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Abstract—Multi-temporal decision-making problems require 
information about the potential temporal trajectories of wind 
generation for a given time horizon. Typically, the Gaussian 
copula is used for modelling the dependency between 
probabilistic forecasts from different lead-times. This paper 
explores the vine copula framework as a benchmark model since 
it captures complex multivariate dependence structures with 
mixed types of dependencies. The results show that a Gaussian 
copula with a suitable covariance matrix suffice to generate high 
quality temporal trajectories.  

Index Terms--Wind power, uncertainty, decision-making, 
copula, vines, temporal trajectories. 

I. INTRODUCTION 

The large-scale integration of wind generation into power 
systems operation requires innovative tools for handling its 
uncertainty and variability, which, in general, consists in 
decision-making problems under uncertainty. Problems, such 
as the unit commitment [1] and wind power-storage 
coordination [2], are inserted in multi-temporal stochastic 
optimization paradigm. 

The wind power forecast is a key input of these tools, 
which, during the last twenty years, has advanced from point 
forecast to different approaches for modeling and 
communicating forecast uncertainty; for a literature review see 
[3]. Traditionally, multi-temporal stochastic optimization 
problems use a set of scenarios to characterize the uncertainty 
associated to load and generation. Therefore, one possible 
approach to integrate wind power uncertainty into these 
problems is through a set of temporal trajectories of wind 
generation for the next hours or days. For example, Haessig et 
al. [2] shows the importance of including the temporal 
dependency of errors in multi-temporal problems; discarding 
autocorrelation of forecast errors can lead to underestimation 
of storage capacity. 

The first contribution on this topic was the short-term 
scenarios proposed by Pinson et al. [4]. The method is inspired 
by the Normal-to-Anything (NORTA) method [5] and 
generates a set of random vectors (short-term scenarios or 

temporal trajectories) from a Gaussian copula. The covariance 
matrix of the copula is updated as new observations are made 
available in a time-adaptive framework. Morales et al. [6] also 
used the Gaussian copula to characterize the time and spatial 
dependencies of wind speed at different geographical 
locations.  

Ma et al. [7] proposed a method to generate scenarios 
containing temporal information about wind power variability 
(but only first order differences) and uncertainty. An 
exponential covariance function, like in [8], is used in the 
Gaussian copula. Finally, Tastu et al. [9] extend this 
framework to generate joint predictive densities of wind 
power output (and ultimately, spatial-temporal trajectories). 
The proposed method also relies on the Gaussian copula for 
the dependency structure and takes advantage of the sparsity 
of precision matrices (i.e., inverse covariance matrix), 
accounts for non-constant conditional variances and direction-
dependent conditional dependencies. The Gaussian copula 
was also used in transmission network planning [10] and for 
modelling the wind power Europe-wide and its effects on the 
Swiss power grid [11]. 

Although not related to modelling wind power forecast 
uncertainty, Díaz [12] shows that Gumbel copulas, when 
compared to Gaussian copulas, seem to be only appropriated 
for representing wind power in a bivariate form (e.g., 
dependency between two wind farms). Conversely, Louie [13] 
studied which bivariate copula families were more suited to 
model wind power dependency structures and found that 
Gaussian dependence may not be justified and the use of 
Gumbel copulas can improve the models.  

The research question is whether the Gaussian copula is 
appropriated or not to represent multi-temporal dependencies 
of uncertainty forecasts. The vine copula framework is based 
on factorizing a d-dimensional density into a product of d(d-
1)/2 pair-copulas [14]. This framework is appropriate for 
modelling complex multivariate dependence structures with 
mixed types of dependencies, such as asymmetries and tail 
dependencies, since each pair-copula can belong to a different 
parametric copula function. Therefore, it is very flexible and a 
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perfect benchmark model to study if the Gaussian copula 
provides a suitable approximation or not for the dependency 
structure. Vine copulas are being widely used in the financial 
and insurance sectors [15], with very few applications to the 
energy sector. For instance, in [16], the vine copulas are used 
for spatial-temporal modelling of auto and cross-correlation 
between different wind power time series.  

The present paper aims to explore the flexibility provided 
by the vine copula to generate temporal trajectories of wind 
power and compare their quality with the ones generated from 
a Gaussian copula. The following two original contributions 
are produced: (a) first application of the vine copula approach 
to generate temporal trajectories of wind power forecast 
uncertainty; (b) comparison between vine copula and 
Gaussian copula for three real wind farms, using the 
evaluation framework from [8] and the scoring rule from [17]. 

The remaining of this paper is organized as follows: 
section II presents a brief introduction to the vine copula 
framework; section III describes how temporal trajectories of 
wind power can be generated; section IV describes the 
Gaussian copula method; section V presents the numerical and 
evaluation results for three real wind farms; conclusions are 
given in section VI. 

II. THE VINE COPULA FRAMEWORK 

A.  Copula Definition 

A copula provides a way of separating the marginal 
distributions from the multivariate dependency structure and 
links these two together to form the joint distribution [14]. The 
Sklar’s theorem argues that every d-dimensional distribution 
function F with marginals Fi(xi), i=1…d, can be written as 
[18]: 

 ( ) ( ) ( )[ ]dddd xFxFCxxF ,,,, 1111  =  (1) 

where xi is a vector of random variables (r.v.) and C is a 
copula. If each Fi(xi) is continuous then C is unique. In words, 
Eq. 1 means that it is possible to describe the joint distribution 
of x1,…,xd by the marginal distributions Fi(xi) and the copula C 
that represents the dependency structure between the marginal.  

The right-hand-side shows that a copula is the joint 
distribution of r.v. u1,…,up [note that ui=Fi(xi)], which are 
marginally uniformly distributed as U(0,1). Therefore, it is 
also possible to write Eq. 1 as follows: 

 ( ) ( ) ( )[ ]dddd uFuFFuuC 1
1

1
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where Fi
-1 is the inverse of the marginal distributions. 

By applying the chain rule on Eq. 1, the joint density 
function is given by: 
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where c1…d is a d-dimensional copula density.  

There are a vast number of copula parametric functions in 
the literature, such as the Archimedean (e.g., Clayton, 
Gumbel, Frank) and elliptical (Gaussian, Student-t) [14]. 

B. Joint Density Decomposition 

Any joint density function can be factorized into a product 
of density functions [19][20], as follows: 
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where f(x|.) is the conditional density function. For three 
variables, it becomes: 

 ( ) ( ) ( ) ( )3213233321 ,||,, xxxfxxfxfxxxf ⋅⋅=  (5) 

Note that this decomposition is different in case of a re-
ordering of the variables indices (1…d), thus is not unique.  

The right-hand-side of Eq. 4 shows that a joint density 
function decomposed into a product of marginal densities [i.e., 
fd(xd)] and terms describing the dependency between the r.v. 
[e.g., fd(xd-1|xd)].  

Note that a conditional density function, considering the 
copula definition of Eq. 3, is given by: 
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In [20] it is shown that any conditional term in Eq. 4 can 
be decomposed into a form similar to Eq. 6 using the 
following general formula: 

 ( ) ( ) ( )( ) ( )jjjjvxv xfvFxFcxf
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−
vvvv ||,|| |

 (7) 

where v is a d-dimensional vector, j is one arbitrarily 
chosen component of v and v-j is the v vector excluding the j-th 
component. For the three variables example, this equation 
becomes: 
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Details about the calculation of F(x|v) are given in [20]. 

Replacing Eq. 8 in Eq. 5 and using Eq. 6 to decompose 
f(x2|x3), the following decomposition is obtained for an 
example with three r.v.: 

 ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )33213322

22112,123212|3,1321

,

,|,|,,

xfxfxfxFxFc

xFxFcxxFxxFcxxxf

⋅⋅⋅⋅

⋅⋅= (9) 

From Eq. 9 it is possible to see that the joint density can be 
expressed as a product of pair-copulas acting on several 
different conditional probability distributions and marginal 
density functions. Note that each pair-copula can be chosen 
independently from the others, which provides high flexibility 
in dependency modelling. 



C. Vine Structure 

The vine copula framework, defined as a graphical tool for 
dependent r.v., was firstly proposed by Bedford and Cooke 
[19]. The seminal work of Aas et al. [20] established the 
statistical background for likelihood-based inference, model 
selection and simulation of random vectors, which enabled its 
practical application.  

A vine is a graphical representation that specifies the pair-
copula construction of Eq. 4 and consists in acyclic connected 
graphs with nodes and edges. For an example with four r.v., 
Fig. 1 illustrates two types of vines, drawable vine (D-vine) 
and canonical vine (C-vine). In a D-vine, each node is 
connected to a maximum of two nodes. Conversely, in a C-
vine there is a unique node connected to d-j edges. Each vine 
type consists of d-1 trees with tree Tj having (d+1)-j nodes and 
d-j edges, e.g. four r.v. (d=4) results in three trees (j=1,2,3) 
and tree T2 has 3 nodes and 2 edges. The nodes in tree Tj are 
used to define the labels of the edges in tree Tj+1. The edges in 
Tj, which become nodes in Tj+1, are joined by an edge in Tj+1 
only if these edges in Tj share a common node. 
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Figure 1.  Drawable vine (D-vine) and canonical vine (C-vine) copulas for 
an example with four r.v. 

As can be seen in Fig. 1, this graphical representation is a 
useful tool to represent the joint density decomposition 
f(x1,x2,x3,x4) of Eq. 4. The nodes of the first tree (T1) 
correspond to marginal density functions in Eq. 9 and each 
edge corresponds to a pair-copula density, e.g. the edge 
between nodes 12 and 23 in tree T2 results in copula density 
c13|2. Finally, note that the sequence of the nodes defines a 
different manner of decomposing the joint density.  

The joint density f(x1,…,xd) for a D-vine copula is given by 
[20]: 
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and for a C-vine is 
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After defining the vine type and r.v.’s order, which should 
be based on expert knowledge and trial-error experiences, the 
pair-copula type and corresponding parameters are estimated 
from data with the method described in section III and with 
the help of R package “CDVine” [21]. 

III. GENERATION OF WIND POWER TEMPORAL 

TRAJECTORIES 

This section describes the necessary steps to generate wind 
power temporal trajectories using the vine copula framework. 
The r.v. are marginal predictive functions obtained from any 
probabilistic forecast method, such as [22], and the number of 
r.v. corresponds to the forecast time horizon (T).  

The preliminary steps consist in model section, i.e. 
choosing between C-vine and D-vine and defining the order of 
the r.v. Note that for a D-vine there are d! possible ways of 
ordering the r.v. The model selection is based on expert 
knowledge and the fact that this problem consists in time 
trajectories and the strongest dependencies in the first tree are 
between lead-times (or r.v.) close in time (see for instance 
[4]). Therefore, a natural choice is a D-vine with the r.v. in the 
tree T1 nodes ordered by its temporal sequence, i.e. t+1, 
t+2,…, t+T. Note that a C-vine is more suitable for 
dependency structures where one r.v. has a strong influence in 
the others. 

A. Pair-copula Selection 

In order to apply any copula based method, the data must 
lie in the unit hypercube. This basically consists in the 
following transformation: 

 ( )kttktkt yFu +++ = |
ˆ  (12) 

where ut+k is the uniform variable, 
tktF |

ˆ
+

the marginal 

predictive function for lead-time t+k and generated at time 
instant t and yt+k the observed wind power.   

The pair-copula type to use in each edge can be 
determined by plotting the data from Eq. 12 combined with a 
goodness-of-fit test.  

Fig. 2 shows two bivariate plots between the uniform 
variables of different lead-times (t+1 and t+2; t+27 and t+28) 
that represent two edges from the first tree. The data used for 
these plots is from the wind farm dataset described in section 
V. The plot in the middle is a set of random numbers 
generated from a Gaussian bivariate copula with the 
correlation parameter calculated from the t+1 and t+2 data 
and it is used for comparison. This plot shows that, visually, 
both bivariate dependence structures are different from the 
Gaussian, mainly characterized by upper and lower tail 
dependency (i.e., high concentration of points in the tails). 
Note that the Gaussian copula does not have tail dependency. 

This visual inspection provides an indication about the 
copula type. However, a goodness-of-fit test should be applied 
to select one copula function from a vast set. Several tests and 
visualization tools are discussed in [21] to analyse bivariate 
data. For instance, using the Clarke test, the selected copula 
for the dependency between ut+1 and ut+2 was the Frank 



copula, while for ut+27 and ut+28 was the Student-t copula. In 
both cases, the Gaussian copula received a low score in test 
statistic. 
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Figure 2.  Bivariate plots between uniform variables of different lead-times. 

In [20] and [21] an iterative process is proposed to select 
the pair-copula of each edge and estimate the corresponding 
parameter(s). The procedure basically consists of fitting all 
available copulas using maximum likelihood estimation, then 
the Akaike or Bayesian Information Criteria (AIC and BIC, 
respectively) are calculated for each fitted copula, and finally 
the copula with minimum AIC or BIC is selected for that 
specific edge.  

It is this flexibility in combining different types of copulas 
that makes this approach theoretically advantageous over the 
classical Gaussian copula. 

B. Model Inference 

After selecting the copula type for each pair-copula and 
with the available dataset, the next step consists of estimating 
the parameters of all pair-copulas. The following sequential 
estimation procedure is described in [20]: 

1. determine the copula type to use in each edge from 
tree T1 by using the method described in section 
III.A; 

2. estimate the parameters of the selected copula by 
using the transformed original data (Eq. 12); 

3. using the copula’s parameters estimated in step (2) 
for tree T1 and the function F(x|v) (see Eq. 8 and 
reference [20]), compute the observations required to 
estimate the copula parameters in tree T2; 

4. determine the copula type to use in each edge from 
tree T2; 

5. iterate.    

This sequential procedure is implemented in the function 
“CDVineCopSelect” from the R Package “CDVine” [21]. 
However, this procedure does not guarantee a global optimal 
fit. In order to tackle this problem, the Evolutionary Particle 
Swarm Optimization (EPSO) [23] was used in this paper to 
maximize the global log-likelihood of the vine. EPSO, as a 
population-based method, relies on a set of moving solutions 

denoted as particles. In this case, a particle is a set of 
parameters associated to each pair-copula. The fitness function 
is the log-likelihood function of a D-vine [20]: 
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Note that for each copula in Eq. 13, at least one parameter 
needs to be determined, so the size of the particles is related to 
the size of the D-vine. 

Typically, the EPSO algorithm initiates the particles by 
randomly generating a population of solutions as a set of 
random number from m-dimensional space (m is the number 
copula parameters). In this case, in order to reduce the search 
space of the algorithm and increasing its efficiency, the 
solution from the sequential estimation is associated to one 
particle, while the other particles have the sequential solution 
perturbed by a Gaussian distribution with mean zero and 
standard deviation equal to 0.2.  

The limits of the copula’s parameters, listed in [21], are 
enforced by the EPSO algorithm. A parallel evaluation of the 
fitness function was implemented using the R Package 
“doParallel” [24]. The average running time with EPSO is 79 
minutes (in contrast to 6120 minutes with the Limited-
memory BFGS method). 

C. Generation of Temporal Trajectories 

After determining the pair-copula and parameters of the D-
vine structure, the generation of random vectors is 
straightforward. First, d-samples, w1…wd, are generated from a 
uniform distribution; then, the following relations are 
established: 
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where ( )11
1 ,,| −

−
dd uuwF   is given by the function F(x|v) 

(see Eq. 8). The detailed description of the simulation loop for 
a D-vine can be found in [20] and for this paper the function 
“CDVineSim” from the R Package “CDVine” was used to 
generate N temporal trajectories (or random vectors). Note that 
these trajectories are in the unit hypercube, thus the following 
relation is used to convert the values into wind power values: 
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Fig. 3 illustrates a set of 100 temporal trajectories sampled 
from a D-vine fitted with the procedure described in this 
section from one wind farm of dataset described in section V. 

IV. GAUSSIAN COPULA METHOD 

The Gaussian copula method generates N temporal 
trajectories of wind power using the following process 
(described in [4] and [5]):  



1. generates N random vectors Z from a multivariate 
Gaussian distribution (i.e., Gaussian copula) with 
zero mean and covariance matrix ΣZ; 

2. transforms Z with Eq. 16 to obtain a random vector; 
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where Φ is the distribution function of a standard 
normal r.v. 
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Figure 3.  Set of 100 wind power temporal trajectories sampled from a D-
vine. 

The dependency structure between the lead-times is 
modelled with a Gaussian copula and, in this paper, two types 
of covariance matrices were considered:  

a) The Pearson’s correlation coefficient is used to 
compute the empirical covariance of variable Zt 
defined as follows: 

 ( )( )tt PFZ ˆ1−Φ=  (17) 

The covariance matrix is computed from a learning 
sample of past observations of Z. 

b) Exponential covariance function is given by 
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where Zt+k1 is the Gaussian r.v. for lead time t + 
k1 and where ν is the range parameter controlling the 
strength of the correlation of r.v. among the set of 
lead times. 

V. NUMERICAL RESULTS 

This section presents numerical results with respect to the 
quality (measured by different scoring rules) of the temporal 
trajectories generated with different dependency structures.  

A. Case Study Description 

The case-study consists of the first three real wind farms 
from the Global Energy Forecasting Competition (GEFCOM 
2012) dataset, which is freely available in [25]. Three years of 

data are available and consists of historical power 
measurements and weather predictions extracted from the 
European Centre for Medium-range Weather Forecasts model 
(ECMWF) with hourly time resolution. The wind power 
values were normalized between 0 and 1 by the respective 
rated power of the wind farms. 

The last year was used to generate a set of wind power 
trajectories and corresponding evaluation. The time horizon is 
48 hours-ahead. The marginal predictive distributions are from 
the probabilistic method described in [22]. 

The EPSO parameters used in this paper were: mutation 
rate (0.3); communication probability (0.7); number of 
particles (30); stopping criteria (20 iterations with the same 
global maximum or 1000 iterations). 

B. Multivariate Skill Score 

In the literature, it is possible to find several skill scores 
for evaluating univariate probabilistic forecasts, such as the 
Continuous Ranking Probability Score (CRPS). However, for 
multivariate probabilistic forecasts, the number of skill scores 
remains very limited. The mostly used skill score for 
meteorological ensemble evaluation is the energy score (ES) 
proposed in [26]. This score is a generalization of the 
univariate CRPS for multivariate quantities and it is given by: 
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where ||.||2 is an L2 norm, y is the observed time trajectory 

of wind power, [ ]jŷ  is the j-th temporal trajectory and J is the 
number of sampled trajectories. The ES is averaged over the 
entire evaluation dataset (i.e. 365 days). 

In [8] and [27] it is shown that the ES has low 
discrimination ability when focusing on the dependence 
structure of multivariate probabilistic forecasts. Recently, it is 
proposed in [17] a new score, called p-variogram score (VS-
p). This skill score is based on pairwise differences between 
all components of the multivariate variable and, compared to 
the ES, possesses much better discrimination ability with 
respect to correlations between the different components. The 
VS-p is calculated as follows: 
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where yi and yj are the i-th and j-th component of the 
observed wind power trajectory, [ ]z

iŷ  and [ ]z
jŷ are the i-th and j-

th component of the z-th trajectory, wij are positive weights 
defined by an expert to put more emphasis on a certain 
component combination and p is the power order. The VS-p is 
averaged over the entire evaluation set.  

In this paper, the weights wij were set equal to the inverse 
of time distance between components i and j, i.e. 1/||i-j||. 
Results presented in [17] show that a VS-p with p≤1 has the 
best discriminative ability.  



Tables I and II compare the ES and VS-p obtained by the 
D-vine copula and the following dependency structures: (a) 
independent copula; (b) Gaussian copula with empirical 
covariance matrix (similar to [4] but without the time-varying 
covariance); (c) Gaussian copula with exponential covariance 
(as described in [7]). These metrics are evaluated on 1000 
trajectories. Note that the parameter of the exponential 
covariance matrix was determined by trial-error experiences: 
10, 7 and 5 for each wind farm correspondingly. 

The ES results in table I show its low discrimination 
ability since the difference to the independent copula is minor, 
only around 2%. Considering the ES metric, the D-vine 
achieves the lowest values for the two wind farms. The 
Gaussian copula with exponential covariance presents an ES 
lower than the empirical covariance. 

The discrimination ability of the VS-p metric is higher 
than the ES, e.g. the D-Vine improves over the independent 
copula around 33%. An interesting result is that the Gaussian 
copula with exponential covariance presents a VS-p lower 
than the one obtained with the D-vine for the two wind farms. 
This result shows that the quality of the temporal trajectories 
cannot be evaluated with a single skill score. As mentioned in 
[26], the ES is often not sufficiently sensitive to 
misspecifications of the correlations between the different 
components.  

The results in Table II (wind farm 3) are similar, but in this 
case the D-vine presents the lowest value in both ES and VS-
p. The temporal trajectories generated with the exponential 
covariance matrix present a better quality than the ones 
generated with the empirical covariance matrix. 

In summary, the results for the three wind farms show that 
the Gaussian copula can lead to high quality temporal 
trajectories, as long as a proper structure for the covariance 
matrix is selected. The D-vine is also capable of generating 
trajectories with high quality, based on its flexibility to 
represent different dependency structures. It is important to 
stress that both Gaussian copula with empirical covariance 
matrix and D-Vine need a large dataset of historical data to 
make an accurate estimation of the correlation statistics, while 
the exponential covariance does have this requirement. This 
fact might explain the better performance from the later 
dependency structure. 

TABLE I 
ENERGY SCORE (ES) AND P-VARIOGRAM SCORE (VS-P) FOR DIFFERENT 

DEPENDENCY STRUCTURES AND WIND FARMS 1 AND 2. 

 Wind Farm 1 Wind Farm 2 
Dependency  

Structure 
ES VS-0.5 VS-1 ES VS-0.5 VS-1 

Independent 0.7486 11.81 6.54 0.7159 11.36 7.11 

Gaussian Copula 
(Emp. Cov.) 

0.7361 7.98 4.39 0.7029 7.90 5.09 

Gaussian Copula 
(Exp. Cov.) 

0.7358 7.75 4.28 
0.7029 7.76 5.02 

D-Vine Copula 0.7354 7.85 4.34 0.7025 7.83 5.07 

C. Event-based Evaluation 

This section evaluates the quality of the temporal 
trajectories using the event-based methodology proposed in 
[8]. The following gradient event was considered: maximum 

absolute variation in the process over a window of length h, 
centered on lead-time k, being (or not) greater than thr. For 
this event, the Brier Score (BS) was calculated as a function of 
the lead-time k. Fig. 4 depicts the BS for wind farm 1 
considering two combinations of parameters: (a) h=6; thr=0.2; 
(b) h=6; thr=0.2. Note better performance corresponds to 
higher BS score. 

TABLE II 

ENERGY SCORE (ES) AND P-VARIOGRAM SCORE (VS-P) FOR DIFFERENT 

DEPENDENCY STRUCTURES AND WIND FARM 3. 

 Wind Farm 3 

Dependency Structure ES VS-0.5 VS-1 

Independent 0.8179 12.72 8.40 

Gaussian Copula 
(Emp. Cov.) 

0.8079 9.63 6.58 

Gaussian Copula 
(Exp. Cov.) 

0.8077 9.58 6.55 

D-Vine Copula 0.8075 9.52 6.54 
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Figure 4.  Brier score as a function of lead-time for wind farm 1. 

The results in Fig.4 confirm the ones presented in Table I 
for the VS-p. Also in the BS, the skill of the trajectories 
generated by the Gaussian copula with exponential covariance 
is higher than the one obtained with the D-vine. The 
difference in terms of BS is higher for the second gradient 
event. Fig. 5 presents the BS results for wind farm 3. In 
contrast to the results presented in table II, for these two 
events it is not possible to conclude that the D-vine 
outperforms the Gaussian with exponential matrix. 
Nevertheless, for the second gradient event the D-vine 
presents the lowest BS during some lead-times. 

VI. CONCLUSIONS 

This paper presents a first application of the vine copula 
framework to generate a set of wind power temporal 



trajectories (associated to wind power forecast uncertainty) 
that can be included in decision-making problems under risk. 
Using different skill scores, the trajectories generated with the 
vine copula approach were compared with the Gaussian 
copula for three real wind farms. 

The results show that the Gaussian copula is a reasonable 
model for the temporal dependency of forecast errors, as long 
as a suitable structure is selected for the covariance matrix. 
For the three wind farms analyzed in this paper, the Gaussian 
copula with exponential covariance matrix outperformed the 
vine copula for two out of three wind farms. The main 
advantage of the Gaussian copula is its mathematical 
simplicity, while the advantage of the vine copula framework 
is its flexibility. For instance, the analyst does not need to find 
the “best” dependency structure (i.e., type of covariance 
matrix). The main advantage of the exponential covariance 
matrix is that it does not require a large historical dataset, 
which may justify the higher performance in two wind farms.  

Topics for future work are: (a) compare the quality of 
temporal trajectories generated with different methods in a 
specific power system management process; (b) explore the 
vine copula framework for modeling spatial-temporal 
uncertainty. 
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Figure 5.  Brier score as a function of lead-time for wind farm 3. 
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