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Existence and stability of solutions of the cubic complex Ginzburg-Landau equation
with delayed Raman scattering
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We found two stationary solutions of the cubic complex Ginzburg-Landau equation (CGLE) with an additional
term modeling the delayed Raman scattering. Both solutions propagate with nonzero velocity. The solution that
has lower peak amplitude is the continuation of the chirped soliton of the cubic CGLE and is unstable in all the
parameter space of existence. The other solution is stable for values of nonlinear gain below a certain threshold.
The solutions were found using a shooting method to integrate the ordinary differential equation that results from
the evolution equation through a change of variables, and their stability was studied using the Evans function
method. Additional integration of the evolution equation revealed the basis of attraction of the stable solutions.
Furthermore, we have investigated the existence and stability of the high amplitude branch of solutions in the pres-
ence of other higher order terms originating from complex Raman, self-steepening, and imaginary group velocity.
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I. INTRODUCTION

The complex Ginzburg-Landau equation (CGLE) has been
used to model several physical systems that are at the
emergence of spatiotemporal patterns. Examples in optics are
pulse propagation in fibers with linear and nonlinear gain
and spectral filtering [1], pulse generation in fiber lasers
with additive pulse mode-locking [2], or pulse propagation
in hollow core photonic crystal fibers filled with resonant
gases [3]. The CGLE is one of the known models that supports
dissipative solitons and is usually presented in two forms, the
cubic and quintic forms. Apart from the chirp-free or arbitrary
amplitude solutions, which only exist in special curves of the
parameter space, the cubic CGLE also admits fixed amplitude
chirped solitons. However, these solutions are only stable on a
certain region of the parameter space where the linear gain is
positive. The linear gain being positive imposes background
instability, which is a drawback for the observation of the
stable solitons [4].

Generalizations of the CGLE have also been studied, some
of those include a term that, in optics, models the delayed
Raman scattering. For instance, the addition of this term
has proved to stabilize the eruption solitons of the quintic
CGLE [5-7]. Here we show that the cubic CGLE plus
this same term admits two traveling solutions, one of them
being stable, in certain parameter regions where the linear
gain is negative. We investigate those solutions, namely, the
parameter region of existence, amplitude and chirp profiles,
velocity and stability. We further study the robustness of the
stable solutions against other higher order perturbations such
as self-steepening, imaginary group velocity, or imaginary
Raman term. The latter higher-order terms are motivated by
the study of pulse propagation at resonant frequencies of
gases [3,8].
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II. TRAVELING SOLUTIONS

Consider the evolution equation,

. D . , .
iqz — —qrr +slg\’q = i8q + iBqrr + i€lq’q + Eqr

2
+R(gPrq —iSUql*q)r, (1)

where, in the optical context, g is the normalized envelope of
the optical field, and Z and T are the normalized propagation
distance and retarded time, respectively. The parameters in this
equation are all normalized versions of the actual parameters,
namely, é stands for linear gain or loss, 8 for spectral filtering,
€ for nonlinear gain, £ for the imaginary part of the group
velocity, R for the delayed Raman scattering, and S for the self-
steepening effect, where R and S are allowed to be complex,
ie., R=R, +iR;and S = S, +iS;. The parameters D and s
may only take the values =1, D = 1 if the dispersion is normal
and —1 if the dispersion is anomalous and s =1 or s = —1
for positive or negative Kerr effect, respectively.

We will restrict our analysis here to the case
Ds = —1, such that the left-hand side of Eq. (1)
becomes the focusing nonlinear Schrodinger equation

(NLS). We first applied the standard inverse scatter-
ing method perturbation analysis [9,10] by considering
the fundamental soliton of the NLS, namely, ¢(7,Z) =
n(Z)sech{n(DIT — To(2)1} expl—ik(Z)T +i¢(Z)], and ob-
tained the following equations for 1 and k:

dn 4 3 2 2 2 43
—L =8+ -en®—= 3k%) — 2kng — =n’kS;,
77 n +36n 3/377(17 + 3k%) né 37

dk 4 2 2 2 8 4 4 4

— = ——Bn*k—Zn*t — —R.* — =Sin*t.

az = 3Pmrkogms - ke =55

The main results of this article concern pulse solutions of
Eq. (1) with§ =0, R; =0, and S = 0, such that it should be
assumed that they have these values unless it is said explicitly.
Under these conditions, and taking also 8 > 0 and 6 < O,
the latter to guarantee stable background, the equilibrium
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FIG. 1. (Color online) Amplitude profile and phase for § = —0.012, 8§ = 0.3, € = 0.2, and R, = 0.2 (a) high-amplitude and (b) low-

amplitude solutions.

nontrivial amplitude and frequency are given by

4R} 4+l(26—ﬂ) 246=0 and & _ 2Ry

5p 3 n, +8= e =55
which yields two positive amplitudes if 2¢ — g >
12/5|R,|(|8]/8)"/?. Thus, according to this perturbation ap-
proach, as we introduce the Raman term the NLS fundamental
soliton continues to exist but a new solution that has higher
amplitude also appears. The above perturbation results are
valid as long as 8, B, €, and R, are small. However, we know
that for R = 0, the NLS soliton survive for parameters &, 8,
and € that are not small, being the fixed amplitude chirped
solution of the cubic CGLE [11]. The analytical form of these
solutions was recently generalized for the case £ 7 0[3]. They
exist above a certain curve ellfnf(’ =e(B)if 8 +£2/4B < Oand
below that curve otherwise. Unfortunately, they are only stable
whenever the background is unstable. As we shall show below,
if we introduce the Raman term this solution continues to be
unstable. Hence, we are most interested on the other solution
that direct numerical integration of Eq. (1) shows that, in some
cases, is stable.

To further continue our search for solutions of Eq. (1), we
write g(Z,T) as a traveling solution of the form ¢(Z,T) =
F(1)e!?@+9Z with t = T — vZ, where both F and 6 are
real, in which case we obtain the following equations:

1
<§ + 2ﬁ2> F" 4+ [2Bv + D& + D(2R, + 3S;)F?

+2BQ2R; — 3S8,)F*|F' + (288 + Dw)F
—(Dv — 2/%;)M - (1 + 2;32> M + (=Ds +2Be)F?
F 2 F3
+ (DS, +2BS)FM =0,
(3 +28*)M’' + [2Bv + D& + (DS; — 2BS,)F*IM
+[Dv —2B& + DQ2R; — 3S,)F> —2B(Q2R, + 3S;)F?]

X FF' +(=2Bo + D§)F* + (2Bs + De)F* =0, (2)

where M = F26’. Since we are looking for localized solutions,
F, F’, and M should tend to zero at the tails, where they

obey the linearized version of Eq. (2). Since our numerical
simulations indicate that the traveling solitons have constant
phase derivative in their tails, we assume that F(t) = Fyes®
and M(t) = pwF3e*", with g real and positive for T — —o0,
and real and negative for T — +o00. Inserting these ansatz
into the linearized version of Eq. (2) we obtain the following
equations for g and w:

(3 +28%)g* + (2pv + D&)g — (L +28%)i?
—(Dv —2B&)u + 288 + Do =0, (3)

_ (2B& — Dv)g — D6 +2Bw
g +4p2g+2Bv+ DE

Note that u is the value of 6’ at infinity and, since it depends
on g, it is different at each tail. The pulse solutions that may
exist in this system are in fact heteroclinic orbits in the phase
space (F,F',M).

We are interested in the parameter space where § +
& 2/4,8 < 0, which, as it will be shown in next section, cor-
responds to stable background. To obtain the high amplitude
solutions predicted by the perturbation approach and by direct
numerical integration of Eq. (1), we use estimates for w and
v from the numerical integration of Eq. (1) for a particular
set of parameters for which the solution is stable and use a
shooting method to find the profiles for the amplitude F' and
phase derivative 6’. Our shooting method starts at the two
tails and does the matching at the pulse peak location. The
initial conditions at both ends were F = Fpes'?" =€ < 1,
F' = giz¢,and M = we?, where g1 are the real solutions
of Eq. (3). We have started with § = —0.012, g = 0.3,
€ =0.2, and R, = 0.2 [see Fig. 1(a)] and find all the other
solutions by continuation. We have studied the existence of
the high-amplitude solutions for R, # 0 on the plane (8,¢).
The map of existence for § = —0.012 and R, = 0.2 on the
region defined by 0 < 8 <1 and 0 < ¢ < 0.4 is shown in
Fig. 2. There is a boundary of existence from below at which
the high-amplitude solution merges with the low-amplitude
solution and at which both cease to exist. The existence of
this boundary is also predicted by the perturbation analysis
performed on the NLS. In effect, this boundary corresponds to
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FIG. 2. (Color online) Existence and stability of the high ampli-
tude solutions on the (8,¢) plane for § = —0.012 and R, = 0.2. The
existence boundary from perturbation approach is shown as a dashed
(green) curve.

the condition 2¢ — 8 = 12/5|R,|(8]/8)'/?, in which case we
get two equal solutions for 7,. This curve is also represented
in Fig. 2 and it coincides with our numerical existence
curve for small 8 but departs substantially from the latter
for larger 8. Then we have searched for solutions on the
plane (R,,e). Figure 3 shows the region of existence on
the region 0 < R, < 0.65 and 0 < ¢ < 0.4 for § = —0.012
and B = 0.3, where we see the same kind of scenario as in
Fig. 2. These results anticipate that in the space of parameters
(B, R, ,€) there is aminimum threshold €, = €(8, R,) for these
solutions to exist. The same occurs for R, = 0 in which case
€f=0 = B(3\/1 +4p2 + Ds)/(4 + 1882) [3]. For R, # 0 this
limiting value of € is larger but tends to the latter value as R,
tends to zero.

We have used the same shooting procedure to obtain the low
amplitude solutions but the first estimates for v and w cannot
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Perturbation
Unstable
03 b
w
0.2 Stable E
No solutions
0.1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

R,

FIG. 3. (Color online) Existence and stability of the high-
amplitude solutions on the (R, ,€) plane for § = —0.012 and 8 = 0.3.
The existence boundary from perturbation approach is shown as a
dashed (green) curve.
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FIG. 4. (Color online) Velocity, peak amplitude, and propagation
constant dependence on R, (left column), for § = —0.012, 8 = 0.3,
and € = 0.2, and on € (right column), for § = —0.012, 8 = 0.3, and
R, = 0.2. The high-amplitude solutions are the upper curves and
the low-amplitude solutions are the lower curves. Solid lines (black)
are results from shooting and dashed lines (green) are results from
perturbation.

be obtained from the integration of Eq. (1), since the low-
amplitude solutions are not stable. Hence, we have obtained
the low-amplitude solutions by continuation from the low-
existence boundary or from the analytical solutions at R = 0.
One of those solutions is shown in Fig. 1(b).

We have studied the dependence of v, w, and peak amplitude
for high- and low-amplitude solutions on the parameters R,
and €. In the left column of Fig. 4 we show that v, w, and the
peak amplitude Fi.x of the high-amplitude solitons decrease
with the magnitude of R,, whereas the opposite is true for
the low-amplitude solitons. As represented, a similar behavior
results from the perturbation analysis [for the equilibrium
solution we have v = —k, and w = %(ng — kf)]. For R, around
0.28 the solution reaches the boundary of existence referred
to above, so that the high-amplitude solution equals the
low-amplitude solution. Note that the point R, = 0.28 and
€ = 0.2 is at the boundary of the region of existence in Fig. 3
(B = 0.3). However, a lower limiting R, value is obtained from
perturbation results. In the right column of the same figure, we
show results for the velocity, propagation constant, and peak
amplitude for fixed §, B, and R, but varying €, also for both
high- and low-amplitude solutions. A good agreement is found
with the perturbation approach as far as the velocity and peak
amplitude are concerned, but not in the propagation constant
of the high-amplitude branch.

As referred in the last paragraph, the high-amplitude
solutions have Fp,x, v, and w that grow as R, tends to zero.
Since they do not exist at R, = 0 and our results show a rapid
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FIG. 5. (Color online) Characteristics of the high-amplitude solution for nonzero &, R;, S,, and S; and 6 = —0.012, 8 = 0.3, ¢ = 0.2, and
R, = 0.2. The x axis represent each of the referred parameters as in the curve legends.

growth rate, especially for w, we suggest that they tend to
infinity at this boundary. Nevertheless, our shooting results
indicate that they tend to infinity at a slower pace for higher
€ and more rapidly for € close to €jy,. At the latter case,
the high values of these parameters are only obtained for
very small R,. As noted above, for R, = 0 the boundary
of existence should coincide with €= and there the high-
amplitude solution merges with the low-amplitude solution,
such that both should have infinity peak amplitude, velocity,
and propagation constant. In fact, the peak amplitude and
propagation constant of the cubic CGLE solutions tend to
infinity as € — €=, but for & = 0, v is always zero.

We have also searched for solutions for nonzero &, R;, S,,
and S;. We have added each one separately and changed them
from —0.1 to 0.1, for the case § = —0.012, 8 = 0.3, ¢ = 0.2,

and R, = 0.2. The resulting velocity, propagation constant,

J

where

Lo (-

—B*(7)

iB)dre — (v + )3, —w — i8 + A(r)

and peak amplitude of the high-amplitude solutions are shown
in Fig. 5. Despite doing all the calculations using D = —1 and
s = 1, we should note thatif we keep Ds = —1 butinterchange
D and s, we will obtain equivalent solutions as long as we also
change the sign of R,, S;, and &£. By equivalent solutions, we
mean the same amplitude profile and velocity and symmetric
wand M.

III. SPECTRAL STABILITY

We proceeded with the study of the solutions found in Sec. II
by analyzing their linear stability spectrum. For this purpose,
let us consider the above traveling solution plus a small
perturbation term, g(Z,T) = [F(1)e'’® 4+ A(Z,1)]e/“?. De-
manding that A has exponential dependence on Z, i.e.,
A(Z,7) = u(t)e*? + x*(r)e "%, we obtain the following
stability eigenvalue problem:

Lw=2w, w=@u x)T, (5)

B(t)
(2 —iB)ore — (v —8)0; +w—i8 — A*(r))’

A(t) =2(s —ie)F* — RBFF' + F*3, —i0'F?) + 2iSQFF' + F*3,),
B(t) =[(s —i€)F> — R(FF' + F?*3, +i0'F?) + SQiFF' —20'F* + i F*3,)]e*".
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FIG. 6. (a) Trajectory of the discrete eigenvalue (the one with positive real part) as € increases. (b) Imaginary part of the same eigenvalue
as function of €. Both graphs correspond to high-amplitude solutions and § = —0.012, 8 = 0.3, and R, = 0.2.

The traveling pulses are linearly stable if L has no eigenvalues
A with negative imaginary part. Due to the symmetry of Eq. (5)
relative to the imaginary axis, we expect that whenever there
is an eigenvalue A with associated eigenfunction (u x)7,
there also exists an eigenvalue —\A*, corresponding to the
eigenfunction (x* u*)”. Therefore, in the following, only the
eigenvalues with zero or positive real part will be considered.
Moreover, the spectrum of L consists of a continuous set
and discrete eigenvalues. One trivial discrete eigenvalue is
A = 0, which is double and corresponds to the translational
and rotational invariances of Eq. (1). The location of the
continuous spectrum may be estimated using the continuous
spectrum of the limiting form of L for T — o0, which is
obtained from L putting A(r) = B(r) = 0. The continuous
spectrum of L, is composed of two oblique parabolas on the
A plane defined by (D/2 + iBrr+W—iér —w—is =\
and (—D/2 +ip)r? + (v + i&)r + w — i8 = A, with r being
any real number. These parabolas are in the upper half-plane
for & +£2/4p8 < 0. Following Henry [12], the continuous
spectrum of L itself is on the regions defined by the lines
that constitute the continuous spectrum of L, so that it is on
or inside the above parabolas. Hence, the continuous stability
spectrum of these solutions is stable if § + £2/48 < 0, as we
stated in the previous section.

We searched for discrete eigenvalues using the approach
of Alexander et al. [13] of the Evans function method [14].
Due to the analyticity of the Evans function away from the
continuous spectrum, the existence of unstable eigenvalues
was investigated by calculating the Evans function around a
semicircle with large radius whose straight line stands on the
real axis and then applying the argument principle. In order to
avoid the A = 0 eigenvalue, we have deformed the semicircle
close to the origin using another semicircle, this one with a very
small radius. To confirm our results, we have also computed
these eigenvalues by considering the discretized operator L,
which was obtained by evaluating Eq. (5) in equidistant points
and using finite-differences and then applying sparse matrix
methods.

The regions of stability of the high-amplitude solutions in
the parameter space (8, R,,€) and § = —0.012 were evaluated
in the planes R, = 0.2 and § = 0.3 as shown in Figs. 2 and 3.

In both figures, the stable regions are for smaller €, close to
the existence boundary. Figure 2 shows that they are stable
above a certain threshold of B, on the other hand, Fig. 3
shows that these solutions are stable from R, =0 up to a
certain threshold of R, . Following the trajectory of the discrete
eigenvalues, we have found that as € is increased, up to the
stability boundary, a pair of eigenvalues cross the real axis
and enter the unstable half-plane. On the other hand, as €
decreases toward the boundary of existence, these two complex
eigenvalues merge at the imaginary axis (see Fig. 6), giving rise
to two pure imaginary eigenvalues that split; one stays at the
positive part of the imaginary axis, so it is stable, the other one
travels in the direction of the negative part of the axis passing
through zero. At this €, the high-amplitude solutions touch
the low-amplitude solutions. The low-amplitude solutions are
unstable for all the parameters in the studied region. They have
two discrete eigenvalues, apart from the zero one, both are pure
imaginary but one is stable and the other one is unstable. It
is worthwhile to compare these results with the ones obtained
for the cubic-quintic CGLE regarding different branches and
change of stability [15]. In fact, as in Ref. [15] our results show
two branches of solutions for the same parameters and that the
local edges of soliton existence in the € or R, parameters
correspond to change of stability. Nevertheless, there is also
change of stability away from local edges of existence, namely,
inside the high-amplitude branch.

Let us give a rough physical explanation for the above
results. In the case of R, = 0, there are solutions for € > 0
above the curve €f=0 for § < 0 that reveal a balance of the
nonlinear gain with the linear loss and filtering. However,
those solutions are unstable. The introduction of the Raman
term brings another solution that is higher in peak amplitude,
shorter in duration, and has higher chirp, such that it suffers
stronger filtering since it is steeper in amplitude and phase.
This stronger filtering stabilizes this new solution, at least up
to a certain threshold nonlinear gain, i.e., up to the threshold
of stability that was found here. The same reasoning may
explain why the high-amplitude solution have higher peak
amplitude and shorter duration for higher €, in order to increase
the filtering associated loss and thus balance the nonlinear
gain.
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FIG. 7. (Color online) Propagation for § = —0.012, § = 0.3, ¢ = 0.2, and R, = 0.2 (a) sech(7T") at the input (b) peak amplitude for

A sech(AT) at the input.

IV. NUMERICAL SIMULATIONS

We have investigated pulse evolution in the three regions
represented in Figs. 2 and 3, by numerically solving Eq. (1)
using sech(7T') at the input in order to better excite any existing
unstable mode. In all cases, we have considered § = —0.12,
B =03, and R, = 0.2. As a first example, we let € = 0.2,
which is well within the stable region for this set of parameters.
As Fig. 7(a) shows, after some initial adjustments in both
amplitude and width, the pulse profile evolves rapidly toward
the high-amplitude solution, propagating steadily from that
point on without appreciable changes in both beam profile and
trajectory. Actually, our numerical simulations have shown
that, within the stable region, this convergence to the stable
solution can be achieved for inputs of the type A sech(AT),
with A typically ranging from the amplitude of the low-
amplitude solution to a maximum value that can be several
times the peak amplitude of the stable soliton. This maximum

0.8

0.6

[q

0.4

0.2

0
200
50

value depends on the localization within the stable region,
being larger close to the lower boundary of the existence
region. Figure 7(b) shows the peak-amplitude evolution for the
previous parameters and for different values of A, indicating
that in this case the stable solution is able to attract sech
profiles with amplitudes between approximately 0.59 and 1.79.
Note that, for the set of parameters considered, the high- and
low-amplitude solutions have peak-amplitude values of 1.34
and 0.57, respectively.

As expected, in the other two regions, the unstable one
and the one where no solutions are allowed, the sech(7) is
not be able to reach a steady propagation. Figure 8(a) depicts
the evolution for € = 0.15 (no solution region). In this case,
the pulse broadens and the peak amplitude decreases down
to complete disappearance of the pulse. A different behavior
is represented in Fig. 8(b) for ¢ = 0.28 (unstable region). In
this case, the initial stages of evolution are characterized by
a fast increase of peak amplitude, which can be explained

10

(b)

FIG. 8. Propagation for § = —0.012, 8 = 0.3, and R, = 0.2 with sech(T') at the inputs (a) € = 0.15 (no solution region) and (b) ¢ = 0.28

(unstable region).
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by the growth of unstable modes. After this initial burst, the
subsequent evolution is analogous to the one for € = 0.15,
with the pulse peak amplitude decreasing at approximately the
same rate in both cases.

We have also simulated pulse propagation using Eq. (1)
for &, R;, S,, and S; different from zero. In order to have
a preliminary idea of the stability of the solutions that
were found in Sec. I (Fig. 5), we have tested the cases
& =40.1, R, = £0.1, S, = 0.1, and S; = £0.1 also for
8§ =-0.012, =03, € =0.2, and R, =0.2. In all the
cases, we have obtained stable propagation. Moreover, in all
except the S; = 0.1 case, the input sech(7T") evolved to the
high-amplitude solution obtained with the shooting. For the
S; = 0.1 case, we needed to add a phase to the sech input in
agreement with the velocity retrieved from the shooting results
in order to observe stable propagation. Nevertheless, a detailed
investigation of the stability of the solutions for nonzero &, R;,
S, and S; is postponed for a future work using parameter
ranges associated with a practical application of this model.

V. CONCLUSIONS

Motivated by physical systems described by generalizations
of the cubic CGLE, we searched for stable soliton solutions
of one of these generalizations, namely, one that includes a
delayed Raman scattering term. In the anomalous dispersion
regime and positive Kerr effect, or vice versa, a perturbation

PHYSICAL REVIEW E 92, 022922 (2015)

approach around the soliton of the NLS equation shows that, in
a certain region of the parameter space, there are two solutions.
In fact, we have obtained the ordinary differential equation for
the traveling solutions of the generalized cubic CGLE and
found these two solutions using a shooting procedure. Then,
we studied the spectrum of their linear stability operator using
the Evans function approach and performed direct numerical
simulations of the evolution equation to confirm the previous
results and to obtain basis of attraction of the stable solutions.
One branch of solutions, the ones with lower peak amplitude, is
the continuation of the CGLE chirped solutions and continues
unstable. The other branch consists of solutions of higher peak
amplitude and they are stable from the existence boundary up
to a threshold of nonlinear gain. The linear stability spectrum
has one unstable eigenvalue in the case of the low-amplitude
solutions and a pair of unstable eigenvalues in the case of
the high-amplitude solutions above the stability threshold. A
preliminary study of existence and stability of pulse solutions
of a cubic CGLE with Raman and other higher-order terms
was made, yielding stability in all the studied cases. A careful
analysis of that case as well as the case of anomalous dispersion
and negative Kerr effect will be considered in a future work.
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