Hindawi Publishing Corporation

International Journal of Computer Games Technology
Volume 2015, Article ID 808904, 15 pages
http://dx.doi.org/10.1155/2015/808904

Research Article

Hindawi

Procedural Content Graphs for Urban Modeling

Pedro Brandio Silva,! Elmar Eisemann,” Rafael Bidarra,” and Anténio Coelho!

"Faculdade de Engenharia/INESC TEC, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2Computer Graphics and Visualization Group, Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands

Correspondence should be addressed to Pedro Brandao Silva; pedro.brandao.silva@gmail.com

Received 22 April 2015; Accepted 28 May 2015

Academic Editor: Hanqiu Sun

Copyright © 2015 Pedro Brandao Silva et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Massive procedural content creation, for example, for virtual urban environments, is a difficult, yet important challenge. While
shape grammars are a popular example of effectiveness in architectural modeling, they have clear limitations regarding readability,
manageability, and expressive power when addressing a variety of complex structural designs. Moreover, shape grammars aim
at geometry specification and do not facilitate integration with other types of content, such as textures or light sources, which
could rather accompany the generation process. We present procedural content graphs, a graph-based solution for procedural
generation that addresses all these issues in a visual, flexible, and more expressive manner. Besides integrating handling of diverse
types of content, this approach introduces collective entity manipulation as lists, seamlessly providing features such as advanced
filtering, grouping, merging, ordering, and aggregation, essentially unavailable in shape grammars. Hereby, separated entities can
be easily merged or just analyzed together in order to perform a variety of context-based decisions and operations. The advantages
of this approach are illustrated via examples of tasks that are either very cumbersome or simply impossible to express with previous

grammar approaches.

1. Introduction

Content creation is one of the most expensive factors for
many game productions. In particular, urban modeling is an
important challenge, as it has applications in various areas
from city planning, training, and learning, to simulation,
and entertainment. Unfortunately, creating large-scale urban
areas by hand is a very complex task that quickly becomes
unmanageable in cost and time. Although procedural meth-
ods have received much attention in game development,
automating urban modeling remains a very difficult pro-
cess, as it concerns the creation and integration of terrain,
vegetation, roads and complex buildings [1], each involving
particular representations and content types (meshes, lines,
textures, lighting, etc.).

Grammar-based approaches [2-4] have proven useful for
the generation of several kinds of pattern structures, yet
their formal, textual representation is generally inadequate
for artists [5]. A large variety of different rules have to be
defined in order to achieve a fine-grained control and, for
complex designs, even small changes may require redefining

many grammar rules and writing new ones. Such large rule
sets also lead to reduced readability and manageability: it
becomes hard to find meaningful rule names, rule sequencing
becomes hard to maintain, and the data flow becomes hard to
follow (see Figure 2).

The initial steps in such grammars are typically top-
down, sequentially dividing shapes entities to define local
scopes. While each rule can produce multiple shapes, it can
only operate on one individual shape at a time. This implies
that, once split, separate entities cannot be merged back nor
queried anymore as a whole set. This limits the expressiveness
of the approach, that is, the range of ideas that can be
communicated and represented, such as

(i) clustering, for example, to assemble buildings into a
certain number of neighborhoods featuring different
architectural styles or purposes;

(ii) averaging, for example, to find the center location of
a set of buildings to divide them into downtown and
peripheral areas;

FIGURE 1: Our graph-based approach introduces context-awareness
verifications which can be applied at any step of the generation
process. Here, we perform visibility calculations to determine which
facades are visible (marked in green) from a highlighted street
(marked in yellow) and which are not (marked in red). We also
calculate the minimum distance of each house towards that same
street and decide on a level of detail (1, 2, or 3, as marked on the roofs)
based on the distance. For applications focused on a main path, for
example, racing games, this information could be used to guide the
procedural content generation and include budget considerations in
the construction of the virtual world.

(iil) ordering, for example, to create green areas on the
blocks closest to a particular point of interest or
location;

(iv) finding maximum/minimum, for example, to create
the building garage door on the largest facade and the
main door on the smallest one;

(v) achieving uniqueness, for example, to attach a chimney
to only one of many candidate roof sections;

(vi) merging, for example, to merge corner walls of adja-
cent facades to build continuous balconies;

(vii) context development, for example, build the lot gate
right in front of the building main door;

(viii) visibility testing, for example, to determine if a build-
ing detail will be seen from a particular location or
path (see Figure 1).

Graph-based representations [6] facilitate the under-
standing of complex rule sets, but in the context of grammars,
such solutions still have manageability or flexibility issues [7]
and inherited the grammar limitations mentioned above [5].

We introduce procedural content graphs, a generic graph-
oriented approach to specify content generation procedures.
While still retaining the expressive power of grammar-based
solutions (such as recursion or natural rule divergence), it
extends them by addressing many of their shortcomings. In
particular, we make the following contributions:

International Journal of Computer Games Technology

(i) a collective management of entities as lists or groups,
for example, for sorting, advanced filtering, and
aggregation operations;

(ii) a flexible and extensible framework featuring param-
eters, attributes, and so-called augmentations to create
custom graph nodes with compact manipulation
possibilities;

(iii) a visual graph-based framework for procedural con-
tent generation, supporting a transparent data flow
control to manipulate and combine different data
entities within a single pipeline.

We start by reviewing previous work (Section 2) and then
present our graph-based approach (Section 3) by describing
the specifics of entity representation and data flow man-
agement. Next, we present its main content manipulation
and integration capabilities (Section 4), providing various
examples that would have been cumbersome or impossible
to express with grammar-based solutions. We continue with
an explanation of our implementation (Section 5), containing
further details of the designed framework and achieved
flexibility, after which we discuss how our solution compares
to other grammar and graph-based approaches (Section 6).
Finally, we conclude and give an outlook on future work
(Section 7).

2. Previous Work

Grammar-based approaches have proven very useful in the
context of plant generation [8] and even extensions have
been suggested to integrate environmental influence [9].
Yet, these approaches usually work in a bottom-up fashion,
which is less intuitive when working on shapes such as
buildings. The application of formal grammars to 2D shapes,
so-called shape grammars, was introduced by Stiny and Gips
[10]. Here, the process is rather top-down and shapes are
typically substituted by more complex shapes that are then
treated independently. Such an approach is well suited for
regular man-made structures, such as fagades, as illustrated
by split grammars [2], wall grammars [11], and the CGA
grammar [3]. The last approach has even been integrated
in a commercial software CityEngine [12]. Krecklau et al.
[4] introduced a generalization of such grammars, with
the possibility to manipulate multiple types of nonterminal
objects, as well as to pass nonterminal symbols as parameters
into rules using the definition of abstract structure templates.
Another grammar extension, presented in [13], introduced
procedural scene illumination, defined in terms of lighting
goals, luminaire installation sites, and constraints.

One important limitation of all these top-down app-
roaches is that any splitting strategy leads to independent and
unrelated parts. Building connections between constructed
objects is basically impossible. By passing attachment points
along [14], some cases, like bridge structures, could be
handled. Another alternative was presented in the form of a
stack-based programming language [15,16]. However, in both
cases, the approaches proved unattractive to use by designers
and nonprogrammers. Building on this observation, sim-
plified interaction schemes have been developed [17]. Here,

International Journal of Computer Games Technology 3
Tile 77>1split(x) { 0.3 : TileLeft | ~1 : TileCenter | 0.3 : TileRight}
TileCenter 77>25p1it(y)(0.5 : TileCenterTop | ~1 : Window | 0.5 : TileCenterBottom}
Window ——> extrndeifO.ZS)Acomp(f) {top : WindowTop Blinds | s‘ide : WindowSide}
WindowTop ——>55plit(x) {'0.5 : WindowDoor | '0.5 : WindowDoor}
WindowDoor -->%offset(-0.1) {inside : WindowDoorInside | outside : WindowDoorOutside}
WindowDoorInside —->’extrude (0.12) WindowDoorInsideBorder
Blinds ——>stranslate(rel,scope,0,0,0.ZS)gsplit(y] {~1 : NIL | "0.3 : BlindsOpenedSection}

BlindsOpenedSection ——>1°split(y) { =81 §

BlindsOpenedSectionPart}*
BlindsOpenedSectionPart ——>"rotate (rel, scope,-45,0,0) RotatedBlindsOpenedSectionPart

FIGURE 2: Window example modeled using a CGA shape grammar formulation (upper left; loosely based on [3] and [38]) and our procedural
content graphs (lower left), each rule operation corresponding to a node with a matching number. The visual nature of our approach makes
the flow of data easier to follow and does not require the user to come up with rule symbols (highlighted in blue) or geometric labels [6, 7],

which generally make management difficult and error-prone.

high-level primitives are defined in a “Professional mode,”
which still requires editing a complex text-based grammar,
but interactive customization and combination was possible
within a “high-level mode.” Interactive design frameworks
have also been investigated to simplify grammar definitions
[18], but they were still tied to the rule-based structure of the
underlying grammar.

A different interactive alternative is the exploration of
shape variations, layouts, and components [19, 20] and
processing [21]. Grammars can also be derived from existing
models [22, 23] and then interactively controlled [24]. How-
ever, these approaches have a different focus compared to our
work; we provide a framework to guide and support content
creation.

A popular alternative for the textual rule definition
is the visual programming language paradigm [25], espe-
cially the one based on dataflow graphs [26]. Application
examples include generation of terrain [27], trees [28, 29],
textures/images [30, 31], animations [31, 32], or geometry in
general [6, 32], all featuring their own specific manipulation
metaphor. A framework that aimed at integrating several
types of content was proposed in [33].

The work of Patow [7] is a general system with the goal of
making shape grammars more comprehensive by employing
a visualization in the form of a node-based system. Nonethe-
less, the use of the Houdini engine [6] makes it impossible to
create cycles and therefore recursive procedures (an essential
basis in grammars). In addition, this approach does not
allow more than one output port, which could be used to
control flow divergence. Instead, it resorts to label filtering,
which introduces manageability issues for longer graphs,
some of which have been alleviated by [34]. Also, while it is
possible to create high-level digital assets, it is not possible to
introduce new types of semantic entities and their high-level
nodes inherit the same (and other) port limitations. Other
node-based systems [5] address these issues, yet they still
share the initial limitations of shape grammars. Our work
integrates the power of grammar approaches but addresses

their shortcomings with the manageability, flexibility, and
high expressiveness of visual node-based solutions.

3. Our Graph Approach

The basis of our approach is a procedural content graph
(PCGR), where nodes and edges describe the procedures and
the data flow, respectively. In this section, we will first give
an overview of the graph architecture, the handled data, and
the execution process. We will then discuss novel concepts
such as the control over lists and augmentations and, finally,
explain how we can manipulate attributes and encapsulate
graphs.

3.1. Graph Structure. A procedural content graph is repre-
sented by a directed, cyclic graph G = (N, E) where N
are the nodes and E the edges. The graph topology encodes
the dataflow process for content generation: edges are the
carriers of content, while the nodes are their operators. Nodes
represent procedures that act (e.g., transform, analyze, or
filter) on the incoming data; we will thus use both terms
interchangeably.

Different types of data can flow and coexist within the
same graph. Their manipulation possibilities depend on the
availability of procedures that handle such data. Nodes have
typed input/output ports, to which incoming/outgoing edges
can connect as long as the connected ports are of compatible
data types.

The graph structure is meant to allow the sequencing
of procedures, where cycles represent recursive operations.
After a procedure is executed, its output data is transmitted
via the output ports along the connected edges to the
subsequent input ports, where the data is stored in a queue.
Procedures are executed in several rounds until their data
queues are depleted.

We distinguish several node types (to be explained in
further sections), which use slightly different representations
in our figures. The rectangle, rounded-corner rectangle, and

octagon refer to standard, encapsulated (Section 3.7), and
augmentation nodes (Section 3.8), respectively.

3.2. Ports. There are 2 types of input ports: single input ports
(represented with round outline) consume one data object
per round. Collective input ports (represented with square
outline) will consume the whole object queue, handling it as
a list. This introduces the possibility to treat sets of objects
instead of individual ones. A node that features at least one
collective input port is called a collective node, as opposed to
a single node.

Several edges can connect to one input port (a convergence
port) and arriving elements are queued for execution. If
several edges leave an output port (a divergence port), the
outgoing data is copied. The result of executing a graph
is obtained by collecting all the data emanating from all
unconnected output ports or leaf ports. Ports can be blocked
(represented with dark fill) in order to discard its results
from the content pool. Blocking is also applicable to nonleaf
ports or even edges, which can be useful to temporarily (for
instance, for debugging) or conditionally prevent the flow at
a particular location.

Unlike [5, 7], our approach does not pose any restrictions
on the number of ports of a node: it can feature zero,
one, or more input and output ports. The reasoning is the
following: multiple input ports enable handling of several
entities at once, which is crucial to combine different data
types and perform context-dependent modifications. On the
other hand, multiple output ports allow us to apply a filtering
operation inside of the node, which is essential for nodes that
split entities or simply need to separate the flow based on a
certain condition or type of result. In this way, the dataflow
filtering is encoded in the graph topology, instead of resorting
to rule symbols [3], labels [7], or tags [17]. These previous
solutions can make the development more tiresome, less
readable, less manageable, and more error-prone, especially
for more complex designs (Figure 2).

3.3. Entities. 'The primary type of information manipulated
within a graph, transported through the edges between ports,
is organized in form of entities. As their name implies, they
represent independent and self-contained objects, carrying
their own specific semantics.

For instance, to produce and manipulate geometric 3D
data, a boundary representation (b-rep) featuring polygonal
faces, edges, and vertices is adequate for most modeling
operations. Yet a set of nodes for crossings, connected by
edges to nodes for streets, is a far more concrete and
appropriate data structure for representing street networks.
The flexibility to introduce and manipulate any kind of data
types means that specific procedures can be developed to
optimally deal with them. For instance, by using “terrain” and
“street” entities, one can apply algorithms, such as the ones
described by Kelly and McCabe [35] or Galin et al. [36], which
operate over such specific data representations.

Although each entity is expected to have its specific fea-
tures, all entities share the possibility to incorporate custom
attributes. Attributes are represented via a hash map in a key-
value fashion and enable us to store properties in an entity

International Journal of Computer Games Technology

dynamically, extending its initial design. This process makes
it possible to attach properties, such as “name,” “index,”
and “amount,” which may only be relevant and applicable
within the context of a particular graph. When an entity
instance is used to create new instances (such as a split that
cuts one shape into multiple ones), the new ones are called
its descendants, while the original entity is considered an
ancestor. Attributes are always copied from the ancestors to
their descendants.

Entity types can also derive from others, following an
inheritance pattern, which is relevant during the creation of
procedures that operate on entity supertypes and not just
specific types. For instance, node ports of type “entity” can
accept any type of entity data.

An entity can typically aggregate other entities. For
instance, “b-rep meshes” contain vertices, edges, and faces,
which can be separated and processed individually through-
out the graph. Likewise, meshes can also be aggregated within
other meshes, recursively. This recursive construction allows
us to group elements (e.g., a city entity can contain a list of
region entities, which in turn contain houses, all of which are
represented by mesh data).

3.4. Execution. The sequence in which nodes should be
executed is mainly determined by the topological order of
the directed graph, in the sense that the sequence of nodes
is based on their dependencies (see Figure 3). Hence, the
first nodes to be executed are those featuring no input ports
(called source nodes). For the ordering of the other nodes,
the order is topological, meaning that for every edge NM
that connects an output of a node N to an input of a node
M, N should be executed before M. After this order has
been precalculated, the execution of the graph follows a data-
presence protocol. A node can only be executed if each of
its input ports has at least one entity in the respective input
queue. The execution process runs as follows:

(1) Add the source nodes to a node queue Q (according
to an order which can be user-specified).

(2) While Q is not empty:

(a) Dequeue a node N from Q.
(b) Execute N.

(i) Source nodes are executed once.

(ii) Single nodes will run several times, each
time popping one entity from each of their
input ports and executing a round with
those entities, until at least one input queue
is empty.

(iii) Collective nodes will be executed once,
since the list of entities will be emptied in
one go. This might lead to some entities
being left at single input ports.

(c) Pass on entity data from connected output ports
of N to the subsequent input ports of nodes M,
according to established edge connections.

(d) For all nodes M connected to an output port of
N, we verify if all their input port queues are

International Journal of Computer Games Technology

O Texture and UV Map QO

7*

Branch

1 16 O
Fit Copies
Q 0

10
) Smooth Normals O

FIGURE 3: Orange fruit tree generated using a cyclic PCGR. The node numbering indicates the topological ordering of the nodes and the ones
marked with an asterisk are bound to be executed multiple times, as they are found within a loop.

no longer empty. If all are filled, M is ready to
be executed and therefore is added to Q, placed
according to the topological order.

(3) Retrieve all entities from nonconnected output ports
for storage or display. As mentioned before, entities
can also be discarded from the final result by setting
the state of their output ports to blocked.

3.5. Recursion. Topological ordering is only possible when
graphs are acyclic. This means that, for recursive graphs,
cycles have to be identified and some edges are hidden from
the topological sorting algorithm. The algorithm to find such
edges proceeds as follows:

(1) Mark all edges as “unvisited” and “noncyclic.”

(2) For each graph node N, perform a depth-first graph
iteration starting with an empty list of visited nodes
V:

(a) Add NtoV.
(b) For each “unvisited” outgoing edge of that node,
check the destination node M.

(i) If M is contained in the list of visited nodes,
mark the edge as “cyclic.”

(i) Otherwise, mark the edge as “visited” and
execute recursively at (a) with M and a copy
of V.

After these steps the process can proceed as before, with
the single exception that, for the topological sorting, the edges
marked as “cyclic” are not considered.

However, during the graph execution the edges are
considered. Nodes connected to an output port of another
node are added all the same to Q even if the edge connecting
them is cyclic. Again, the addition to the queue should follow
the topological order.

3.6. Procedures, Parameters, and Attributes. The configura-
tion of a procedure’s behavior towards the input entities is
performed via its node parameters. These can be initialized
in several ways: with so-called graph parameters, which are
constant and reusable within the scope of the graph; with
a fixed value (a numeric value, a character string); with
an attribute of an input entity; or with a more complex
expression involving arithmetic operations or function calls
(e.g., sin(x), rand(), length(string), etc.) on any of the former.

In order to employ the aforementioned attributes in a
PCGR (see Section 3.3), the user has to define all attributes
that entities will carry inside that graph. The attribute declara-
tion (where name, type, and default value are stated) defines
a key that is used to access the corresponding value in the
entity’s attribute hash table. In practice, an explicit storage of
the value is not required if the value matches the default value
of the attribute. Simply, if the search in the hash table fails,
the default attribute value is used. In this way, all entities in
the graph can be considered to be always carrying all defined
attributes.

Attributes can be read from and written to inside of
nodes. As entities flow through nodes or even specific ports,
the corresponding value of an entity’s attribute key can be
accessed and/or changed. Such nodes have their own attribute
declarations, whose keys can be mapped to graph attribute
keys. For example, the “count” node in Figure 4 takes a list
of entities, determines the total number of elements, and
assigns the index of each element to the “index” attribute
of those entities. By mapping its “index” attribute to the
“circle index” attribute of the graph, the value assignment
is propagated from the node scope to the graph scope. If
one would choose not to perform this mapping, the value
of the “index” attribute would be discarded and the “circle
index” value would remain unchanged. An inverse attribute
propagation, that is, from the graph scope to the node
scope, is also possible. This is essential in procedures such
as attribute aggregation, where its values must be read in

International Journal of Computer Games Technology

O Smooth Normals)

Parameters
Label Type Value
Circle Segments | System.Int32 | 25
2 Cirde Count System.Int32 4
v: 3 Step Height System.Int32| 0,1
Texture: [WoodPlarks.og Step Width System.Single| 1,5
Q) Map Texture Attributes
Label Type Value
Cirde Index |System.Int32 0
Step Index |System.Int32 0

u: 5
v: 5

Texture: RedWood.jpg
{ Map Texture é

FIGURE 4: Construction of a stairway using attributes. An offset is applied to a circle to extrude polygonal steps. These are counted and
assigned an index attribute. The steps are copied and an additional copy index is assigned. The steps’ translation is steered via these attributes.
The boxes above the nodes indicate the assigned fixed values (in white) or expressions (in blue). The notation @{parameter label} is used to
refer to graph parameters, while ${port label}{attribute label} is used to refer to an attribute of an entity coming from a certain node port.

The boxes with arrows under the nodes indicate attribute mapping.

order to perform averaging, minimum, maximum, or other
operations.

Although at a first glance it might seem cumbersome to
provide attribute definitions for an entire graph, there are
several important advantages to it. First, the user keeps an
overview of all attributes that entities carry, which is often
convenient. Second, it is easier to optimize memory usage,
because most intermediate values that nodes could attach to
entities might never be used afterwards. Third, it releases the
need for namespace handling, as attribute keys are unique
and tied to the scopes of nodes and graphs.

3.7 Encapsulation. Certain graphs might often be reused as
subgraphs within other graphs, and our approach allows a
simple transformation into a node, an encapsulation.

The operation to transform a graph G into a new
node, N, ready to be used in a supergraph S is relatively
straightforward (Figure 5). Any input/output port of a node
in G can be marked as a gate (usually accompanied with
giving it a meaningful name). A gate will serve as a port
when this graph is used as a node in a supergraph. Graph
parameters of G become node parameters of N by default,
yet they can be hidden, if so desired. The same applies to
attribute declarations in G. Hereby, the attributes in S can be
transferred to G and/or forwarded back from G to the scope
of S.

Regarding execution, a subgraph will always be executed
as long as possible and, only when its execution queues are
empty, will the supergraph continue execution. As a result,
this complete local execution of encapsulated graphs can also
be helpful to control the execution order, in cases where this
is needed. Once the encapsulated graph finishes execution, all
attributes that have been defined within this subgraph (but
not those mapped to the supergraph) are removed from all
entities before proceeding to the supergraph.

Encapsulating a graph and properly organizing its param-
eters, attributes, and ports to define more complex structures
facilitates the definition of models with richer semantics. By
successively encapsulating graphs, one can achieve a higher
level of control where the manipulated nodes can represent
increasingly complex architectural structures (pillars, win-
dows, balconies, doors, etc.) instead of low-level operations.
This concept is well discussed by Silva et al. [5] and well
advertised by side effects [6]. However, their restriction on a
certain amount of ports per node (the former has a one input
port limit and the later has a one output port limit) reduces
the expressiveness and semantic potential of the node, given
that it is at the port level that one can distinguish which kinds
of structures are accepted, as well as output.

3.8. Augmentations. By default, procedures have a static
signature; that is, they offer a fixed set of available control
parameters, attributes, and ports. Yet, an operation such as
the split requires the enumeration of several slices and the
customization of each one. In CGA shape grammars, each
slice carries information about size, flexibility, and output rule
symbol. Only by having all such information at once can the
procedure precalculate the remaining available splitting size
and adjust each slice size accordingly.

The generic way for PCGRs to deal with such flexible
design annotation consists of augmentations, which can be
seen as extensions to the nodes. An augmentation is a node
structure that aggregates parameters, attributes, or ports.
Again, for the split node example, an augmentation is the
structure that holds the information about the slice and
contains the output port where to send the result. Any
number of such augmentations can be added to a node, and
doing so affects the number of its output ports.

Generally speaking, augmentations are useful to indicate
lists of constraints or guidelines that a node should consider in

International Journal of Computer Games Technology

Algrment on X-Axis: |Stretch

Alignment on Y-Axis: |Stretch
algrment on 2-Axis: [Sretch

FIGURE 5: Encapsulation of a graph that extends the “fit-to-scope”
operation to lists. The thick-line ports indicate the gates of the graph,
which are mapped to the encapsulated node’s ports. Graph param-
eters are also mapped to the node’s parameters. The supergraph
uses this encapsulated graph to easily copy and fit a brick rooftop
into each cell of a rectangular grid (both brick and grid are also
encapsulations). The result is a detailed roof surface.

its operation. In most cases, the order of the listed augmenta-
tions defines priorities in the node configuration and changes
may yield different results. Consider the following examples,
for which augmentations are especially useful:

(i) Merging and Grouping. Enumerate criteria for merg-
ing and grouping, for example, based on attributes of
the entity (size, material, etc.).

(ii) Ordering. Enumerate criteria for sorting the input
data in a descending or ascending order, for example,
based on attributes of the entity (size, material, etc.).

(iil) Splitting/Decomposition. Define the size/criteria of
split slices and provide additional ports to output
them.

(iv) Stochastic/Conditional decision. Decide upon control
flow according to sets of probabilistic or attribute-
based conditions.

(v) Creation. Enumerate vertices of a polygon (or mesh)
to be assembled.

(vi) Custom Import/Export. Load/save custom attributes
that may be associated to the geometric data from/to
a database, for example, geospatial data.

By their nature, augmentations cannot be reduced to a
simple sequence of nodes or encapsulation. This is easier to

understand, for example, for operations that require some
kind of precalculation (e.g., split), evaluation (e.g., condition),
or any other “atomic” organization (e.g., grouping or sorting).

4. List Manipulation and Data Integration

Having introduced the basic functional aspects of PCGRs,
this section will focus on several content manipulation and
integration possibilities that have hardly been addressed, if at
all, in previous approaches.

4.1. Grouping, Merging, Unification, and Clustering. Shape
grammar approaches use a top-down approach, transforming
one simple entity into many complex ones, but there are
many cases where joining back entities into single ones is
not only convenient, but also necessary to achieve certain
designs. In a PCGR, data is organized into entities that
can be assembled or decomposed as manipulation needs
arise. In this sense, the gather nodes are the key to the
accumulation and congregation of entities. Hereby we define
grouping as the process of collapsing various entities into
a single container entity, according to certain criteria, such
as spatial distribution, matching properties, or common
attributes. Grouping works primarily as a means to organize
and structure entities, building a hierarchy, but one which can
be ungrouped at any point; hereby, the original entities are
recoverable.

In the geometric domain, we additionally distinguish the
concept of merging and unification. Merging is the process of
gathering all faces, edges, and points of different shapes into
a single shape entity, while unification does the additional
step of finding and connecting common faces, vertices, and
edges. A useful application of these operations is portrayed
in Figure 6, featuring balconies stretching across corners, a
recurring issue hardly achievable using shape grammars. The
facades are split into a grid of separate tiles, each containing
information about their X-Y index within the grid of the
respective facade. These indices are used to conditionally
filter the leftmost and rightmost tile from each fagade, for
nonground floors. The “group” node then assembles all these
tiles by floor. Within each group, tiles are merged and unified
if they have overlapping edges (using the “adjacency merge”
node). Having the corner faces together within the same
shape, the extrusion for corner vertices can be done according
to the sum of the faces’ normal, creating the seamless result
intended for such balconies.

Spatial clustering is another form of grouping that joins
elements according to spatial proximity, as illustrated in
Figure 7. Given lots of the peripheral area of the generated
city, 6 random lots were selected as initial centroids and,
using a k-means algorithm, the remaining lots were sorted
according to their proximity to these cluster centroids. The
obtained clusters were then used to construct alternating
industrial and residential neighborhoods, with green areas
located around some cluster centers.

4.2. Aggregation. One of the possibilities that emerge from
the control over sets of objects is the application of

Condition: (${In}{Tile Number} == 0 || ${In}{Tile Number} == (${In}{Tile Count} - 1)) 8& ${In}{Floor Number} >0 ‘
D)

Condition
| | Adjacency Merge

(; Ungroup

FIGURE 6: Building featuring balconies that stretch across facade
corners, an example that cannot be naturally achieved using shape
grammars.

value [| Floor Number

aggregation functions—minimum, maximum, average, and
sum—over entity properties or attributes. They are frequently
used with condition or grouping nodes to filter and organize
entity sets.

Figure 7 displays a complex example featuring an exten-
sive urban environment with thousands of buildings. The
starting point was a list of street blocks, each defined as
a shape entity. For each one, the geometric centroid was
calculated and stored as an attribute. Using the “aggregator”
node, the whole set of blocks was gathered, the centroid
attribute taken as a value to average, and the result stored as
the “city centroid,” the city center. The distance calculation
to the center is performed for each block individually but, in
order to calculate the relative distance (a value between 0.0
and 1.0), the maximum distance was first determined using
again an aggregation node. City zoning was then determined
by this relative measure: <0.3 for the downtown area, <0.45
for the commercial area, and the rest for the peripheral area.
The height and style of buildings are random within the range
acceptable for the assigned zone.

After the aforementioned clustering operation for the
peripheral area was applied, the center of each cluster was
calculated using the same aggregation method.

4.3. Amount Filtering and Counting. A very important flow
control feature, unaddressed by shape grammars, is the
ability to determine the amount of entities flowing through
a particular point of the graph. This measure is especially
important for filtering entities according to absolute or
relative quantities. It is also required when a sequential
numbering or alphabetization of entities is to be achieved.

For the example in Figure 7, exactly 10 blocks per cluster
were picked to build green areas. The “amount filter” node
introduces this possibility, as it gathers entities as a list and
isolates the first n entities, starting at a given index i, and
forwards them to its first output port, while the remaining
ones are sent to the second port.

The need to isolate one entity from a set occurs often when
a particular detail is to be introduced at a given point, for

International Journal of Computer Games Technology

example, placing the main door at one of many candidate
facades of a house. This is illustrated in Figure 8, where a
common rule has to be found to address the various possible
building shapes. The main door should face the street, yet
many options exist (red, yellow, and blue arrows). Deciding
upon the smallest facades (yellow and blue arrows) reduces
the number of possibilities, but to ensure that only one door
is created, the “amount filter” node is required, so as to pick
the first element from the list.

4.4. Ordering, Reversing, and Shuffling. The order in which
entities flow throughout the graph may be determinant to
achieve a specific result. The “cluster” procedure (Figure 7),
for instance, automatically picks the first » entities as source
for the initial cluster centroids. As such, shuffling the city
blocks beforehand ensures some randomness in the cluster-
ing process.

The “order by” augmentation node can sort entities by
given attribute combinations. When used in conjunction with
“amount filter,” it can be used to filter the n smallest fagades
(Figure 8) or the # closest blocks to the cluster center (used
for green area determination in Figure 7). Likewise, obtaining
the largest facades or most distance objects could be obtained
through the “reverse” node that inverts the entity list order.

4.5. Context-Sensitive Design. The generation process should
depend not only on the properties of each entity, but also
on its context. In PCGRs, this is best addressed using
several input ports, each carrying data according to a specific
meaning. Figurel portrays an environment built around
this concept, where the level of detail of each building is
determined by its distance to the main path (using a similar
approach as Section 4.2). On the other hand, the decision on
whether to design each fagade depends on its visibility from
the same path, as facades that will not be seen are best left out
to reduce the memory and rendering overhead. The operation
facilitating this verification, also employed in Figure 8, hereby
simply named “is oriented to,” accepts a list of shapes and
a list of streets and calculates, for a given angle tolerance,
if the shape is visible from any of the streets, without being
occluded by another shape entity. The result is assigned to an
attribute, but that distinction could also be done using several
outputs. One important consideration is that, by gathering
all the shapes and streets at once, this node can organize
and optimize the verification internally using spatial data
structures, such as quad- and octrees.

Another example node depicted in Figure 8 that interre-
lates entities is the “ray cast” node. For a given shape arriving
at the first port, it casts a ray, following on the scope direction,
and searches for the first intersection with the shapes arriving
at the second port. The original object is returned on the first
output port, while the separation of hit and nonhit shapes is
performed to the second and third output ports. The actual
hit location is stored to an attribute, which can later be used
as a reference point for splitting or other operations.

4.6. Enforcing Execution Scopes. As mentioned in Section 3.2,
collective nodes attempt to gather as many entities as possible

International Journal of Computer Games Technology 9

() Get Shape Property (J

Centroid Centroid

Operator: |Average

[1 Aggregator

[Operator: | Max

Value Centroid
Result &4 | City Centroid

Value Distance

Result £ | Max. Distance

Count Cluster Size

FIGURE 7: Organization of city blocks for construction. After randomly generating about a thousand city blocks, the city center was determined
in order to build a downtown area, a surrounding commercial area, and a peripheral area. The latter was divided into 6 clusters to define
alternating industrial and residential neighborhoods. Again, the center point of each cluster was then calculated and the 10 closest blocks

were reserved for green areas. This process involved several aggregation, sorting, clustering, grouping, and filtering operations.

Angle Tolerance: | 45

o
O)

Hit Location [ggd | Hit Location

FIGURE 8: Selection of the main door fagade for several building
footprint shapes. Purple arrows indicate a selection by a given fagade
index, very common in systems such as [6], which do not always
guarantee plausible door locations. All other arrows refer to facades
that are street oriented (as in [12]). From these options, the smallest
facades were chosen using aggregation (yellow and blue arrows),
but, to guarantee uniqueness, amount filtering was employed (blue
arrows). The selected fagade was fed to the “RayCast” node, which
returned the front-facing wall and pointed to the right entity and
location for the lot entrance to be built.

before executing its operation. This may, in some situations,
become an issue if one would rather have it executed for
subsets of the collected entity list. In this sense, encapsulation

[1 Amount Filter By

FIGURE 9: Example of the need to enforce execution scopes. If all the
facades are collected without differentiation, only one facade of the
whole building set would be selected, instead of one per building.

does come as a means not only to organize graph procedures,
but also to provide an improved control over the data flow.

Figure 9 reflects a situation where several houses are
generated using a simple graph, supposing one example
where one would try to select exactly one facade of each
building to create the main door. If all the facades are
collected without differentiation and queued at the amount
filter node, only one facade of the whole building set would
be selected, instead of one per building, as desired.

10

Text: House Number

[l Font Size: 100

Background: | I 31; 73; 125
Foreground: | [216; 216; 216 ||&

’ ,',"-“,-_
Text on Image CJSULERT
B

International Journal of Computer Games Technology

®JFShape (Lots)

FIGURE 10: Manipulation of different entity types within the same scene. A street entity led to the generation of several buildings, represented
as shapes. Each building was given a number which was then used to produce a custom texture to attach next to each door. Light sources were
then instanced on the location of each street lamp, just above the doors. The generation of each entity type therefore greatly benefits when
processed in sequence, in a single pipeline, instead of in separate environments.

This can be solved using an “amount filter by,” which
performs that separation internally using attributes, enu-
merated via node augmentations as grouping criteria (see
Section 3.8). This approach can quickly become impractical,
if such grouping would have to be performed, for example,
per neighborhood, then the building, and then per floor. On
the other hand, this requires all collective node operations to
support such criteria analysis, as well as to have differentiating
attributes configured every time.

Another alternative consists in isolating data using encap-
sulation so as to enforce execution scopes. The idea is that
the operation over each lot is handled independently. For
each input lot, the sequence of graphs, including collective
nodes, is performed, meaning that the entity collection of
the “merge” and “amount filter” operations are executed
only within the scope of each individual building. This is
guaranteed by the fact that encapsulated nodes, as any other
procedures, work isolatedly on its executed queues, before
allowing the supergraph to proceed with its execution.

4.7 Integrating Different Entity Types. The ability to manip-
ulate several types of entities lies on the existence of nodes
capable of creating, analyzing, or transforming them. This
possibility is reflected in the typing of node ports, which
provides the means to understand the node’s purpose and
compatibility. Different entities can coexist within the same
graph and, in some cases, even share the same nodes, ports,
or edges, if they share the same ancestor type.

Figure 10 portrays an example where several entity types
are manipulated within the same graph. Using a street
network entity as the starting point, roads/sidewalks and
lots were derived, as shape entities, using a “street to shape”
node. The lots were developed into whole buildings and the
light-source entities generated at the location of the lamps

above each building’s main door. As for the door numbering,
individual textures were generated using the “text on image”
node and then placed on a plate next to the door using the
node “set procedural material to shape,” which combines
texture and shape, as a custom mesh material. The result is a
complete urban scenery, which would otherwise require mul-
tiple environments for development and whose integration
would require additional manual or scripting efforts.

5. Implementation

We implemented the procedural content graph approach
in a prototype system called construct, which consists of a
framework and a visual editor. In this section, we provide
details on its architecture, functionality, and possibilities.

5.1. Framework. The framework consists of a set of assemblies
developed using C#. The core contains the graph representa-
tion; basic entities, attribute types and procedures; execution
algorithms; and the means to load and integrate proce-
dure libraries. The definition of different entities (geometric
meshes, surfaces, streets, images, lights, etc.) is split into
different libraries, each incorporating specific procedures for
manipulation and interoperation. By using C#’s reflection
abilities, both library data and documentation are auto-
matically extracted, all with the purpose of facilitating the
development of the system.

Currently, construct implements: procedures for com-
mon operations in shape grammars (e.g., extrusion, splitting,
translation, and rotation); texture synthesis (e.g., invert, add,
subtract, etc.); surface manipulation (e.g., noise, smoothing,
and leveling); street generation (e.g., buffer, translation,
texturing, etc.); and light manipulation (e.g., instantiation,
transformation). More importantly, it also provides many

International Journal of Computer Games Technology

1

B Construct - Sample Project
File Window Plugins Help

| [school.Gardenuxct School Passageray.xct Schoolxet® X

*|| B cmph ~ Elview - E3options - EYebug~

O
°

- ||| 3D Mesh Creation took 16922ms.

Label Rectangular Grd widtn:

Type: GraphProcedure H | eort:

Impuise: [enabled Street Width:
Celheht:
celwidtn:

3D Mesh Creat

3D Viewer

FIGURE 11: Graphical user interface of the Construct Visual Editor.

operations focusing on list processing, context-based query-
ing, and type integration, discussed in Section 4.

Extending the framework by developing whole new low-
level nodes and entities requires some programming expe-
rience. We have made the framework available for a variety
of projects and confirmed that it was easy for experienced
programmers to add such new low-level procedures for very
disparate purposes. We can therefore expect that the amount
of available operations will further increase when construct
is publicly released.

5.2. Visual Interface. In order to design graphs with our
approach, we have developed a visual interface (Figure 11).
The editor is plugin-based, providing the possibility to add
custom file editors and docking windows. The main plugin for
graph manipulation provides interactive tools for the creation
and editing of graphs, as well as for the visualization of their
output.

To manage graph, node, and port definitions, a separate
inspector window is available, showing details of the cur-
rently selected element. When a node is selected, the user
can edit its parameters (which features a parser of simple
mathematical expressions and function calls), attributes, and
augmentations. When a port is selected, the user can change
its state to “blocked” (see Section3.2) or to “gate” (see
Section 3.7). A separate option to edit graph details is also
available, letting the user define the graph parameters and
attributes, as well as some metadata (name, description, etc.).

To view the output of PCGRs, a rendering window is
available, which includes various visualization aids that allow
users to better perceive mesh scopes (similar to [3]), such as
edges or bounding boxes, among other guides.

The editor also features a debugging window to display
log information produced by the nodes. When in debug
mode, it can also provide information about the flow
sequence, procedure execution times, and the amount of

produced data. The Live-Execution mode, on the other hand,
will automatically reexecute the PCGR for every change,
helping the user understand the impact of modifications on
the graph output. Since the whole graph is executed on a
different thread, interaction remains smooth.

The visual interface facilitates intuitive graph manipula-
tion. For example, the insertion of nodes is done through a
quick search window that lists all available procedures. Once
the node is added, edges can be drawn by dragging the mouse
between two ports. Since ports can be of different types, visual
guides on ports (changing their color and size) indicate which
connections are allowed.

Encapsulation of graphs is also very much facilitated.
To include a graph in a supergraph, the user simply has
to drag the graph’s file into the supergraph’s editor canvas
and the encapsulated node will be instantiated. The user can
still set the subgraph’s parameters and gates afterwards and
the changes will be reflected in the supergraph immediately.
Conversely, a user can select a subset of nodes and edges
and choose the option to encapsulate that selection into a
new node file. Referenced control parameters/attributes will
automatically be built into graph parameters/attributes, while
connected ports will automatically be converted to gates and
added to the encapsulated node’s signature.

6. Discussion

In this section, we discuss how procedural content graphs
compare to existing approaches, namely, grammars and
graph-based design tools. We also briefly discuss perfor-
mance and feedback received on the use of our system.

6.1. Comparison with Grammar Approaches. As shown in
Section 4, procedural content graphs can represent and mani-
pulate content as lists or groups of entities, enabling oper-
ations like, for example, aggregation, sorting, and advanced

12

filtering, which, to the best of our knowledge, are either not
achievable or very contrived using a grammar approach.

We now turn to the issue of the generality of PCGR,
explaining how existing grammar specifications can be
equally represented using procedural content graphs, often
with the advantage of clarity and conciseness.

Generative grammars, such as the ones presented by
Wonka, Miiller, and Krecklau [2-4, 14], are defined typically
as a set of production rules Predecessor — Successor, where
the predecessor is a nonterminal symbol and the successor
is a set of one or more nonterminal or terminal symbols.
Given a starting nonterminal symbol, the process consists
of successively replacing symbols that match the predecessor
with the ones indicated in the successor. For instance, in
shape grammars, geometric shapes are the symbols that are
created or successively transformed by means of operations.

That same rule structure is captured in the graph con-
nectivity of a PCGR: entities (the nonterminal symbols)
emanating from a given output port (the predecessor) flow
through established edge connections to input ports of other
nodes (the successor), thereby further transforming them.
The possibility to create any number of connections between
any pair of output-input ports of compatible types induces
that the same possibilities for rule convergence, divergence,
and recursion still apply. As for other grammar features, they
are easily reproduced in a PCGR as follows:

(i) Parametric Rules [3]. Parameter passing is achieved by
means of attribute handling (Section 3.6).

(ii) Conditional Rules [3]. They are achieved through
condition nodes, featuring one input, 2 outputs, and
a boolean parameter/expression. If they are evaluated
to be true, the entity received as input is sent to the
first output port, otherwise, to the second.

(iii) Scope Rules [3]. Pushing and popping scope states
are achievable through an attribute of type list/stack,
which is written to and read from, just like any other
attribute.

(iv) Split Rules [3]. A split is an augmented node, which
allows a flexible definition of the split sizes and
the introduction of a separate output port for each
split. Snap shapes can also be introduced dynamically
through specific augmentation types (Section 3.8).

(v) Occlusion Query Tests [3]. An occlusion query node
uses its gather port to receive all the shapes, organize
them into an octree, and test for occlusions (within
a certain distance, defined in the node parameters).
The occluded and nonoccluded shapes are returned
via different output ports.

(vi) Generalization of Nonterminal Objects [4]. It is sup-
ported naturally through the typed nature of proce-
dural content graphs (Section 3.3).

(vii) Connecting Structures [14]. They are supported natu-
rally through the possibility to define multiple input
ports or gather ports (Figure 8).

International Journal of Computer Games Technology

(viii) Accessing and Creating Containers [14]. They are sup-
ported by the merging and grouping abilities offered
by gather ports (Section 4).

6.2. Comparison with Existing Systems and Tools. When com-
pared to text-based alternatives such as grammars, PCGRs
offer a visual solution that makes data flow easier to under-
stand, follow, and manage, especially for complex construc-
tions. That goal has been addressed before [5] but inherited
the limitations from the underlying shape grammars, such
as the impossibility to aggregate and manipulate entity lists.
The Houdini-based approaches [6, 7] somehow address
this issue as well but impose restrictions on recursion and
encapsulation (Section 3.7). In addition, they rely on labels
to filter and control the flow in an implicit form (rather than
an explicit representation via edge and port connectivity),
which introduces a management issue shared by grammar-
based systems. Moreover, since symbols, like labels, are not
always easily given semantically relevant names, it is hard to
manage and maintain a project, especially as it gets larger.

As to the implementation of our framework and visual
editor, construct is a proof of concept, not meant to be
compared directly to commercial tools such as CityEngine
[12] or Houdini [6], certainly not regarding design features
(such as the sophistication of the available procedures) or
interface accessibility. However, our framework has been
designed with extensibility in mind and users are able to
easily expand it with their own components. In particular, the
flexibility of supporting custom entities, augmentations, and
encapsulations brings about the integration of all components
in one unifying system.

6.3. Performance. In general, the execution of PCGRs is fast
and on par with tools as Houdini and CityEngine, for the
same degree of geometric complexity. Nonetheless, we have
not made an exhaustive performance comparison, as it would
go beyond the scope of this paper. Also, performance depends
considerably on the type of processing algorithms, some of
which are, to the best of our knowledge, actually unfeasible
with other approaches, as stated in Section 4. Most important
of all is the fact that the overhead time for node sequencing
and data transport is negligible. This means that the graph
representation and data flow execution algorithm itself does
not constitute a performance issue.

For the various examples used here, the total generation
times were at most a few seconds, mostly just a few millisec-
onds, on an Intel Core i7-2670QM, 2.2 Ghz Laptop, featuring
16 GB RAM, Nvidia GeForce GTX 560M. Consequently,
interactive graph modifications are possible and the user
receives quick feedback. For larger or more detailed examples,
such as the one displayed in Figures 6 and 12, encapsulation
and parametrization significantly help reducing the genera-
tion scope (to focus on smaller number of blocks or buildings
at a time instead of a vast area), therefore ensuring a smooth
interactive experience.

The use of Microsoft XNA as a rendering engine has
restricted the current construct visual interface to a 32-bit
process. As a result, memory allocation is limited, making

International Journal of Computer Games Technology

FIGURE 13: Examples of user-designed buildings using our system.

the design of both very large and very detailed scenes
impossible to sustain and visualize. We intend to address this
issue in the future to better test the limits of our system.

6.4. User Feedback. We let four users test our system and
performed active demo sessions with another five users, most
of them having had some contact or actual experience with
CGA shape grammars (through CityEngine) or Houdini. Due
to their experience with shape grammars and with graph-
based design tools, these participants were swiftly able to
build basic structures and had simple results within a very
short time (Figure 13).

All users were given only a few example graphs to
examine and had to figure out for themselves how the
system worked. Their responses led us to conclude that the
simple graph topology, node nomenclature, and reduced
graph size (achieved through successive encapsulation of
meaningful operations) are very positive and valued factors.
To all questioned users, there was a clear preference of such
visual representation over the text-based ones. Examples that
show control and merging of lists with geometric entities

13

were considered most exciting to shape grammar users. They
understood and indicated that this new possibility would
allow them to execute operations based on relationships
between entities, considering this feature to be very useful.

On a negative side, users commented on the difficulty
to find low-level nodes that they needed among the list of
existing ones, an issue we plan to address by introducing
a categorization of the existing procedures in the future.
As expected, many other pointed issues lied on pure GUI-
based deficiencies, such as the lack of keyboard shortcuts,
poor autocompletion for the expression editor, and the need
for long mouse trips between graph canvas and inspector
window. Therefore, these features will have to be addressed
before more formal and complete usability studies can be
performed.

At this stage, construct has already been used in numer-
ous research projects on (or using) procedural content gen-
eration [37]. Besides the ease-of-use, researchers point out
the great benefit of being able to easily define their custom
procedures and interactive tools.

7. Conclusion

We have introduced procedural content graphs (PCGRs), a
generic approach for the specification of content generation
procedures, which retains the advantages of grammar-based
solutions and addresses most of their limitations. In particu-
lar, we demonstrated that a variety of list-based operations, as,
for example, merging, ordering, aggregation, and clustering,
strongly contribute to a richer and more expressive design
specification than that offered by other grammar and graph-
based approaches. This is also patent in the support of custom
entity types, which contribute to a more intuitive descrip-
tion of the content generation procedures. Moreover, the
introduction of augmentations, encapsulation and attributes,
significantly helps keeping content design and development
compact and flexible.

In the future, we would like to perform a formal user
study to quantitatively investigate user friendliness. So far,
our experience is that even people unfamiliar with other
procedural design methods are able to grasp its functioning
and to rapidly build their first graphs.

14

We believe that the generality of procedural content
graphs provides an ideal ground for context-dependent
development, towards a unified pipeline for comprehensive
procedural content generation. Even more, this approach has
the potential to be integrated with real-time simulation or
game engines as well, in order to support adaptive generation
of large virtual environments. Because the approach was
designed with extensibility in sight, we can expect that it will
give rise to an active community contributing new features,
from new procedures and entities, to more high-level editing
features, ultimately leading to an increasing deployment of
procedural content graphs.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been supported by the Portuguese government,
through the National Foundation for Science and Technology
(FCT) (Fundagao para a Ciéncia e a Tecnologia) through the
Ph.D. Scholarship SFRH/BD/73607/2010.

References

[1] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey
on procedural modelling for virtual worlds,” Computer Graphics
Forum, vol. 33, no. 6, pp. 31-50, 2014.

[2] P. Wonka, M. Wimmer, E Sillion, and W. Ribarsky, “Instant
architecture,” in Proceedings of the 30th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH *03),
pp- 669-677, ACM, San Diego, Calif, USA, July 2003.

[3] P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. van Gool,
“Procedural modeling of buildings,” in Proceedings of the
33rd Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH °06), pp. 614-623, ACM, Boston, Mass,
USA, August 2006.

[4] L. Krecklau, D. Pavic, and L. Kobbelt, “Generalized use of non-
terminal symbols for procedural modeling,” Computer Graphics
Forum, vol. 29, no. 8, pp. 2291-2303, 2010.

[5] P. B. Silva, P. Miiller, R. Bidarra, and A. Coelho, “Node-based
shape grammar representation and editing,” in Proceedings of
the Workshop on Procedural Content Generation in Games (PCG
’13), May 2013.

[6] Side Effects Software, Houdini, 2015, http://www.sidefx.com/.

[7] G.Patow, “User-friendly graph editing for procedural modeling
of buildings,” IEEE Computer Graphics and Applications, vol. 32,
no. 2, pp. 66-75, 2012.

[8] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Mech, “L-
systems: from the theory to visual models of plants,” in Proceed-
ings of the 2nd CSIRO Symposium on Computational Challenges
in Life Sciences, vol. 3, pp. 1-32, Victoria, Australia, 1996.

[9] R.Mech and P. Prusinkiewicz, “Visual models of plants interact-

ing with their environment,” in Proceedings of the 23rd Annual

Conference on Computer Graphics and Interactive Techniques,

pp. 397-410, August 1996.

G. Stiny and J. Gips, “Shape grammars and the generative speci-

fication of painting and sculpture,” in Information Processing 71,

[10

International Journal of Computer Games Technology

C. V. Friedman, Ed., pp. 1460-1465, North-Holland, New York,
NY, USA, 1972.

[11] M. Larive and V. Gaildrat, “Wall grammar for building gen-
eration,” in Proceedings of the 4th International Conference on
Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia (GRAPHITE °06), pp. 429-437, ACM,
December 2006.

[12] Esri, “Esri cityengine—3d modelling software for urban envi-
ronments,” 2013, http://www.esri.com/software/cityengine/.

[13] M. Schwarz and P. Wonka, “Procedural design of exterior light-
ing for buildings with complex constraints,” ACM Transactions
on Graphics, vol. 33, no. 5, article 166, pp. 1-16, 2014.

[14] L. Krecklau and L. Kobbelt, “Procedural modeling of intercon-
nected structures,” Computer Graphics Forum, vol. 30, no. 2, pp.
335-344, 2011.

[15] S. Havemann, Generative mesh modeling [Ph.D. thesis], Univer-
sity of Braunschweig, Institute of Technology, 2005.

[16] B. Hohmann, S. Havemann, U. Krispel, and D. Fellner, “A GML
shape grammar for semantically enriched 3D building models;”
Computers & Graphics, vol. 34, no. 4, pp. 322-334, 2010.

[17] L.Krecklau and L. Kobbelt, “Interactive modeling by procedural
high-level primitives,” Computers & Graphics, vol. 36, no. 5, pp.
376-386, 2012.

[18] M. Lipp, P. Wonka, and M. Wimmer, “Interactive visual editing
of grammars for procedural architecture,” ACM Transactions on
Graphics, vol. 27, no. 3, article 102, 2008.

[19] E. Hale and N. Long, “Enumerating a diverse set of building
designs using discrete optimization,” in Proceedings of the 4th
National Conference of IBPSA-USA, pp. 77-84, New York, NY,
USA, August 2010.

[20] L. Leblanc, J. Houle, and P. Poulin, “Component-based model-
ing of complete buildings,” in Proceedings of Graphics Interface
(GI'’1l), pp. 87-94, ACM, May 2011.

[21] N.J.Mitra, M. Wand, H. R. Zhang, D. Cohen-Or, V. Kim, and Q.
X. Huang, “Structure-aware shape processing,” in Proceedings of
the SIGGRAPH Asia Courses (SA ’13), pp. 1-20, 2013.

[22] M. Bokeloh, M. Wand, and H. P. Seidel, “A connection between
partial symmetry and inverse procedural modeling,” in Proceed-
ings of the ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10), pp.
104:1-104:10, ACM, New York, NY, USA, 2010.

[23] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. MéCh, and V.
Koltun, “Metropolis procedural modeling,” ACM Transactions
on Graphics, vol. 30, no. 2, article 11, 2011.

[24] A.Milliez, M. Wand, M. P. Cani, and H. P. Seidel, “Mutable elas-
tic models for sculpting structured shapes,” Computer Graphics
Forum, vol. 32, no. 2, pp. 21-30, 2013.

[25] P. E. Haeberli, “Conman: a visual programming language for
interactive graphics,” ACM SIGGRAPH Computer Graphics, vol.
22, no. 4, pp. 103-111, 1988.

[26] W. M. Johnston, J. R. Hanna, and R. J. Millar, “Advances in
dataflow programming languages,” ACM Computing Surveys,
vol. 36, no. 1, pp. 1-34, 2004.

[27] W. Machine, 2015, http://www.world-machine.com/.

[28] B. Lintermann and O. Deussen, “Interactive modeling of
plants,” IEEE Computer Graphics and Applications, vol. 19, no.
1, pp. 56-65,1999.

[29] Speedtree, 2015, http://www.speedtree.com/.

[30] Allegorithmic, Allegorithmic substance designer, 2015, http://
www.allegorithmic.com/products/substance-designer.

[31] Nodebox, 2015, http://www.nodebox.net/.

International Journal of Computer Games Technology

[32] Grasshopper, 2015, http://www.grasshopper3d.com/.

[33] B. Ganster and R. Klein, “An integrated framework for proce-
dural modeling,” in Proceedings of the 23rd Spring Conference
on Computer Graphics (SCCG ’07), M. Sbert, Ed., pp. 150-157,
Comenius University, Bratislava, Slovakia, 2007.

[34] S. Barroso, G. Besuievsky, and G. Patow, “Visual copy &

paste for procedurally modeled buildings by ruleset rewriting,”

Computers & Graphics (Pergamon), vol. 37, no. 4, pp. 238-246,

2013.

G. Kelly and H. McCabe, “Citygen: an interactive system for

procedural city generation,” in Proceedings of the 5th Annual

International Conference in Computer Game Design and Tech-

nology (GDTW °07), pp. 8-16, Liverpool, UK, 2007.

[36] E. Galin, A. Peytavie, E. Guérin, and B. Benes, “Authoring
hierarchical road networks,” Computer Graphics Forum, vol. 30,
no. 7, pp. 2021-2030, 2011.

[37] P.B.Silva, Improving expressiveness, integration and manageabil-
ity in procedural content generation [Ph.D. thesis], Faculdade de
Engenharia da Universidade do Porto, 2015.

[38] Esri, CityEngine Help, 2015, http://cehelp.esri.com/.

(35

15

International Journal of

Rotating
Machinery

International Journal of

The Scientific oA Distributed
World Journal Sensors Sensor Networks

Journal of
Control Science
and Engineering

Advances in

Civil Engineering

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Journal of
Electrical and Computer
Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Modelling &
oot (il St perospags
Observation in Engineering

o

Aoes

5//{/?

International Journal of nas and Active and Passive
Chemical Engineering Propagation Electronic Components

