
Noname manuscript No.

(will be inserted by the editor)

Reusing models and properties in the analysis of similar
interactive devices

Michael D. Harrison · José Creissac Campos · Paolo Masci

Received: date / Accepted: date

Abstract The paper is concerned with the compara-
tive analysis of interactive devices. It compares two de-
vices by checking systematically a set of template prop-
erties that are designed to explore important interface
characteristics. The two devices are designed to support
similar tasks in a clinical setting. The devices di↵er as
a result of judgements based on a range of consider-
ations including software. Variations between designs
are often relatively subtle and do not always become
evident through even relatively thorough user testing.
Notwithstanding their subtlety these di↵erences may be
important to the safety or usability of the device. The
illustrated approach uses formal techniques to provide
the analysis. This means that similar analysis can be
applied systematically.

Keywords MAL · IVY · medical devices · procure-
ment · interactive systems

1 Introduction and motivation

The systematic analysis of properties of interactive be-
haviour using Modal Action Logic (MAL) and the IVY
tool has been reported in previous papers [10–12]. This
paper uses these techniques to model and to analyse
two devices developed by di↵erent manufacturers to
support the same tasks. It builds on an earlier paper

Michael D. Harrison
School of Computing Science, Newcastle University E-mail:
michael.harrison@ncl.ac.uk

José Creissac Campos
Departamento de Informática, Universidade do Minho and
HASLab, INESC TEC

Michael D. Harrison, Paolo Masci
School of Electronic Engineering and Computer Science,
Queen Mary University of London

[12] that focused on the analysis of one of the devices
described. This paper considers particular issues associ-
ated with reuse of elements of the device specifications
and properties that are similar, while identifying the
ways in which they di↵er. The two devices manage lim-
ited displays and keys in di↵erent ways. A technique is
demonstrated for comparing these user interfaces based
on systematic analysis. The technique relies on the use
of standard property templates. These devices are anal-
ysed, by reusing components of the specification that
share common properties, and by systematically check-
ing similar properties. The purpose of the analysis is to
demonstrate:

– the use of a formal analysis technique as a means of
comparison of the interfaces of two actual devices;

– particular mechanisms for the analysis based on the
common use of components of the specification.

The approach will be demonstrated by producing anal-
yses of versions of two intravenous infusion pumps, the
Alaris GP [14] and the B.Braun Infusomat Space [3].
Although specific devices are being explored the pur-
pose is to demonstrate the design and the judgements
that can be made rather than to rate the two designs.
These devices are used to indicate the scaling of the
technique to real-world problems.

The contribution of this paper is to demonstrate the
use of the IVY method and supporting tools in produc-
ing detailed specifications of the interactive behaviour
of o↵-the-shelf state of the art devices. These specifica-
tions are approximately ten times the size of specifica-
tions produced before and demonstrate the scale-up of
these techniques. The paper also shows how the analy-
sis techniques allow an exploration of subtle issues re-
lating to the interactive behaviour of the two devices,

Post-print of paper published in Innovations in Systems and Software Engineering, 11(2):95-111, 2015.
Final version available at: http://dx.doi.org/10.1007/s11334-013-0201-3

2 Michael D. Harrison et al.

and points towards a plausible method of comparison
between interactive system designs.

Rigorous assessment is made particularly relevant
by well documented concerns about the safety of infu-
sion devices in general (see for example [24]). Failure to
set up infusions accurately and reliably can have seri-
ous consequences. A number of incidents with a range
of types of infusion pump indicate how the wrong ma-
terial, or the wrong volume at the wrong rate, may in
rare cases have disastrous consequences for the patient
to whom the infusion was being administered (see, for
example [42]). Part of the problem is due to vulner-
abilities caused by interaction failure. Infusion pumps
are designed to be used in a variety of settings, from
general hospital wards, critical and intensive care, op-
erating rooms to accident and emergency rooms. Some
versions of the device are designed to be used at home
or to be administered by the patients themselves.

The two pumps considered in the paper o↵er a range
of facilities including number entry relating to the key
infusion pump variables: volume to be infused, rate of
infusion or time to infuse prior to starting the infu-
sion process. The aim has been to produce specifica-
tions that are as accurate a snapshot of the devices as
possible. However the purpose has not been to demon-
strate in detail the characteristics of current versions
but rather to demonstrate the utility of the proposed
approach for exploring subtle design di↵erences in a
systematic way. Details of the description were derived
from a combination of manuals ([14,3]), simulators, as
well as some limited access to the physical devices them-
selves. The Alaris simulation is due to Patrick Oladimeji
of Swansea University [33] based on the actual device
and the other was provided by B.Braun of a version
of the Infusomat Space. The approach to model elici-
tation is consistent with the “interaction walkthrough”
suggestions contained in [40].

MAL and IVY were used to model the two devices.
The models are illustrated by providing and explain-
ing fragments of the MAL specification. These frag-
ments both demonstrate process and reuse, indicating
the scale of the undertaking that can be achieved us-
ing the MAL notation and the IVY tool. The paper
demonstrates the extent of commonalities between the
two specifications. It also demonstrates the common ap-
plication of properties of interactive behaviour while at
the same time showing that some properties were only
relevant to one of the devices. A common layer specifies
the attributes of the pump device, how the material is
infused and at what rate or over what period of time.
The paper briefly introduces specifications of the two
devices. It focuses on properties that can be used for the
purposes of comparison. After an overview of the back-

ground and related work (Section 2), the two infusion
pumps are introduced (Section 3). Section 4 explains
the three layers of the models and Section 5 provides
examples of how generic properties were used in the
verification of the model. Six main classes of properties
will be considered: mirroring of device processes (e.g.,
infusing, on hold) in the interface; mode clarity; feed-
back for critical actions; consistency of the interface;
checking ease of recovery; support for normative tasks.
A final section (Section 6) provides some discussion of
the comparison between the two devices and conclu-
sions.

2 Background and related work

Techniques are required to help answer questions about
the design relevant to safety both in the context of de-
sign and procurement. Safety in relation to use is an
important aspect of this concern. In the specific context
of procurement of medical devices a number of analy-
sis techniques have been proposed, for example cogni-
tive walkthrough [4], heuristic evaluation [42] and hu-
man reliability assessment techniques (SHERPA) [29].
The methods have not been adopted in practice be-
cause the cost of using them outweighs their perceived
benefit. Often price is the overwhelming factor in decid-
ing purchase. The manual and non-exhaustive nature of
the techniques referenced above means that alternatives
must be sought.

Also in the context of medical devices, empirical
studies have been used to investigate how di↵erent de-
sign options may a↵ect the reliability of user program-
ming a medical device. Thimbleby and Oladimeji [34],
for instance, used eye tracking to investigate the abil-
ity of users to detect errors on serial interfaces with a
12-key numeric keypad as compared to an incremen-
tal interface with chevron keys. Their results point out
that incremental interfaces are likely to facilitate er-
ror detection. They argue that this is potentially linked
to two factors. The first factor relates to the users’ vi-
sual attention: for the incremental interface, users di-
rect their visual attention towards the display most of
the time, while in the serial interface they focus on the
keys and usually omit checking the display. Because of
this, device-dependent errors, like key bounces1 due to
defective buttons, are more likely to be detected when
using the incremental interface. The second factor re-
lates to syntax errors. With the serial interface, users
may accidentally enter invalid numbers (e.g., 1.2.0 or
1..2), while such a possibility is designed out in incre-

1 A key bounce occurs when physically pressing a button
once causes a repeat of the same key.

Reusing models and properties in the analysis of similar interactive devices 3

mental interfaces. Invalid numbers need to be handled,
and di↵erent manufactures generally implement di↵er-
ent ad hoc solutions, with the net result that devices
deliver an unpredictable user experience [38,39]. The
work described in this paper complements empirical
studies such as this one. It is concerned with subtle
di↵erences between apparently similar interfaces — as-
pects that would have been impractical to analyse in
any experiment, and that are addressed by means of
exhaustive analysis performed through formal verifica-
tion techniques.

The broader analysis of safety critical systems us-
ing formal techniques has attracted considerable inter-
est, and to some extent that has been extended to the
analysis of safety issues associated with the use of these
systems. Examples include those of Fields [23] and the
more recent work of Bolton and others [6] who use
model checking to explore the e↵ect of user task devi-
ations in a design. Other relevant research includes the
use of finite state models to describe interactive sys-
tems, for example Thimbleby [41] and Heymann and
Degani [25]. Reviews on the general topic of using for-
mal verification to analyse interactive computing sys-
tems can be found in [13,7].

The IVY approach described in this paper have been
applied to other examples including a simplification of
a flight management system [9], an automobile based
air conditioning system [10] and another simpler ver-
sion of the devices analysed in this paper [11]. The
analysis described in this paper is considerably larger
than the previous work, the two models considered are
each ten times the size of the models considered before.
They provide detailed descriptions of the interactive be-
haviour of the two devices.

Other formal modelling techniques have also been
applied to medical infusion pumps.

Bolton and Bass [5] used SAL [17] to analyse a
model of the Baxter iPump. The pump model is devel-
oped within a framework that takes into account user
goals, normative tasks (i.e., sequences of actions that
must be performed according to written documents,
such as user manuals or training material), and the op-
erational environment. Their main goal is to explore
the possibility of packaging an automated reasoning
tool in such a way that non-experts in formal meth-
ods, such as human factors engineering practitioners,
could (i) specify a realistic interactive system with in-
tuitive modelling constructs, and (ii) verify in a reason-
able amount of time a variety of basic normative tasks,
such as turning on/o↵ the pump, stopping the infusion,
entering a volume to be infused. They performed the
verification on a simplified model of the pump, as the
state space of the full model exceeded the capabilities

of the model checker. This work shares with that paper
the concern that verification tools, when properly pack-
aged, can enable non-experts of formal methods to per-
form the verification of realistic systems. In particular,
a modelling architecture that enables model reuse can
help to reduce the perceived cost of building a formal
specification because representative models can be de-
fined and easily changed to support multiple analyses.
The work described in this paper di↵ers from Bolton
and Bass because its main goal is to compare similar
designs of medical devices systematically. For this rea-
son a detailed model of the interactive behaviour of the
devices, limiting simplification to the minimum, is used.
The layered approach described in the paper proves ef-
fective for this, as it allows some scope for reuse and it
is possible to verify safety and reachability properties
on the full specification of device modes. Examples of
analyses will be explained in detail in section 5

Masci and others [31] analysed the interactive num-
ber entry systems of the B.Braun and Alaris pumps
with the Symbolic Analysis Laboratory (SAL) [17]. They
developed the specification by reverse-engineering the
real devices from user manuals and manual exploration
of the real devices. They formalised a design principle,
predictability [19], which concerns the ability of a user
to accurately predict the consequences of future interac-
tions from the observable persistent state of the device
(e.g., from what is shown on the device displays). Their
verification approach systematically compares a predic-
tion model, which specifies the expectations of the user,
and relates it to the specification of the actual number
entry system of the devices. The prediction model can
be thought of as a mental model [26] developed by an
idealised expert user that (i) knows perfectly the func-
tionalities of the device, but (ii) makes decisions only
on the basis of the current persistent state externalised
by the device. Their analysis is conservative — if the
ideal user fails to predict the e↵ect of any action, then
real human users would have similar di�culties (they
can do no better than the idealised expert user). They
are able to perform the analysis with SAL on detailed
models that consider the full range of numbers handled
by the real devices. This work complements the analy-
sis described in this paper. It focuses on the details of
the interactive number entry system while the present
paper focuses on the device modes.

Also relevant is the work of Rukšėnas and Curzon
[36] who are concerned to model not only the device but
also to incorporate assumptions about the activities and
goals that are to be carried out based on general cog-
nitive principles. They have used their techniques to
replicate experimental data relating to an ambulance
dispatching system. This work goes beyond the current

4 Michael D. Harrison et al.

paper by being concerned about cognitive processes al-
though assumptions about infusion activities are made
in this paper by specifying an “activity layer” (see also
[20]) as is described in Section 4.4.

Finally, in the broader context of the verification of
medical software where the user interface is not the fo-
cus, researchers at FDA and at the University of Penn-
sylvania have recently used a model-driven engineering
approach to generate software for a prototype Patient-
Controlled Analgesic infusion pump [27]. Starting from
a Simulink Stateflow model, they translate the model
manually into a specification using timed automata,
verifying safety requirements with UPPAAL [30], and
then synthesising C code with the TIMES tool [1]. Ex-
amples of safety requirements are: the pump shall issue
an alert if paused for more than t minutes; each change
in dose settings must be confirmed before it is applied.
The complete list of the considered safety requirements
can be found at [2]. The work described here comple-
ments these analyses by being concerned with interac-
tion properties, such as mode clarity and consistency of
naming and function.

3 The infusion pumps

The aim here is to access relatively subtle properties of
more complicated devices. The di↵erence between this
work and [12] is that the aim is to provide a means
of comparison between two real devices both developed
to support the same activity but in which, for a variety
of reasons, quite di↵erent design decisions have been
made.

The candidate devices for detailed analysis are the
Alaris GP infusion pump [14] (see Figure 1) and the
B.Braun Infusomat Space [3] (see Figure 2). In the fol-
lowing, the characteristics of the two pumps are illus-
trated along with the aims of the analysis.

3.1 Common features

Most infusion pumps have three basic states: infusing,
holding and o↵. In the infusing state the volume to be
infused (vtbi) is pumped into the patient intravenously
according to the infusion rate. While in the infusing
state the vtbi can be exhausted, in which case the pump
continues in KVO (Keep Vein Open) mode and sets o↵
an alarm. In holding state values and settings can be
changed.

Fig. 1 The Alaris GP Volumetric Pump (from [14])

Fig. 2 The B.Braun Infusomat Space Pump (from [3])

3.2 The Alaris Pump

When the Alaris pump is in holding state values and
settings can be changed using a combination of func-
tion keys and chevron buttons (for the device layout,
see Figure 3). A subset of the features that can be
changed in holding state can also be changed when in-
fusing. Number entry is achieved by means of chevron
buttons. These buttons are used to increase or decrease
entered numbers incrementally. Depending on current
mode the chevron buttons can be used to change in-
fusion rate, volume to be infused and time, or alter-

Reusing models and properties in the analysis of similar interactive devices 5

natively allow the user to move between options in a
menu, for example in bag mode and in query mode.
Bag mode allows the user to select from a set of in-
fusion bag options, thereby setting vtbi to a predeter-
mined value. Query mode, which is invoked by pressing
the query button, generates a menu of set-up options.
These options depend on how the device is configured
by the manufacturer, and include the means of locking
the infusion rate, or disabling the locking of it, or setting
vtbi and time rather than vtbi and infusion rate. There
is also the possibility of changing the units of volume
and infusion rate. The device allows movement between
display modes via three function keys (key1 , key2 and
key3). Each function key has a display associated with
it indicating its present function.

3.3 The B.Braun Pump

The B.Braun pump provides a di↵erent mode struc-
ture. The di↵erent activities of entering vtbi, infusion
rate and time can be accessed by means of a main menu
that provides these activities as options. Values are en-
tered for the relevant pump attribute by selecting the
appropriate option and using four buttons. Two move
the cursor left and right and two increment and decre-
ment the digit associated with the cursor. When the
number is 9 then up increments the value to 0 and car-
ries, but the cursor remains in the same position and
down has the opposite e↵ect. There are fixed function
keys: clear , ok , run. The availability of these fixed func-
tion keys is indicated in the current display.

3.4 The aims of the analysis

The focus of the analysis presented here is to consider
confusions that arise as a result of the mode structures
exhibited by these devices. Furthermore the analysis ex-
plores potential confusions relating to information that
is being displayed. Properties fall into categories relat-
ing to:

– visibility of pump variables and therefore the pro-
cess

– ease with which current interface mode can be dis-
criminated

– feedback from actions
– consistency of action across modes
– ease of recovery from error
– resource support for the di↵erent activities for which

the design is intended

The two devices above are compared in terms of
“software” aspects of the design. The relationship be-
tween the device and its environment, which is of course

extremely important, will not be considered explicitly
in this paper. Hence, for example physical aspects of the
“giving set” used to connect the device to the vein of
the patient will not be considered nor will any issues as-
sociated with electromagnetic interference. These other
aspects are also important in the design and procure-
ment of these devices but are not the focus here.

There are a wide range of infusion pumps and sy-
ringe drivers in use in hospitals with a variety of inter-
face styles that di↵er in terms of data entry and the
ways in which modes are structured. This specific ex-
ample will trigger discussion of broader issues.

4 The model

The specifications of the models discussed in this paper
are available at the Minho HCI specification repository
[8]. The model is described in three layers. Two layers
are common between the two devices. The innermost
“pump” layer captures the properties of the pumping
device which is controlled by the user interface that is
to be analysed. The layer is described by a reusable
module which is instantiated in each specification. The
middle layer is specific to the device being modelled and
describes its interface structure. The outermost layer,
the activity model, is described as part of the main
module (to reduce state space overheads). This layer
describes the constraints on the device that relate to
the way it is used. It will assume the same activities
in each device that is being considered. These activi-
ties will be derived from an understanding of the work
that the clinician is to carry out. This outer layer is
not dependent on characteristics of the device though
it provides a mapping into the middle layer thereby
grounding it in the specific details of the device.

4.1 The modelling language

The models are specified in a logic based on Structured
MAL [37]. MAL (Modal Action Logic) is a (deontic)
modal logic that incorporates a notion of action. Struc-
tured MAL adds mechanisms for structuring the specifi-
cation to the basic MAL notation. In our case the notion
of interactor [21,35] is used to structure the specifica-
tion, borrowing the mechanisms from Structured MAL.
Interactors are modules that have a state (defined by
attributes) which is (partially) made available to the
user through some presentation medium, and a set of
actions (some available to users, some internal) that act
on that state.

6 Michael D. Harrison et al.

MAL axioms will be used to define the behaviour
of interactors. In addition to the usual propositional
operators and actions the logic provides:

– a modal operator [] : [ac]expr is the value of expr
after the occurrence of action ac — the modal op-
erator is used to define the e↵ect of actions;

– a special reference event []: []expr is the value of expr
in the initial state(s) — the reference event is used
to define the initial state(s);

– a deontic operator per : per(ac) meaning action ac
is permitted to happen next — the permission oper-
ator is used to control when actions might happen;

– a deontic operator obl : obl(ac) meaning action ac
is obliged to happen some time in the future. Note
that obl is not used in these specifications.

One di↵erence between the logic used here and Struc-
tured MAL is in the treatment of the modal operator.
In Structured MAL the modal operator is applied to
whole propositions. There is no way to relate old and
new values of attributes directly. Old and new values
are often related in practice by the introduction of aux-
iliary variables. For example an action (tick) which in-
crements the value of attribute elapsedtime would be
defined in Structured MAL as:

elapsedtime = aux ! [tick] (elapsedtime = aux + 1)

where aux is an auxiliary variable introduced to carry
the value of elapsedtime into the next state (after tick).
To avoid these auxiliary variables we extended the def-
inition of the modal operator of [22] by using priming
to state explicitly which references to attributes should
be evaluated after the action. Hence the axiom above
can be written as:

[tick] (elapsedtime 0 = elapsedtime + 1)

Parentheses will be omitted whenever the scope of the
modal operator can be inferred.

The modal operator makes it possible to prescribe
the e↵ect of actions in the state but says nothing about
when actions are permitted or required to happen. For
this, permission and obligation operators must be used.
As in [37], only the assertion of permissions and the
denial of obligations are considered:

– per(ac) ! guard — action ac is permitted only if
guard is true;

– cond ! obl(ac) — if cond is true then action ac
becomes obligatory.

Permissions are asserted therefore by default and obli-
gations are o↵ by default. This makes it easier to add
permissions and obligations incrementally when writ-
ing specifications. For example, the two permission ax-
ioms per(ac) ! guard1 and per(ac) ! guard2 together

yield: per(ac) ! (guard1 & guard2) (note that & is
used to denote logical and — | for logical or, and ! for
not). This logic is particularly appropriate for describ-
ing a system in which components can be reused.

The interactor presentation is defined by annotating
actions and attributes to show that they are perceiv-
able. The modality of the perceivable attribute/action
is given using further attributes. For example [vis] as-
serts that the attribute/action is visibly perceivable. In
addition if attached to an action it can be invoked by
the user. Additional annotations are introduced for fur-
ther modalities.

Attributes and action parameters are typed. Types
are represented as enumerations of the “key values” or
as subranges of integer:

types

Tenum = {a, b, c}
Trange = 0 ..10

Interactors are composed through aggregation. For
example the pump interactor can be assumed within
the main interactor of the specification

interactor main
aggregates

pump via device

The three layers of the model are now described.
More details of MAL can be found in [9–11].

4.2 The pump layer

The inner layer describes the basic infusion process.
This process is captured in an invariant:

infusionrate > 0 ! infusionrateaux = infusionrate
infusionrate > 0 ! time = (vtbi/infusionrateaux)
infusionrate = 0 ! time = 0 (1)

This invariant asserts a relationship between vtbi, in-
fusion rate and the time to completion of the process.
infusionrateaux adds slight complication and is intro-
duced to ensure that division by zero is avoided. It
takes values in the range 1..maxrate. The tick action
captures the evolution of the process. It describes the
steps in the process and the alarms that occur when the
volume to be infused is exhausted, whereupon the de-
vice enters KVO mode, or when the device has been left
in a hold state for too long. To illustrate the model’s
specification the normal infusion process is described
using the MAL axiom.

(infusionstatus = infuse) & (infusionrate < vtbi)
! [tick] vtbi 0 = vtbi � infusionrate &
elapsedtime 0 = elapsedtime + 1 &
volumeinfused 0 = volumeinfused + infusionrate &
keep(kvorate, kvoflag , infusionrate, infusionstatus)

Reusing models and properties in the analysis of similar interactive devices 7

This axiom describes tick when the pump is infusing
(infusionstatus = infuse) and vtbi exceeds the amount
that is reduced as a consequence of the value of the
infusion rate. The axiom has three elements: the ac-
tion that is being described (contained in square brack-
ets); the conditions that must be satisfied for the ac-
tion to have the stated e↵ect (left side of the implica-
tion); the result of the action under these conditions.
vtbi 0 = vtbi � infusionrate specifies that the next state
(indicated by the prime symbol) of vtbi must be equal
to its old value minus the infusionrate. MAL specifies
that unless a state attribute is explicitly constrained in
a modal axiom then it can change randomly in the next
state. The keep function determines the list of state at-
tributes that cannot change. The pump interactor in-
volves 10 attributes, 3 actions (start, pause and tick)
and 20 axioms.

4.3 The interface layer

4.3.1 Alaris

The di↵erence between the two infusion pumps is cap-
tured in the middle interface layer of the specification.
Both pumps use interface modes to make most e↵ec-
tive use of the devices’ limited display spaces. The mid-
dle interface layer describes the behaviour of interface
modes. It also describes which of the pump variables
are displayed, the displays associated with the function
keys and the top line of the display which partly in-
dicates the mode of the device. The Alaris display is
organised into three parts. topline describes the con-
tents of the top line represented by an enumeration of
possible top line displays.

iline = {holding , infusing , volume,
dispvtbi , attention, vtbidone, dispkvo,
setvtbi , locked , options, dispinfo,
vtbitime, dispblank}

middisp is a Boolean array that indicates whether a
state attribute is visible. These state attributes are mainly,
but not entirely, attributes specified in the underlying
pump. Finally fndisp1 , fndisp2 and fndisp3 represent
the displays that describe the current purpose of the
three soft keys. The following illustrative axiom de-
scribes the behaviour of the soft key 2 when the top line
of the device shows either “holding” or “infusing” (see
Figure 3) and the pump is processing normally (this is
indicated when vtbi has not been exhausted which oc-
curs when the pump is not in KVO mode, ie kvoflag is
false).

(topline in {holding , infusing}) & !kvoflag ! [key2]

Fig. 3 Alaris actions(see [33])

topline 0 = dispvtbi & oldvtbi 0 = vtbi &
middisp[dvtbi]0 & !middisp[dvol]0 &
!middisp[dtime]0 & !middisp[dbags]0 &
!middisp[dkvorate]0 & !middisp[dquery]0 &
fndisp1 0 = fok & fndisp2 0 = fbags &
fndisp3 0 = fquit & entrymode 0 = vtmode &
e↵ect(device.resetElapsed) &
keep(onlight , runlight , pauselight ,

rdisabled , rlock)

The axiom asserts that the e↵ect of the action key2
is that the next top line displays “volume to be in-
fused” (dispvtbi) and the value of vtbi is displayed (i.e.
middisp[dvtbi]0 is true) but other key pump variables
and menus are not displayed. The soft function keys
(fndisp1 0 etc.) in this next step show “ok”, “bags” and
“quit” respectively. The mode specified by the value
of entrymode is vtmode, which indicates that the de-
vice is ready to change the value of vtbi . Finally the
elapsed time since there was last a key stroke when
infusionstatus is hold is set to zero. keep indicates that
the following state attributes are not changed by the
action.

This Alaris interface layer consists of a specification
that involves: 17 state attributes; 11 actions including
augmentations of pump actions and 75 axioms.

4.3.2 B.Braun

The B.Braun layer has a di↵erent structure than that
of the Alaris pump. The equivalent state attribute to
topline is displaymode which specifies that there is in-
formation in the display that indicates the mode. disp

8 Michael D. Harrison et al.

is a Boolean array that represents the visibilities of
state attributes including those that are specified in the
pump interactor. There are actions up, down, right , left
and ok that allow users to enter data. Hence the tran-
sition in the B.Braun pump that is equivalent to the
Alaris transition that allows the user to begin entering
vtbi is as follows:

(displaymode = mainmenu)&(menucursor = dvtbi)
! [ok] entrymode 0 = dataentry &

displaymode 0 = dispvtbi &
dispvalue 0 = device.vtbi &
entry 0 = maxdigindex & disp[dvtbi]0 &
!disp[drate]0 & !disp[dtime]0 &
!disp[detime]0 & !disp[dvol]0 &
!disp[dalarmvol]0 &
e↵ect(device.resetElapsed) &
keep(target , alarmvolume)

This axiom specifies that if displaymode shows the main
menu and the menu cursor is pointing at the vtbi entry
then on pressing ok the device moves to data entry
mode, as specified by entrymode and the displaymode
shows vtbi, and the temporary state attribute used to
show the number entered is set to the current value of
vtbi. Only vtbi is shown on the display.

This B.Braun middle layer consists of a specification
that involves: 16 state attributes; 9 actions including
3 augmentations of pump actions and 58 axioms. It
should be noted that some of the possible set up options
that are also provided by the B.Braun main menu are
omitted from this model but the equivalent features are
included in the Alaris model.

4.4 The activity layer

The third layer of the model describes the activities
that are assumed to be typical of the clinician’s use of
the device. Whereas the pump layer, which is reused be-
tween devices, is specified as a separate interactor, the
activity layer which has the same shape but di↵erent
implementation in the two models, is in each case part
of the interface interactor for the two devices. Activ-
ities are determined through negotiation with domain
and human factors experts. The process of eliciting and
understanding these activity actions and meta-state at-
tributes is a process akin to task modelling [28] where
the human factors or domain expert observes the infu-
sion activity in context. What is described in the ac-
tivity model di↵ers from a task model because no as-
sumptions are made about the user’s plan. Instead the
activity model defines constraints on activity that can
lead to a variety of paths. The activity model described
here is illustrative. No specific attempt has been made

to observe clinicians as they set up infusions in their
work context. One activity that may have been deter-
mined as being important in the infusion process for
example is that another clinician should confirm that
the correct value of vtbi has been entered into the device
based on the original prescription. These meta-state at-
tributes do not capture any feature of the device or its
interface, rather they indicate a state in the activity as
assumed to be understood by the clinician who is using
the device. They can be used to constrain the device
actions described in the interface layer. Hence confirm-
ing that the vtbi has been entered involves completing
the entervtbi activity (by requiring that the meta-state
attribute phasevtbi is set to confirmed).

[confirmvtbi] phasevtbi 0 = confirmed &
keep(. . . , phasetime, phaserate, phaseinfuse)

The confirmvtbi activity is only permitted if phasevtbi
is entering and the value of vtbi is equal to the required
volume contained in the prescription. This activity is
generic in the sense that nothing in its description de-
pends on the Alaris or B.Braun interface. This is ex-
pressed in MAL as:

per(confirmvtbi) ! (mvolume = vtbi) &
phasevtbi = entering

These meta-attributes are used to “resource” the ac-
tions [20] described in the interface layer. In the case
of the Alaris pump the chevron key is permitted only
when entering the vtbi or entering the infusion rate as
part of an activity defined at the outer layer. These ac-
tions are now assumed to bear a specific relation to the
prescribed value that the clinician has taken from the
prescription. Hence the “fast up” chevron is only used
if the current value is less than the required value by
more than “big step” in the appropriate activity. This
is specified using the following permission axiom.

per(fup) !
(phasevtbi = entering &
((topline = dispvtbi & middisp[dvtbi]) |
(topline = vtbitime & entrymode = vttmode)) &
((bigstep + device.vtbi) < mvolume)) |

(phasetime = entering &
(topline = vtbitime & entrymode = ttmode) &
((device.time + bigstep) < mtime)) |

(phaserate = entering &
(topline = holding & entrymode = rmode) &
((device.infusionrate + bigstep) < mrate)) |

((phasetime = ready | phasevtbi = ready) &
topline = options)

This permission axiom provides all the circumstances
in which the button may need to be used and expresses

Reusing models and properties in the analysis of similar interactive devices 9

them as constraints on the use of the button. For ex-
ample, during the phase of the activity in which vtbi is
being entered the top line of the device should either
show “vtbi” and the vtbi should be visible or “vtbi over
time” in vttmode, that is the cursor indicating mode
should be in the upper part of the display. The permis-
sion also requires that the distance between the current
value of vtbi and the prescribed value of vtbi should
exceed the step that is made by the fast chevron key.
These constraints make assumptions about activities,
for example they assume that the clinician does not
use “bag mode” to select the correct value of vtbi. This
is the kind of assumption that is outside the province of
the analyst and requires input from the domain or hu-
man factors specialist. This particular permission also
describes the constraints that apply when entering time
or entering infusion rate, and also allows use of the key
to select appropriate options. Implementing the con-
straints for the B.Braun demonstrates di↵erences be-
tween the two devices. The B.Braun has two separate
functions that together allow number entry. Modifying
the size of the increment is achieved using the left or
right button. The decrement or increment is achieved
using the down or up buttons. Number entry is only
permitted if the device is in dataentry mode. Entering
vtbi is only allowed, for example, if the display mode
is to display vtbi, and the prescribed vtbi is greater
than the currently displayed value of vtbi. The permis-
sion also includes similar constraints for up when the
display mode is to display time or infusion rate.

per(up) !
(entrymode = dataentry !

(displaymode = dispvtbi &
mvolume > dispvalue) |

(displaymode = disptime &
mtime > dispvalue) |

(displaymode = disprate &
mrate > dispvalue))

The activity layer captures some of the properties of the
cognitive models described by [36]. It is however sim-
pler, making no assumptions about the cognitive pro-
cess itself, simply concerning itself with observed activ-
ities. This activity layer consists of a specification that
involves: 4 state attributes; 7 actions (activities) and 21
axioms.

5 Verifying the model

The aim of the verification process is that similar prop-
erties, indeed patterns, expressing user interface charac-
teristics can be checked of each candidate device. These
formal properties provide a benchmark against which

each candidate design can be explored. As a result, po-
tentially unforeseen design consequences can be discov-
ered that could not be found simply by reading the
manual or by experimenting with the device. The cir-
cumstances in which properties fail are assessed with
the help of human factors or domain expertise. Failure
acts as a trigger for the consideration of a human in-
terface characteristic that would otherwise lie hidden.
Properties checked of each candidate are of the follow-
ing types.

– Checking that the process represented in the inner-
most pump layer is visible through the device inter-
face (mirroring the process in the interface).

– Checking that modes can be determined unambigu-
ously from the interface (mode clarity).

– Checking that actions provide appropriate feedback,
for example when they change mode or change the
values of pump attributes.

– Ensuring consistency of use of the display, or of ac-
tion (consistency of the interface).

– Checking ease of recovery from an action.
– Ensuring that activities described in the outer layer

are supported (supporting activities).

Many of these properties are familiar and can be seen
as interpretations of principles described in [18] or [32].
The specific details of the properties in these categories
will di↵er depending on the device’s interface as is de-
scribed in the middle layer of the model. The aim is
to instantiate standard templates as far as possible.
In the case of the devices modelled here, the proper-
ties that were checked of the pump and interface layers
were checked first before considering the devices con-
strained by activity assumptions. Properties are pre-
sented for analysis using CTL (see [16] for an intro-
duction to model checking and CTL). The properties
are analysed in the IVY tool by translating the MAL
model into SMV and using the symbolic model checker
NuSMV [15] to check the CTL properties. It was neces-
sary to restrict the state space by reducing the ranges of
vtbi, infusion rate and menu lengths. Checking the two
layer model is a relatively slow process, for example the
set of properties described in the paper for the Alaris
required approximately four hours of elapsed time of a
laptop using a Dual 1.86 GHz Intel Core 2 Duo with
3893 MB of RAM.

Each of the properties is now described in turn.

5.1 Mirroring the process in the interface

The analysis measures the extent to which the infu-
sion pump process is visible in the device. This vis-
ibility relates to basic pump variables: infusion rate,

10 Michael D. Harrison et al.

vtbi, time to infuse. It is also concerned with whether
or not the pump is infusing and whether or not, while
infusing, it has exhausted vtbi and is in KVO mode.
The middle layer (interface) model describes the inter-
face to these attributes by recording whether or not
they are displayed. Visibility is modelled using a set of
Boolean attributes. Hence vtbi is visible in the Alaris
pump if middisp[dvtbi] is true and in the case of the
B.Braun device if disp[dvtbi] is true. The pump de-
vice has two modes. The first, infusion status, describes
whether or not the pump is infusing. The second dis-
tinguishes between normal infusion and KVO infusion.
The two modes are signified by two attributes in the
device model. infusionstatus takes three values namely
infuse, hold and blank . blank is a value that signifies
that the pump device is o↵. kvoflag is a boolean that
determines whether or not the device is in KVO mode.

In the case of the Alaris pump the most significant
predictor of what the device is doing is the top line, see
Figure 3. The B.Braun displays mode related informa-
tion in di↵erent places. This mode display information
is represented in the B.Braun model by using the state
attribute displaymode. Whether infusion status is rep-
resented unambiguously can be assessed by checking
display properties relating to the status. In the case of
Alaris the question leads to a fairly complicated an-
swer. The Alaris displays the same top line information
while both infusing and holding in a number of circum-
stances because it is possible to adjust aspects of the
process while the device is infusing. The B.Braun is less
complex from this perspective. The process of check-
ing standard properties is itself a discovery process. Of-
ten standard properties of the device fail because they
are only partially true. It becomes necessary to explore
counter-examples and to add further constraints until a
true property of appropriate complexity is determined.

AG((device.infusionstatus! = blank) ! (2)
(topline in {infusing , dispkvo}

$ device.infusionstatus = infuse))

Property 2 shows a stage in the development of the
relevant property for the Alaris. Properties must ex-
clude the possibility of the device being switched o↵
(expressed as the infusion status not being blank). The
property indicates that infusing status is indicated by
a top line that either displays “infusing” or “KVO”.
This property turns out to be false because the device
can continue to infuse when clearing volume, chang-
ing vtbi, when indicating that the device is locked, and
when selecting certain options using the query button
and when showing the information associated with an
option. These top lines can appear in both infusing and
holding states. In the case of the infusion status being

“hold” Property 3 indicates a more refined stage in the
development of the property for the Alaris.

AG((device.infusionstatus ! = blank) & (3)
!(topline in {locked , volume, options,

dispinfo, dispvtbi}
! (topline in {holding , setvtbi ,

attention, vtbitime}
$ device.infusionstatus = hold)))

The question that equations 2 and 3 raise is whether
the multiplicity of exceptions is a good or a bad thing.
It is at this stage that further input from domain or hu-
man factors experts is required. Potential ambiguities
may not be an issue because other features of the Alaris
interface may make the status of the device clear to the
user. Indeed aspects of the design, wholly unrelated to
this interface, may be critical, for example the sound
of the pump operating. The analysis has raised these
issues in a systematic way that can lead to the appro-
priate discussion. Relevant situations would be explored
by taking traces that indicate where properties fail as a
starting point. Domain and human factors experts can
use the sequences to inspire consideration of scenarios
to explore whether the failure of the property in this
situation will be a problem in practice.

The B.Braun pump is designed di↵erently. There are
a number of ways in which mode is indicated. These are
specified in the model in the single attribute displaymode.
These di↵erent modes can be indicated, for example, by
the size of the label referring to the data entry display.
A separate discussion with human factors and domain
experts would lead to consideration of whether these
indications are su�ciently salient to distinguish the el-
ements of displaymode. It is assumed by the model that
this feature (whatever it is) is salient for the user. In
the case of infusing, the display shows arrows that move
dynamically as the pump progresses. The simple stan-
dard property that began the Alaris investigation of
pump status turns out to be true immediately for the
B.Braun.

AG((device.infusionstatus ! = blank) (4)
! (displaymode = dispinfusing)

$ device.infusionstatus = infuse))

There are many more display modes in the case of the
B.Braun that indicate an infusion status of holding.

AG((device.infusionstatus ! = blank) (5)
! (displaymode in {disprate, dispvtbi ,

disptime,mainmenu, dispalarm,
dispalarmvol , optionsmenu,

statusmenu, dispblank})
$ device.infusionstatus = hold)

Property 5 unambiguously defines the holding behaviour
of the device.

Reusing models and properties in the analysis of similar interactive devices 11

5.2 Checking ambiguity of modes

There are a number of properties that explore the am-
biguity or otherwise of interface modes.

1. Does the display unambiguously determine the mode
of the device? Key attributes here are topline for the
Alaris and displaymode for the B.Braun

2. Are the mode relevant pump variables visible in the
relevant mode?

Exploring the first question in the two devices pro-
duces interesting results. For example, the modification
of vtbi in the Alaris can be achieved in three modes. It
can be changed manually via the data entry keys when
“vtbi” appears as the top line. vtbi can also be en-
tered along with time rather than with infusion rate
(a prescription may require that a particular volume
be infused over a period of time rather than at a par-
ticular infusion rate) by selecting an appropriate op-
tions menu entry. It is also possible to access a menu
of presets (bag mode) either from normal vtbi entry
mode when “vtbi” appears as the topline or from vtbi
entry over time when “vtbi/time” appears in the top
line. The simplest mechanism for entering vtbi assum-
ing the specification of infusion rate is also accessible
when infusing including the option of selecting an in-
fusion bag using the bag menu, but it is not possible
to enter vtbi over time. These modes are distinguished
by values of the attribute entrymode: vtmode, bagmode
(when with infusion rate) and vttmode and tbagmode
(when with time). It might be expected that either the
device clearly distinguishes the four modes through the
top line or uses the top line to make it clear that all
modes are about entering vtbi. In fact neither situation
is the case:

AG(entrymode in {vtmode, bagmode, tbagmode}
$ topline = dispvtbi) (6)

is true. But this does not include vttmode which is the
mode of entry of vtbi when entering vtbi over time.

AG(entrymode = vttmode (7)
$ topline = vtbitime)

is false because the time entry mode ttmode also oc-
curs when topline = vtbitime (the distinction between
the modes is indicated by the position of an arrow).
The B.Braun does not exhibit such ambiguities. The
B.Braun model includes for example a data entry mode
which is true when the display mode indicates entry of
vtbi, time and infusion rate.

AG(displaymode in {dispvtbi , disprate, disptime}
$ entrymode = dataentry) (8)

Similar properties are true of scalemode and alarmmode.

AG(displaymode = dispalarmvol (9)
$ entrymode = scalemode)

AG(displaymode = dispalarm (10)
$ entrymode = alarmmode)

Property 10 is false because there are other situa-
tions that will generate alarm mode. The second fea-
ture of the two devices that is important in considering
modes is whether the pump variables that are being
modified are visible in the relevant mode. For example
it should be expected that the infusion rate is visible
when in a mode in which infusion rate is being entered.
In the case of the Alaris the infusion rate can be entered
either in infusemode or rmode:

AG(entrymode in {rmode, infusemode} (11)
! middisp[drate])

This property of the model is true and similar proper-
ties relate to other modes, for example:

AG(entrymode = vtmode ! middisp[dvtbi]) (12)

AG(entrymode in {bagmode, tbagmode} (13)
! middisp[dvtbi])

While Properties 11 and 12 are true of the device, Prop-
erty 13 is not. The current value of vtbi is not visible
in bagmode or tbagmode. Whether this is a problem de-
pends on whether or not the current value of vtbi is
relevant when choosing a new bag to be infused. This
issue would raise a discussion about the work context.
It is likely for example that a bag will be selected only
at the start of a new infusion process rather than as an
addition to an existing infusion process.

In the case of the B.Braun, device pump variables
are visible in four situations.

1. They are visible when the pump is infusing then
infusion rate, vtbi, time and volume infused are vis-
ible.

2. They are visible when the main menu is being shown
and infusion rate, vtbi and time are the menu op-
tions that are visible. In this case the three variables
are visible.

3. They are visible in the relevant data entry mode.
4. They are visible when alarming if the situation be-

fore the alarm was one of the above.

The situations in which vtbi is visible are identified
through the following property.

AG(((device.infusionstatus ! = blank) & (14)
(displaymode ! = dispalarm)) !

(disp[dvtbi] $
((displaymode = mainmenu &

menucursor < dvol) |
(displaymode in {dispvtbi , dispinfusing}))))

12 Michael D. Harrison et al.

The visibility of the infusion rate is identified through
the following analogous property.

AG(!(displaymode in (15)
{mainmenu, dispinfusing , dispalarm}) !

(displaymode = disprate &
entrymode = dataentry $ disp[drate]))

The analysis of mode in the two devices has revealed
an Alaris device that has a considerably more complex
mode structure than the B.Braun. It is possible in the
case of the Alaris to perform a number of activities
while the pump is infusing which is not possible with
the B.Braun. The Alaris supports four di↵erent “vtbi
entry” modes when the device is holding and two of
them can be used when the device is infusing. This
additional complexity is not necessarily a bad thing.
Rather the analysis raises issues that can be further ex-
plored from a domain or human factors perspective. It
is possible for example that this complexity improves
the e�ciency if supported by training and a natural
and supportive work structure.

5.3 Checking feedback of actions

A number of issues may be explored that relate to
checking feedback of actions. Here the feedback tem-
plate [10] can be applied. These issues include two ques-
tions.

1. Will a function key change mode, and will this change
of mode be visible?

2. Does pressing a data entry key always change the
pump attribute relevant to the mode, and is this
change visible?

These issues are explored through sets of properties.
The first set relates to the visible expression of mode
while the second relates to the internal representation.
Hence in the case of the Alaris these properties are in-
vestigated via the following templates. The visibility
properties are:

AG(topline = value ! (16)
AX (function ! topline ! = value))

The properties that check the change of mode are as
follows.

AG(entrymode = value ! (17)
AX (function ! entrymode = value))

Checking this set of properties indicates that:

1. pressing key3 marked as “cancel” leaves the device
in infuse mode when the top line shows “vtbi done”.

2. tick never changes the entrymode.

Otherwise the keys will always change the function. The
second issue can be explored through a set of properties,
see [11], that check the attributes that are changed by
number entry keys in particular modes.

AG(entrymode = IVAL1 & (18)
modeattribute = IVAL2

! AX (action ! entrymode = IVAL1

& modeattribute ! = IVAL2))

IVAL1 here is a meta-variable that allows IVY to in-
stantiate and to verify the property with all possible
values for entrymode and IVAL2 to all possible values
of the mode attribute. Hence the following instance of
the set is true.

AG(entrymode = vtmode & device.vtbi = 3 (19)
! AX (sup ! entrymode = vtmode

& device.vtbi ! = 3))

In the case of the B.Braun the relevant properties are:

AG(displaymode = value ! (20)
AX (function ! displaymode ! = value))

and

AG(entrymode = value ! (21)
AX (function ! entrymode = value))

Checking these properties has the expected e↵ect.

5.4 Checking consistency of action

As discussed in previous sections the two devices sup-
port function keys that change modes. In the case of
Alaris the function keys are soft keys, they are labelled
(fndisp1 , fndisp2 , fndisp3) in the model. The B.Braun
keys are not soft keys but often how the key is to be
interpreted is indicated in the display. For example the
infusion data entry mode labels “OK” as “confirm”.
The main function of the B.Braun display in relation
to function keys is to indicate their availability. Two
types of consistency are explored here. The di↵erences
between the devices means that a number of properties
are only relevant to one of the devices. Hence in the
case of the Alaris the obvious questions are whether
the same soft function is always associated with the
same key and whether the same soft keys are always
associated with a particular piece of information on the
top line. To illustrate how the model can be analysed
with respect to these questions, consider key3 . A first
question would be whether “quit” is always associated
with key3 whenever it is used.

AG(fndisp3 ! = fnull ! fndisp3 = fquit) (22)

Reusing models and properties in the analysis of similar interactive devices 13

This property turns out to be false. There are a num-
ber of situations where key3 is used for other purposes.
In bags mode function key3 shows “back” rather than
“quit”. When the top line shows “attention” or “vtbi
done” or “set vtbi” then key3 is marked as “ok” and
used to exit the dialogue box. Exploring all these cases
leads to the following true property.

AG((fndisp3 ! = fnull) & (23)
(!(entrymode in {bagmode, tbagmode}) &
!(topline in {attention, vtbidone, setvtbi}))

! fndisp3 = fquit)

It can be shown however that if the soft function is
“quit” then it always appears as key3 . This can be
demonstrated by checking:

AG((fndisp1 = fquit | fndisp2 = fquit | (24)
fndisp3 = fquit) ! fndisp3 = fquit)

Furthermore general configurations of function keys can
be asserted:

AG(topline = volume ! (25)
(fndisp1 = fnull & fndisp2 = fclear

& fndisp3 = fquit))

It can also be shown that in most circumstances the
same top line is always associated with the same key
configuration. Property 26 is a property that fails.

AG(topline = dispvtbi ! (26)
(fndisp1 = fok & fndisp2 = fbags &

fndisp3 = fquit))

In bags mode, top line displays “vtbi” but the func-
tion keys show “ok”, “null” and “back” respectively.
The Alaris and B.Braun function keys can be compared
more directly using properties similar to the feedback
template supported by the IVY tool [10]. Several appli-
cations are relevant here in the case of the Alaris.

AG((fndisp1 = fok & topline ! = options) !
AX (key1 ! topline = holding)) (27)

AG(fndisp3 = fquit ! (28)
AX (key3 ! topline = holding))

AG((topline = volume&infusionstatus = hold)
! AX (key2 ! volumeinfused = 0)) (29)

Properties 27 - 29 indicate a sample of these consis-
tency properties. They indicate, for example, that in
the case of Property 27 “ok” always returns the de-
vice to a top line of “holding” except when the top line
shows “options” (a special mode for changing settings
and entering vtbi over time). Property 28 confirms that
“quit” always returns to the “hold” state and Property
29 indicates that when top line is volume and key2 is
pressed the volume infused is initialised. The B.Braun
has similar properties which are more direct instantia-
tions of the feedback template.

AG(device.infusionstatus = hold & (30)
displaymode ! = mainmenu !

AX (ok ! displaymode = mainmenu))

The e↵ect of action is also consistent in the sense that
the temporary value being entered is always used to
update the attribute relevant to the mode when the
key is used.

AG((displaymode = disptime) & (31)
(dispinftime = IVAL1) &

(device.time ! = IVAL1) !
AX (ok ! device.time = IVAL1))

IVAL1 here allows IVY to instantiate and to verify the
property with all possible values for device.time and
disptime. Property 31 holds for all values of IVAL1.
The multiple uses of function keys in the case of the
Alaris adds to the complexity of its interface. It is im-
portant however to see how these two devices behave
in relation to the activities that these two designs are
intended to support. This issue is discussed in a lit-
tle more detail when discussing activities in the next
section. Data entry keys have quite di↵erent charac-
teristics in the two devices. The Alaris chevron keys
increment or decrement the displayed value either by
small steps (sup, sdown) or by big steps (fup, fdown).
The B.Braun keys either move the cursor (left, right)
or increment or decrement the digit indicated by the
cursor (up, down). A detailed analysis of number en-
try for these devices can be found in [34]. The model
described has also been translated into an equivalent
model in which the actual number domains are used
and subjected to theorem proving as will be discussed
in a future paper. The properties to prove are examples
of the guarded consistency pattern [10] which demon-
strate that whatever the data entry mode, the keys have
a similar e↵ect on the relevant pump variable. Hence
the standard form of the property is that whatever the
mode, the chevron key will have the relevant e↵ect on
the corresponding mode attribute.

AG((entrymode = mode & (modeattribute)) !
AX (chevron ! effect(modeattribute))) (32)

For example in rmode when the infusion rate lock is o↵
the single chevron up button increments the infusion
rate by 1.

AG((!rlock & entrymode = rmode & (33)
(infusionrate = IVAL1))

! AX (sup ! infusionrate = IVAL1+ 1))

The corresponding property for the B.Braun is more
complicated because the e↵ect is defined in terms of
the di↵erent elements of the numeral that are significant
depending on the position of the cursor. In the B.Braun

14 Michael D. Harrison et al.

model the cursor is associated with attribute entry and
dispvalue is the attribute that is manipulated in data
entry mode before updating the relevant attributes.

AG((entrymode = dataentry) & (34)
(dispvalue = IVAL) !

AX (down !
((entry = 3 ! dispvalue = IVAL� 1) &
(entry = 2 ! dispvalue = IVAL� 2) &
(entry = 1 ! dispvalue = IVAL� 4) &
(entry = 0 ! dispvalue = IVAL� 8))))

In practice the property needs adjusting to deal with
values that are too large or too small as constrained by
the invariant in axiom 1 of the pump layer (Section 4.2),
these cases must exclude the possibility of underflow or
overflow. In addition to the standard Property 34, of the
same form as the template Property 30, a further prop-
erty is required to ensure that when data entry mode
is exited (using ok) then the relevant pump attribute
depending on displaymode is updated appropriately.
The following property shows how this works with time
entry. displaymode = disptime only when dataentry is
true and therefore the property has been simplified a
little.

AG((displaymode = disptime) & (35)
(dispinftime = IVAL) &
(device.time ! = IVAL) !

AX (ok ! device.time = IVAL))

5.5 Checking ease of recovery

The final stage of analysis of the two devices concerns
the ease with which the two devices can recover from
a wrong action. There are a variety of properties to
be explored in this context. One that can be used to
illustrate the analysis is to demonstrate that the data
entry keys always have inverses. This property has a
standard template [10].

AG(attribute = value ! (36)
AX (action1 ! EX (action2) &

AX (action2 ! (attribute = value))))

In the case of sup in the Alaris pump and rmode when
the infusion rate is not locked the following property
holds for all values of IVAL1 except the limits.

AG((infusionrate = IVAL1 & (37)
entrymode = rmode & !rlock)

! AX (sup !
(EX (sdown) & AX (sdown

! infusionrate = IVAL1))))

The recovery property in the case of B.Braun is compli-
cated because of “carry”. When incrementing the digit
in the leftmost position of the numeral, the model spec-
ifies that “1000” goes to “1111”. This is the largest al-
lowable number given the constraints of the domains
that have been reduced to permit analysis by model
checking. When the left most digit is decremented then
this value returns to “0111”. When numbers are not
subject to this overflow condition then down acts as an
inverse.

AG(entrymode = dataentry & (38)
dispvalue = IVAL1 !

AX (up ! ((EX (down) & AX (down !
(entrymode = dataentry &

dispvalue = IVAL1))))))

Perhaps more relevant is the ability of the devices to
allow a sequence of actions to reach a di↵erent number
from whatever the current value. This is a property that
can also be proved.

5.6 Checking support for activities

The support of activities is explored by proving that
specific goals related to the infusion pump can be achieved.
The activity associated with prescription values of vtbi
of 6 (mvolume = 6) and time infused of 3 (mtime = 3)
can be checked in the model with all three layers. Counter-
examples that will result from failure of Property 39 will
be subject to the constraints imposed by the third layer
of the model.

AG(device.volumeinfused ! = mvolume) (39)

Alaris activities

The trace that specifies a counter-example (see Figure
4) indicates:

1. Use of the query mode, first to lock the infusion rate
(to prevent further modification) then to choose the
option that is used to enter vtbi over time (steps
3-9).

2. The enter vtbi activity in which double and single
chevron keys are used to reach the prescribed value
of vtbi (steps 10-14).

3. Confirmation that vtbi has been entered (step 15).
4. The enter time activity using the single chevron up

button (steps 17-19).
5. Confirmation of the time (step 20)
6. Commencement of infusing (step 24)
7. Infusion until the vtbi is exhausted (step 25 on-

wards).

Reusing models and properties in the analysis of similar interactive devices 15

Fig. 4 The Alaris activity counter-example Fig. 5 The B.Braun activity counter-example

16 Michael D. Harrison et al.

This sequence can be contrasted with that of the B.Braun
(see Figure 5):

1. The main menu item is chosen and the enter vtbi ac-
tivity is carried out (steps 5-12). vtbi is entered via
a sequence of up buttons and this requires further
exploration.

2. The vtbi is confirmed (step 13).
3. The time choice is selected and the enter time ac-

tivity commenced (steps 16-20).
4. Time is confirmed (step 21).
5. Start infusing at step 22.

It can be seen that the model checker has generated
plausible sequence of actions in both cases. This se-
quence could be further analysed in a more qualitative
way using a clinician or human factors specialist to ex-
plore the implications of these sequences.

6 Discussion and Conclusions

This analysis of the two infusion pumps has provided
solid evidence of areas of concern where redesign would
reduce complexity and increase the reliability of the
two designs. The properties used in the analysis are
largely based on standard patterns either generated by
the IVY tool or easily generated from the requirements
of the device and situation. Analogous properties can
be systematically applied to other candidate pumps.
The procedure is systematic providing a strong basis
for comparison.

Specifically, the analysis has indicated issues associ-
ated with the relation of the display to the underlying
pump process and the mode structure of the particular
device. For example, the analysis indicates that there
are:

– possible confusions relating to the use of the display
of vtbi in the top line in the case of the Alaris;

– ambiguities about whether the pump is infusing or
not using the top line of the display as a guide in
the case of the Alaris;

– inconsistent use of function keys in the case of the
Alaris;

– possible confusions combining left, right, up and
down in the case of the B.Braun.

The analysis says nothing about the significance of these
issues. The method is to be used as part of a process
including the active participation of human factors and
domain specialists. In the context of use these discrep-
ancies in the device may not be issues at all.

An important aspect of the method is that it is
systematic and that it has the potential to be reused
for every candidate infusion pump. The pump layer

of the specification can be reused for every candidate
pump. The outer activity layer can also be partially
reused, guiding the analyst to create the appropriate
constraints on the device model. The interface layer will
be created afresh for each new device. In practice this
part of the model continues to be substantial (perhaps
a week’s work for the first author). Note also that the
approach is not restricted to infusion pumps. It can be
used for any device that controls a process over time,
and indeed for any interactive computing system if we
consider the inner (“pump”) layer as the functional (or
business logic) layer of the system. In fact, earlier forms
of the approach have been used in a number of di↵erent
devices, as discussed in Section 2.

One recurring concern in formal verification relates
to model veracity. In the current case the goal has been
to reason about the devices’ design. That is, the models
capture the design of the systems. Hence, their veracity
is judged against the understanding of how the system
is supposed to work. This was achieved by systematic
exploration of the devices interfaces in order to build
an understanding of their operation.

Further work is required to develop methods of reusing
models that have a similar structure or drive particu-
lar mode structures. It can be argued that there is still
some distance to go before procurers or developers will
find the techniques described here cost-e↵ective, how-
ever the cost of using an infusion device extends beyond
making a good deal on price and ongoing maintenance.
The work described here is part of the ongoing analysis
of a range of infusion devices with the aim of reducing
these costs. Part of this process should include a com-
parison with empirical techniques and with usability
evaluation methods in terms of the range of problems
that can be uncovered by these di↵erent methods.

Acknowledgements This project was partly funded by the
CHI+MED project: Multidisciplinary Computer Human In-
teraction Research for the design and safe use of interactive
medical devices (UK EPSRC Grant EP/G059063/1). Patrick
Oladimeji of Swansea University provided help with the Alaris
pump and Chris Vincent of UCL provided access to the B.Braun
simulation. We are grateful to reviewers for helpful comments.

References

1. T. Amnell, G. Behrmann, J. Bengtsson, P.R. D’Argenio,
A. David, A. Fehnker, T. Hune, B. Jeannet, K.G. Larsen,
M.O. Möller, P. Pettersson, C. Weise, and W. Yi. UP-
PAAL - Now, Next, and Future. In F. Cassez, C. Jard,
B. Rozoy, and M. Ryan, editors, Modelling and Verifica-
tion of Parallel Processes, number 2067 in Lecture Notes
in Computer Science Tutorial, pages 100–125. Springer–
Verlag, 2001.

Reusing models and properties in the analysis of similar interactive devices 17

2. D. Arney, B. Kim, R. Jetley, P. Jones, I. Lee, A. Ray,
O. Sokolsky, and Y. Zhang. Safety requirements for the
generic patient controlled analgesia pump.

3. B. Braun Melsungen AG. B.Braun Infusomat Space User
Manual. Technical report, B. Braun Melsungen AG,
34209 Melsungen, Germany, 2007.

4. L-A. Bligard and A-L. Osvalder. An analytical approach
for predicting and identifying use error and usability
problem. In A. Holzinger, editor, Proceedings of the 3rd
Human-computer interaction and usability engineering
of the Austrian computer society conference on HCI and
usability for medicine and health care, number 4799 in
Springer Lecture Notes in Computer Science, pages 427–
440. Springer-Verlag, 2007.

5. M. L. Bolton and E. J. Bass. Formally verifying human-
automation interaction as part of a system model: limita-
tions and tradeo↵s. Innovations in System and Software
Engineering, 6(3):219–231, 2010.

6. M. L. Bolton, E. J. Bass, and R. I. Sininiceanu. Gen-
erating phenotypical erroneous human behavior to eval-
uate human-automation interaction using model check-
ing. International Journal of Human-Computer Studies,
70:888–906, 2012.

7. M. L. Bolton, E.J. Bass, and R.I. Siminiceanu. Using
formal verification to evaluate human-automation inter-
action, a review. IEEE Transactions on Systems, Man,
and Cybernetics, Part A: Systems and Humans, in press.

8. J. C. Campos. Minho HCI repository. http://hcispecs.
di.uminho.pt, December 2012.

9. J. C. Campos and M. D. Harrison. Model checking in-
teractor specifications. Automated Software Engineering,
8:275–310, 2001.

10. J. C. Campos and M. D. Harrison. Systematic analysis of
control panel interfaces using formal tools. In N. Graham
and P. Palanque, editors, Interactive systems: Design,
Specification and Verification, DSVIS ’08, number 5136
in Springer Lecture Notes in Computer Science, pages
72–85. Springer-Verlag, 2008.

11. J. C. Campos and M. D. Harrison. Interaction engineer-
ing using the IVY tool. In G. Calvary, T.C.N. Graham,
and P. Gray, editors, Proceedings of the ACM SIGCHI
Symposium on Engineering Interactive Computing Sys-
tems, pages 35–44. ACM Press, 2009.

12. J. C. Campos and M.D. Harrison. Modelling and
analysing the interactive behaviour of an infusion pump.
Electronic Communications of the EASST, 5, 2011.

13. José C. Campos and Michael D. Harrison. Formally Ver-
ifying Interactive Systems: A Review. In M.D. Harrison
and J.C. Torres, editors, Proceedings on the 4th Euro-
graphics Workshop on Design, Specification and Verifi-
cation of Interactive Systems (DSVIS), pages 119–134.
Springer-Verlag, 1997.

14. Cardinal Health Inc. Alaris GP volumetric pump: direc-
tions for use. Technical report, Cardinal Health, 1180
Rolle, Switzerland, 2006.

15. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In K. G. Larsen and E. Brinksma, editors,
Computer-Aided Verification (CAV ’02), volume 2404
of Lecture Notes in Computer Science. Springer-Verlag,
2002.

16. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

17. L. de Moura. SAL: Tutorial. Technical report, SRI Inter-
national, Computer Science Laboratory, 333 Ravenswood
Avenue, Menlo Park, CA 94025, 2004.

18. A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-
Computer Interaction. Prentice Hall, 1993.

19. A. J. Dix. Formal Methods for Interactive Systems. Aca-
demic Press, 1991.

20. G. Doherty, J. C. Campos, and M. D. Harrison. Resources
for situated actions. In N. Graham and P. Palanque, edi-
tors, Interactive systems: Design, Specification and Ver-
ification, DSVIS ’08, volume 5136 of Springer Lecture
Notes in Computer Science, pages 194–207. Springer-
Verlag, 2008.

21. D. J. Duke and M. D. Harrison. Abstract interaction
objects. Computer Graphics Forum, 12(3):25–36, 1993.

22. J. Fiadeiro, T. Maibaum, J. de Bakker, W. de Roever,
and G. Rozenberg. Describing, structuring and imple-
menting objects. In Foundations of Object-Oriented Lan-
guages, number 489 in Springer Lecture Notes in Com-
puter Science, pages 274–310. Springer-Verlag, 1991.

23. R. E. Fields. Analysis of erroneous actions in the de-
sign of critical systems. PhD thesis, Department of
Computer Science, University of York, Heslington, York,
YO10 5DD, 2001.

24. US Food and Drug Administration. Infusion pump im-
provement initiative. Technical report, Center for Devices
and Radiological Health, April 2010.

25. M. Heymann and A. Degani. Formal analysis and auto-
matic generation of user interfaces: Approach, methodol-
ogy, and an algorithm. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 49(2):311–
330, 2007.

26. P. N. Johnson-Laird. Mental Models. Harvard University
Press, 1983.

27. B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones,
Y. Zhang, and R. Jetley. Safety-assured development of
the GPCA infusion pump software. In Proceedings of the
ninth ACM international conference on Embedded soft-
ware, EMSOFT ’11, pages 155–164, New York, NY, USA,
2011. ACM.

28. B. Kirwan and L. Ainsworth. A Guide to Task Analysis.
Taylor and Francis, 1992.

29. R. Lane, N. A. Stanton, and D. Harrison. Applying hi-
erarchical task analysis to medication administration er-
rors. Applied Ergonomics, 37:669–679, 2006.

30. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct 1997.

31. P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gim-
blett, Y. Li, P. Curzon, and H. Thimbleby. On formalising
interactive number entry on infusion pumps. ECEASST,
45, 2011.

32. J. Nielsen and R. Molich. Heuristic evaluation of user in-
terfaces. In J. Chew and J. Whiteside, editors, ACM CHI
Proceedings CHI ’90: Empowering People, pages 249–
256, 1990.

33. P. Oladimeji. Alaris simulation. http://cs.swan.ac.uk/

~cspo/simulations, December 2012.
34. P. Oladimeji, H. Thimbleby, and A. Cox. Number entry

and their e↵ects on error detection. In P. Campos et al.,
editors, Interact 2011, number 6949 in Springer Lecture
Notes in Computer Science, pages 178–185. Springer-
Verlag, 2011.

35. F. Paternò and G. Faconti. On the Use of LOTOS to
Describe Graphical Interaction. In A. Monk, D. Diaper,
and M. D. Harrison, editors, People and Computers VII:
HCI ’92 Conference, pages 155–174. BCS HCI Specialist
Group, Cambridge University Press, 1992.

36. R. Ruksenas, J. Back, P. Curzon, and A. Blandford.
Verification-guided modelling of salience and cognitive
load. Formal Aspects of Computing, 21:541–569, 2009.

18 Michael D. Harrison et al.

37. M. Ryan, J. Fiadeiro, and T. Maibaum. Sharing ac-
tions and attributes in modal action logic. In The-
oretical Aspects of Computer Software, volume 526 of
Springer Lecture Notes in Computer Science, pages 569–
593. Springer-Verlag, 1991.

38. H. Thimbleby and P. Cairns. Reducing number entry
errors: Solving a widespread, serious problem. Journal
Royal Society Interface, 7(51):1429–1439, 2010.

39. H. Thimbleby and A. Gimblett. Dependable keyed data
entry for interactive systems. ECEASST, 45, 2011.

40. H. Thimbleby. Interaction walkthrough: evaluation of
safety critical interactive systems. In G. Doherty and
A. Blandford, editors, Interactive Systems: Design, Spec-
ification and Verification, number 4323 in Springer Lec-
ture Notes in Computer Science, pages 52–66. Springer-
Verlag, 2007.

41. H. Thimbleby. Press on: principles of interaction pro-
gramming. MIT Press, 2007.

42. J. Zhang, T. R. Johnson, V. L. Patel, D. L. Paige, and
T. Kuboseb. Using usability heuristics to evaluate pa-
tient safety of medical devices. Journal of Biomedical
Informatics, 36:23–30, 2003.

