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Agribusiness is an activity that generates huge amounts of temporal data. There are research centers that
collect, store and create indexes of agricultural activities, providing multidimensional time series com-
posed by years of data. In this paper, we are interested in studying the behavior of these time series, espe-
cially in what regards the evolution of agricultural price indexes over the years. We explore data mining

techniques tailored to analyze temporal data, aiming to generate spatio-temporal trajectories of grains
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price indexes for six years of data. We propose the use of Tucker decomposition to both analyze the tem-
poral patterns of these price indexes and map trajectories that represent their behavior over time in a
concise and representative low-dimensional subspace. The case study presents an application of this
methodology to real databases of price indexes of corn and soybeans in Brazil and the United States.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The agricultural commodities are very important to economies
of several countries, especially Brazil, where these assets account
for 7.3% of the Gross National Product - GNP. Moreover, agricul-
tural activities are the backbone of most economic systems, in
the sense they represent an important source of raw materials to
other industries (e.g., cotton, sugar) and provide many employ-
ment opportunities for the labor force (IBGE).

Two of the most important agricultural products in the Brazilian
economy are corn and soybean. These products belong to the fam-
ily of grains. For example, Brazil exportation of soybeans grains
was 32 M. tons, representing an estimated figure of 17.5 billion
dollars in 2012 (ALICEWEB).

Despite the great amount of money involved, we do not have, in
agribusiness activities, accurate information for the whole process.
Therefore, research centers in Brazil, such as the Center for
Advanced Studies on Applied Economics — CEPEA, collect and pro-
vide price indexes of these commodities (Correa, 2009).

Studies to understand the temporal trajectory of a variable,
such as prices for products like soybean and corn, provide the mar-
ket players with strategic information regarding the international
market transaction behavior over the last years. Considering that

* Corresponding author.
E-mail addresses: fecorrea@usp.br (F.E. Correa), mdbo@inescporto.pt (M.D.B.
Oliveira), jgama@fep.up.pt (J. Gama), pedro.correa@poli.usp.br (P.L.P. Corréa), jorge.
rady@usp.br (J. Rady).

http://dx.doi.org/10.1016/j.compag.2015.11.011
0168-1699/© 2015 Elsevier B.V. All rights reserved.

the models were applied on real data, it is possible to update these
models with new collected data and use them to infer or predict if
some events will continue to happen. Moreover, we can mention
some other benefits that arise from the international market anal-
ysis. For example, it is possible to observe that the trajectory of the
Chicago stock market prices is the base for price indexes over the
Brazil internal prices. As a result, further research could try to mea-
sure what is the impact of some public policies, e.g. American
incentives for corn producers, by adding such information on
new models and simulations (Aruga, 2014; Rosa et al., 2014).

In order to analyze agro economic data, it is necessary to join
several databases of distinct types and subjects (Plant, 2012). Data-
bases with this kind of information are usually multidimensional,
i.e., they have more than two dimensions (variables that affect
their behavior).

Examples of multidimensional data are common in agriculture.
Usually, the products are negotiated in different types of markets,
e.g., domestic market and stock market. Further, there are a variety
of products, like corn, soybeans grain and meal. Moreover, these
multidimensional data are temporally ordered, i.e., they are time
series collected and stored over several years (King, 2010).

There are data mining techniques able to deal with multidimen-
sional and temporal data. In this research, our aim is to explore two
of those techniques in order to provide a methodology for the anal-
ysis of agro economic data. The main techniques and framework
used were Tucker decomposition (Tucker, 1966; Oliveira and
Gama, 2012) and spatio-temporal trajectories (Oliveira and
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Gama, 2013). Some complementary statistical methods were used,
namely, the correlation matrix (Kazmier, 2004), ANOVA and the
sliding window model (Datar et al., 2002). In addition, clusters
analysis for pattern mining applied on spatio-temporal data were
reviewed to consider by future implementation (Patel, 2005;
Xiao, 2014).

Using a methodology based on the aforementioned data mining
techniques, the idea is to understand the evolution of the time ser-
ies of Grains price indexes over a time span of six years. In the case
study presented it was used a real-world time series. Our main
contribution is to propose a process methodology to identify, sum-
marize and highlight past events and provide analysis methods to
deal with multidimensional datasets.

This paper is organized as follows: In Section 2, we introduce
the main concepts about the Tucker decomposition and data min-
ing techniques for analyzing temporal data. After providing the
background, we detail the proposed methodology in Section 3.
The next section presents the application of the proposed method-
ology to multidimensional time series of grains price indexes. This
paper ends with the related work, conclusions and suggestions for
further research.

2. Tucker decomposition

Tucker decomposition is an unsupervised multiway data analy-
sis method that is quite useful for data cleaning, data compression
and visualization of the main structures of data in low-dimensional
spaces. Tucker (1966) devised this method in order to extend the
well-known PCA (Principal Component Analysis) to higher-order
data representations, such as tensors. We can straightforward
define a tensor as an extension of a matrix to three or more dimen-
sions, or as an N-way data array, where N is the order of the tensor.
The Data Mart analyzed in this paper can be arranged into a three-
order tensor, by incorporating the temporal dimension. We resort
to three-order tensors, instead of matrices, in order to explicitly
account for the time dimension and, thus, avoid loss of information
in the modeling process. The order, ways or modes of a tensor are
synonyms and refer to the number of dimensions (in our case,
we have three dimensions: products, market and time). For this
specific type of tensors or, in other words, N-way data arrays for
N =3, the most appropriate Tucker decomposition model is the
so-called Tucker3 tensor decomposition (Kolda and Bader, 2009),
which performs the reduction of data in all three modes of the
tensor.

The basic idea of the Tucker3 decomposition is to find a set of
matrices (known as the component matrices) and a small tensor
(known as the core tensor) that, in general, have less dimensionality
than the original tensor, but are able to reconstruct the most
important information contained in data.

The Tucker3 model can be formulated as the factorization of the
original three-order tensor y, such that
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fori=1,..,Lj=1,..,Jand k=1, .., K. Here, the coefficients aj,, bjq
and ¢, represent the entries of the component matrices
Ac R Be R and C e R In turn, the coefficient gpq, repre-
sents the entry of the so-called core tensor G € R™®*R. The number
of entities in each mode are represented by letters [, J and K. The
number of components (i.e., the number of columns of the matrices
A, B and C) in the first, second and third mode of the tensor are rep-
resented by letters P, Q and R, respectively. This decomposition is
illustrated in Fig. 1.

Fig. 1. The basic Tucker3 tensor decomposition (Kolda and Bader, 2009).

Tucker suggested that the core tensor G can be interpreted as
describing the latent structure in the data and the component
matrices (A, B and C) as mapping this structure to give the observed
data (Tucker, 1966). The core tensor can also be interpreted as a
generalization of the eigenvalues of the SVD (Singular Value
Decomposition) (Skillicorn, 2007). Detailed information about the
Tucker3 technique can be found in Tucker (1966), Kolda and
Bader (2009) and Kiers and Mechelen (2001).

This technique can be used to detect abnormal events and
important milestones in the agribusiness data, by means of
the projection of spatio-temporal trajectories in Tucker3
bi-dimensional subspaces. Spatio-temporal trajectories visually
represent the movement of a given object in a plane. They can be
formally defined as a function from the temporal dimension I C R
to the geographical space R? (i.e., the 2D, or bi-dimensional, space)
(Kiers and Mechelen, 2001). At each time point, the object occupies
a given position in the 2D space. Each position is recorded in terms
of (x,y) coordinates, which represent latent concepts, and associ-
ated with the corresponding time stamp. The temporally ordered
sequence of an object’s positions defines the trajectory of this
object, which are often represented as (x, y, t) triples:

T= {(X17y17t1)7(x27y27t2)7“'7(xk7yk7tk)}
where x;,y;,tie R (i=1,...,k)and t; <t, < ... <t

These trajectories are graphically represented by a line that
connects the coordinates of each position to the object’s move-
ment. The goal toward the use of spatio-temporal trajectories is
the representation of time series in a way that is efficient to ana-
lyze. The analysis of trajectories allows us not only to understand
the dynamics of an object’s behavior (e.g., the evolution of corn
indexes with respect to a set of agro economic indicators) but also
to understand large quantities of information in a concise way.

3. Methodology
3.1. Grain dataset specification

In order to make possible the analysis of the multidimensional
databases, we had to do some procedures on the data, in order to
retrieve time-ordered data in a format that can be used to generate
the spatio-temporal trajectories. The multidimensional dataset
was split into 3 dimensions, or modes. One of these dimensions is
time. The time dimension can have several granularities. In our
case, the time unit selected is the month. To obtain monthly data
from years 2007 to 2012, six datasets were created, one for each
year. Considering this division it was possible to label the trajecto-
ries’ variables per year in the plot.

Each dataset that results from the application of the aforemen-
tioned technique will be called a data cube (i.e., a three-order
tensor). The data cube used in this paper has 3 dimensions or
modes, namely: products, market and time. The entities that
belong to the products dimension are the collected price indexes
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for the following grains: corn, soybeans grain, soybeans meal and
soybeans oil. These price indexes were obtained for several types
of markets, namely, the Brazilian domestic market, the US Chicago
Stock market and the exportation figures of Brazil and the United
States. These entities are associated to the second dimension of
the data cube (i.e., the market dimension). The last dimension is
time and the corresponding entities are the months associated
with each year.

Using this approach, six data cubes were created. These data
cubes refer to each one of the analyzed years (2007-2012) and
were arranged into three-order tensors. The top panel of Fig. 2 rep-
resents the three-order tensor, comprising three dimensions and
the corresponding entities, considered in this study. The bottom
panel of Fig. 2 depicts the tensors generated for each year. Each
tensor has the following modes, or dimensions: time, measured
in months (row-entities); type of market (column-entities), and
products (fiber-entities).

3.2. Application and analysis of the Tucker decomposition

After modeling the multidimensional agribusiness data using
three-order tensors, patterns were extracted from each one of
the six tensors by applying the Tucker3 model, using procedure
develop in R software, adapted from studies from Oliveira and
Gama (2012) and Pebesma (2012). This model summarizes the
information contained in the tensor in a set of components. These
components represent, in a concise way, the main variability of the
original datasets, thus being able to uncover the most important
patterns in the data.

To apply the Tucker3 model, it was necessary to define what
combination of components adjusts better for each tensor. This
combination of components is basically the number of patterns
to extract from each dimension of the tensor. These components
summarize the entities in each dimension. One way to select the
appropriate number of components is to use a procedure known
as the Scree Plot.

L |9 Dim. B - Market
E
2 o - US stock Market — CBOT
'Z : - Brazil Domestic Prices — Cepea
(T e - Export — Brazil
5 ‘30 - Export— USA
[13
(2]
Dataset BESSes Dataset
Year Year
2007 2012

Fig. 2. Example of a three-order tensor for each year of the grain dataset. Each
tensor has the following modes, or dimensions: time, measured in months (row-
entities); type of market (column-entities), and products (fiber-entities).

Scree Plot simulates all possible models (P, Q, R) that can be
used by Tucker3, i.e., all combination of components for each
dimension. The selection of the appropriate model is performed
by balancing parsimony, or model dimensionality (i.e., the fewer
components in each dimension), and fit (i.e., the amount of the
total variance captured by the model). For guiding the choice of
the number of components retained in each dimension, the thresh-
old for the model fit used in this paper was 85%. It is important to
emphasize that this threshold was chosen based on the knowledge
of the domain. Therefore, the appropriate choice of this threshold
depends on the application domain and its complexity. This is
important because, the higher the number of components, the
higher the complexity of the results and the higher the processing
time. Based on this threshold, we consider only the combination of
components explaining at least 85% of the total variance, and we
disregard the models with lower fit. After applying this threshold,
we select the most parsimonious model from the available options,
i.e., the model with lower dimensionality. Since we aim at obtain-
ing a concise representation of the original three-order tensors, the
number of components extracted for each dimension should be
lower than the original number of entities (i.e.,, P<I, Q<J and
R <K).

In Fig. 3 it is presented the Scree Plot of year 2007. This means
that we only consider those models that are able to explain at least
85% of the variability contained on the original three-order tensor.
From Fig. 3, it can be ascertained that the most appropriate combi-
nation of components (P, Q, R) is (2, 3, 3), which explains 90% of the
total variance for dimensions A, B and C, respectively.

The analysis of the scree plot is repeated for the data cubes cor-
responding to years 2008, 2009, 2010, 2011 and 2012. In Fig. 4, we
depict the Scree Plot of year 2008. Using the same procedure, the
selected model is (3, 3, 3). In this plot it is possible to see that mod-
els comprising a higher number of components, such as (4, 2, 3)
explain less data variability than the model we chose, which is
more parsimonious. This means that an increase in the model com-
plexity does not always translate into a better model fit (i.e., a
higher explained variance). Since the results of the intersections
variability evolve in all the dimensions together, this can decrease
the percentage of explained variation, or the complexity of the
calculus.

It is possible to observe in both Figs. 3 and 4 that the upper
bound of possible models is given by the combination (4, 4, 4). In
addition, almost 40% of component C corresponds to 100% of vari-
ability of the dataset. This combination (4, 4, 4) is not chosen due
to the two criteria explained before: first, the model complexity
(too many components, or patterns, to analyze) and, second, the
required processing time.

After analyzing the Scree Plot for all cubes/tensors, we selected
the models (P, Q, R) presented in Table 1 for application of the
Tucker3 decomposition.

4. Results - grain time series - a case study using trajectories
analyses

The final step of the methodology is the generation of the
spatio-temporal trajectories based on the output of the selected
Tucker3 models. The idea was to use the Tucker3 score as a weight
of the entities in each dimension of the three-order tensor.

To better understand the procedure to obtain the trajectories,
we will take dimension A (products) as an example. Dimension A
has 4 entities: corn, soybean, meal and oil. The application of the
Tucker3 model (2, 3, 3) for year 2007, produced a set of scores that
summarizes the four entities into three factors, or components.
These scores are reported in Table 2. The next step is the
generation of spatio-temporal trajectories. These trajectories are
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SSEXx as function of Tucker3 model dimensionality
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Fig. 4. Scree Plot of year 2008.

Table 2

Tucker3 model scores for dimension A and year 2007.

75

Year Model (P, Q, R) Proportion of explained variability (%) Scores dimension A - year 2007
2007 2,3,3 90 Variable 1° Factor 2° Factor 3° Factor
2008 3.3.3 88 Corn -0.41 0.60 -0.66
2009 3,3,3 85 .

Soybean grain -0.42 -0.61 -0.14
2010 3,3,3 88

Soybean meal -0.37 -0.45 -0.37
2011 3.3.3 86 Soybean oil -0.72 0.23 0.64
2012 2,3,3 89 Y : - :

projected in a bi-dimensional Tucker subspace, i.e., a 2D plane
where the x axis corresponds to the first component of dimension
A and the y axis corresponds to the second component of the same

dimension. The first and second factors of each dimension are
selected because we intend to generate a representative bi-
dimensional space that explains the greatest amount of variability.
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Fig. 5. Four trajectories of dimension A - products.

Since the two first components explain a larger proportion of the
variability, we exclude the third factor from the analysis.

To illustrate the process of generating a spatio-temporal trajec-
tory, consider the first entity of dimension A: the product corn. For
each year, we plot the corresponding position p; = (x;, ¥;). The first
point, corresponding to year 2007, is p; = (—0.41, 0.60). These coor-
dinates are the scores obtained by the entity “corn” in the first and
the second components yielded by the application of the Tucker3
model to the three-order tensor of year 2007 (see Table 2). The
positions of the entity corn in the following years are obtained
using the same procedure.

After obtaining all the positions associated with the movement
of corn, the trajectories are drawn by connecting these points in
the 2D space. The resulting spatio-temporal trajectories for corn
and the remaining entities of dimension A are depicted in
Fig. 5. Each point is labeled by year. The analysis of these trajec-
tories allow us to understand the behavior of the products in the
past.

The first thing we can highlight in Fig. 5 is that the corn trajec-
tory is located in the upper quadrant of the 2D space, whereas the
soybean grain and the corresponding derivatives are located
roughly on the same quadrant. This result shows that, since corn

and soybean crops compete for planting area, their prices are
exclusively distant from each other.

For the dimension B - market, the results presented in Fig. 6
were divided by showing each trajectory in an exclusive plot. It
is possible to see that the trajectories of CBOT and CEPEA are closer.
As explained earlier, the CBOT prices are usually mandatory in
grains commercialization, and the CEPEA trajectory reflects this.
Another interesting aspect is that the exportation in both countries
has an opposite trajectory design.

Considering dimension C - time (measured in months), the vari-
ation of all months does not allow to make any conclusion, once
there are 12 variables and the points are spread for all quarters
of the 2D plane.

Although we do not explore the depth of dimension C, fur-
ther analysis will be conducted in future work aiming to pro-
vide integrated scenarios to analyze the impact that a
trajectory of one dimension has in the trajectory of another
dimension. As an example, it would be possible to infer that
the corn trajectory, i.e., its path over the years, is similar, or clo-
ser, to the CBOT trajectory in dimension B. A possible way to
verify this is to compute the similarity between trajectories
using, e.g., a distance metric.
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5. Related work

The related papers follow two lines guiding the techniques used
on this paper. The first line deals with multidimensional data anal-
ysis, in which the main techniques are PCA, PARAFAC and Tucker
decomposition model. The second line applies plotting techniques
to present multiple results obtained in a bi-dimensional space
using maps or trajectories.

The approach for Tucker decomposition and PARAFAC was pro-
vided by Frentzos et al. (2009) where it was highlighted the models
of PARAFAC and Tucker3 as efficient alternatives for more compre-
hensive analysis of multidimensional data, when compared to PCA
techniques. This is related to the fact that tensor decomposition
models, such as PARAFAC and Tucker3, do not collapse the original
data dimensions into matrices and are able to explicitly take into
account the two and three-way interactions established among
these dimensions in the modeling and data decomposition steps.
As a result, these techniques do not entail loss of information as
happens when using the PCA over the matricized form of three-
order tensors. The experiments of Gere et al. (2014) analyzed the
decision preferences to buy sweet corns divided by several clusters
(organized by people’s age). The results were presented by

intuitive maps, using tucker3 model by dimension, and compared
with the PARAFAC model. However, the paper did not present a
solution to deal with time series, or analyzed the time dimension,
even though the evolution of such information may reveal impor-
tant patterns. On the other hand, an approach discussed in Oliveira
and Gama (2013), presents a methodology to track the evolution of
dynamic social network, using advanced concepts of spatio-
temporal trajectories.

Several aspects were applied from these related papers. How-
ever, in this paper we covered some innovative points, as for exam-
ple, real agro economics data, and several data-cubes and in special
we used the tucker3 variability to create the trajectory over time
series. The proposed methodology presented in this paper allow
us to analyze the evolution of multi-cubes (in this case, cubes by
year) of time series and projecting them in a representative bi-
dimensional space.

6. Conclusion

In this paper, we proposed to use two complementary tech-
niques — Tucker decomposition and analysis of spatio-temporal
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trajectories — as means of gaining insight about important events
related to grain prices time series. The introduced methodology
is suitable for the analysis of large amounts of data that arise from
agricultural activities. The application of this methodology to a
real-world database allowed us to draw some interesting conclu-
sions that, otherwise, would be hard to find. Through the detection
of irregularities in data, these techniques can help the experts to
focus and concentrate efforts in specific products or markets.

The results using trajectories allowed us to analyze a large
amount of multidimensional data, such as the dataset we use,
which comprises information regarding 4 products, 2 countries’
markets and six years of data. In this context, the trajectories pro-
vided an efficient visualization of the evolution of those entities
year by year.

Some important aspects were detected by resorting to trajecto-
ries: first, both products, soybean and corn prices, had opposite tra-
jectories, which allowed us to infer that these two products will
compete for fields in the next crops. On the market analysis, the
trajectory of Chicago Stock Market spread the behavior of the
prices in the Brazilian domestic market, and both trajectories were
similar over the years.

As future work, we intend to improve the analysis with eco-
nomic aspects and decision making that can be used for analysts
and producers. Another issue we want to address is how to com-
pare the similarities of the trajectories over the dimensions. It
means to create scenarios about the impact that the trajectory of
one dimension has in another trajectory from the next dimension.
Further, we intend to use distance metrics, as Euclidean distance or
dynamic time warping, to assess the similarity of the trajectories.
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