Applying Software Static Analysis to ROS: The
Case Study of the FASTEN European Project

Tiago Neto!2, Rafael Arrais’?, Armando Sousal?, André Santos*?, and
Germano Veiga'+?

! Faculty of Engineering of the University of Porto, Portugal,
2 INESC TEC - INESC Technology and Science, Portugal,
3 Universidade do Minho, Braga, Portugal,
tiago.f.neto@inesctec.pt

Abstract. Modern industry is shifting towards flexible, advanced robotic
systems in order to meet the increasing demand for custom-made prod-
ucts with low manufacturing costs, and to promote a collaborative envi-
ronment for humans and robots. As a consequence of this industrial rev-
olution, some traditional, mechanical- and hardware-based safety mecha-
nisms are discarded in favor of a safer, more dependable robot software.
This work presents a case study of assessing and improving the inter-
nal quality of a European research mobile manipulator, operating in a
real industrial environment, using modern static analysis tools geared
for robotic software. Following an iterative approach, we managed to fix
about 90% of the reported issues, resulting in code that is easier to use
and maintain.

Keywords: Software Static Analysis, Safety, Mobile Manipulator, ROS

1 Introduction

The shifting of paradigm imposed by the ongoing Fourth Industrial Revolution is
introducing a new set of constraints and opportunities for industrial enterprises.
These constraints and opportunities are serving as a catalyst for the introduc-
tion of flexible, adaptable and collaborative human-robot hybrid systems which
can enable even small and medium enterprises to adapt to paradigm changes
in market demand, often characterized by increasing customization [2]. These
systems are materializing as collaborative robotic solutions in industrial appli-
cations and as autonomous mobile robotics in sectors ranging from agriculture
to intralogistics, operating in a dynamic and unstructured environments shared
with humans.

Such advanced robotic systems, operating in cross-sectorial domains of ac-
tivity, sensing and interacting with complex and unstructured environments re-
quire the integration and support of the technologies, models, and functional
components that enable robotic operations. In this context, the safety of hu-
mans operating and interacting with potentially dangerous equipment is a core
scientific and technological challenge. Thus, and to cope with market demand for

2 Neto et al.

product customization or demanding field applications, contemporary robotics
must drastically alter the safety assurance paradigm.

Traditionally, roboticists majorly relied on mechanical-based methodologies,
such as physical barriers, to account for safety behaviour. However, as modern
systems need to be flexible, adaptive and collaborative to adhere to the ongoing
industrial revolution, software-based safety assurance mechanisms are emerging
as a complement to traditional safety procedures. In addition, software-based
safety assurance can play important social and psychological roles to foster the
acceptance of robots in human-populated environments and to promote collab-
oration between humans and robots. This change affects the robotics ecosystem
and calls for techniques to promote best software engineering practice guidelines
for the development of safety-critical software, suitable for the robotics develop-
ment environment.

In a clear contrast with the current necessities, particularly in the cutting
edge of innovation efforts, this meticulous attention to software engineering
guidelines and safety assurance of software-based components is often overlooked
[5] due to the experimental nature of developments, the complexity of the sys-
tems, and the difficulties associated with validating the software-based safety
mechanisms in physical hardware.

Over the last decade, frameworks such as the Robot Operating System (ROS)
[3] have emerged as de facto standards for robotic software development, with
an increasing presence in the industrial environment. ROS provides roboticists
with abstractions and a vast amount of libraries that widely simplifies and speeds
up the development of advanced robotic systems. However, these benefits come
with a price, in particular, the intrinsic difficulty to fully assess and validate
ROS-based software and external libraries in what regards their compliance with
safety protocols or even guidelines for software engineering best practices.

The project_ A (SAFER) project, in which this work is integrated, brings
together the expertise of computer scientists, with a background on software
system design and analysis, and experienced robot engineers, to overcome the
aforementioned shortcomings of ROS-based software development. One of the
project’s main output is the High Assurance ROS (HAROS) tool, a static an-
alyzer of ROS-based software, that can extract valuable information from the
source code without the need for executing it (or even compiling it, in many
cases). The application of this tool during the development process promotes
compliance with software engineering best practices and can be a valuable tool
to allow developers to assess the safety compliance of their software. Further-
more, by promoting the creation of better-structured source code, its readability,
maintainability, and scalability are deeply improved, potentially resulting not
only in increased safety compliance but also in long-term financial gains, as the
produced source code is easier to work with.

In this paper, the application of the HAROS tool to a complete stack of
ROS-based software powering a mobile manipulator operating in an industrial
environment is explored, with the objective of assessing and iteratively improve
the code quality. The remainder of the paper is organized as follows: Section 2

Applying Software Static Analysis Methods to ROS 3

presents a conceptual overview of some of the discussed domains, as well as a
brief state of the art of the subject; Section 3 presents a detailed description
of the industrial utilization of the developed mobile manipulator, its hardware
composition, and its software architecture; Section 4 highlights the principal
scientific contribution of this research work, by presenting the methodology and
results obtained from the application of the HAROS tool to guide ROS-based
software development; and, finally, Section 5 draws some conclusions and points
out some future work roadmap.

2 Related Work

A deciding factor in the adoption of robotic systems in real-world scenarios
is related to the trust levels that humans have in their utilization. In order to
fully promote the mass adoption of robotic systems in manufacturing, complying
with the ongoing industrial revolution, users need to be fully confident in their
operation. In what concerns these systems in a broader sense, trust can be defined
as a combination of reliability, safety, security, privacy, and usability [7].

Static analysis techniques are one of many software engineering techniques
that can elevate the quality of code, and thus also increase trustability in the
developed system. This conceptually simple and time-efficient technique allows,
since an early phase of development, the extraction of precious information from
a program without running or even compiling it. Among the collected informa-
tion, compliance of the code with given specifications, internal quality metrics
and conformity with coding standards are amongst the most valuable metrics
[6]. Static analysis tools evolved to be able to deal with industrial applications,
containing millions of lines of code. In [1], the authors provide a comparative
analysis of three of the most powerful and popular static analysis tools for in-
dustrial purposes, namely PolySpace, Coverity and Klocwork.

In the domain of robotics, ROS, an open-source tool-based framework that
provides developers with a large set of libraries and abstractions to ease the
difficult task of developing robotic software [3]. Since its introduction, ROS is
increasingly being introduced in industrial applications. However, ROS does not
impose strict development rules to ensure its safety. Due to the great diversity
of ROS applications, there is no solution to completely analyse and verify ROS
programs in a formal way and certify their safety to guarantee correct behaviour
of robots.

As an alternative to the lack of intrinsic safety compliance mechanisms in
ROS and the underlying difficulty to validate such compliance, software static
analysis can yield valuable information about the behaviour of each of its sub-
systems and the interactions between them, thus allowing developers to preemp-
tively verify if the source code is according to the requirements and, consequently
and implicitly, improving its safety compliance capabilities [5].

Despite the potential of this technique, applying it to ROS is not so straight-
forward. As previously mentioned, ROS is very customizable, has a large number
of primitives and can be written in several programming languages. This diver-

4 Neto et al.

sity leads to an extremely complex and unfeasible ad hoc solution for an arbitrary
ROS system. Nevertheless, for a more restricted set of ROS subsystems, and a
bounded set of constraints, it could be achievable [5].

An example of a static analyser for ROS-based code is HAROS. HAROS is
being developed having two fundamental ideas in mind: one is the integration
with ROS specific settings, and the other is that it should not be restrictive, thus
allowing the use of a wide range of static analysis techniques. The latter notion
leads to HAROS allowing the integration and use of third-party analysis tools,
as plug-ins [6]. This tool allows the fetching of ROS source code, its analysis
and the compilation of a report in an automatic way. Therefore, it can be easily
used, even by developers without extensive knowledge of ROS or static analysis
techniques.

With HAROS, the user first chooses which packages should be analysed,
and according to the required analysis, HAROS will dynamically load the ade-
quate plug-ins. The properties that are analysed can be of two categories: rules
or metrics. Rules report violations as individual issues, while metrics return a
quantitative value, which can, in turn, result in a set of issues [6]. Once the
configuration and analysis steps are concluded, the results are portrayed to the
user in both a graphical form and by a list of issues, which can be filtered by
their type. In its graphical form, the results are portrayed to the user in both
a graphical form, and by a list of issues, which can be filtered by their type. In
its graphical form, the results visually display the analyzed metrics, and, most
importantly, the system-wide and intra-node architecture and properties.

On [5], the authors focused on interpreting the outputs of applying a static
analysis provided by ROS on a set of popular and publicly available ROS pack-
ages. Collecting this kind of information is important to elucidate about less used
or even misused features and is also useful for developers of static analysis tools
to determinate which features are more relevant to be supported [5]. HAROS
was also used by the authors of [4], to extract and analyze the architecture of a
field robotic system for the agriculture domain at static time. This verification
provides valuable information during the development phase, which was used to
ensure that safety design rules were well implemented in the architecture of the
studied robot, validating and improving the safety of the system [4].

In this work, HAROS is applied on an industrial robotic system not only with
the purpose of validating this tool, but also, and more critically, to attempt to
verify and improve the safety of the system and, indirectly, the maintainability
of the source code, as it will be demonstrated in Section 4.

3 Case Study Description

The case study for the work was the H2020 Flexible and Autonomous Manufac-
turing Systems for Custom-Designed Products (FASTEN) project. This project
aims to develop, demonstrate, validate, and disseminate a modular and inte-
grated framework able to efficiently produce custom-designed products. In order
to achieve that it integrates digital service/products manufacturing processes,

Applying Software Static Analysis Methods to ROS 5

World Model
ranced Plant Ik.)del

Task * status World Mode!

Web
Server Production Manager

Task Manager
Robot Client| [Client] [Client | [Client]

ROS Action Messages

Server| Server [Server] Server]

Driver Skill Move Arm Skill Locate Skill Robotig Gripper Skill

[[[[RoS

Application Application Application Application

4 4 4 [

Controllers Controllers Controllers. Controllers.

v ! ! ¢

Hardware Hardware Hardware Hardware
Abstraction Layer Abstraction Layer Abstraction Layer Abstraction Layer

[

Hardware drivers Non RS

Fig. 1. High-level software architecture of the FASTEN robot system.

decentralized decision-making and data interchange tools. Thus, to achieve a
fully connected and responsive manufacturing system, several technologies are
being developed, as is the case of sophisticated self-learning, self-optimizing,
flexible and collaborative advanced robotic systems. As proof of concept, a
mobile manipulator, capable of assembling and transporting kits of aerospace
parts is being developed. Currently, at the scenario, Embraer Portugal S.A.
(Embraer Portugal S.A.), the industrial end-user of the project, stores the parts
used for wing assembly in a Automated Warehouse System (AWS). The kit-
ting operation, composed by the retrieval of components from the AWS is a
repetitive, non-ergonomic and non-added-value task which can be automatized
to improve performance and working conditions. Furthermore, by relying on an
automatic solution to assemble kits, Embraer Portugal S.A. can further enhance
the traceability of its intralogistics process.

For this, an automated solution is being developed (Fig. 2). It is composed by
an Automated guided vehicle (AGV) with an omnidirectional traction configura-
tion, fitted with a collaborative robotic manipulator. So, this mobile manipula-
tor is capable of traversing the logistic warehouse in any direction and cooperate
with human operators in the assembly of kits, increasing the automation level
and freeing human operators for more added-value tasks.

The software architecture of this system is being developed with three main
objectives in mind, that lead to three structural ideas. The first objective is to
reduce the cost of adapting robot applications by promoting code re-usability.
To achieve this, a skill-based robot programming approach was used. The second
objective is to promote intuitive and flexible robot programming, achieved by
task-level orchestration. The third objective is to support generic interoperability
with manufacturing management systems and industrial equipment. As depicted

6 Neto et al.

Fig.2. FASTEN Mobile manipulator developed for application in an
Embraer Portugal S.A. industrial plant.

in Fig. 1, this robotic system has a distributed architecture. In the server side
implementation, there are two components, the Production Manager (PM) and
the Advanced Plant Model (APM) [8], while on the robot side of the architecture,
there are the skills and the Task Manager (TM). The APM keeps a near real-
time model of the production environment. The PM is responsible to manage
the production resources, control the execution of the production schedules and
it is also responsible for monitoring the ongoing performance of the different
production tasks.

On the robot, one of the most important components is the Task Manager
(TM). The TM has two primary functions: it (i) provides integration between
the robot and other modules on the system, like the APM or the PM, and (ii)
is responsible for the orchestration of tasks, using the skills of the robot. On the
TM there is a ROS Action Client for each skill and on each skill, there is a ROS
Action server. This is due to the fact that skills are implemented using ROS
Actions. The TM uses skills by defining a goal and sending it to the respective
Action server. When the execution is completed it receives, from the skill Action
server, the result and additional information about the outcome of the performed
action.

For the H2020 FASTEN demonstrator, the robotic system has been instanti-
ated with four different skills: (i) Move Arm Skill, (ii) Gripper Skill, (iii) Locate
Skill, and (iv) Drive Skill. The Move Arm Skill is responsible for the movement
of the robotic manipulator. The Gripper Skill is responsible for the actuation of
the gripper. The Locate Skill is responsible for the recognition and localization
of the parts that need to be handled. Finally, the Drive Skill is responsible for
the movement of the robotic platform and ensuring that the movement is colli-
sion free. Each of these skills is organized in three different parts, which are the
Application Layer, the Controllers Layer, and, finally, the Hardware Abstraction
Layer. These three layers allow a goal received from the TM to be transmitted
to the hardware drivers and then executed.

Applying Software Static Analysis Methods to ROS 7

4 Software Quality Analysis

A software quality analysis was conducted on the ROS-based mobile manipu-
lator software presented in the previous section. This software stack comprised
the set of functional components, in the form of ROS source code and launch
files, responsible for powering the FASTEN use case demonstrator. In total, 22
packages were analysed, from which 14 contained C++ source code, while the
remaining contained Python source code or only ROS launch files. The C++
source code amounted to approximately 200,000 lines of code.

To conduct this analysis, the HAROS tool was used. After an initial overview
analysis of the complete system, its source code issues were listed and grouped
by category for each ROS package. The remainder of the analysis was iterative.
This means that the source code issues and model inconsistencies discovered
were addressed in several iterations. After each individual iteration, the obtained
results were re-evaluated with the HAROS tool and the strategy for the next
iteration was drawn. This iterative approach was elected due to the intrinsic
difficulty to address all software issues in a single run, allowing developers to
assess, in each iteration, if the proposed changes do not impose constraints on
the integrity of the system. In addition, addressing all software problems in a
single passage would most likely originate novel issues that would be hard to
trace the origin of. Moreover, an iterative methodology was employed in order
to promote the continuous integration paradigm.

The conducted analysis can be divided into two distinct phases. The Ar-
chitecture Analysis, presented in subsection 4.1, allows developers to have the
full-scale system-wide and intra-node overview of the system and assess if the
developed architecture is according to the specifications. The Static Code Analy-
sis, presented in subsection 4.2 refers to the reasoning on the source code of each
software application that composes the system. This analysis allows developers
to catch safety-critical issues, and assess if the code complies with normative
standards and guidelines, thus empowering not only the safety of the whole
robotic system but also the underlying code maintainability and scalability.

4.1 Architectural Analysis

The architecture analysis is the differentiator feature that separates the HAROS
tool from the remaining static analysis tools. For this feature, it is necessary
to inform HAROS which ROS launch files should be analysed. Then, with that
information, HAROS extracts the ROS nodes that are being launched by that
file and the arguments that are being passed during the launch. However, in its
current version, HAROS is not capable of finding a node that is being launched
conditionally.

As the FASTEN mobile manipulator development is adopting a methodology
where the ROS launch file of each sub-system is conditional it was necessary to
provide hints via a YAML configuration file required by HAROS. These hints
provide HAROS with additional information about which ROS topics are sub-
scribed or published by each ROS node that composes the system.

8 Neto et al.

n.ask,manno:,pmme
/!askimaulmtimap

©r
/mm,a@u,seme,
fCMnﬂ!Ou!pm

ravm,a ontroller
v
ICMoffelRNode
/:ask,man cart beep
,Rmmewcance, mynamm,mmuucaumu,mcanzauun,n ode
/Rubunq SkiliGoal rasy mager
ICMuIInpm o
,mm..q_g,..._sewe,
tvubwq‘gnppevisml\iseUanpperSKH Eeedback
/Ramqski.mesu..
A uhuquKWSvalus

Fig. 3. Architectural analysis of the robotic system as displayed by the HAROS web-
based visualization tool.

The visualization of the output of this architectural analysis in the HAROS
user interface is depicted in Fig. 3. This visualization component provides a good
insight into what is to be expected from the application ROS nodes. Nevertheless,
since this extraction could not be automated and had to be provided by hints, the
model extraction tool validity and correctness is questionable for the purposes
of this case study.

4.2 Static Code Analysis

Initial Analysis This initial analysis contains the raw data collected using
the HAROS tool. The issues were divided into 3 categories: Formatting, Code
Standards, and Metrics. The first category, Formatting, encloses issues related
to indention, whitespaces and the placement of braces. The second, the Code
Standards, encloses issues related to the compliance with code standards, i.e.
adhering to a specific style of programming or restricting oneself to a subset of the
programming language. Finally, the Metrics, encloses issues related to internal
quality code metrics, such as cyclomatic complexity or the maintainability index.

Since it was impossible and impractical to solve every issue with one run, the
intervention process, guided by the issues reported by HAROS, was divided into
several iterative steps. Furthermore, it was necessary to determine which issues
would be tackled first. In order to elect the first issues to be tackled, a model,
described by Equation 1 is proposed.

Score = K7 - Num+ Ky - S+ K3 - E; (1)

This model attributes a score to each issue within a ROS package. The score
is a weighted sum of the number of issues, Num, where S represents the severity
of the issue and F represents and the effort to solve it. For this analysis, S and
E were classified using a rank ranging from 1 (not severe, easiest to solve) to
3 (severe, hardest to solve). K; and K3 were given the coefficient 1 while to
K5, which represented the severity, was given the coefficient 10. The biggest

Applying Software Static Analysis Methods to ROS 9

coefficient weight was given to the severity so it could have a more pronounced
impact on the total score of an issue.

The initial analysis of the source code resulted in the report of a total of
28,040 issues, as can be seen in detail on Table 1.

First Iteration For this first iteration, it was assumed that the code did not
follow any code standard format since the code was developed by various devel-
opment teams, and it also simplified the code format standard uniformization
to be conducted. Analysing the results of the initial analysis, it is pretty clear
that most of the issues are of the formatting type, as can be seen on Table 1,
which means that they should be the first ones to be tackled. Since the code
is vast it would be impractical and extremely time-consuming to correct all the
formatting issues by hand. So, in order to tackle this kind of issues an automatic
approach was taken. The chosen tool was the Clang-Format along with Visual
Studio Code.

The Clang-Format was used to format the code accordingly to the Google
C++ style guide. The decision to chose Google C++ style instead of ROS C++
Style was based on the fact that the portability of the majority of the source
code to this style guide would be more straightforward. After the use of this
tool, some additional adjustments had to be done by hand. This was necessary
to ensure that the code still compiled. The adjustment done by hand were mostly
related with include orders since the automatic tool rearranged the header files
in such a way that compilation was not possible.

This first iteration allowed to eliminate 14 types of issues, from 67 in the
initial analysis to 53 at the end of the first iteration. This was mostly because
of the reduction of the Formatting issues from 24 to 10. On the total number of
issues, it was registered a decrease of 22,686 issues. Even though the Formatting
and Code Standard issues decreased, the Metric issues increased. The cause of
this was the changes made to respect the line length that triggered an increase
in the use of vertical lines. This increase originated a spike in the number of
functions to have more than 40 lines of code, which, in its turn, triggered more
Metric issues.

Second Iteration For the second iteration, one of the issues with a higher
score was the line length. Since the automatic formatting did not solve this,
the source code was manually analysed to understand the root of this issue.
There were two explanations: (i) functions with long names could not be solved,
and (ii) comments with section markers could not be automatically processed.
Regardless, this could be solved by reducing the number of repeated characters
without removing the code separation.

Another issue with a high count of occurrences was the Non-const Reference
Parameters. This issue was caused by variables being passed by reference, but
not using the keyword const as recommended by the Google C++ style guide.
This issue has two possible solutions. The first is to use the keyword const if the
variable does not need to be changed inside the function and the other, which

10 Neto et al.

requires more effort, is to pass by a pointer and to change the code according to
this demand. However, since the second solution was the one that needed to be
applied more often, it was opted to leave the code as is, to avoid cross-package
errors that could be hard to track. Also, this type of issue did not represent a
safety threat.

The issues of the type Integer types were also among the issues with a higher
count. These issues were mostly triggered by the use of the type size_t, but also
by the use of the type short or long. The usage of the type size_t is allowed
by Google C++ style guide when it is appropriate, which was the case for the
totality of occurrences, and for that reason, it was not changed. When types
such as short were being used, they were replaced by size specific types, such as
int16_t.

In this iteration, issues with whitespaces, copyright, and contructors were
tackled. The copyright issues were solved by adding a copyright statement to
each file, while the constructors issues were addressed by making constructors
with single argument explicit. Furthermore, issues related to casting were also
solved during this iteration. However, at the end of the iteration, HAROS still
identified 2 casting issues. Yet, while manually inspecting the code, it was found
that these were not casting issues, but were, in fact, false positives.

Finally, in this iteration, the issues with the floating point were solved. These
issues were caused by float point expressions that were expecting exact equality,
which is not compliant with the MISRA C++ guidelines, deeming it unsafe. The
solution for these issues was to rewrite the expressions in a way that did not test
equality directly and that was compliant with the guidelines.

Overall, 2,498 issues were solved in this iteration, which reduced the total
of issues to solve to 2,859 at the end of this iteration. The formatting issues
decreased from 10 to 5 and the code standard issues from 34 to 32. However,
the average severity and average effort to solve increased from 1.85 to 1.95 and
from 1.68 to 1.83, respectively. This is justified by the fixing of more issues with
lower severity and lower effort to solve. Nevertheless, this was also a successful
iteration, since it led to a reduction of around 50% of issues reported in the
previous iteration.

Third Iteration This third and final iteration focused on solving issues related
to cyclomatic complexity, functions that were not thread safe and also analysed
other issues to understand their causes.

Among the metrics, the cyclomatic complexity is the easiest to change and
improve. Despite that, it does not mean that it is a simple issue to fix. Some func-
tions with high cyclomatic complexity are impossible to do in a less complex way,
as their purpose is to verify a set of conditions that can not be easily changed.
Others are simply just too complex, and it is therefore very risky to change them
without incurring in drastic changes to the behaviour of the software, as this code
belongs to robotic software that is responsible for the implementation of very
specialized and complex features, such as computer vision algorithms. Areas like
this require some specialized expertise to alter those algorithms, which compli-

Applying Software Static Analysis Methods to ROS 11

Table 1. Static code analysis results of the initial analysis and subsequent iterations.

Types Average Average
of Issues Issues Severity Effort to Solve Total Score
Formatting 24 24511
..:.1 Code Standard 34 3175
Initial Metric 3 356 1.61 1.47 34414
Total 66 28043
Formatting 10 2327
. Code Standard 34 2288
First Metric 3 478 1.85 1.68 10545
Total 52 5357
Formatting 5 253
Code Standard 32 2126
Second Metric 3 480 1.95 1.83 7267
Total 45 2859
Formatting 5 253
. Code Standard 30 1883
Third Metric 3 467 1.93 1.90 6485
Total 43 2603

cate the task of changing these algorithms. However, for some of these functions,
it is possible to understand their purpose without deep knowledge of the area.
For some of those, it is possible to achieve the same result using less complex
ways. Thus, during this iteration, it was possible to reduce the cyclomatic com-
plexity of functions with a cyclomatic complexity score as high as 17. Above that
value, it was opted not to change them due to the high probability to introduce
errors. For these more complex functions, it is recommended intervention from
a development team with higher expertise in the domain.

In spite of this last iteration not being able to solve as many issues as the
previous ones, most of the issues solved on this iteration were harder to solve.
Most of the issues solved on this iteration were also more severe, which reflected
on the decrease in the average severity. On this iteration, 256 issues were solved,
which led to a decrease in the total number of issues from 2,859 to 2,603 at
the end of these iterations (around 9%). In this iteration, 2 Code Standard
issues were also eliminated, reducing the total type of issues to 43 and the Code
Standard issues to 30.

5 Conclusion

Overall, the source code analysis allowed to solve 25,440 issues, which represents
a reduction of 90% of issues from the initial analysis. Some of the fixed issues
were deemed to be dangerous and could potentially compromise the run-time
functioning of the mobile manipulator. As such, the alterations performed by
this work undoubtedly allowed the improvement of the safety and maintainabil-
ity of the source code, and, correspondingly, the FASTEN mobile manipulator
operation in an industrial environment.

12 Neto et al.

With this analysis, it was also clear that the introduced improvements could
benefit the development process in the long run. Thus, the methodology de-
scribed in the paper is being applied during nominal development procedures.
As such, the FASTEN mobile manipulator development teams are actively us-
ing the proposed methodology and applying the HAROS tool in a continuous
integration fashion, as to check for potential issues prior to any source code
commit.

In the future, this methodology will be applied to other use cases, as an
attempt to replicate the improvements in the domains of code maintainability
and safety to other robotic systems.

Acknowledgments

This work is financed by the ERDF FEuropean Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisa-
tion - COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT - Fundacgao para a Ciéncia e a Tecnologia within
project POCI-01-0145-FEDER-029583. The research leading to these results has
also received funding from the European Unions Horizon 2020 - The EU Frame-
work Programme for Research and Innovation 2014-2020, under grant agreement
No. 777096.

References

1. P. Emanuelsson and U. Nilsson. A comparative study of industrial static analysis
tools. FElectronic notes in theoretical computer science, 217:5-21, 2008.

2. H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann. Industry 4.0. Business
& information systems engineering, 6(4):239-242, 2014.

3. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A.Y. Ng. Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan, 2009.

4. A. Santos, A. Cunha, and N. Macedo. Static-time extraction and analysis of the
ros computation graph. In 2019 Third IEEE International Conference on Robotic
Computing (IRC), pages 62—69. IEEE, 2019.

5. A. Santos, A. Cunha, N. Macedo, R. Arrais, and F. N. dos Santos. Mining the
usage patterns of ros primitives. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3855-3860, Sep. 2017.

6. A. Santos, A. Cunha, N. Macedo, and C. Loureno. A framework for quality assess-
ment of ros repositories. In 2016 IEEE/RS.J International Conference on Intelligent
Robots and Systems (IROS), pages 4491-4496, Oct 2016.

7. L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang. Cyber-Physical Systems: A New
Frontier. 2008 IEEFE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (sutc 2008), pages 1-9, 2008.

8. C. Toscano, R. Arrais, and G. Veiga. Enhancement of industrial logistic systems
with semantic 3d representations for mobile manipulators. In A. Ollero, A. Sanfeliu,
L. Montano, N. Lau, and C. Cardeira, editors, ROBOT 2017: Third Iberian Robotics
Conference, pages 617-628, Cham, 2018. Springer International Publishing.

