000 and 4000x4000. The sequential execution time

of the former size is 92 seconds while the latter takes 1084 seconds on a single core of the

MacPro machine.

4http://search.di.uminho.pt
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4.1.1. Single Remote Machine

The first test evaluates the execution of the case study on a single remote machine (the

MacPro, which has a total of four cores and one GPU). Figure 22 presents four execution

times for each matrix size: 1) JPPF - manually creating a single JPPF job with 4 (parallel)

tasks; 2) Gaspar CPU - using the Gaspar framework to generate a single JPPF job with

a single task which spawns 4 local threads to perform the matrix computation in parallel;

3) Gaspar GPU - using the Gaspar framework to generate a single JPPF job with a single

task which performs the matrix computation in the GPU; 4) Gaspar CPU+GPU - using the

Gaspar framework to generate a JPPF job with a hybrid CPU/GPU task implementation.

Figure 22. MMult case study on a single remote machine.

The Gaspar CPU implementation presents better performance than the base JPPF im-

plementation since it generates less tasks and consequently less data copies: the matrix B

is copied only one time while the base JPPF requires one copy per task. The Gaspar frame-

work also enables the transparent execution on a remote GPU (by using the APARAPI

framework), which provides lower execution time. However, the shortest execution is ob-

tained by generating a job that can use all the available resources by running part of the

computation on the CPU and another part on the GPU.

4.1.2. Multiple Remote Machines

The second test executes the matrix multiplication case study on two remote machines.

These machines together provide 12 computational cores (4 cores on the MacPro plus 8

cores on the Intel workstation). Thus, to effectively use this small computational grid a

minimum of 12 tasks should be generated. Since this case study requires a large amount

of data, the base JPPF implementation is not feasible in this configuration due to excessive

overhead. Thus, this section only provides results for the Gaspar CPU. Moreover, since

those machines have different computational capabilities, the best performance might be
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attained by using the scheduling facility of the JPPF framework, which dynamically assigns

tasks to remote machines. In this case a demand driven policy was selected (see Figure 23).

Figure 23. MMult case study on multiple remote machines.

In this case each task in a job spawns a number of Java threads corresponding to the

available cores in the remote machine (either 4 or 8). For the smallest data set the best

performance is provided by spawning 2 tasks, one per node. For the largest matrix size an

additional benefit arises from using 4 tasks since it provides a better load balancing. In both

cases using a larger number of tasks is not feasible.

The matrix multiplication is a typical application that provides a low ratio between com-

putation/communication to be feasible for a grid environment. The time to copy the data to

a remote machine is 56 and 190 seconds for the smallest and largest data set. Moreover this

overhead increases with the number of tasks. This explains the limited gains of this case

study.

4.2. Mandelbrot Set

The second case study is the computation of the Mandelbrot fractal set. This case study

differs from the matrix multiplication in two ways:

1. the computation performed per data item is higher;

2. the load per task is highly unbalanced.

Thus, in theory this case study should scale better on a grid environment if the load is

well balanced across machines.

The Mandelbrot computation was gridifyed by computing a set of lines of the resulting

image on each task. Each task requires 6 double values that represent the origin point, scale

and size of the Mandelbrot space to compute.

Figure 24 provides performance results for the computation of an image of 2000x2000

using a maximum of 50000 iterations per Mandelbrot point on 12 computational cores of
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the local grid. The X-axis shows the number of generated tasks. In this case there are at

most 2000 tasks, since a task computes one or multiple lines of the image. Two performance

results are present for the Gaspar framework:

1. Gaspar 1 level - relying solely on the JPPF task scheduling, which generates tasks

with 4 or 8 threads, depending on the target machine;

2. Gaspar 2 levels - relying on the Gaspar local node scheduler, which generates tasks

on each node with an excess of local threads (in this case twice the number of local

cores).

Figure 24. Mandelbrot case study on multiple remote machines.

The base JPPF implementation attains the best performance with 250 tasks (about 20

tasks per core). This is the best trade off between the overhead of tasks (which increases

with the number of tasks) and the load balance (which is poorer when using less tasks).

The 1-level Gaspar requires slightly more tasks to attain the best performance since:

1. the task overhead is lower (e.g, there are 4-8 less JPPF tasks in a job);

2. an higher number of JPPF tasks is required for a good load balancing since there are

less JPPF tasks per job.

The 2-levels Gaspar provides the best results as it generates less JPPF tasks in a job, and

provides a local load balancing: each JPPF task has more threads than the available local

cores. Thus, this implementation performs load balancing at two levels:

1. among compute nodes, using the JPPF task scheduler;

2. among cores in a compute node, using the Gaspar local scheduler service.
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4.3. Molecular Dynamics Simulation

Molecular dynamics simulation is a popular kind of scientific application. In this kind of

application a set of particles (that comprise a molecule and a solvent) interact in a series of

time-steps. At each time-step the set of forces acting on each particle is computed and a new

particle velocity and position is computed for the next time-step. Most of the computing

time is spent on the computation of the forces acting on each particle on the system.

The JGF implementation models the simulation using two base classes:

1. the MD class implements the simulation code;

2. the Particle class implements the particle representation and the force computation

among particles.

For this case study, the performance of the base JGF implementation was improved by

changing the particle representation to use a class of arrays instead of the original array of

pointers to particles. This provides both an improvement in the sequential execution time

(a speed up to 1.3) and better scalability due to a more memory-friendly data layout [13].

1 public aspect MDGrid extends ExecutionService {

2

3 pointcut map() : call(void MD.computeForces());

4

5 List<MD> scatter(MD) {

6 ... // create several MD clones

7 }

8

9 MD reduce(List<MD>) {

10 ... // merge the several MD clones

11 }

12 }

13

14 public aspect MDParallelization extends ParallelizationService {

15 pointcut map() : call(void MD.computeForces());

16 }

Figure 25. Aspect to grid-enable the JGF MD case study.

Figure 25 illustrates the code required to grid-enable this benchmark. The code in lines

1-12 specificies task execution through the grid back-end:

1. each task will compute a subset of the forces (map pointcut in line 3);

2. each task receives a clone of the original MD object (the scatter method, 5-7);

3. after execution the multiple MD instances will be reduced into a single instance (in

this case, by summing the forces computed by each task).

The code in lines 14-16 extends the base parallelization service to divide the force

computation of each task among several local threads (map pointcut). In this case, scatter

and gather methods are not required since all threads can work on the same MD instance.
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Figure 26 compares the execution of the base JPPF implementation (with 19652 parti-

cles), by using JPPF sequential tasks against the Gaspar implementation (from Figure 25),

which generates parallel tasks, each task spawning a number of threads equal to the number

of physical cores in each grid node. The X-axis presents the number of parallel activities

generated (i.e., the number of tasks multiplied by the number of threads within each task).

Figure 26. MD case study on multiple remote machines.

The Gaspar attains the best performance since the task overhead is lower (e.g, there are

4-8 less JPPF tasks in a job). In this case, generating a larger number of tasks imposes a

higher overhead than in previous case studies, since each task requires a copy of the full set

of particles, which is the main source of overhead of the remote task execution process.

4.3.1. CPR and Adaptation

All the tests shown in this section were performed on the cluster using the 401-1, 401-2,

311-1 and 601-1 machines.

Figure 27 shows the overhead of using the CPR with the aspect approach against intru-

sively inserting the CPR routines directly on the source code, tested on the 401-1 machine.

The aspect’s overhead was tested with four different particle sizes, each one of them tested

with one checkpoint (1CP) and zero checkpoints (0 CP) per execution. In all the tests the

highest overhead was less than 0.52 % corresponding to 0.02 seconds.

Figure 28 shows the benefits of resource adaptation using different machines of the

cluster. In this test there were used 500000 particles with only one step of simulation,

which takes sequentially around 1700 seconds on the 311-1 machine. The iterations of the

force calculation between one particle and the remaining were divided among four different

tasks. The first task (task 0) received the first 125000 iterations ([0,125k[), the second task

(task 1) received the second 125000 iterations and so on. Each task was executed on a

different machine, using a different number of threads: - task 0 on the 401-1 with 8 threads;

task 1 on the 401-2 with 16 threads; - the first part of task 2 was executed on the 311-1 with
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Figure 27. CPR - Overhead of the Aspects.

2 threads while the second part was executed on the 601-1 with 16 threads; Finally, task 3

was executed on the 601-1 machine with 16 threads. For these tests the checkpoint local

was the moment after each iteration of the force calculation between one particle and the

remaining. Each task saved their application state on file after reaching 62500 safe points,

thus performing one checkpointing per task execution. The number of safe points is based

on the number of force iterations performed by all the threads within a task.

Figure 28. CPR - Grid Adaptation.

As it is possible to see in Figure 28 task 2 was taking by far the longest execution time,

once it was being executed in a slower machine with only 2 threads. Therefore, after task

2 finishes to save their state in disk the task was aborted and restarted on a new machine
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(601-1) with 16 threads using the checkpoint files from the previous execution. On the new

execution, task 2 only had to calculate the force iterations between 315000 and 375000,

hence calculating half the iterations with 4 times more threads. Therefore, speed up of 6.2x

was obtained.

5. Related Work

There are many systems that implement a grid back-end. The Java GAT [14] is a grid API

that aims to provide a simple interface to multiple grid middleware. Gridgain [2] is an open

source framework designed specifically to support the development of grid applications,

similar to JPPF. Ibis [15], ProActive [16] and HOCs [17] provide a front-end and back-end

support to develop parallel applications that can take advantage of grid systems. Grid-

enabling applications in these approaches require invasive and non-reversible source code

changes. In these approaches grid-enabled scientific applications become dependent of the

grid middleware.

GEMLCA [18] and GRASG [19] are two frameworks supporting non-invasive gridifica-

tion of scientific codes. These approaches perform a coarse grain gridification, by deploying

scientific codes as grid services. These approaches lack of support for fined-grained decom-

position of the application functionality to take advantage of grids computational power.

Non-invasive fine-grained gridification has been applied to applications that adhere to

specific coding conventions. The Pagis system [20] explores the use of reflection tech-

niques to gridify applications structured accordings to the paradigm of process networks.

AOP techniques have been previously applied to abstract the remote execution process of

Java thread-based applications [21] and to implement the adaptation of a skeleton frame-

work [22] to cluster and grid environments [7]. [23] introduces a bytecode gridifier that is

non-invasive. The current implementation provides a connector for acessing grid services

through the Satin, which is part of the Ibis GPF.

Montera [24] is a GPF that targets Monte Carlo simulations, which also provides a two-

level scheduler. [25] provides a MapReduce framework also based on a two-level scheduler.

There are several Java frameworks that can off-load the execution of certain parts of

a Java application into the GPU (see [26] for a recent overview and benchmarks). These

frameworks include APARAPI and Rootbeer [27]. These frameworks require the develop-

ment of both CPU and GPU kernels, since they provide a specific API for GPU. However,

they relief the programmer from having to write CUDA or OpenCL specific code, as all

code can be written in plain Java. Several works support the transparent execution of appli-

cations into GPUs. Java-GPU [28] introduces annotations to off-load certain Java methods

into a GPU. It transforms certain loops into GPU kernels in a way similar to the Gaspar

framework. None of these works supports computational grids.

The presented framework differs from these previous efforts by supporting non-

invasive, fine-grained, gridification of scientific codes, without requiring the source code

to adhere to specific API. In addition, gridification services are pluggable, supporting the

adaptation of the application to specific running conditions, including the execution on a

sequential machine, on multi-core systems and on computational grids composed by multi-

core machines with GPUs.
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Conclusion

This chapter introduced the current state of the art of grid programming frameworks and

presented a framework based on the concept of pluggable service. Computational grids are

supported by providing a pluggable service to a lightweight grid framework (JPPF), which

can take advantage of desktop grids. The framework is a feasible way to take advantage

of the computational power offered by modern machines, which now frequently provide

multiple cores as well as programmable graphic processing units.

The presented framework takes advantage of the Java language to promote a seamless

usage of grid resources, both at system level and at application level:

1. in order to deploy a computational grid the JPPF framework only requires running

a small Java bootstamp program on each computing node and a driver program to

coordinate the process of task dispatch to those computing nodes;

2. in order to port a given program to a computational grid, most of the typical burden of

the porting process is simplified since Java intrinsically provides object serialization

and code/data portability across platforms.

In the future it is expected to see an increasing number of cores per node and a wider

variety of units providing special purpose processing capabilities that can accelerate certain

tasks within applications. As many of those machines become widely spread across or-

ganizations, it will be of critical importance to enable seamless access these heterogeneous

resources, preferably requiring the same programming effort as of building traditional desk-

top applications.
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remote task execution,” Concurrency and Computation: Practice and Experience,

vol. 18, no. 15, pp. 2021–2036, 2006.

[5] C. Mateos, A. Zunino, and M. Campo, “A survey on approaches to gridification,”

Software: Practice and Experience, vol. 38, no. 5, pp. 523–556, 2008.

[6] J. L. Sobral, “Pluggable grid services,” in Grid Computing, 2007 8th IEEE/ACM In-

ternational Conference on, pp. 113–120, IEEE, 2007.

Complimentary Contributor Copy



Grid Programming Frameworks 185

[7] J. L. Sobral and A. J. Proenca, “Enabling jaskel skeletons for clusters and computa-

tional grids,” in Cluster Computing, 2007 IEEE International Conference on, pp. 365–

371, IEEE, 2007.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. marc Loingtier, and

J. Irwin, “Aspect-oriented programming,” in ECOOP, SpringerVerlag, 1997.

[9] R. E. Filman and D. P. Friedman, “Aspect-oriented programming is quantification

and obliviousness,” in Workshop on Advanced separation of Concerns, OOPSLA,

vol. 2000, 2000.

[10] B. Medeiros and J. a. L. Sobral, “Aomplib: An aspect library for large-scale multi-core

parallel programming,” in Proceedings of the 2013 42Nd International Conference on

Parallel Processing, ICPP ’13, (Washington, DC, USA), pp. 270–279, IEEE Com-

puter Society, 2013.

[11] B. Medeiros and J. L. Sobral, “Checkpoint and run-time adaptation with pluggable

parallelisation.,” in ICPP (G. R. Gao and Y.-C. Tseng, eds.), pp. 434–443, IEEE,

2011.

[12] L. A. Smith, J. M. Bull, and J. Obdrizalek, “A parallel java grande benchmark suite,”

in Supercomputing, ACM/IEEE 2001 Conference, pp. 6–6, IEEE, 2001.

[13] N. Faria, R. Silva, and J. L. Sobral, “Impact of data structure layout on performance,”

in Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro

International Conference on, pp. 116–120, IEEE, 2013.

[14] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. van

Nieuwpoort, A. Reinefeld, F. Schintke, et al., “The grid application toolkit: toward

generic and easy application programming interfaces for the grid,” Proceedings of the

IEEE, vol. 93, no. 3, pp. 534–550, 2005.

[15] R. V. Van Nieuwpoort, J. Maassen, G. Wrzesińska, R. F. Hofman, C. J. Jacobs, T. Kiel-
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Abstract 

BOINC desktop grids have been used for more than a decade for running grand challenge 
applications. In this chapter we show those technologies, and particularly virtualization and 
cloud solutions, that make BOINC desktop grids more generic and speed up the execution of 
existing grid-enabled parameter sweep applications without porting them to BOINC and 
eliminate the tail problem of volunteer BOINC systems. Furthermore, we show a technology 
by which institutional and public desktop grids can be created in a few minutes in clouds and 
used without any BOINC knowledge. 
 

Keywords: gLite, BOINC, volunteer computing, desktop grid, cloud 

Introduction 

Desktop grids (DG) provide the cheapest possible way of building large computing 
infrastructures for e-science. BOINC became very popular to support grand-challenge 
scientific applications like climate research, anti-cancer research, etc. However, its mass 
usage among scientists has not happened so far although, most of the scientific applications 
are large parameter study simulations where BOINC-like volunteer computing could help a 
lot. The reason is that porting an application to BOINC is not straightforward. In SZTAKI, 
we have developed several tools that made the porting much easier, but the real breakthrough 
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has happened when we introduced virtualization in the BOINC client. We have developed 
GBAC (Generic BOINC Application Client) [10] based on VirtualBox virtualization 
technology. As a result, porting does not require any effort and existing applications can be 
instantly used in BOINC systems without preregistering them on the BOINC server. We have 
also developed 3GBridge [9] that enables access to BOINC systems via a high level job 
submission interface, and hence users can exploit BOINC systems even from complex 
workflow applications. 3GBridge also enables the connection of BOINC to other types of grid 
middlewares such as gLite [1], ARC [2], and UNICORE [4]. In this way, for example, gLite 
based middleware can be extended with institutional and volunteer BOINC systems in a 
transparent way. As a result, gLite users can access larger number of free resources without 
changing their applications. 

Cloud computing [12] opens a new horizon to support the DG systems and hence, can 
help in many ways to further disseminate the idea of desktop grids and make them easily 
accessible for researchers. The first aspect in which clouds can assist volunteer desktop grids 
is the possibility of significantly reducing the tail problem [22] (occurs when failures of 
unreliable resources accumulate and cause significant delay in the last 10% of batch) by 
extending a desktop grid with dedicated cloud resources. The number of these resources can 
be increased and decreased according to the number of tail tasks in the different computations 
running in the desktop grid. The second issue that prevented researchers from extending their 
existing grid infrastructure (for example, Globus [3]), with DG systems was the difficulty of 
creating and installing BOINC systems. Cloud computing solves this problem by providing 
an extremely easy and fast way to deploy the core BOINC system in a cloud, and then extend 
it with volunteer resources. We have created such a system to demonstrate the applicability of 
this technology. This approach can be used in a more generic way to create any kind of 
architecture in the cloud on demand. 

The chapteris organized as follows. First, we shortly summarize the BOINC volunteer 
desktop grid technology and one of its projects, called EDGeS@home, that was created for 
EGI (European Grid Infrastructure) user communities. Next we explain how the gLite based 
VOs (Virtual Organizations) can be extended with BOINC desktop grids, and particularly 
with EDGeS@home. Afterwards, the chapter introduces the GBAC virtualization technology 
and its advantages. Then the chapterfocuses on how clouds can be used to eliminate the tail 
problem in desktop grids. Later, we show examples on how EGI user communities access and 
use EDGeS@home. Subsequently, the chapter shortly describes the One Click Cloud 
Orchestrator (OCCO) cloud deployment tool and its usage for quickly creating BOINC 
desktop grid systems without BOINC knowledge. Finally, we summarize the most important 
aspects of related research. 

EDGeS@home as a Volunteer Desktop Grid 

The generic mechanismof BOINC-based volunteer desktop grids can be summarized in the 
following way. Volunteers join the project by downloading and installing a piece of 
lightweight software: the BOINC client. First, the client downloads the registered application 
binaries from the BOINC project. Second, it periodically fetches new input files and 
parameters for the application in a form of so called workunits. These downloaded tasks are 
then processed in the background on the volunteer resources. 
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Any application supported by a desktop grid must be deployed and registered in the 
project, thus it is not possible to submit and run arbitrary ones. Also, there is no possibility of 
communication between running tasks, theso called embarrassingly parallel applications are 
supported only. Therefore, desktop grids are best suited for bag-of-tasks or parameter study 
type applications, where the applications do not changeoften. 

EDGeS@home is a BOINC [5] based volunteer desktop grid project established with the 
goal to support EGI (European Grid Infrastructure [19]) user communities in executing large 
parameter sweep applications. Running since 2008, it has beenstarted under the Enabling 
Desktop Grids for e-Science (EDGeS) EU FP7 project [15]. It was maintained further by the 
successor of EDGeS, the European Desktop Grid Initiative (EDGI) [8] until late 2012 and is 
currently maintained by the International Desktop Grid Federation Support Project (IDGF-
SP) [16]. EDGeS@home has currently over 13,000 registered volunteers with 21,000 
registered hosts.  

Traditional desktop grids usually target a single grand-challenge scientific problem. 
Contrary to the traditional ones, EDGeS@home is running multiple applications, making it an 
“umbrella” project in order to support as many EGI user communities as possible. Any 
volunteer has the freedom to select which application(s) he or she wants to support from the 
deployed ones. This means that applications are usually competing with each other for a 
given set of resources and each of them can typically use a fraction of the client machines 
registered for the project. At the time of writing, EDGeS@home hosts 10 applications from 
different science domains such as physics, logistics or biology, and a framework called 
Generic BOINC Application Client (GBAC, to be discussed in a later section) [10], which 
allows running arbitrary applications inside virtual machines. 

EDGeS@home is part of the IDGF desktop grid Regional Operations Centre (ROC) in 
the EGI infrastructure. This centre collects volunteer resources, each of its sites representing a 
BOINC project. The ROC has been founded with two sites, one of which is EDGeS@home, 
in order to make the volunteer BOINC projects visible for the EGI user communities as 
normal gLite resources. The ROC has the same services as normal resource sites have: 
information system, workloads management system, job submission interface, monitoring 
and accounting system, and authentication. The EDGeS@home BOINC project is open for 
EGIscientists for submitting jobs. 

EGI user communities typically use ARC [4], gLite [1] and UNICORE [2] middleware 
based grid systems. They have got used to these grids, and quite oftenthey are not prepared to 
learn a new type of grid middleware like BOINC. Therefore, if we want to support these 
communities we have to solve the issue of automatically transferring parameter sweep 
application jobs from their grid infrastructure into the EDGeS@home BOINC infrastructure. 
The advantage for the users is accessing hundreds of thousands of resources which is a higher 
scale than ARC, gLite or UNICORE usually provides. To achieve this goal the EDGI EU FP7 
project has extended ARC, gLite and UNICORE with the capability of transferring jobs to 
BOINC desktop grids. In the next Section, as an example, we describe this solution for gLite. 
The interested reader can find the description of the ARC and UNICORE integration as well 
in the deliverables of EDGI project [8]. 
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Figure 1. EDGI Infrastructure to bridge gLite jobs to BOINC DGs. 

Extending gLite VOs with BOINC Systems 

The goal of extending gLite VOs with BOINC systems is to transparently transfer parametric 
jobs from a gLite VO to one or more supporting BOINC systems, and to distribute large 
number of job instances of parametric jobs among the large number of BOINC client 
resources.  

In order to extend gLite VOs with BOINC systems we have designed a bridging solution. 
The key component is the modified Computing Element (mCE; see “EDGI gLite modified 
CREAM CE” in Figure 1). It extracts the job from the gLite system and transfers it to a 
remote desktop grid site. On the remote BOINC server a Generic Grid-Grid (3G) Bridge 
service [17] (“3G Bridge”inFigure 1 is running to receive the incoming jobs and to insert 
them into the BOINC server. These two components (modified CREAM [1] CE and the 3G 
Bridge) in the infrastructure represent the two pillars of the bridge.  

To control which jobs can be transferred through the bridge, the EDGI application 
repository [18] (“EDGI Application Repository inFigure 1) has been introduced. This 
contains those registered applications that are validated for the gLite→BOINC execution. 

Concerning the security mechanisms of the two middleware, in gLite, compute resources 
trust the user who is holding a certificate, and accept any kind of executable from a trusted 
user. In desktop grids the compute resources (i.e., the clients, or donors, who offer their 
resources) trust the DG project server, and accept only pre-registered and validated 
executables. To overcome this conceptual difference we combined the two concepts by 
restricting the applications that can be passed from the gLitesystem to the particular DG 
system. This means that the transfer is only realized when a trusted user submits an 
application that is trusted by the target DG system. Enabling the transfer is done by the 
central EDGI Application Repository (AR) that stores the validated/trusted applications with 
all of their executable binaries to be submitted, and with a list of DG systems that trust and 
has registered this application. Applications are registered by the admins, users can list/query 
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or request new registrations on demand. The EDGI AR [25] distinguishes several platforms 
(gLite, BOINC, XtremWeb, etc.) for which developers can upload the compatible binaries. In 
addition to the binaries, the AR stores the description of the application, an example jdl and 
input files, and all the pieces of information that are necessary to perform a correct job 
submission. The central EDGI AR also stores the information about which VO the particular 
application can be submitted from and which computing element (and its queue) will be able 
to handle the job submission successfully. This information is needed since DG systems are 
configured for and can be reached through a special CREAM CE queue. 

This solution was too complicated for the user communities: it required first the porting 
of the original grid (ARC, gLite or UNICORE) application to BOINC, then the ported 
application had to be validated for the various grid and BOINC combinations. In order to 
avoid all these complexities we have developed the GBAC virtualization framework [10] that 
has been introduced to enable executing jobs inside virtual machines on the BOINC clients. 
With the help of the virtualization environment GBAC provides, the mCE becameable to 
automatically convert non-registered applications into a GBAC workunit. Using virtualization 
on volunteer resources, untrusted applications can also be executed safely under BOINC. 
Moreover, gLite users do not need to modify their submission jdl file when changing from 
normal gLite resources to desktop grid ones. 

The last problem that kept grid users from using BOINC was the so-called tail problem 
[22]. Based on experiences of the BOINC community, the first 80-90% of the jobs belonging 
to one application are executed according to the expected speed-up of parallel systems but the 
last 10-20% areexecuted much slower since the unreliable volunteer BOINC clients can cause 
significant delay in giving back the result of the task they registered for solving. This tail 
problem can be solved in several ways and we proposed the extension of Desktop Grid 
infrastructure with on-demand dedicated cloud resources (“On-demand dedicated BOINC 
clients” in Figure 1) that proved to be a very efficient solution. This cloud extension will be 
detailed in a later section. 

Before giving more detailed description of the cloud-oriented extensions of desktop grids, 
first we show the two most popular deployment scenarios of creating such a combined 
infrastructure. In the first case, extending the existing gLite VO with already gathered and 
maintained volunteer resources is shown, while the second case details setting up the 
combined infrastructure based on an institutional desktop grid system. 

Case Study: Extending a gLite VO by the EDGeS@home Project 

There are many gLite VOs around Europe, for which gLite administrators are taking care of the 
infrastructure, and not willing to take up operating a separate desktop grid site for collecting 
volunteer resources. EDGI (and later IDGF-SP [16]) eases their work by maintaining and 
offeringaccess tothe extension services (“Service Grid extension” in Figure 1) and the required 
volunteer desktop grid project: EDGeS@home with a large number of volunteer desktop grid 
resources, and cloud resources in addition. In this scenario, the gLite VO admin has nothing to 
do; EDGI (or IDGF-SP) takes care of the operation of the modified computing element, the 3G 
Bridge and all the desktop grid related tasks. After the necessary configuration is performed in 
the Service Grid extension, the gLite mCE appears among the CEs of the supported VO. This 
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experiment is an ongoing and continuous activity performed by the IDGF-SP project in order to 
support various EGI VOs in accessing EDGeS@home. 

Case Study: Extending a gLite VO by Institutional DG Site 

BOINC can be usedas an effective solution for aggregating the available compute capacity of 
desktop computers inside an institute.For example, universities can easily follow this strategy 
to create a campus-wide desktop grid system to provide large computational capacity for the 
researchers. University of Westminsteris a good example, where approximately 1800 
machines have been collected andutilized by a campus desktop grid and offered for their 
scientists to run various simulations [20]. Such a newly built campus DG site is a good 
candidate to be bridged to a gLite VO where the university is a member andto provide a 
significant capacity increase to that VO. To support this scenario, the IDGF-SP project has 
consolidated all the necessary software components (gLite mCE, AR, 3G Bridge, GBAC, 
etc.) and provides them freely for academic institutes. The project set up a website [21] for 
system administrators on how to setup and operate a combined gLite desktop grid 
infrastructure. This scenario requires very little effort from the administrators if the required 
components (BOINC server, 3G Bridge, gLite mCE) of such an infrastructure are deployed in 
a cloud system. In order to support this easy deployment and maintenance, IDGF-SP provides 
the necessary cloud images [21] too, as described below in detail in the section about the One 
Click Orchestrator. 

GBAC for Avoiding Application Porting 

As mentioned in the previous section, gLite jobs can be transparently transferred to a connected 
BOINC DG system if the application has been already ported to BOINC. Unfortunately, the 
porting effort can sometimes be significant, which keepsuser communities from applying 
desktop grid technologies. SZTAKI has developed the DC-API [7] and GenWrapper [6] tools 
that significantly reduced the porting effort, but even this was not enough. The communities did 
not want to invest in any porting effort at all. This is understandable, as they have free access to 
managed grid resources, i.e., someone else pays for their application execution on the managed 
grid resources. However, if they have to pay for the resources, as in the case of commercial 
clouds, this attitude will changesignificantly. Nevertheless, we had to find a solution on how to 
avoid application porting for BOINC systems. 

As a result of searching for such a solution, we developed the Generic BOINC 
Application Client (GBAC), a virtualization-based wrapper. It is aimed at a generic 
framework providing virtualized environments for different distributed computing 
infrastructures (DCIs). GBAC is implemented using the DC-API Meta API [7]and does not 
rely on any middleware-specific functionalities. Thus, it can be used not only with BOINC, 
but also on any DCIs that are supported by DC-API. GBAC currently supports VirtualBox as 
hypervisor. From here on, we refer to the BOINC version of GBAC for demonstrating its 
concepts and internals.  
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Figure 2. GBAC: application, inputs and outputs. 

As shown in Figure 2, the GBAC wrapper consists of the following components. First, 
the wrapper binary itself is a BOINC enabled DC-API application that contains all BOINC 
related parts and handles communication with the BOINC client. 

Its task is to set up the client execution environment and manage the virtual machine on 
the client machine. Second, a user-supplied XML based configuration file is used to set the 
parameters of the virtual machine: (i) the operating system type (e.g., Linux 64bit); (ii) the 
size of the allocated memory for the virtual machine; (iii) whether the machine should have 
network access; (iv) which virtual appliance to use; (v) whether to enable a shared directory 
between the host and the guest (the virtual machine); and (vi) whether to enable network for 
the guest. The third component is a compressed virtual appliance that contains the operating 
systems and libraries for the virtual machine. By default it contains a 32bit Linux installation 
with the Guest Toolscomponent of GBAC installed. However, arbitrary Linux distributions, 
both 32bit and 64bit, can be used instead. The Guest Tools, which is the fourth and final 
component, is deployed in the virtual appliance, and handles the interaction between the 
GBAC wrapper and the application inside the virtual machine. It acts as an agent of the 
wrapper, sets up a sandboxed environment for the application, executes it, performs logging, 
and returns the outputs. More details about GBAC can be found in [10]. 

Contrary to the normal BOINC use case, where the available applications are registered 
at the project, GBAC provides two use cases. First, a single-purpose mode, in which GBAC is 
registered with a single legacy application. This conforms to the normal BOINC use case with 
the following additions: (a) the legacy application does not require any BOINC related 
porting; (b) the legacy application will be run in a homogeneous environment based on the 
same virtual applicance (VA) regardless of the software and hardware characteristics of the 
donor machines; and (c) as a consequence, only a single binary of the applicationcompatible 
with the guest VM under GBACis required. The second use case is the multipurpose mode. 
Here, GBAC is deployed on BOINC without any legacy applications, and arbitrary ones can 
be submitted as inputs for GBAC. In this case, both the legacy application binaries and 
theirinputs are inputs of GBAC. This allows, on top of the previous additions ((a)-(c)), to 
overcome the limitation BOINC imposes on applications. Namely, that each of them must be 
deployed and registered before use, and only these trusted ones are available to the users. 
GBAC allows delegating this trust and, instead of the legacy application, the submitting user 
is trusted. As a result, beyond avoiding the application porting effort, there is another 
advantage of using the GBAC concept. It eliminates the need of using the EDGI Application 

Complimentary Contributor Copy



Peter Kacsuk, Zoltan Farkas, Jozsef Kovacs et al. 194 

Repository (which filters the applications to be executed). In the case when the target BOINC 
server is equipped with the GBAC virtualization framework, the modified Computing 
Element recognizes this situation and skips the AR checking procedure, and submits the 
incoming job wrapped as a GBAC-jobto the BOINC server. All is done automatically, no 
user interaction is needed for the bridging. In this case, the BOINC clients trust the GBAC 
application, which safely encapsulates the original job by running it inside a virtual machine. 

Cloud for Tail Elimination 

EDGeS@home has over 21,000 registered volunteer hosts. However, the active number of 
hosts is always lower and varies over time depending on the volunteers’ usage pattern; e.g., 
some volunteers only run BOINC when their computer is idle, but some turn off completely 
their computers when they are about to be idle for longer periods of time. Hardware failures 
on volunteer resources cannot be neglected either. The consequence of these is that the task 
failure and completion deadline-miss ratios can be high. In case of batches of tasks, a single 
delayed task is going to affect the completion time of the whole batch, resulting in the so-
calledtail problem [22].  

There are different methods available for improving task completion times: (i) redundant 
computing, (ii) reliability and availability based scheduling, and (iii) resubmission. 
Redundancy (i) means that multiple copies of the same task are distributed to clients with the 
expectation that at least a single one is going to finish in time. Reliability and availability 
based scheduling (ii) means that the system will prioritize the reliable resources over less 
reliable and less available. Finally, resubmission (iii) identifies problematic tasks and submits 
them again, e.g., in case of a batch the last 10% uncompleted tasks can be resubmitted trying 
to avoid the tail effect. Each of these methods on its own will improve the completion time to 
some extent; however, usually a combination of these is used. The problem is always twofold. 
First, the set of resources that is considered highly available and reliable must be determined. 
Second, a redirection mechanism is required for the tasks. Determining reliability and 
availability is a challenge itself; however, there are already good mechanisms implemented, 
e.g., for BOINC, that can be used as a foundation [23].  

One of the goals of EDGI was adding certain Quality of Service (QoS) capabilities to 
desktop grids to improve task completion times. The project investigated different alternatives 
like redundancy with resubmission [24], however the final method chosen was resubmission 
with reliability based scheduling. BOINC provides information about reliability and 
availability of the connected (volunteer) resources that can be used to determine the most 
reliable resources. 

These resources can be used as complementary ones, but primarily resources from private 
Infrastructure-as-a-Service (IaaS) clouds provided by the consortium members were utilized, 
with the option to scale out to public providers, like Amazon Web Services. It has been 
designed as a non-interactive solution, meaning that the system automates the process of task 
redirection for the users without any interaction from the users. Table 1 describes the 
available IaaS cloud resources for EDGeS@home. These are single virtual core resources, 
thus each resource provides a worker with a single core CPU. Each resource runs a special 
Virtual Appliance that contains the BOINC Client. These instances run 64 bit version Debian 
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Linux 6.0 and have at least 2GB free space for BOINC tasks. The instances are instructed via 
contextualization data to attach to a given BOINC project with given user credentials. 

As Table 1shows (in its 3rd column) each private cloud has a dedicated user at 
EDGeS@home. The dedicated users are used to group together the resources coming from 
the different clouds for the reliability based scheduling. Also, the profiles of these users are 
public, i.e., their performance can be checked on the website of EDGeS@home.  

As shown in Figure 3, the cloud resources are managed from a dedicated virtual machine 
(“EDGI Cloud Management”) from the LPDS cloud. This management VM instructs all 
configured clouds. It uses an enhanced version of the solution described in [10]. The 
management node is responsible for starting and stopping instances as required. It is able to 
interact with different IaaS cloud middleware, namely OpenNebula, OpenStack, Eucalyptus 
and Amazon Web Services using the de facto standard Amazon EC2 interface.  

Table 1. IaaS cloud resources available for EDGeS@home 

Cloud 

Acronym 
Cloud Provider 

EDGeS@home 

User 
Middleware 

Number of 

Resources (up to) 

CICA Centro Informático 
Científico de Andalucía CloudCICA OpenNebula 100 

LPDS MTA SZTAKI LPDS CloudLPDS OpenNebula 64 
UniMainz University of Mainz CloudMAINZ OpenStack 32 
UNIZAR University of Zaragoza CloudUNIZAR OpenStack 50 
UoW University of Westminster UoW OpenStack 52 
EC2 Amazon EC2 CloudAmazon Amazon WS ∞ 
Total    300 + 

 
When a new worker is requested, the URL of the BOINC project and a specific 

authenticator unique to each configured cloud is used as contextualization. This allows them 
to connect to the BOINC project. The instances remain attached to the BOINC project and 
continue processing tasks until they are terminated by the manager. 

This way, the different configured private clouds contribute reliable resources for 
EDGeS@home. However, this solves only the first part of the problem. For the second part, 
EDGI developed a complementary Scheduler component for BOINC that reassigns 
problematic tasks to multiple sets of resources. This component assigns the oldest non-
finished tasks in the system to one of the configured reliable resource group. In this case, a 
resource group is the set of resources made available from each connected private cloud.  

The scheduler keeps track of the number of assigned tasks for each resource group and 
assigns new tasks based on the number of resources available in that group. It also provides 
an interface extending the administrator interface of BOINC for querying the status of 
assignments as showninFigure 4. It allows filtering the jobs based on the different configured 
clouds (e.g., “LPDS”, “UNIZAR”)according toFigure 4 and applications (e.g., “DSP” in the 
figure) or all tasks (“All” in our figure). Reassignment is performed in round-robin order, 
where each configured cloud has a weight and capacity assigned and a global limit for the 
assignments total. The Scheduler keeps track of the total number of assigned jobs and the 
currently processed ones for each resource group. It continuously keeps the number of 
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assignments at the global limit while removing finished assignments and adding new ones 
based on the group limit and prioritizing between resources based on the group weights.  

Utilization of EDGeS@home by EGI User Communities 

After the technical solutions shownin the previous sections every obstacle of using the 
desktop grid technology has been eliminated and indeed EGI user communities have started 
to use the EDGeS@home volunteer desktop grid more and more intensively. Furthermore, 
these communities use EDGeS@home via different interfaces, demonstrating that the user 
interface flexibility we provide is indeed an important feature of supporting the user 
communities. There are three ways of accessing the services of EDGeS@home as shown in 
Figure 5. 

 

 

Figure 3. Task reassignment in the non-interactive QoS process. 

 

Figure 4. Information interface for querying the different desktop grid tasks (by application) assigned to 
the configured clouds. 
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Figure 5. Overview of various access modes of EDGeS@home volunteer resources. 
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Figure 6. WeNMR HADDOCK portal: modeling of biomolecular complexes, and its connection to 
EDGeS@home. 

One possibility of accessing EDGeS@homeis from a gLite VO as we introducedbefore. 
This interface is applied by the WeNMR project [30]. They use the WeNMR HADDOCK 
portal for modeling of biomolecular complexes by submitting their jobs to the WeNMR VO. 
This VO is extended with the gLite CREAM mCE provided by the IDGF-SP project. So, the 
transfer of the WeNMR jobs to EDGeS@home is transparent for the WeNMR gateway users. 
Currently the WeNMR VO decided to send every 10th job to EDGeS@home to utilise 
volunteer resources beyond their own infrastructure. Notice that the utilisation of volunteer 
resources did not require any application porting, or any Windows version development since 
most of the applications are written for Linux OS, but most of the volunteer resources are MS 
Windows based. The architecture of supporting the execution of WeNMR jobs in 
EDGeS@home is shown in Figure 6. 

The second option to access EDGeS@home is from a gateway that is directly connected 
to the 3G Bridge component of EDGeS@home. This interface possibility is used by the 
AUTODOCK gateway of the SCI-BUS project that was set up jointly by MTA SZTAKI and 
the University of Westminster. Biologists and chemists can easily do docking experiments via 
this gateway that is tailored for this application type. All the docking jobs defined by the users 
of the gateway are directly sent to the 3G Bridge component of EDGeS@home and results 
returned by EDGeS@home are directly shown on the gateway. 
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The third possible access mode to EDGeS@home is via the 3G Bridge API. This 
approach has been used by three projects: the EU FP7 BioVEL project [31], the Riemann zeta 
research project of the Eötvös Loránd University (ELTE, Budapest) [36] and the Optimiser 
for Linear Programming project of the Pannon University Veszprem[37]. The first one 
searches for values of t on the critical line, where the Riemannzeta function Z(t) is larger than 
a predetermined threshold, in order to get a better understanding of the behavior of the 
distribution of primes. In the second one they are trying to find optimal values for system 
solvers of Linear Programming problems by doing parameter sweep of a large number of 
runtime parameters. Due to the lack of space, these projects are not detailed here. The 
interested reader can find their descriptions in the following literature [36, 37]. 

Cloud for Automatic Deployment of Desktop Grids 

As described beforehand, grid VOs can easily be extended with new institutional desktop 
grids. Institutional desktop grids have the advantage to use resources that are already 
available in the institutes and hence, without investment of new hardware significant 
computing resources can be put together. However, to set up such institutional desktop grid 
requires BOINC knowledge that is usually not available in universities and other academic 
institutes. In order to overcome this problem we have developed a new tool called as One 
Click Cloud Orchestrator (OCCO) and a web-based cloud installation environment that 
enables for institutes and universities to quickly (in several minutes) set up their own desktop 
grid in a cloud without any BOINC knowledge. 

One Click Cloud Orchestrator (OCCO) 

Here we give a short overview of the OCCO architecture and components (see Figure 7) that 
allows the prompt creation of various infrastructures in the cloud including the required 
BOINC infrastructure, too. OCCO has the following components:(i) Automated Infrastructure 
Maintenance, (ii) Infrastructure Processor, (iii) Cloud Handler, (iv) VM Reshaper, and (v) 
Information Dispatcher. We have defined the Automated Infrastructure Maintenance 
component as the one responsible to understand the customized deployment descriptors. But 
this component does not only provide the descriptor processing capabilities but it also offers 
dependency resolution (so the nodes of the particular instantiated infrastructures are 
instantiated in a natural order), scalability and error resilience rule evaluation and enactment 
(so the end user does not have to intervene in its infrastructure’s internal operations). The 
Infrastructure Processor component of OCCO is used to ensure that the definitions of the 
infrastructure nodes are propagated to the VM Reshaper (which allows runtime 
reconfiguration of a virtual machine to meet a particular node description). In addition, the 
Infrastructure Processor sends such virtual machine requests to the Cloud Handler that 
ensures the intended role of the virtual machines after their creation. Next, the Cloud Handler 
is responsible for selecting a cloud infrastructure that will host a particular virtual machine, 
and interfacing with the infrastructure provider in a unified manner. Finally, the Information 
Dispatcher allows the Automated Infrastructure Maintenance component to determine the 

Complimentary Contributor Copy



Peter Kacsuk, Zoltan Farkas, Jozsef Kovacs et al. 200 

current state of the infrastructure to be used during the scaling and error resolution rule 
evaluation process. 

In order to enable the creation of a BOINC infrastructure in a cloud we have to provide the 
Infrastructure Deployment Descriptor (IDD) of the target BOINC infrastructure for OCCO. The 
preparation of such an IDD requires some expertise and therefore we have created the required 
IDD. We have also created a web based UI through which user community or university 
representatives can initiate the creation of their BOINC infrastructure. The current version of the 
BOINC infrastructure we provide through this web interface is a demonstration infrastructure 
that connects the Autodock gateway of SCI-BUS to a BOINC infrastructure via the 3G Bridge 
as shown in Figure 8. As an extra functionality, the BOINC project is associated with a public 
IP address; therefore, the user can attach his/her own BOINC client to the server. Using 
automatically deployed and configured BOINC clients in virtual machines, computational 
resources are automatically attached to this BOINC project. Our descriptor template allows the 
customization of the number of computational resources. Computing jobs arrive to the BOINC 
project as work units with the help of the WS-PGRADE/gUSE science gateway (also 
automatically deployed as a node of the virtual infrastructure). Overall, the prototype shows 
how a complete gateway plus DCI with resources can be deployed by OCCO and how the 
components attach to each other. Detailed description of a similar infrastructure is shown at 
http://doc.desktopgrid.hu/doku.php?id=scenario:unidg with a different application. 

In the prototype's welcome- and request submission page (see Figure 9) the user is not 
only requested to fill in the list of customization options, but he/she must also provide some 
details about him/her for identification and for justification. After a request is submitted, the 
prototype first asks for approval by the SZTAKI cloud administrators then initiates the 
infrastructure's creation with the Automated Infrastructure Maintenance component. Once the 
infrastructure is created, the notification service generates an email with all the authentication 
and access details to the new infrastructure (e.g., url of the science gateway and of the 
BOINC project plus user/password for login). With these details, users just need to login to 
the gateway, submit a scientific workflow (implementing molecule docking simulation based 
on the autodock tool) with their inputs and inspect the operation (i.e., how the jobs are 
flowing through the infrastructure and processed by the BOINC clients). To prevent 
SZTAKI's IaaS from overloading the OCCO created virtual infrastructures have a limited 
lifetime. Our notification service sends an email to the infrastrucure's user before the 
shutdown procedure is initiated. Limitation for the lifetime of the infrastructure is only 
applied for the demonstration infrastructure. 

Notice that this service is used just for demonstration and trial purposes but the same 
technology can be used to set up real BOINC infrastructures with generic purpose WS-
PGRADE/gUSE gateways in the cloud to which the user has access. The created BOINC 
infrastructure is using the GBAC technology and, as a result, no application porting is needed: 
the gateway/BOINC infrastructure created can immediately be used by the university or other 
user communities to submit and run applications in the created BOINC system. 

Related Work 

SpeQuloS [22] aims to shorten the completion time of a batch (collection of jobs) running on 
a desktop grid by redirecting the workunits to cloud resources. This is similar to our proposed 
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solution however, it requires user interaction as users must explicitly request the speed-up of 
their batches and must pay for it by virtual credits that can be earned by volunteering their 
own machine for the target desktop grid site. The more capacity they offer, the more credit 
they collect. The more credit they have, the more jobs can be redirected to cloud resources 
and the less completion time the batch will reach. 

Another work targeting the elimination of the tail-effect has been introduced by the 
University of Westminster. The system introduced in [26] is similar to the one presented in 
this chapter; however, they use a different batch system (PBS) for executing the replicas of 
the delayed workunits in BOINC. Therefore, the delayed jobs are not handled in the frame of 
BOINC, but resubmitted to a separate PBS cluster that is set up on-demand when a tail has to 
be handled. Another difference is that they use an institutional BOINC system,not volunteer 
resources. 

Lei Ni and Aaron Harwood [27] propose the “next generation Volunteer Computing 
systems on top of well studied Peer-to-Peer techniques to fully take advantage of its 
decentralized characteristic and its very large, shared data storage capacity”. Their proposed 
system is based on a P2P-Tuple system where the execution of a job is done by a kind of 
cooperation of the peers. The paper proposes to handle the tail effect by peers pushing 
unfinished jobs to each other. Based on this, completion time of a job can be much lower than 
in a normal BOINC system.  

 

 

Figure 7. Architecture of OCCO. 
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Figure 8. Infrastructure created by OCCO. 

Various pilot systems like DIRAC [28] or Diane [29] are widely used by scientists these 
days. In these systems, a single pilot job is submitted through gLite, as a placeholder, to a 
given CE. The pilot job pulls real jobs from the pilot system’s job repository for execution on 
the CE, and transfers information and results back. Pulling jobs and all communication are 
executed bypassing the gLite infrastructure, reducing the overhead of job submission from 
linear to constant time. This is also a way of decreasing the overhead of the gLite system; 
however, it is not targeted to use volunteer resources, and hence the number of accessible 
resources will be much smaller than in a volunteer system. 

The notion of dynamic resource provisioning/orchestration and automatic deployment 
similar to the OCCO concept appears in other works, too. These solutions are general and are 
not aimed at supporting or extending desktop grids particularly. Chen et al. [32] present 
Sulcata, an on-line virtual cluster provisioning. They assume a pool of various physical 
resources that act as VM containers. Upon an user's request the system deploys a virtual 
cluster on-the-fly involving VM image preparation, VM creation and configuration and VM 
reboot. They solve basic functionalities of dynamic infrastructure provisioning; furthermore, 
the solution largely focuses on minimizing the overhead of VM image handling and 
deployment and proposes a resource mapping scheme. These solutions are general and are not 
aimed at supporting or extending desktop grids particularly. 

Dörnemann et al. [33] introduced an on-demand on-the-fly deployment scheme to avoid 
peak loads. In a later work [34], this solution was advanced to support workflows and 
eliminate some shortcomings with respect to throughput and cost. To find a trade-off between 
task based scheduling (imprecise) and graph based scheduling (complex) of workflows, they 
propose a critical path based scheduling where the graph is annotated with information on 
anticipated run times and data transfers to calculate the makespan. Possible allocations for 
critical paths are predicted by genetic algorithms and the process is iterated until a mapping 
with minimalestimated runtime is reached. As it can be seen, in this case the goalis improving 
the quality of experience (as opposed to general resource provisioning in our case) by 
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deployingservices on the flywith focus on workflows (as opposed to embarrassingly parallel 
applications in our case). 

Vukojevic et al. [35] present a similar solution to OCCO in a service oriented scenario to 
support simulation workflows. Their aim is to provide and redeem services on-demand 
according to the progress of the workflow. The core of the solution is dynamic binding with 
software stack provisioning. Their aims are similar to ours, the technical realization is entirely 
different due to the service oriented approach. 

 

 

Figure 9. Autodock gateway with BOINC prototype's welcome- and request submission page. 
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Conclusion 

BOINC-based desktop grid systems are excellent in collecting large number of volunteer 
resources worldwide. Despite their cost-effectiveness, there were several problems that 
prevented their widespread use in e-science environments. Recent innovations in virtualization 
and cloud technology helped us to overcome these major problems. Overall, we can claim that 
all the major obstacles witnessed in the former use of BOINC systemshave been eliminated. 
Our GBAC technology eliminates the need of porting applications to BOINC and the 
integration of clouds with BOINC systems solves the tail problem in volunteer desktop grids. 
As a result, more and more user communities start to use the EDGeS@home BOINC desktop 
grid either via a gLite VO (e.g., WeNMR), or via a gateway (e.g., biologists and chemists using 
autodock), or directly (e.g., BioVEL project). We expect more radical increase in use of BOINC 
systems in the near future, when the recently introduced one-click creation method of BOINC 
systems in clouds will be widely applied by scientists.  

Acknowledgment 

The research leading to these results has received funding from the European Union Seventh 
Framework Programme (FP7/2007-2013) under grant agreement no 261556 (EDGI), no. 
283481 (SCI-BUS) and under grant agreement no 312297 (IDGF-SP). 

References 

[1] Cristina Aiftimiei, Paolo Andreetto, Sara Bertocco, Simone Dalla Fina, Alvise Dorigo, 
Eric Frizziero, Alessio Gianelle, Moreno Marzolla, Mirco Mazzucato, Massimo 
Sgaravatto, Sergio Traldi, Luigi Zangrando, Design and implementation of the 

gLiteCREAM job management service, Future Generation Computer Systems, Volume 
26, Issue 4, April 2010, Pages 654-667, ISSN 0167-739X, 10.1016/j.future.2009.12.006. 

[2] Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak et al., Unicore 6:Recent and future 

advancements, Berichte des Forschungszentrums Julich, vol. 65, 2010. 
[3] Globus Toolkit Version 4: Software for Service-Oriented Systems. I. Foster. IFIP 

International Conference on Network and Parallel Computing, Springer-Verlag LNCS 
3779, pp 2-13, 2006. 

[4] M. Ellert, M. Grønager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson,  
J. Nielsen, M. Niinimaki, O. Smirnova and A. Waananen, Advanced resource 

connector middle ware for lightweight computational grids, Future Generation 
Computer Systems, vol. 23, no. 2, pp. 219-240, 2007. 

[5] David P. Anderson 2004. BOINC: A System for Public-Resource Computing and 
Storage. In Proceedings of the 5th IEEE/ACM International Workshop on Grid 

Computing (GRID '04). IEEE Computer Society, Washington, DC, USA, 4-10. 
DOI=10.1109/GRID.2004.14 http://dx.doi.org/10.1109/GRID.2004.14. 

[6] A. C. Marosi, Z. Balaton & P. Kacsuk (2009). Gen Wrapper: A generic wrapper for 
running legacy applications on desktop grids. In 2009 IEEE International Symposiumon 

Parallel & Distributed Processing (pp. 1-6). IEEE. doi:10.1109/IPDPS.2009.5161136. 

Complimentary Contributor Copy

http://dx.doi.org/10.1109/GRID.2004.14


Desktop Grid in the Era of Cloud Computing 205 

[7] C. Marosi, G. Gombás, Z. Balaton & P. Kacsuk. (2008). Enabling Java applications for 

BOINC with DC-API. In P. Kacsuk, R. Lovas, & Z. Németh (Eds.), Distributed and 
Parallel Systems SE-1 (pp. 3-12). Springer US. doi:10.1007/978-0-387-79448-8_1. 

[8] The EDGI EU FP7 project: http://edgi-project.eu. 
[9] P. Kacsuk, J. Kovacs, Z. Farkas, A. Marosiand Z. Balaton, Towards a powerful 

european DCI based on desktop grids. Journal of Grid Computing, 9:219-239, 2011. 
[10] Attila Marosi, József Kovács, Peter Kacsuk, Towards a volunteer cloud system, Future 

Generation Computer Systems, Volume 29, Issue 6, Pages: 1442-1451, 2013, ISSN 
0167-739X, http://www.sciencedirect.com/science/article/pii/S0167739X12000660, 
10.1016/j.future.2012.03.013. 

[11] Ádám Visegrádi, József Kovács, Peter Kacsuk: Efficient extension of gLite VOs with 

BOINC based desktop grids, Future Generation Computer Systems, Volume 32, March 
2014, Pages 13-23, ISSN 0167-739X, http://dx.doi.org/10.1016/j.future.2013.10.012, 
(http://www.sciencedirect.com/science/article/pii/S0167739X1300229X). 

[12] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona Brandic, 
Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering 
computing as the 5th utility. Future Generation Comp. Syst. 25(6): 599-616 (2009). 

[13] C.U. Soettrup, A. Waananen, J. Kovacs, Transparent execution of ARC jobs on 
Desktop Grid resources, MIPRO 2012, Proceedings of the 35th International 

Convention IEEE Conference Publications Croatian Society for Information and 

Communication Technology, Electronics and Microelectronics, MIPRO Rijeka, Croatia 
2012 pp. 271-276, ISBN: 978-953-233-072-4. 

[14] M. Keller, J.Kovacs, A.BrinkmannDesktop Grids Opening up to UNICORE, Proceedings 

of UNICORE Summit 2011, IAS Series 09, Forschungszentrum Jülich GmbH 
Zentralbibliothek, Verlag, Torun, Poland 2011 pp. 67-76 ISBN: 978-3-89336-750-4. 

[15] The EDGeS EU FP7 project: http://edges-grid.eu. 
[16] The IDGF-SP EU FP7 project:http://idgf-sp.eu. 
[17] Z. Farkas, P.Kacsuk, Z.Balaton, G.Gombás, Interoperability of BOINC and EGEE, 

Future Generation Computer Systems, Volume 26, Issue 8, October 2010, Pages 1092-
1103, ISSN 0167-739X, 10.1016/j.future.2010.05.009. (http://www.sciencedirect.com/ 
science/article/pii/S0167739X10000890). 

[18] Gabor Terstyanszky, Tamas Kiss, Tamas Kukla, Zsolt Lichtenberger, Stephen Winter 
Pamela Greenwell, and Sharron McEldowney and Hans Heindl (2012) Application 
repository and science gateway for running molecular docking and dynamics 
simulations. Healthgrid applications and technologies meet science gateways for life 
sciences. Studies in health technology and informatics (175). IOS Press, pp. 152-161. 
ISBN 9781614990536. 

[19] The European Grid Initiative, http://www.egi.eu. 
[20] WMIN DG:http://wgrass.wmin.ac.uk/index.php/Desktop_Grid:Westminster_Local_DG. 
[21] The online documentation site: http://doc.desktopgrid.hu. 
[22] Simon Delamare, Gilles Fedak, Derrick Kondo, Oleg Lodygensky, SpeQuloS. A QoS 

Service for BoT Applications Using Best Effort Distributed Computing Infrastructures, 
in International Symposium on High Performance Distributed Computing 
(HPDC'2012), Delft, Nederlands, 2012. 

[23] Javadi, B., Kondo, D., Vincent, J.-M., Anderson, D.P., Discovering Statistical Modelsof 
Availability in Large Distributed Systems: An Empirical Study of SETI@home, 

Complimentary Contributor Copy



Peter Kacsuk, Zoltan Farkas, Jozsef Kovacs et al. 206 

Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 11, pp. 1896-
1903, Nov. 2011. doi: 10.1109/TPDS.2011.50. 

[24] Pataki, M., Marosi, A. C. (2012). Searching for Translated Plagiarism with the Help of 
Desktop Grids. Journal of Grid Computing, 1-18. http://dx.doi.org/10.1007/s10723-
012-9224-5. 

[25] Gabor Terstyanszky, Tamas Kiss, Tamas Kukla, Zsolt Lichtenberger, Stephen Winter, 
Pamela Greenwell, Sharron McEldowneyand Hans Heindl, Application Repository and 
Science Gateway for Running Molecular Docking and Dynamics Simulations, in 
Sandra Gesing etal.,Editors HealthGrid Applications and Technologies Meet Science 

Gateways for Life Sciences, Studies in Health Technology and Informatics, Vol. 175, 
pp. 152-161, IOS Press, 2012, ISSN 0926-9630 (print), ISSN 1897-8365. 

[26] Reynolds, C.J., Winter, S., Terstyanszky, G.Z., Kiss, T., Greenwell, P., Acs, S., Kacsuk, 
P., Scientific Workflow Makespan Reduction through Cloud Augmented Desktop 
Grids, Cloud Computing Technology and Science (CloudCom), 2011 IEEE Third 

International Conference on, pp. 18-23, Nov. 29 2011-Dec. 1 2011, doi: 10.1109/ 
CloudCom.2011.13. 

[27] Lei Ni, Aaron Harwood, P2P-Tuple: Towards a Robust Volunteer Computing Platform 
pdcat, International Conference on Parallel and Distributed Computing, Applications 
and Technologies, 2009, pp.217-223. 

[28] Tsaregorodtsev et al., DIRAC: a community grid solution, J. Phys. Conf. Ser. 119 
(2008) 062048. 

[29] Vladimir V.Korkhov, Jakub T.Moscickiand Valeria V.Krzhizhanovskaya, 2009. 
Dynamic workload balancing of parallel applications with user-level scheduling on the 

Grid. Future Gener. Comput. Syst. 25, 1 (January 2009), 28-34.  
DOI=10.1016/j.future.2008.07.001 http://dx.doi.org/10.1016/j.future.2008.07.001. 

[30] The WeNMR community, https://www.wenmr.eu. 
[31] The BIOVEL community,http://www.biovel.eu. 
[32] Yang Chen, Tianyu Woand Jianxin Li. An efficient resource management system for 

on-line virtual clusterprovision. In IEEE CLOUD, pages 72-79, 2009. 
[33] Tim Dörnemann, Ernst Juhnkeand Bernd Freisleben. On-demand resource 

provisioningfor bpel workflows using amazon'selastic compute cloud. In IEEE/ACM 

Int. Symp. on Cluster Computing and the Grid (CCGrid), pages 140-147, 2009. 
[34] Tim Dörnemann, Ernst Juhnke, Thomas Noll, Dominik Seilerand Bernd Freisleben. 

Data flow driven scheduling of bpel workflows using cloud resources. In IEEE 

CLOUD, pp. 196-203, 2010. 
[35] Karolina Vukojevic-Haupt, Dimka Karastoyanova, Frank Leymann., On-demand 

Provisioning of Infrastructure, Middleware and Services for Simulation Workflows. 
SOCA 2013: 91-98. 

[36] http://riemann-siegel.com/. 
[37] Péter Tar, IstvánMaros, Parameter sweep of a linear programming solver on distributed 

computing infrastructures, presented at: 17th Spring Wind Conference, Debrecen, 2014. 
March 21-23. 

 
 
 

Complimentary Contributor Copy

http://www.biovel.eu/


 

 
 
 
 
 
 
 
 
 

INDEX 
 
 

A 

access, viii, 4, 10, 11, 16, 20, 24, 25, 26, 37, 46, 58, 
61, 63, 72, 80, 93, 100, 101, 102, 110, 112, 114, 
130, 134, 137, 139, 142, 154, 157, 158, 161, 170, 
184, 188, 192, 193, 198, 199, 200 

accounting, 56, 59, 64, 80, 189 
accurate models, 71 
Actual Finish Time, 47 
adaptability, 157 
adaptation(s), 56, 133, 169, 173, 174, 181, 183, 185 
administrators, 73, 81, 90, 137, 139, 141, 191, 192, 

200 
advancements, 204 
aggregation, 130 
algorithm, viii, 8, 19, 21, 22, 52, 53, 55, 56, 57, 65, 

68, 69, 71, 73, 76, 77, 78, 82, 84, 86, 90, 91, 93, 
96, 102, 103, 107, 108, 109, 117, 132, 133, 142, 
147, 151, 174 

allocated time, 9 
anatomy, 184 
anti-cancer, 187 
applications, 40, 41, 42, 43, 44, 47, 52, 56, 67, 68, 

69, 101, 103, 105, 107, 108, 109, 111, 112, 113, 
115, 117, 119, 121, 123, 125, 126, 127, 128, 131, 
133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 
153, 155, 190, 205, 206 

ARC, 188, 189, 191, 205 
Armenia, 152 
Asia, 43 
aspect, 170, 180, 185 
assessment, 124 
atmosphere, 142 
authentication, 136, 138, 139, 189, 200 
automate, 158 
automation, 26 

B 

backfilling, 39, 77, 97 
bag-of-tasks, 44, 99 
bandwidth, 2, 3, 4, 8, 9, 10, 11, 13, 17, 18, 23, 24, 

30, 31, 34, 46, 60, 65, 72, 131, 132, 147, 148, 151 

bandwidth resources, 2 
bandwidth utilization, 148 
bargaining, 61, 62, 63 
base, 145, 163, 166, 167, 168, 169, 170, 171, 172, 

174, 175, 177, 179, 180, 181, 188, 204 
benchmarking, 134 
benchmarks, 176, 183 
benefits, 66, 88, 91, 121, 168, 181 
bioinformatics, 99, 137 
blueprint, 153 
BOINC, viii, ix, 70, 187, 188, 189, 190, 191, 192, 

193, 194, 195, 199, 200, 201, 203, 204, 205 
bounds, 18, 39, 79, 101, 102, 105, 107, 108, 110, 

111, 112, 113, 114, 115, 116, 117, 119, 121, 122, 
123 

Brazil, 99 
Broker, 22, 39, 74, 138, 146 
Budget, 54, 56, 57, 67, 68, 69 
Bulgaria, 129 

C 

case studies, 176, 181 
case study, viii, 45, 46, 94, 96, 159, 160, 162, 164, 

167, 170, 176, 177, 178, 179, 180, 181 
CERN, 137 
certificate, 190 
challenges, vii, viii, 3, 4, 46, 57, 73, 95, 132, 143 
Chicago, 152 
children, 114 
China, 42 
classes, 6, 24, 28, 80, 131, 141, 163, 164, 165, 174, 

180 
classification, 4, 8, 72 
clients, 24, 106, 138, 139, 140, 163, 190, 191, 194, 

200 
climate, 187 
Cloud, vii, 1, 39, 41, 42, 55, 128, 188, 189, 190, 191, 

193, 194, 195, 199, 201, 203, 205, 206 
clustering, 18, 20, 52 
clusters, 2, 7, 10, 13, 14, 17, 26, 28, 39, 52, 68, 71, 

74, 79, 81, 82, 83, 95, 100, 101, 102, 112, 121, 

Complimentary Contributor Copy



Index 208 

127, 128, 130, 132, 134, 135, 136, 137, 140, 141, 
142, 145, 146, 148, 185 

CNS, 198 
coding, 167, 169, 170, 183 
collaboration, 148 
color, 48, 50, 92 
commercial, 192 
commodity, 39, 61, 62, 63, 69 
communication, viii, 5, 6, 11, 13, 14, 15, 23, 24, 25, 

26, 27, 29, 36, 37, 46, 47, 53, 63, 72, 99, 100, 101, 
102, 103, 105, 106, 108, 109, 112, 114, 116, 117, 
119, 120, 121, 122, 123, 124, 131, 133, 134, 135, 
136, 178, 189, 193, 202 

communication cost, 47, 53, 105, 109, 119 
communication overhead, 133 
communication strategies, 14 
communities, ix, 2, 188, 189, 191, 192, 200, 204 
community, vii, 62, 73, 191, 200, 206 
competition, 63 
competitors, 60 
complexity, 55, 67, 72, 85, 93, 107, 112, 117, 126, 

136, 145, 164 
composition, 159, 169 
computation, 14, 15, 16, 22, 30, 46, 47, 53, 62, 86, 

100, 101, 103, 105, 106, 107, 108, 111, 115, 117, 
119, 120, 123, 142, 143, 154, 161, 167, 169, 176, 
177, 178, 180 

computational capacity, 192 
computational grid, vii, viii, 56, 68, 69, 102, 157, 

158, 160, 163, 167, 171, 173, 177, 183, 184, 185, 
204 

computer, 3, 17, 19, 21, 46, 64, 72, 73, 81, 85, 103, 
131, 146, 147, 194 

computer systems, 19 
computing, vii, viii, 2, 5, 9, 13, 15, 34, 40, 45, 46, 

54, 55, 56, 62, 64, 65, 66, 67, 70, 73, 86, 89, 93, 
94, 95, 96, 101, 117, 127, 128, 129, 130, 132, 133, 
142, 146, 150, 152, 153, 157, 158, 160, 162, 167, 
178, 180, 184, 186, 187, 188, 191, 194, 199, 205, 
206 

configuration, 15, 26, 75, 78, 80, 81, 82, 132, 134, 
137, 139, 177, 191, 193, 202 

connectivity, 134, 142 
constrained scheduling, 50, 51, 54, 55, 56, 65, 69 
consumers, 58, 59, 61, 63 
consumption, 10, 33, 60, 64, 75, 76, 78, 86, 88, 89 
containers, 202 
contention, 101, 110, 114 
contextualization, 195 
convention, 152 
convergence, 141, 142 
cooperation, 74, 201 
coordination, 59, 130 
correlation, 4, 19, 87, 142 
cost, 2, 6, 8, 10, 11, 14, 15, 16, 25, 26, 37, 46, 47, 49, 

50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 
68, 105, 106, 109, 110, 119, 121, 142, 150, 151, 
157, 202, 204 

covering, 80, 90, 129 

CPU, 6, 8, 9, 10, 12, 14, 15, 17, 23, 25, 26, 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 43, 47, 48, 49, 
57, 58, 60, 65, 75, 80, 81, 82, 83, 86, 87, 88, 89, 
121, 132, 136, 137, 139, 141, 150, 151, 162, 172, 
173, 176, 177, 183, 194 

credentials, 195 
Croatia, 152, 205 
cumulative distribution function, 90, 91 
cycles, 46 
Czech Republic, 71 

D 

DAG, 46, 47, 55 
data center, 66, 93 
data mining, viii, 15, 19, 20, 31, 99, 101 
data processing, 15, 38 
data set, 24, 26, 27, 33, 95, 178 
data structure, 185 
data transfer, 4, 5, 12, 17, 20, 23, 24, 27, 29, 30, 46, 

99, 101, 106, 117, 202 
database, 1, 7, 19, 20, 21, 26, 32, 34, 139, 146, 147, 

148 
DCI, 200, 205 
decay, 76 
decentralization, 62 
Decentralized, 74 
decision trees, 20 
decision-making process, 66 
decomposition, 130, 133, 183 
defence, 16 
delegates, 163 
demand based pricing, 61 
desktop grid, 20, 187 
detection, 80 
deviation, 20, 89 
dielectric constant, 145 
directives, 130 
discretization, 151 
dispersion, 87, 142 
distributed computing, vii, viii, 54, 64, 68, 70, 95, 

192 
distributed memory, 130, 175 
distribution, 19, 30, 54, 55, 90, 91, 117, 132, 142, 

144, 145, 146, 167, 168, 199 
distribution function, 19, 146 
divergence, 151 
DOI, 67, 127, 204, 206 
donors, 190 
dynamic systems, 53, 56, 87 
dynamical systems, 141 
dynamically, 35 

E 

economic, 40, 58, 61, 69 
economic efficiency, 62 

Complimentary Contributor Copy



Index 209 

ecosystem, 58, 65 
EDGeS@home, ix, 188, 189, 191, 192, 194, 195, 

198, 199, 204 
efficiency, 58 
efficiency level, 104, 109, 117, 121 
efficient, 73, 75, 77, 79, 80, 81, 83, 85, 87, 89, 91, 

93, 95, 97, 127, 153, 205 
EGI user, 188, 189, 196 
electric field, 144, 145, 151 
electron(s), 143, 144, 145, 146 
energy, vii, viii, 45, 46, 48, 49, 57, 64, 65, 66, 85, 99, 

145, 146, 151, 152 
energy consumed, 48 
energy consumption, 66 
energy efficiency, vii, 46, 85 
engineering, 13, 69, 141, 142 
environment, vii, 2, 6, 15, 20, 46, 56, 58, 59, 67, 72, 

74, 129, 130, 133, 136, 137, 142, 143, 151, 167, 
185, 186, 191, 193, 199 

environmental characteristics, 26 
environmental impact, 85 
Epigenomics, 47, 49, 50, 51, 57 
equilibrium, 59, 61, 62, 76 
equilibrium price, 59, 62 
equipment, 64, 137 
equities, 63 
ERA, 187 
error estimation, 48 
Europe, vii, 136, 191 
European Union, 41, 66, 189, 199, 204, 205 
evolution, 102, 141, 143, 144, 145, 146, 152 
excitation, 145 
expected probability, 174 
expert systems, 7, 20 
exploitation, 22, 135 
extraction, 26 
extracts, 190 

F 

fairness, 52, 53, 54, 68, 73, 75, 76, 88, 89, 91, 94, 95, 
96, 97 

farms, 97 
fault-tolerance, 138, 148, 167, 173 
FCFS, 73, 76, 77, 78, 84 
filters, 194 
fixed costs, 64 
flexibility, 58, 66 
fluctuations, 23 
force, 180, 181, 182 
forecasting, 2, 4, 15 
France, 39, 40 

G 

gallium, 145 
genome, 49 

globus, 154 
google, 127, 162 
GPU, 151, 157, 162, 166, 167, 168, 172, 173, 177, 

183 
graph, 46, 47, 52, 54, 57, 65, 100, 102, 202 
Greece, 42, 45 
grid computing, vii, viii, 58, 59, 61, 62, 63, 69, 142, 

158, 184, 186 
grid environment, viii, 4, 5, 6, 22, 59, 62, 68, 141, 

146, 159, 176, 178, 183 
grid services, vii, 148, 157, 158, 183, 184, 185 
grid technology, 188 
grids, vii, viii, 2, 3, 11, 13, 17, 20, 24, 27, 28, 46, 58, 

68, 69, 100, 101, 102, 121, 157, 167, 173, 183, 
184, 186, 187, 188, 189, 190, 191, 194, 199, 202, 
204, 205 

grouping, 101 
growth, 104, 121, 122, 142 
growth rate, 104, 121, 122 
GUI, 140, 146, 147, 148, 149 
guidelines, 174 

H 

Hawaii, 154 
heterogeneity, 27, 29, 82, 117, 124, 128 
heterogeneous, viii, 1, 2, 4, 6, 9, 22, 24, 25, 26, 27, 

36, 37, 38, 41, 42, 43, 46, 56, 66, 67, 68, 71, 72, 
73, 82, 85, 86, 87, 95, 96, 102, 103, 117, 118, 125, 
126, 127, 128, 130, 132, 140, 151, 153, 173, 184 

heterogeneous systems, 67, 68, 71, 95, 130, 173 
Hierarchy, 73, 74 
historical data, 4, 7, 18, 26 
homogeneity, 55 
homogeneous, 36, 37, 38, 117 
host, 7, 16, 17, 30, 193, 199 
HPC, vii, 9, 12, 45, 71, 72, 73, 74, 85, 87, 89, 130 
Hungary, 187 
hybrid, 21, 68, 96, 130, 173, 177 
Hyperthreading, 148 

I 

IaaS, 194, 195, 200 
identification, viii, 12, 200 
image, viii, 99, 133, 178, 179, 202 
images, 47, 192 
improvements, 19, 49 
independence, 100 
industry, 26, 46 
inefficiency, 151 
information exchange, 130 
infrastructure, vii, 4, 46, 64, 65, 73, 74, 85, 86, 122, 

132, 136, 137, 139, 141, 148, 153, 167, 188, 189, 
190, 191, 192, 198, 199, 200, 202 

institutions, 46 
integration, viii, 29, 129, 189, 204 

Complimentary Contributor Copy



Index 210 

interface, 15, 28, 83, 129, 130, 137, 140, 163, 164, 
183, 188, 189, 195, 196, 198, 200 

interference, 18 
internal influences, 84 
interoperability, 138 
investment, 58, 199 
IP address, 200 
Isoefficiency, 108, 119, 120, 126 
Israel, 41 
IT world, 26 
Italy, 39, 43 
iteration, 160, 182 

J 

Java, 130, 139, 148, 157, 160, 161, 162, 163, 164, 
166, 167, 168, 169, 171, 172, 176, 178, 183, 184, 
205 

Java interface, 163 
Java threads, 164, 172, 178 
job, viii, 12, 31, 35, 36, 37, 38, 39, 43, 67, 72, 73, 75, 

77, 78, 79, 81, 82, 83, 85, 87, 89, 91, 93, 94, 95, 
96, 97, 126, 129, 136, 152, 153, 158, 163, 165, 
184 

job performance, 87 
job runtime, 26, 27, 32, 82, 88, 89 
job scheduling, viii, 71, 72, 73, 76, 93, 94, 95, 96, 

97, 98 

K 

kinetic equations, 145 

L 

labeling, 52 
languages, vii, 168 
latency, 11, 14, 17, 24, 30, 31, 36, 131, 132, 134 
lead, 45, 48, 80, 87, 132, 147 
learning, 4, 30, 31, 32, 33, 34, 35 
legend, 92 
linear function, 143 
linear programming, 206 
load balance, 179 
localization, 16 
logging, 193 
logistics, 189 
Luo, 186 

M 

machine learning, 4, 21, 28 
magnitude, 110, 111, 113, 115, 116, 123, 124 
Makespan, 47, 54, 206 

management, viii, 3, 58, 59, 71, 74, 75, 76, 79, 114, 
184, 189, 195, 204 

manipulation, viii, 99 
map/reduce, 169 
mapping, 23, 56, 162, 172, 202 
market share, 61 
market structure, 59 
Markov chain, 17 
Master-Slave, 105, 121, 125, 126 
matrix, 17, 46, 47, 159, 160, 161, 162, 164, 166, 167, 

170, 172, 176, 177, 178 
Matrix multiplication, 170 
matter, 104 
measurement(s), 7, 17, 20, 18, 30, 35 
media, 17 
median, 17, 19, 20, 176 
membership, 137 
memory, 7, 10, 11, 13, 14, 15, 16, 20, 21, 23, 25, 26, 

32, 33, 35, 37, 60, 65, 82, 121, 130, 133, 134, 151, 
160, 164, 172, 174, 180, 193 

message passing, 130 
messages, 63, 113, 116, 131, 132, 138, 139, 140 
methodology, 4, 13, 15, 18, 21, 23, 29, 51, 52 
Mexico, 40 
Middleware, vii, 152, 154, 195, 206 
modelling, 7, 22, 40 
models, vii, viii, 2, 5, 6, 7, 8, 13, 14, 26, 27, 28, 35, 

45, 46, 51, 58, 60, 61, 62, 65, 70, 71, 73, 81, 84, 
97, 102, 103, 105, 107, 121, 180 

modifications, 80, 139, 167, 174 
modules, 13, 157, 176 
molecular dynamics, 176 
Monitoring, 154, 175 
Montage, 47, 48, 49, 50, 57, 66 
Monte Carlo method, 141, 143 
MPI, viii, 4, 6, 11, 12, 13, 14, 15, 23, 24, 25, 29, 30, 

31, 32, 33, 35, 36, 37, 44, 55, 127, 129, 130, 131, 
133, 134, 135, 136, 137, 139, 141, 142, 145, 146, 
148, 150, 151, 154 

MPI applications, 4 
multiple nodes, 163 

N 

nanometers, 143, 145 
nanotechnology, 143 
nanowires, 152 
NAS, 12, 15, 40 
negotiating, 63 
Netherlands, 80, 153 
network congestion, 63 
next generation, 201 
nodes, viii, 2, 8, 9, 10, 11, 14, 17, 19, 23, 25, 26, 27, 

32, 34, 35, 36, 37, 45, 46, 47, 48, 49, 51, 72, 79, 
82, 100, 101, 106, 107, 111, 112, 113, 114, 115, 
117, 118, 120, 121, 123, 132, 134, 135, 139, 141, 
142, 151, 157, 158, 163, 166, 168, 173, 176, 179, 
184, 199 

Complimentary Contributor Copy



Index 211 

O 

objective criteria, 72 
obstacles, 204 
OGSA, 154 
oligopoly, 62 
operating system, 83, 130, 174, 193 
operations, 85, 105, 130, 131, 135, 141, 199 
opportunity costs, 64 
optimization, 50, 51, 53, 55, 59, 63, 65, 68, 71, 72, 

73, 77, 85, 88, 89, 90, 98, 136, 173 
orchestration, vii, 202 
organize, 138, 159 
overlap, 100, 131 

P 

Pacific, 43 
parallel, vii, viii, 2, 4, 5, 10, 11, 12, 13, 14, 15, 19, 

20, 21, 23, 25, 26, 29, 30, 31, 32, 33, 52, 55, 64, 
68, 72, 76, 80, 82, 94, 95, 97, 99, 101, 103, 104, 
109, 110, 114, 117, 129, 130, 131, 132, 133, 134, 
135, 136, 137, 141, 142, 145, 146, 148, 149, 150, 
151, 154, 158, 160, 161, 167, 169, 171, 173, 174, 
177, 181, 183, 185, 189, 191, 203, 206 

parallel algorithm, 132 
parallel jobs, 30, 31, 32, 33, 34, 35 
parallel performance, 131, 132 
parallelism, vii, 17, 45, 47, 65, 133, 135, 136, 142, 

158 
parallelization, 13, 129, 130, 134, 167, 168, 169, 

170, 171, 173, 176, 180 
parameter sweep, 11, 22, 158, 187, 189, 199 
partition, 167 
password, 200 
penalties, 64, 65 
Performance Metrics, 23 
performance modelling, 21 
personal computers, 64 
Philadelphia, 43 
phonons, 143, 144, 145 
physics, 99, 141, 142, 189 
platform, 56, 66, 100, 101, 103, 105, 107, 108, 109, 

110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 
121, 167, 168 

pluggable services, 169 
point load, 5, 23 
Poland, 44, 154, 205 
policy, 50, 52, 57, 62, 63, 74, 75, 76, 77, 79, 80, 82, 

139, 178 
pollution, 154 
portability, 131, 164, 168, 173, 184 
Portugal, ix, 45, 157 
predictability, 10, 12, 66, 78, 94, 96 
prediction models, 2, 3, 5, 6, 8, 14, 26, 28 
price stability, 62 
pricing policies, 59 

principles, 6, 59, 62, 137 
probability, 18, 24, 62, 143, 173 
Profiling, 13, 40, 175 
profit, 46, 58, 61, 64, 66 
programming, vii, viii, 130, 133, 138, 145, 148, 157, 

158, 166, 167, 169, 184, 185 
programming languages, 130, 148 
progress reports, 138 
project, 10, 17, 24, 96, 154, 188, 189, 190, 191, 192, 

193, 194, 195, 198, 199, 200, 204, 205 
prototype, 200, 203 
public awareness, 64 
Puerto Rico, 43 

Q 

QoS, 2, 4, 16, 26, 35, 38, 50, 51, 54, 55, 56, 59, 60, 
62, 68, 72, 136, 137, 139, 152, 154, 194, 196, 205 

quality of service, 5, 58, 64, 65 
quantification, 169, 185 
query, 190 
Queue Ordering, 75 
queue time, 2, 5, 8, 19, 20, 27, 30, 82 

R 

random numbers, 141, 142, 143 
random walk, 141, 144 
reading, 15, 25, 170 
reception, 106, 140 
recovery, 174 
redundancy, 194 
regression, 20, 21, 24, 26, 29, 35, 42 
regression equation, 35 
rejection, 140 
relaxation, 143, 145 
relaxation process, 143 
relevance, 81, 102, 114 
reliability, 2, 65, 67, 82, 140, 194, 195 
requirements, viii, 2, 3, 4, 11, 27, 28, 58, 59, 60, 61, 

62, 63, 68, 75, 79, 81, 82, 83, 84, 87, 88, 132, 134, 
136, 137, 141, 142, 151, 157, 167, 168, 173, 174 

resilience, 199 
resolution, 95, 199, 200 
resource allocation, 46, 58, 62, 68, 69, 88 
resource availability, 4, 50, 59, 65 
resource management, vii, 28, 40, 45, 46, 51, 57, 58, 

59, 65, 69, 73, 75, 79, 80, 81, 89, 90, 206 
Resource Management System, viii, 1, 2, 73, 74 
resource sharing, 50 
resource utilization, 63, 77 
resources, vii, viii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 

17, 20, 22, 23, 24, 26, 27, 28, 35, 38, 45, 46, 50, 
51, 52, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 69, 
72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 84, 86, 88, 
89, 94, 121, 129, 132, 135, 136, 137, 142, 146, 
151, 152, 157, 158, 161, 166, 168, 171, 173, 174, 

Complimentary Contributor Copy



Index 212 

177, 184, 188, 189, 190, 191, 192, 194, 195, 197, 
198, 199, 200, 201, 202, 204, 205, 206 

response, 5, 76, 78, 87, 88, 117, 118 
response time, 5, 76, 78, 87, 88, 117, 118 
responsiveness, 87 
restrictions, 83, 134 
root, 94, 100, 101, 113, 114, 139 
routes, 121 
routines, 181 
rules, 7, 20, 32, 63, 71, 90 

S 

saturation, 80, 132 
savings, 151 
Scalability, 21, 58, 101, 103, 104, 105, 107, 109, 

111, 112, 113, 115, 117, 119, 120, 121, 123, 125, 
126, 127 

scaling, 142, 200 
scatter, 169, 170, 171, 180 
scheduling, 3, 4, 22, 23, 27, 28, 40, 41, 42, 43, 44, 

46, 51, 54, 55, 56, 67, 68, 69, 71, 72, 73, 75, 76, 
77, 79, 81, 83, 85, 87, 89, 91, 93, 94, 95, 96, 97, 
125, 126 

scheduling policies, 3 
scope, 5, 27 
scripts, 133, 140 
security, vii, 83, 136, 190 
self-interest, 63 
self-similarity, 7 
semiconductor, 141, 143, 152 
semiconductors, 143, 145, 146 
sequencing, 95 
servers, 151, 163 
Service Level Agreement, 2 
service provider, 10, 56, 63 
services, 3, 6, 43, 60, 62, 66, 129, 135, 136, 138, 

139, 141, 142, 157, 158, 159, 167, 168, 169, 171, 
173, 174, 175, 183, 189, 191, 196, 203 

showing, 90, 92 
signals, 7 
simulation, 6, 7, 13, 15, 40, 71, 73, 81, 84, 85, 90, 

102, 118, 119, 121, 141, 142, 143, 145, 150, 152, 
170, 176, 180, 181, 200, 203 

simulations, viii, 6, 81, 82, 84, 95, 99, 129, 146, 183, 
187, 192, 205 

skeleton, 15, 168, 183, 186 
slaves, 100, 102, 105, 108, 111, 113, 115, 116 
software, vii, 12, 13, 14, 15, 26, 27, 28, 82, 83, 84, 

134, 139, 142, 154, 186, 188, 192, 193, 203 
solution, 3, 27, 28, 49, 55, 56, 65, 71, 73, 74, 76, 80, 

81, 91, 141, 143, 144, 157, 189, 190, 191, 192, 
194, 195, 201, 202, 203, 206 

South Korea, 39 
SPA, 68 
Spain, 39 
specifications, 82 
spectroscopy, 145 

speed of light, 132 
Spring, 40, 125, 206 
standard deviation, 7, 20, 89 
state, 47, 50, 56, 62, 83, 102, 173, 174, 175, 182, 

184, 200 
stochastic processes, 141 
stock markets, 63 
storage, vii, 2, 3, 5, 8, 9, 10, 11, 16, 24, 26, 29, 33, 

34, 64, 72, 93, 105, 142, 147, 148, 164, 173, 201 
stratification, 141 
structure, 45, 64 
success rate, 56 
Sun, 41, 74, 94, 126, 128, 186 
surplus, 59 
Switzerland, 39, 41, 43 
synchronization, 174 
synthesis, 132 

T 

Taiwan, 43 
target, viii, 6, 17, 18, 45, 56, 75, 81, 130, 131, 132, 

142, 151, 157, 160, 166, 167, 168, 171, 172, 174, 
179, 189, 190, 194, 200, 201 

task graphs, 52, 67, 68 
taxonomy, viii, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 

17, 19, 21, 23, 25, 26, 27, 28, 29, 39, 40, 41, 43, 
184 

techniques, viii, 4, 7, 19, 20, 22, 29, 55, 58, 72, 73, 
76, 89, 96, 123, 129, 130, 132, 141, 142, 143, 146, 
152, 157, 183, 201 

technologies, vii, 133, 152, 205 
technology, vii, 134, 187, 188, 200, 204, 205 
testing, 134, 137 
time frame, 158 
time series, 6, 7, 17, 18, 31, 39 
time use, 89 
topology, 15, 112, 118, 132, 134 
trade, 50, 57, 58, 61, 63, 67, 132, 159, 161, 174, 179, 

202 
trade-off, 50, 57, 58, 67, 132, 202 
training, 4, 8, 14, 21, 26, 27, 30, 31, 32, 33, 34, 35 
transformations, 143 
transmission, 105, 107, 110, 114, 121, 124 
transport, 141, 143, 145, 146, 152 
trial, 200 
Turkey, 152 

U 

United Kingdom, 96, 186, 187 
universities, 72, 192, 199 
USA, 39, 40, 41, 42, 43, 44, 94, 97, 127, 185, 186, 

204 
user data, 90 
utility, 39, 41, 66, 69 
utility costs, 64 

Complimentary Contributor Copy



Index 213 

V 

valuation, 58, 94 
variable costs, 64 
variables, 22, 35, 161, 162, 164, 170 
variations, 117 
varieties, 141 
vector, 22, 47 
velocity, 180 
virtual organization, 10, 27, 139, 140, 184 
visualization, 129, 149 
volatility, 158, 173 
volunteer computing, 70 
volunteers, 188 

W 

Washington, 42, 185, 204 
web, 96, 148, 154, 199, 200 

web service, 148 
workflow, viii, 2, 4, 12, 13, 21, 23, 24, 25, 34, 42, 

45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 57, 67, 68, 
69, 133, 134, 135, 136, 158, 184, 188, 200, 203, 
206 

working hours, 81 
workload, 5, 7, 17, 18, 20, 29, 30, 32, 35, 42, 67, 81, 

82, 83, 84, 86, 90, 91, 92, 93, 94, 103, 104, 105, 
117, 123, 167, 206 

workstation, 134, 176, 177 

X 

X-axis, 178, 181 
XML, 193 

Y 

yield, 2, 19, 148 
 

Complimentary Contributor Copy


	GRID COMPUTING: TECHNIQUES AND FUTURE PROSPECTS
	GRID COMPUTING: TECHNIQUES AND FUTURE PROSPECTS
	Library of Congress Cataloging-in-Publication Data
	CONTENTS
	PREFACE
	Chapter 1: A TAXONOMY OF PERFORMANCE PREDICTION SYSTEMS FOR PARALLEL AND DISTRIBUTED COMPUTING SYSTEMS
	Chapter 2: RESOURCE SHARING FOR SCIENTIFIC WORKFLOWS ON COMPUTATIONAL GRIDS
	Chapter 3: ON THE CHALLENGES IN THE DESIGN OF EFFICIENT JOB SCHEDULING POLICIES FOR PRODUCTION HPC AND GRID ENVIRONMENTS
	Chapter 4: SCALABILITY ANALYSIS OF BOT APPLICATIONS ON LARGE DISTRIBUTED COMPUTING SYSTEMS
	Chapter 5: PARALLEL GRID APPLICATIONS
	Chapter 6: GRID PROGRAMMING FRAMEWORKS
	Chapter 7: DESKTOP GRID IN THE ERA OF CLOUD COMPUTING
	INDEX




