
Mach Learn (2017) 106:197–241
DOI 10.1007/s10994-016-5595-3

On the use of stochastic local search techniques to revise
first-order logic theories from examples

Aline Paes1 · Gerson Zaverucha2 · Vítor Santos Costa3

Received: 19 May 2012 / Accepted: 18 October 2016 / Published online: 15 December 2016
© The Author(s) 2016

Abstract Theory Revision from Examples is the process of repairing incorrect theories
and/or improving incomplete theories from a set of examples. This process usually results
in more accurate and comprehensible theories than purely inductive learning. However, so
far, progress on the use of theory revision techniques has been limited by the large search
space they yield. In this article, we argue that it is possible to reduce the search space of a
theory revision system by introducing stochastic local search. More precisely, we introduce
a number of stochastic local search components at the key steps of the revision process, and
implement them on a state-of-the-art revision system that makes use of the most specific
clause to constrain the search space. We show that with the use of these SLS techniques it is
possible for the revision system to be executed in a feasible time, while still improving the
initial theory and in a number of cases even reaching better accuracies than the deterministic
revision process. Moreover, in some cases the revision process can be faster and still achieve
better accuracies than an ILP system learning from an empty initial hypothesis or assuming
an initial theory to be correct.

Keywords Inductive logic programming · Theory revision from examples · Stochastic local
search

Editor: Kristian Kersting.

B Aline Paes
alinepaes@ic.uff.br

Gerson Zaverucha
gerson@cos.ufrj.br

Vítor Santos Costa
vsc@dcc.fc.up.pt

1 Department of Computer Science, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil

2 Department of Systems Engineering and Computer Science - COPPE, Universidade Federal do Rio
de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil

3 CRACS and DCC/FCUP, Universidade do Porto, Porto, Portugal

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5595-3&domain=pdf


198 Mach Learn (2017) 106:197–241

1 Introduction

Inductive Logic Programming is the process of automatically learning First-Order Logic The-
ories from a set of examples and a fixed body of prior knowledge, the background knowledge.
A large number of algorithms and systems have been developed towards this goal. Popular
examples include FOIL (Quinlan 1990), Claudien (De Raedt and Bruynooghe 1993), Pro-
gol (Muggleton 1995), Tilde (Blockeel and De Raedt 1998), Aleph (Srinivasan 2001) and
ProGolem (Muggleton et al. 2010b), among many others. Most such systems start from an
empty initial hypothesis. Thus, we say that they learn from scratch. However, it may be the
case that an incomplete or only partially correct theory exists. Such a theory may have been
elicited by a domain expert who relies on incorrect assumptions or who only has partial, but
still useful, understanding of the domain. Or maybe new examples, that cannot be explained
by the current theory, have become available. Or we may simply want to improve a theory
learned from scratch. In all such cases, since the initial theory probably contains important
information, one would like to use it as a starting point for the learning process, modify
it and ultimately improve it. Ideally, after the modifications the theories should be more
accurate.

These considerations have motivated the development of several theory refinement sys-
tems (Shapiro 1981; Buntine 1991; Wogulis and Pazzani 1993; Towell and Shavlik 1994;
Adé et al. 1994; Wrobel 1994; Richards and Mooney 1995; Wrobel 1996; Ramachandran
and Mooney 1998; Garcez and Zaverucha 1999; Esposito et al. 2000). Such systems assume
that the initial theory is approximately correct. If so, then only some points (clauses and/or
literals) in the theory prevent it from correctly modeling the dataset. Therefore, it should be
more effective to search for such points in the theory and to revise them than to either discard
the initial theory or to propose modifications to all its clauses.

Usually, a theory revision system performs search in three main steps:

1. They search for clauses and literals in the theory responsible for the misclassification of
some example.

2. They yield possible modifications to such points through applying at each point a number
of matching revision operators. Commonly used revision operators are deletion from and
addition of literals to the body of existing clauses and deletion and addition of rules.

3. They score the proposed revisions and select the best.

The size of the search space depends on the number of misclassified examples, on the
number of clauses and literals in the theory responsible for misclassified examples and also
on the size of the knowledge base, which is used to yield and score possible modifications.
Moreover, theory revision systems tackle whole theories instead of performing stepwise
search for individual clauses as most ILP systems do. Search over whole theories is known
to be a hard problem (Bratko 1999). Indeed, traditional theory revision systems must search
over extremely large spaces, and can become rather inefficient. On the other hand, they
usually produce more accurate and comprehensible theories than purely inductive learning.
As Dietterich et al. (2008) argued, current revision systems explore large search spaces,
however, the fast development of rich knowledge bases in areas such as biology (Muggleton
2005) suggests that there may be a need for theory revision.

A first step to reduce the cost of the revision process is to replace purely top-down literal
generation of the revision system FORTE (Richards and Mooney 1995) to use the more
efficient hybrid bottom-up and top-down approach to refine clauses (Duboc et al. 2009) by
a Mode Directed Inverse Entailment (MDIE) approach (Muggleton 1995). However, when

123



Mach Learn (2017) 106:197–241 199

facing large initial theories and background knowledge this is not enough tomake the revision
process efficient. Ultimately, revision systems must search over large spaces.

The last years have shown that stochastic local methods, originally designed to solve
difficult combinatorial propositional problems (Selman et al. 1992, 1996), can also perform
well in a variety of applications (Chisholm and Tadepalli 2002; Rückert and Kramer 2003,
2004). This led to interest in applying such techniques on data-mining applications, and
more specifically on multi-relational data-mining. Initial work on the area has indeed shown
very substantial improvements in efficiency, with little or no cost in accuracy, when learning
theories from scratch in ILP systems (Srinivasan 2000; Železný et al. 2002, 2006; Paes et al.
2006; Muggleton and Tamaddoni-Nezhad 2008).

Initial experiments with the theory revision system FORTE showed good promise from
introducing stochastic search when searching for the literals to be added/deleted to/from a
clause and when searching the revision to be implemented (Paes et al. 2007). This paper
enhances that work by including a stochastic search at each step of the revision process. The
system presented in this paper is called YAVFORTE and, besides the stochastic algorithms, it
makes use of the most specific clause as in Duboc et al. (2009), and it includes improvements
in the top-level algorithm and in both the deletion and the addition of antecedents processes
within the revision operators. The experimental results presented in this paper show that the
running time of the revision process is reduced by the use of SLS techniques, even being
competitivewith a standard ILP system,while the accuracies are higher than the ones obtained
by the standard inductive system. This last benefit is also observed in previouswork (Richards
and Mooney 1995; Duboc et al. 2009).

The outline of the paper is as follows. Firstly, we review main Stochastic Local Search
techniques in Sect. 2. Next, we review theory revision and present the main modifications
implemented on the FORTE system that originates YAVFORTE in Sect. 3. The algorithms
developed to revise FOL theories from examples through SLS are devised in Sect. 4. Exper-
imental results are presented in Sect. 5, followed by conclusions and future work in Sect. 6.

2 Stochastic local search

In order to get good hypotheseswhile still keeping the search feasible, onemay take advantage
of local search algorithms, which start by generating a candidate hypothesis at some location
in the search space and afterward move from the present location to a neighboring location
in the search space. If one sees the search space as a graph, the neighbor of a node N in
the graph space is any other node M that is directly connected to N . Each location has a
relatively small numbers of neighbors and each move is determined by a decision based on
local knowledge (Hoos and Stützle 2005). In this way, they abandon completeness to gain
efficiency.

To further improve efficiency and also escape from local optima, one may use randomized
choices when generating or selecting candidates in the search space of a problem, through
Stochastic Local Search Algorithms (SLS). One major motivation and successful application
of SLS has been in satisfiability checking of propositional formulae, namely through the
well-known GSAT (Selman et al. 1992) and WalkSAT (Selman et al. 1996) algorithms. A
large number of tasks in areas such as planning, scheduling and constraint solving can be
encoded as a satisfiability problem, and empirical observations show that SLS often can
substantially improve their efficiency (Chisholm and Tadepalli 2002; Rückert and Kramer
2003).

123



200 Mach Learn (2017) 106:197–241

2.1 Stochastic local search methods

The key ideas of the search process performed by a Stochastic Local Search Algorithm are
as follows.

1. Initialization An initial candidate solution is selected, usually by generating a candidate
at random;

2. Move Iteratively, the process (at random) decides to move from the present candidate
solution to a local neighboring candidate solution, usually (but not always) considering
a function to evaluate the neighbors.

3. Stopping The process is finished when it attends a termination criteria, which could be
a maximum number of iterations or a solution has been found.

There are several different strategies to follow when implementing a Stochastic Local
Search technique. Next we briefly describe some of the families of SLS strategies, which are
used in this work.

Stochastic Hill Climbing (Russell and Norvig 2010)—this strategy executes in three steps:

1. Initialization start from a randomly selected point in the search space.
2. Move choose with uniform probability distribution a neighbor of the current candidate,

requiring the value of the evaluation function to improve.
3. Stopping criteria finish when none of the neighbors improves the evaluation function

(stopping criteria).

Randomized Iterative Improvement (RII) (Hoos and Stützle 2005)—in this strategy, the
search alternates with a fixed frequency between selecting an improving neighbor and select-
ing a neighbor at random.ARandomized Iterative Improvement algorithm does not terminate
as soon as a local optimum is encountered. Instead, it may stop the execution when it reaches
a number of iterations or when a number of search steps have been performedwithout making
progress.

The most famous algorithm in this family is arguably WalkSAT (Selman et al. 1996).
WalkSAT was developed to check satisfiability of propositional formulae. WalkSAT decides
at each stepwith a fixed probability npwhether to do a standard greedy step or to flip a variable
selected uniformly at random from the set of all variables occurring in unsatisfied clauses.
The probability np is called walk probability, noise setting or noise level. WalkSAT starts
from a randomly generated assignment of the variables in an initial formula and considers a
maximum number of tries and a maximum number of steps in order to find the solution.

Following the success ofGSAT/WalkSATbased algorithms, a large number of randomized
strategies were derived from them to solve tasks in areas such as planning, scheduling,
constraint solving and rule learning (Chisholm and Tadepalli 2002; Rückert and Kramer
2003).

Probabilistic Iterative Improvement (PII) —in each step of the search process a PII algorithm
selects a neighbor according to a given function p(g, s), which determines a probability
distribution over neighboring candidate solutions of s based on their evaluation function
value g. A bad neighbor candidate can be accepted depending on the deterioration in the
evaluation function value. In other words, the worse a step is, the less likely it is to be
performed.

Stochastic local search algorithms have been successfully applied to machine learning
algorithms, both in propositional learning and in the relational setting (Paes et al. 2006;

123



Mach Learn (2017) 106:197–241 201

Železný et al. 2002, 2006; Chisholm and Tadepalli 2002; Rückert and Kramer 2003;
Tamaddoni-Nezhad and Muggleton 2000; Muggleton and Tamaddoni-Nezhad 2008; Ser-
rurier and Prade 2008; Joshi et al. 2008; Specia et al. 2009).

3 Theory revision from examples and YAVFORTE

ILP algorithms learn first-order clauses given a set of examples and a static and assumed as
correct background knowledge (BK). On the other hand, theory revision from examples (Wro-
bel 1996) has the goal to improve a previously obtained knowledge. To do so, theory revision
assumes the BK may also contain incorrect rules, which should be modified to better reflect
the set of examples. Revision in certain clauses of the BK can be avoided by letting a part
of the preliminary knowledge defined as correct and invariant. Thus, in theory revision the
BK is divided into two parts: a set of rules assumed as correct and therefore not modifiable,
called here as Fundamental Domain Theory (FDT) (Richards and Mooney 1995); and the
remaining rules which may be incorrect and are subject to modifications, called the Initial
Theory. The goal of a theory revision process is to identify points in the initial theory which
prevent it from correctly classifying positive or negative examples, and proposemodifications
to such points, so that the revised theory together with the FDT is as close to a correct theory
as possible. The task of theory revision from examples is defined as follows (Wrobel 1996).

Definition 1 Given:

– A background knowledge BK written as definite clauses, divided into

– A modifiable set of clauses which might be incorrect (H ′) and
– An invariant and assumed as correct set of clauses (FDT ) and

– A set of positive E+ and negative examples E− composing the set of examples E , written
as ground definite clauses

Find:

– A revised theory H consisting of definite first-order clauses such that

– itemizeFDT ∧ H � E+ (H is complete) and FDT ∧ H � E− (H is consistent),
i.e., H is correct.

– H obeys a minimality criteria such that it is as syntactically and semantically close
as possible to the original BK .

Usually, it is not possible to find a correct theory, i.e., a complete and consistent theory.
Thus, the correctness criteria is relaxed to find a theory as close as possible to be correct.

The task of an ILP system, on the other hand, is defined as

Definition 2 Given:

– An invariant and assumed as correct background knowledge BK written as definite
clauses

– A set of positive E+ and negative examples E− composing the set of examples E , written
as ground definite clauses

Find:

– A set of clauses H consisting of definite first-order clauses such that BK ∧ H � E+ (H
is complete) and BK ∧ H � E− (H is consistent), i.e., H is correct .

123



202 Mach Learn (2017) 106:197–241

Note that, while in the theory revision task we have an initial hypothesis H ′ which is
normally nonempty and will be modified during the revision process, in ILP there is no such
an initial hypothesis, as the BK is fixed. Thus, we say in this paper that ILP systems learn
from scratch, since the initial hypothesis is empty.

Theory Revision is particularly powerful and challenging because it must deal with the
issues arising from revising multiple clauses (theory) and even multiple predicates (multiple
target concepts). Additionally, as the initial theory is a good starting point and the revision
process takes advantage of it, the theories returned by revision systems are usually more
accurate than theories learned from standard ILP systems using the same dataset. Several
papers such as Shapiro (1981), Wogulis and Pazzani (1993), Richards and Mooney (1995),
Buntine (1991), Towell and Shavlik (1994), Adé et al. (1994), Wrobel (1996), Ramachan-
dran and Mooney (1998), Garcez and Zaverucha (1999), Esposito et al. (2000) show that
propositional and first-order theory revision systems are capable of learning more compact
and accurate theories than purely inductive systems even using less examples.

RevisionPoints Revision systemswork by identifying and trying to solvemisclassified exam-
ples. A positive example not covered by the theory (a false negative) indicates the theory is
too specific and, therefore, needs to be generalized. In the opposite case, a negative example
covered by the theory (a false positive) indicates it is too general and therefore it needs to be
specialized.

Often, many clauses can be involved in proving negative examples; moreover, many
clauses could be generalized so that the misclassified positive examples would be covered.
In theory revision, all such clauses and literals are called revision points, defined as follows.

Definition 3 Let H ′ be a theory that can be modified and FDT a set of clauses assumed as
correct. Let P be a path in a SLD tree (Kowalski and Kuehner 1971; Lloyd 1987), whose root
is an example e ∈ E . A node n ∈ P is an objective clause and an edge edge(n1, n2) ∈ P
is composed of a θ -substitution and a clause ∈ H ′ ⋃ FDT , whose head is the first literal in
n1. P is a refutation path if its leaf is an empty clause � or a failure path otherwise.

Definition 4 Let P+ be a refutation path in a SLD tree whose root is a negative exam-
ple e− ∈ E−. Let the clauses from each edge in P+ be {C1,C2., . . . ,Cn}. Each clause
C1,C2., . . . ,Cn ∩ H ′ is a specialization revision point.

Definition 5 Let P− be a failure path in a SLD treewhose root is a positive example e+ ∈ E+
and whose leaf has the literal pred(T1, . . . , Tm) in the objective clause. Then,

– the variabilized version of pred(T1, . . . , Tm) is a generalization revision point;
– any literal appearing in the path before pred(T1, . . . , Tm) that has bounded at least one

variable in {(T1, . . . , Tm} is a generalization revision point;
– the clauses that have the literals above in their body are generalization revision points.

To sum up, specialization revision points are clauses in the theory used in successful
proof paths of negative examples. Arguably, modifications on such clauses will make such
misclassified negative examples to become unprovable. On the other hand, generalization
revision points are literals and clauses in the theory responsible for or contributing to the
failure of positive examples. Arguably, by changing such literals and/or clauses, misclassified
positive examples can become provable.

Revision Operators In order to modify the theory in the selected revision points, theory revi-
sion systems rely on revision operators that proposemodifications at each revision point. The

123



Mach Learn (2017) 106:197–241 203

type of the revision point determines the revision operator that will be applied to try to make
the theory consistent with the dataset. One may consider two types of revision operators:
generalization operators, applied on generalization revision points and specialization opera-
tors, applied on specialization revision points (Wrobel 1996). Any operator used in first-order
machine learning can be used in a theory revision system. Specialization operators decrease
coverage and can be used to remove false positives:

• Delete-rule this commonly used operator removes a clause that was used to prove a
negative example.

• Add-antecedents this operator adds antecedents to an inconsistent clause, that has been
previously marked as a revision point.

Generalizationoperators address false negatives. Twocommonlyusedgeneralizationoper-
ators are:

• Delete-antecedents this operator removes failed antecedents marked as revision points
from clauses that could be used to prove positive examples.

• Add-rule this operator generates newclauses, either from failed existing clauses (deleting
antecedents followed by addition of antecedents) or from scratch (starting only from the
generalized head of the example).

In addition, FORTE (Richards and Mooney 1995) has two generalization revision opera-
tors based on inverse resolution (Muggleton 1995), namely:

• Identification this operator performs an inverse resolution step in two rules of the theory,
to provide an additional rule for a faulty predicate.

• Absorption different from the previous operator, this one does not create a new clause for
a faulty predicate, but instead tries to find an existing clause whose antecedents subsume
the failing literal and which has alternate clauses to allow the failing positive instances
to be proven.

These six operators are the ones used in this work. For more revision operators, we refer
the reader to Wrobel (1996).

3.1 YAVFORTE

Although theory revision systems usually induce more accurate theories than standard ILP
techniques, the revision process is expensive, mainly because theory revision refines whole
theories instead of individual clauses (Wrobel 1996; Bratko 1999).

Mode Directed Inverse Entailment (MDIE) (Muggleton 1995) is often used to bound the
search space of new literals. We recently showed that the runtime of FORTE (Richards and
Mooney 1995)—a standard revision system—can be greatly reduced by usingMDIE (Duboc
et al. 2009). The algorithm for specializing clauses from the literals of the Bottom Clause
during the revision process is named FORTE_MBC.

YAVFORTE (Yet Another Version of FORTE), improves FORTE_MBC further. Next, we
describe the top-level algorithm.

YAVFORTE Top Level Algorithm YAVFORTE is built upon the FORTE Algorithm. As the
original, it performs a hill climbing search through a space of specialization andgeneralization
operators. However, YAVFORTE always starts from the less costly operator, and immediately
stops when finding an operator that achieves the maximum score. The score is the output of
an evaluation function computed over the proposed revision and the examples. For instance,

123



204 Mach Learn (2017) 106:197–241

the score of a proposed revision could be the number of incorrect examples that have become
correctly proven after proposing the revision, minus the number of correct examples that
have become proven incorrectly. Moreover, YAVFORTE, allows the user to specify which
revision operators are to be employed. One can restrict oneself to only apply specialization
or only generalization or to a subset of both generalization and specialization operators.

Algorithm 1 presents the revision process of YAVFORTE. Within a single iteration, the
algorithm finds the revision points and sorts them according to their potential. The potential
of a revision point is defined as the number of examples that has pointed out the necessity
of revising it. Next, for each revision point, matching revision operators are proposed, until
a maximum score or a maximum potential is reached by one revision operator. The revision
with the best score is chosen and implemented in case the overall score is indeed improved.
The process continues until no revision is able to improve the current score.

Algorithm 1 YAVFORTE Top-Level Algorithm
Input: An initial theory T , background knowledge FDT , a set of examples E , list of applicable operators

Rev
Output: A revised theory T ′

1: if Rev = ∅ then
2: Rev ← all revision operators
3: GenRev ← ordered list of generalization operators in Rev
4: SpecRev ← ordered list of specialization operators in Rev
5: repeat
6: generate revision points;
7: sort revision points by potential (high to low);
8: for each revision point RP do
9: if RP is a specialization revision point then
10: for each revision operator RO ∈ SpecRev do
11: Generate all applications of RO in RP
12: compute scoreRO
13: else
14: for each revision operator RO ∈ GenRev do
15: Generate all applications of RO in RP
16: compute scoreRO
17: update best revision found;
18: until scoreRO = maximum score or RO achieved maximum potential of RP
19: if best revision improves the theory then
20: implement best revision;
21: until no revision improves the theory;

3.2 Finding revision points

The algorithms for finding revision points in the deterministic component of YAVFORTE are
identical to the ones devised in FORTE system. They identify revision points by annotating
proofs of incorrectly provable negative instances or by annotating attempted proofs of incor-
rectly unprovable positive instances. When the goal is to find specialization revision points,
all the provable instances are considered, since they are the ones whose provability may be
affected by a specialization in the theory: any of these instances might become unprovable
because of the specialization. These instances are either true positive-correctly classified
positive instances—or false positives-misclassified negative instances. The algorithm for
collecting specialization revision points is shown in Algorithm 2.

123



Mach Learn (2017) 106:197–241 205

Algorithm 2 FORTE Algorithm for collecting specialization revision points

Input: The current theory H ′; the fixed preliminary knowledge FDT ; the set of provable intances EP =
T P ∪ FP

Output: RPS, a set of clauses marked as specialization revision points, each one annotated with T PC , true
positive instances relative to clause C , FPC , false positive instances relative to clause C , and PC the
potential of the revision point

1: for each provable instance e ∈ EP do
2: Ce ← clauses participating in the proof of the instance e using H ′ and FDT
3: for each clause C ∈ Ce do
4: if e ∈ FP then
5: FPC ← FPC ∪ e;
6: PC ← PC + 1;
7: else
8: T PC ← T PC ∪ e;
9: RPS ← RPS ∪ Ce;
10: for each clause C ∈ RPS do
11: if PC = 0 then
12: delete C from RPS;

First, the algorithm annotates each clause participating in the successful proof of the
instances. The positive instances are annotated separately from the negative instances in the
clauses. In case the clause has no annotation of false positive instances, it is discarded. The
remaining clauses compose the set of specialization revision points. The true positive and
false positive instances relative to the clauses are used to compute the potential of the revision
points and later to calculate the score of the revision proposed to those points.

In case there are misclassified positive instances, the goal is to find generalization revision
points. In this case, all the unprovable instances are considered, since they are the ones whose
provability may be affected by a generalization in the theory: any of these instances might
become provable because of the generalization. These instances are either true negatives-
correctly classified negative instances—or false negatives-misclassified positive instances.
In order to identify generalization revision points, it is necessary to make annotations from
failed proofs of positive instances. Thus, each time a backtrack occurs, the failed literal is
noted and marked as a failure point. Next, the literals binding values to variables in failure
points are collected recursively and also marked as failure points. Finally, the clauses with
the failure literals are also marked as failure points. This process is also followed to identify
which failure points are responsible for not proving negative instances, since they might
become provable after a revision in such points. The list of T N and FN instances are used to
calculate the potential of the revision point, and, after proposing some revision, to calculate
the score of the revision on such a point. The procedure is exhibited as Algorithm 3.

3.3 YAVFORTE revision operators

As stated before, FORTE has two specialization operators, namely, delete-rule and add-
antecedents. Delete-rule works by simply proposing the removal of a clause participating
on the proof of negative examples. This operator is not modified regarding the original.
Add-antecedents is modified to consider the Bottom Clause to bound the space of new liter-
als (Duboc et al. 2009). We change the implementation of FORTE_MBC so that each term
in the clause under specialization matches a type and each literal matches a mode definition,
before constructing the Bottom clause. In this way, the terms of the current clause are con-
sidered when saturating a positive instance. Following FORTE, YAVFORTE is able to add

123



206 Mach Learn (2017) 106:197–241

Algorithm 3 FORTE Algorithm for collecting generalization revision points

Input: The current theory H ′; the fixed preliminary knowledge FDT ; the set of unprovable instances EU =
T N ∪ FN

Output: RPG, a set of clauses marked as generalization revision points, each one annotated with T NC , true
negative instances relative to clause C , FNC , false negative instances relative to clause C , and PC the
potential of the revision point

1: for each unprovable instance e ∈ EU do
2: Try to prove instance e using H ′ and FDT
3: for each time that a literal fails do
4: collect the failed literal l f e;
5: collect the literals LCe responsible for binding variables in l f e, recursively
6: collect the clauses Ce where l f e failed and where LCe appeared
7: if e ∈ T N then
8: T N_l f e ← T N_l f e ∪ e
9: for each literal lce ∈ LCe do
10: T N_lce ← T N_lce ∪ e
11: for each clause ce ∈ Ce do
12: T N_ce ← T N_ce ∪ e
13: else
14: FN_l f e ← FN_l f e ∪ e
15: P_l f e ← P_l f e + 1
16: for each literal lce ∈ LCe do
17: FN_lce ← FN_lce ∪ e
18: P_lce ← P_lce + 1
19: for each clause ce ∈ Ce do
20: FN_ce ← FN_ce ∪ e
21: P_ce ← P_ce + 1
22: RPG ← RPG ∪ l f e ∪ LCe ∪ Ce
23: for each point P ∈ RPG do
24: if PG = 0 then
25: delete P from RPG;

antecedents to a clause using a standard hill climbing approach and the relational pathfinding
algorithm (Richards and Mooney 1992), whose candidate literals are also collected from the
Bottom clause.

Concerning generalization, FORTE has four different operators, namely, delete-
antecedents, add-rule, absorption, and identification. YAVFORTE lets absorption and identi-
fication intact. Add-rules operator produces new rules either by adding literals to the body of a
generalized example or by deleting antecedents from existing clauses and adding antecedents
to this generalized clause. This additional second step is necessary to avoid proof of negative
examples that become provable exactly because of the antecedents deleted. In both cases,
adding rules to the theory requires that new literals be generated, to compose the set of can-
didate antecedents. Thus, the Bottom Clause is also used within this operator to bound the
search space of candidate literals.

The process of deleting antecedents in YAVFORTE differs from FORTE
(and FORTE_MBC) in two aspects: (1) YAVFORTE only deletes antecedents that produce
final clauses obeying the modes language and (2) the narrow requirement of only deleting
antecedents when none of the negative examples become provable is no longer sought, i.e.,
YAVFORTE allows noisy data by relaxing the criteria of the delete antecedents operator.

123



Mach Learn (2017) 106:197–241 207

3.3.1 Adding antecedents to clauses in YAVFORTE

FORTE, following FOIL (Quinlan 1990), generates literals to be added to a clause obey-
ing two conditions: (1) the variables of the literals must follow their types defined in the
knowledge base and (2) they must have at least one variable in common with the current
clause. While this makes the generation of antecedents simple and fast, it also leads to a large
search space of candidate antecedents, composed of all the possible literals of the knowledge
base. Such a large search space turns the complexity of the Add-antecedent operator very
high, contributing to the bottleneck of the revision process. Aiming at reducing such cost,
we implemented the following modifications in FORTE_MBC:

1. The variabilized Bottom Clause is the search space of literals, which reduces the number
of candidate literals and also imposes the following constraints:

– Limits themaximumnumber of different instantiations of a literal (the recall number);
– Limits the number of new variables in a clause;
– Guarantees that at least one positive example is covered (the one which generates the

Bottom Clause).

2. The mode declarations are used to further constrain the antecedents, which means they
will only be added to the clause if their use respects the mode defined in the knowledge
base.

3. Determination definitions of the form

determination(HeadPredicate/Arity, BodyPredicate/Arity)

state which predicates can be called in the clauses defining HeadPredicate.

The Bottom Clause is created immediately before the search for antecedents begins, by
saturating a positive example covered by the clause being specialized (the base clause). The
Bottom Clause is going to be composed of the literals relevant to at least such a positive
example and it is guaranteed to be a super-set of the base clause.

The process of constructing a Bottom Clause in YAVFORTE differs from the classical
Bottom Clause construction Algorithm when the base clause has a non-empty body, since
in this case it is necessary to take into account the terms of the current clause. Note that
in Duboc et al. (2009) the variables of the Bottom Clause were unified with the variables of
the base clause only after the Bottom Clause had been constructed. Besides this being an
expensive process involving lots of backtracks, sometimes it was not possible to find a correct
unification. We noticed two of such situations: in cases where the example contains two or
more equal terms in the head, but the base clause has two different variables in their place
(1) and when the base clause has no constant in the head but the first modeh has a constant,
or vice-verse (2). In these cases, the Bottom Clause would follow the unification according
to the example. The result would be a Bottom Clause with variables different from the ones
in the base clause which would make more difficult to find a proper substitution matching
both the Bottom Clause and the base clause.

Thus, the first step when constructing the Bottom clause is to find the ground literals of
the base clause considering the example but maintaining the substitution of the variables in
the base clause. Then, the terms of the base clause are put in the list of terms to be used by the
procedure and the Bottom Clause is initialized with the literals of the base clause. The rest
of the process is the same as the original algorithm, except that we do not allow the inclusion
of a literal being already in the Bottom Clause. Note that if the clause is being constructed

123



208 Mach Learn (2017) 106:197–241

from scratch, it is not necessary to keep an association with the base clause passed as an input
argument. In this case, we completely follow the original algorithm.

An important difference between the algorithm developed in Duboc et al. (2009) and
the one used in this work concerns intermediate clauses. These are clauses that do not have
directly associated examples, i.e., there is no example with the same predicate as the one in
the head of such clauses, and the predicate in the head of such clauses may appear in the
body of others clauses. Such clauses may also need to be specialized, by adding literals to
them, taken from a Bottom clause. Nevertheless, the Bottom clause is constructed from a
positive example covered by the clause, whose example predicate is the same as the one in
the head of the clause. The problem here is that not necessarily we have examples of such
intermediate predicates.

Therefore, we need to tackle non-observation predicate learning (Muggleton and Bryant
2000), where the concept being learned differs from that observed in the examples. We
introduced in a previous work intermediate predicate abduction in order to “fabricate” the
required example (Muggleton et al. 2010a). From a positive instance belonging to the rele-
vant examples of the intermediate clause, i.e, the proof of the instance includes the clause,
we obtain an “intermediate instance” using the current theory and the FDT . The procedure
instantiates such a predicate to its first call encountered when attempting to prove the goal.
The proof starts with the example and finds an instantiation for the specified intermediate
predicate. After constructing the intermediate example, the bottom clause construction pro-
cedure is ready to run, followed by the refinement of the clause. The whole procedure can
be visualized in Algorithm 4.

Note that the original FORTE system does not have this problem, as it builds the search
space of candidate antecedents following a top-down approach that does not require examples
to work.

4 Stochastic local search to revise first-order logic theories from examples

Theory revision is known to be an expensive task. Algorithm 1 shows the three main steps
that contributes to an increasingly running time:

1. Generating revision points (line 6).
2. Generating revisions (lines 10 and 14).
3. Proposing modifications to clauses, through addition and deletion of antecedents (lines

11, 12 and 15, 16).

In order to improve efficiency, we propose to apply stochastic components to each key
step above:

1. Search for revision points a random decision may return a subset of the revision points
instead of always returning all of them.

2. Revision search rather than proposing all revisions, one might enumerate the possible
modifications and choose one to implement at random.

3. Antecedents search as proposals of modifications are dominated by the addition and
deletion of antecedents, one may benefit from randomizing antecedents search.

Preliminary experiments with the theory revision system FORTE showed good promise
from introducing stochastic search at the last two searches above (Paes et al. 2007). This
paper enhances that work by including a number of stochastic components at every step of
theYAVFORTE system.While in the formerwork the stochastic componentswere introduced

123



Mach Learn (2017) 106:197–241 209

Algorithm 4 Bottom clause Construction Algorithm in YAVFORTE
Input: The current theory H ′ and the FDT , a clause C , Ex , an instance
Output: The Bottom Clause BC

1: if the predicate in head of C is different from the predicate in Ex then
2: Ex ← fabricated instance (Muggleton et al., 2010a)
3: if C has an empty body then
4: ⊥← Usual Bottom Clause Construction (Muggleton, 1995), with input H ′ ∪ FDT and Ex
5: else
6: I nT erms ← ∅, ⊥← ∅
7: Cground ← instantiation of the clause C using H ′, FDT , and Ex , with substitution θ maintaining the

variables of C
8: for each v/t in θ do
9: I nT erms ← I nT erms ∪ t
10: ⊥←⊥ ∪C
11: i ← 0, corresponding to the variables depth
12: BK ← FDT ∪ Ex
13: for each modeb declaration b do
14: for all possible substitution θ of arguments corresponding to + type by terms in the set I nT erms do
15: repeat
16: if b succeeds with substitution θ

′
then

17: for each v/t in θ and θ
′
do

18: if v corresponds to � type then
19: replace v in b by t
20: else
21: replace v in b by vk , where k = hash(t)
22: if v corresponds to − type then
23: I nT erms ← I nT erms ∪ t
24: if b /∈ C then
25: ⊥←⊥ ∪b
26: until reaches recall times
27: i ← i + 1
28: Go to line 14 if the maximum depth of variables is not reached
29: return ⊥.

in the original FORTE system, in the present paper they are built uponYAVFORTE, including
the bottom clause and the mode declarations to bound the search space of possible clauses.

Next, the strategies for revising theories through SLS are devised. Firstly, Sect. 4.1 brings
the stochastic algorithm developed to search for the revision points. Next, a number of
SLS algorithms are presented for deciding which revision operator will be responsible for
modifying the theory in Sect. 4.2. Finally, stochastic algorithms applied within the revision
operators, for choosing literals to be added to or removed from a clause, are devised in
Sect. 4.3.

4.1 Stochastic local search for revision points

Algorithm 5 is an abstraction of Algorithms 3 and 2, presenting the key steps that YAV-
FORTE follows when generating revision points (in line 6 of Algorithm 1).

The relevant examples are those ones whose provability can be affected after proposing
some revision in that point.

It can be seen from Algorithm 5 that there are two major factors increasing the cost of
searching for revision points: the set of examples and the size of the theory. This happens
because each example must be tested on the theory, either to identify faulty clauses and/or
literals or to checkwhether the example is relevant to the revision point.Moreover, each clause

123



210 Mach Learn (2017) 106:197–241

Algorithm 5 Generating Revision Points
1: Identify the misclassified instances
2: RPs ← clauses and/or antecedents responsible for misclassified instances
3: compute potential for each rp ∈ RPs
4: Identify relevant examples for each revision point
5: sort RPs by potential;

in the theory may be tested as a potential revision point. In this work, the cost burden by those
tests is reduced by introducing a stochastic component within the search for revision points.
Rather than always looking for all revision points in the theory, the stochastic component
allows only a subset of that group to be sought.

The strategy developed does not only avoid searching in the whole theory for revision
points but also avoids considering all misclassified examples. It works by alternating between
stochastic and complete moves according to a certain probability, a strategy that can be seen
as an instance of the Randomizing Iterative Improvement method. Thus, with a probability
prp the stochastic move is taken and the procedure will look only for a subset of all the faulty
points in the theory. The size of this subset is pre-defined by the user, and it indicates how
many specialization and generalization revision points will be returned by the procedure.
To guarantee that both types of revision points will actually be returned, the algorithm first
searches for the specified number of specialization revision points, followed by the search
for generalization revision points. With a probability of 1 − prp , a complete move is taken,
just as in the original algorithm.

The stochasticmoveworks as follows to gather the subset of revision points. First, it selects
a single misclassified example e− at random, from the set of misclassified negative instances.
Then, revision points are collected from e−. In case e already produces the required number
of revision points k, the search for specialization revision points stops. If it produces more
than k, k points are chosen at random. If the instance does not have enough revision points,
the procedure proceeds to collect more revision points by choosing another misclassified
example e′− at random. The same is done for generating k generalization revision points.

After collecting the subset of random revision points, it is time to find out the relevant
examples. This is necessary to compute the potential and also to consider only those examples
to be proved again when evaluating a modification on the revision point. Note that if the
probability prp is 100% and k = 1, the approach employed here reduces to a relational
version of Rückert and Kramer (2003). Algorithm 6 exhibits the procedure for collecting
revision points using a stochastic component, modified from Algorithm 5.

Time complexity of the original procedure is bounded by the number of training examples
times the size of the theory. Stochastic moves have time complexity limited by k. Note that
in the complete case, the theory is traversed even for correctly classified examples, because
FORTE needs to collect the relevant examples. Although the stochastic search still has to
find the relevant examples for the revision points in the set of all training examples, this is
also a reduced space, since it is restricted to the set of revision points instead of traversing
the whole theory. Additionally, in case the search returns only one kind of revision points,
then either (1) the revision points are generalization ones and only failing examples must
be considered (true and false negative) or (2) the revision points are specialization ones and
only provable examples (true and false positive) need to be considered.

123



Mach Learn (2017) 106:197–241 211

Algorithm 6 SLS Algorithm for generating revision points

Input: A set of positive and negative examples E , divided into the set of correctly classified examples, ECC
and the set of incorrectly classified examples, E IC , Theory T , probability prp , an integer k

Output: A set of revision points RPs

1: SpecRPs ← ∅
2: GenRPs ← ∅
3: with probability prp do
4: while #SpecRPs < k and there is at least one provable negative instance do
5: ex ← a misclassified negative instance chosen at random from E IC−
6: num_rp = k − #SpecRPs
7: RPex ← at most num_rp revision points generated from ex
8: identify relevant examples for RPex
9: SpecRPs ← SpecRPs ∪ RPex
10: while #GenRPs < k and there is at least one unprovable positive instance do
11: ex ← a misclassified positive instance chosen at random from E IC+
12: num_rp = k − #GenRPs
13: RPex ← at most num_rp revision points generated from ex
14: identify relevant examples for RPex
15: GenRPs ← GenRPs ∪ RPex
16: RPs ← GenRPs ∪ SpecRPs;
17: otherwise
18: execute Algorithm 5
19: return RPs

4.2 Stochastic local search for revisions

YAVFORTE encompasses two specialization and four generalization revision operators.
Depending on the amount of revision points, there are going to be several possible revisions.
Thus, the revision process can also benefit from stochastic search when applying revision
operators. Additionally, the revision can also take advantage of stochastic local search tech-
niques to escape from local maxima. When following a stochastic strategy to propose and
implement revisions, there are different decisions to be made:

1. how the space of a candidate hypothesis is populated;
2. how the revision to be implemented is chosen; and
3. how to stop proposing revisions (stopping criteria).

To populate the space of candidate hypotheses (proposed revisions) and choosing the
revision to be implemented, there are two possibilities:

1. Greedy space All appropriate revision operators are proposed at each revision point,
exactly as the original Algorithm. All revisions composing the search space of candidate
hypotheses are scored and the best revision is indeed implemented in the current theory.

2. Randomized space the space is composed of tuples containing the name of the revision
operator and the revision point. We randomly select k such tuples. In this case, the
revisions are not proposed beforehand, as only k need to have their score computed. In
other words, It is sufficient to enumerate the possible revisions for all revision points.
For instance, regarding a single specialization revision point SRP and assuming both
revision operators are employed in the revision process, wewill have two tuples in the list:
one containing <SRP, add-antecedent> and another containing <SRP, delete-rule>.

Assuming that we use k = 1, when using randomized space a single tuple will be chosen
at random. As the revision has not been proposed yet, it is necessary to check if it is really

123



212 Mach Learn (2017) 106:197–241

possible to modify the theory with that revision. In other words, it may be the case the chosen
revision cannot produce any modification in the theory. This is the case, for example, when
trying to delete a rule and it is the last one for a KB predicate, or still if is not possible to
delete or add antecedents to the clause. Also, notice that we may want to test whether the
actual revision is acceptable. If either these tests fail, another tuple is chosen, until there no
more tuples are left.

In this work, we considered two possibilities to accept a chosen revision, taking into
account that one would like to reach a theory better than the original one:

1. We require an improvement on the score.
2. We allow bad moves, but to accept them, a perturbation function is considered (Hoos

and Stützle 2005). We use score + 0.5 ∗ (Potential + score), where Potential is the
number of examples that has indicated a necessity of revision at a given point.

Finally, the stopping criteria may be one of the following:

1. Empty list no more possible revisions can be implemented;
2. Maximum score the revision reaches a maximum score on the training set (for example,

in case the evaluation function is accuracy, the maximum score could be 1.0);
3. Number of steps the iterative procedure already performed a maximum number of

iterations;
4. Worse score The score of the candidate revision is worse than the current score.

We designed three stochastic versions of the top level algorithm of YAVFORTE. They
implement different approaches in this design space:

1. Stochastic Hill-Climbing with random walk.
2. Stochastic Hill-Climbing with stochastic escape.
3. Stochastic greedy with random walk.

The first two strategies combine Stochastic Hill Climbing and Randomized Iterative
Improvement techniques, by alternating between greedy and stochastic moves, based on
a fixed probability, and requiring in some cases an improvement on score (as Hill-Climbing
does). The difference is, the first algorithm always requires an improvement in the score,
no matter whether the move is greedy or stochastic, while the second algorithm demands a
better score only in greedy moves. When the move is stochastic, a bad move can be selected,
but it is anyway constrained by the perturbation function. The third strategy also alternates
between greedy and stochastic moves but it does not demand an improvement in the score in
either case, since a revision only requires the application of the perturbation function .

To summarize, the decisions followed by each algorithm are described in Table 1.
Algorithm 7 comprises the devised strategies, as all of them perform random walks,

alternating between greedy and stochastic moves.

4.3 Stochastic local search for literals

The Add-antecedents operator introduces goals in a clause in order to stop proving negative
examples while covering as many of the originally proven positive examples as possible.
FORTE either uses a Hill-Climbing procedure, where at each iteration the antecedent which
improves the score the most is chosen to be added in the clause, or it uses the relational
pathfinding algorithm, where more than one antecedent can be added to a clause at once.
These two approaches can also be combined, with the relational pathfinding algorithm being
executed and, next, antecedents being added to a clause through the Hill-Climbing algorithm.

123



Mach Learn (2017) 106:197–241 213

Ta
bl
e
1

D
ec
is
io
ns

fo
llo

w
ed

by
st
oc
ha
st
ic
al
go
ri
th
m
s
us
ed

to
se
ar
ch

fo
r
re
vi
si
on
s

D
ec
is
io
n

G
en
er
at
in
g
sp
ac
e
of

ca
nd
id
at
e

hy
po
th
es
es

an
d
ch
oo
si
ng

a
re
vi
si
on

A
cc
ep
tin

g
a
re
vi
si
on

to
be

im
pl
em

en
te
d

St
op

pi
ng

cr
ite

ri
a

A
lg
or
it
hm

St
oc
ha
st
ic
H
ill
-C
lim

bi
ng

w
ith

ra
nd
om

w
al
k
(S
H
C
)

W
ith

pr
ob
ab
ili
ty

p,
ra
nd
om

iz
ed
,o
th
er
w
is
e,

gr
ee
dy

Im
pr
ov
em

en
ti
s
al
w
ay
s

re
qu

ir
ed

E
m
pt
y
lis
t,
m
ax
im

um
sc
or
e,

w
or
se

sc
or
e

St
oc
ha
st
ic
H
ill
-C
lim

bi
ng

w
ith

st
oc
ha
st
ic
es
ca
pe

(H
C
-e
sc
ap
e)

W
ith

pr
ob
ab
ili
ty

p,
ra
nd
om

iz
ed
,o
th
er
w
is
e,

is
gr
ee
dy

R
eq
ui
re
s
im

pr
ov
em

en
t

if
th
e
m
ov
e
is
gr
ee
dy

;
ot
he
rw

is
e,
fo
llo

w
s

pe
rt
ur
ba
tio

n
fu
nc
tio

n

E
m
pt
y
lis
t,
m
ax
im

um
sc
or
e,

nu
m
be
r
of

st
ep
s

St
oc
ha
st
ic
gr
ee
dy

w
ith

ra
nd

om
w
al
k
(S
G
re
ed
y)

W
ith

pr
ob
ab
ili
ty

p,
ra
nd
om

iz
ed
,o
th
er
w
is
e,

is
gr
ee
dy

Fo
llo

w
s
pe
rt
ur
ba
tio

n
fu
nc
tio

n
E
m
pt
y
lis
t,
m
ax
im

um
sc
or
e,

nu
m
be
r
of

st
ep
s

123



214 Mach Learn (2017) 106:197–241

Algorithm 7 Stochastic Revisions Algorithm Based on Random Walks
Input: An initial theory T , A Background Knowledge FDT , a set of examples E , integer maxSteps, real

maxScore
Output: A revised theory T ′

1: score ← compute score of T
2: repeat
3: generate revision points
4: with probability prev do
5: possibleRevisions revisions enumerated from the revision points and respective revision operators
6: repeat
7: next Revision ← a revision chosen at random from possibleRevisions
8: T ′ ← T after implementing next Revision
9: if an improvement in score is required then
10: scoreNext Revision ← score of T ′
11: if scoreNext Revision > score then
12: T ← T ′
13: score ← scoreNext Revision
14: else
15: possibleRevisions ← possibleRevisions − next Revision
16: else
17: if a perturbation function is used to accept revisions then
18: scoreNext Revision ← score of T ′
19: if scoreNext Revision + 0.5 ∗ (Potential + scoreNext Revision) > 0 then
20: T ← T ′
21: score ← scoreNext Revision
22: else
23: T ← T ′
24: until T ′ = T or possibleRevisions = ∅
25: otherwise
26: generate all possible revisions from the revision points and respective revision operators
27: compute score scoreNext Revision of each proposed revision
28: next Revision ← revision with the highest score
29: if an improvement in score is required then
30: if scoreNext Revision > score then
31: T ← implements next Revision on T
32: score ← scoreNext Revision
33: else
34: T ← implements next Revision on T
35: until stopping criteria is matched

YAVFORTE restricts antecedents to the ones in a bottom clause generated from a covered
positive example.

Similarly, the delete antecedents operator aims at making the clause prove positive exam-
ples while still not proving as many of the negative examples as possible. To achieve its goal,
this operator either removes one antecedent at a time from the clause, using a Hill-Climbing
approach, or it can delete multiple antecedents at once to escape from local maxima. The later
approach is only used when the former does not produce any results, since it is expensive
to list and test the combination of all possible literals to be removed from the clause. Both
approaches require the modes language to be obeyed after a removal.

Regarding addition of antecedents, three main factors impact the search space of the
bottom clause: (1) the size of the intentional and extensional background knowledge, (2)
the number of different modeb definitions to the predicates together with the recall of each
one of them, and (3) the setting of the variable depth parameter. In fact, as it was shown
in Muggleton (1995), the cardinality of a bottom clause is bounded by r(|M | j + j−)i j

+
,

123



Mach Learn (2017) 106:197–241 215

where |M | is the cardinality of the set of mode declarations, j+ is the number of + type
occurrences in eachmodeb in M plus the number of –type occurrences in eachmodeh, j− is
the number of –type occurrences in eachmodeb in M plus the number of+ type occurrences
in each modeh, r is the recall of each mode m ∈ M , and i is the maximum variable depth.
Thus, the bottom clause generates a search space of exponential size w.r.t. the maximum
variable depth. In case the recall r is defined as ∗, which is the most common case, all the
possible instantiations of a literal are going to be collected in the BK. Because of that, the
size of the BK also influences the cardinality of the bottom clause.

Each element of the bottom clause may be tested on each relevant example to the clause
being specialized, excluding those which does not have variables compatible with the mode
declarations of the clause. In the worst case, to specialize a single clause it is necessary to
pick up literals from the bottom clause as many times as the maximum size set of the clause.
Given all these factors, addition of antecedents is an expensive operation and still performed
many times during the whole revision process. Therefore, we propose to make the add
antecedents operator, and consequently the revision process, more efficient by introducing
stochastic components on this. Once again, we sacrifice completeness to gain efficiencywhen
proposingmodifications on the theory by adding antecedents to clauses or creating new rules.

Deleting antecedents is a less expensive operation than adding antecedents, as the search
space only consists of the clause literals. Note that sometimes the search space can be less
than the size of the clause, because removing some literals can make the clause illegal on
the mode language. However, they still increase the running time, although slightly, since
it is necessary to check if they can or cannot be a candidate to be deleted. Additionally, in
the worst case, the operation of deleting antecedents may be performed |clause| times in
case deletions always improve the score. Thus, although benefiting less than when adding
antecedents, we can also improve running time of the proposals of modifications by making
the delete antecedent operator more efficient. Aiming toward this goal, we also introduce
stochastic search when deleting antecedents, either when proposing generalizations on a
single clause or when generalizing the theory by creating a new rule from an existing one.

Stochastic versions of the delete antecedents and add antecedents algorithms were devel-
oped according to the following strategy. They may perform either a random or a greedy
move, depending upon a fixed probability. While the greedy move is the same for both
approaches, since, in this case, the original algorithm is maintained, the randommove differs
from each approach. Next we devise each approach separately.

4.3.1 Stochastic component when searching for literals

We follow a stochastic Hill-Climbing approach and adopt a conservative strategy even when
performing a random move, by requiring improvement of the evaluation function. The sto-
chastic component is employed for choosing the next candidate clause. Basically, a random
walk is carried out by taking a random step for choosing the next candidate clause with a fixed
probability pl , In case the probability pl is not achieved, the original greedy hill climbing
algorithm is performed. This algorithm is built upon the following decisions.

– Defining the search space In case the move is random and the goal is to add single
antecedents, a literal picked at random from the bottom clause is added to the current
clause to form a candidate clause. Similarly, a path created from the literals of the bottom
clause in relational pathfinding algorithm is chosen at random. To delete antecedents
from a clause in a stochastic move, the body of the clause is randomized and then a literal
is chosen. In a similar way, combinations of literals are randomized and one of them is

123



216 Mach Learn (2017) 106:197–241

taken at random. In all these cases, the candidate clause must be valid according to the
mode declarations.

– Choosing the next clause we conservatively require that the next clause improves the
current score, and choose the first candidate clause that is able to do that. Thus, if an
evaluated clause does not improve the score, this procedure repeats until finding a can-
didate clause improving the score or exhausting the search space. The exception is the
relational pathfinding algorithm, since the procedure allows a path to be chosen if the
score is unchanged, as hill climbing can be employed to further specialize the resulting
clause.

– Stopping criteriaAs usual in Hill-Climbing approaches, the algorithm stops when there
are no more candidate clauses improving the score, either because the set of generated
candidate clauses are not able to do that, or because there are no further valid clause to
be evaluated.

Algorithm 8 replaces Hill-Climbing addition of antecedents in both add-antecedent spe-
cialization operator and in the second phase of the add-rule generalization operator. The
algorithm starts by generating the bottom clause from a covered positive example, as it is
done in the original Algorithm. Next, it performs a random walk, following the approach
of algorithms such as WalkSAT, and decides the type of the move, based on a fixed prob-
ability pls . In case pls is not reached, the algorithm performs a greedy Hill-Climbing step,
exactly as it done in the original algorithm: all valid (according to modes) candidate clauses
formed by adding the literals from the bottom clause to the current clause are evaluated on
the examples. Then, the candidate clause improving the score at most is selected. If there is
no such improving clause, the procedure returns nothing. If the probability pls is reached, a
random step is taken: a literal is selected at random from the bottom clause and added to the
current clause. After the candidate clause is validated relative to the modes, it is evaluated
using the examples. In case such a clause improves the current score, it is chosen to replace
the current clause. Otherwise, it is discarded and another candidate clause is selected. This
procedure continues until it finds a clause that improves the score or until it exhausts all the
possibilities. Finally, the candidate clause replaces the current clause (if there is one) and the
algorithm proceeds to the next iteration. This procedure is performed until there is no further
clause improving the score or if it reaches the maximum size defined to clauses.

Relational pathfinding algorithm provides a sequence of antecedents to be introduced in
a clause. The algorithm searches for all possible sequences and chooses the one with the
highest score. In case of a tie, the smallest sequence is chosen. A stochastic version of this
algorithm selects the sequence to be added to the current clause according to a stochastic
decision: with a probability pls it chooses a sequence at random from all the possible gen-
erated paths; otherwise it proceeds as in the original algorithm. We do not generate paths at
random, since this algorithm tries to find a sequence of literals that connect the variables in
the head of the clause. Introducing a randomness component into this process could either
disregard a possible valid sequence of literals or force the procedure to backtrack to sev-
eral previous points. As it was said before, this algorithm is quite expensive by itself and,
therefore, introducing more backtracks goes contrary to our primary objective of reducing
the running time. Therefore, the benefit that the stochastic algorithm brings is to avoid the
heavy computation of scores that considers the set of examples for each possible sequence.
Algorithm 9 details the complete procedure.

The delete-antecedent operator benefits less from stochastic local search than add-
antecedent, since the search space is restricted to goals in the clause and is, therefore, much
smaller. The Hill-Climbing stochastic algorithm for antecedent deletion is shown in Algo-

123



Mach Learn (2017) 106:197–241 217

Algorithm 8 Algorithm for adding antecedents using Hill-Climbing SLS

Input: A clause C , the maximum size of a clause, CL , the probability of deciding which move is going to be
taken pls

Output: A (specialized) clause C ′

1: repeat
2: current Score ← compute score of C ;
3: BC ← createBottomClause(...);
4: with probability pls do
5: repeat
6: ante ← an antecedent chosen at random from BC , whose input variables are already inC (therefore

it obeys modes);
7: C ′ ← C with ante added to it;
8: FPC ← negative examples whose proof considers the clause C ;
9: candidateScore ← score of C ′;
10: if candidateScore > current Score then
11: C ← C ′
12: current Score ← candidateScore
13: else
14: BC ← BC − ante
15: until C = C ′ or BC �= ∅
16: otherwise
17: for each antecedent ante ∈ BC do
18: C ′ ← C with ante added to, in case C + ante obeys the mode declarations;
19: candidateScore score of C ′;
20: bestClause ← candidate clause with the highest candidateScore
21: if candidateScore > current Score then
22: C ← bestClause
23: current Score ← candidateScore
24: remove ante from BC
25: FPC ← FPC−instances in FPC not proved by C ;
26: until FPC = ∅ or there are no more antecedents in BC or it is not possible to improve the score of the

current clause or |C | = CL
27: return C

Algorithm 9 Stochastic Relational-pathfinding

1: generate all possible sequence of antecedents through relational_pathfinding algorithm and the Bottom
clause;

2: with probability pl2 do
3: choose a sequence at random;
4: otherwise
5: choose a sequence with the highest score or the one with fewer antecedents in case of a tie;

rithm 10. Notice that delete-antecedent is also part of add-rule, with the latter using it in its
first phase. The algorithm follows exactly the same random walk approach as previous algo-
rithms seen in this section. First, it decides which type of move it is going to take, namely, a
greedy move or a random move, based on a fixed probability plg . In case the move is greedy,
it uses the original algorithm to propose deletions of antecedents. Otherwise, it selects at
random a literal to be removed from the clause. Both cases require an improvement in the
score to indeed remove a literal from the clause.

123



218 Mach Learn (2017) 106:197–241

Algorithm 10 Algorithm for deleting antecedents using Hill-Climbing SLS

Input: A clause C , the probability of deciding which move is going to be taken plg
Output: A (generalized) clause C

1: repeat
2: current Score ← compute score of C ;
3: antes ← antecedents from the body of C ;
4: with probability plg do
5: repeat
6: ante ← an antecedent chosen at random from antes, whose removal from C still makes it valid

relative to modes;
7: C ′ ← C with ante deleted from it;
8: candidateScore ← compute score of C ′;
9: if candidateScore > current Score then
10: C ← C ′
11: current Score ← candidateScore
12: else
13: antes ← antes − ante
14: until C = C ′ or antes = ∅
15: otherwise
16: for each antecedent ante ∈ antes do
17: C ′ ← C with ante deleted from;
18: candidateScore ← compute score of C ′;
19: bestClause ← candidate clause with the highest candidateScore
20: if candidateScore > current Score then
21: C ← C ′
22: current Score ← candidateScore
23: until no antecedent can improve the score;
24: return C

5 Experimental results

Stochastic algorithms usually provide two benefits: (1) reduction of the runtime, as com-
pleteness is abdicated in favor of randomness, and (2) the possibility of escaping from local
maxima, since sometimes a move taken by an SLS algorithm is not greedily chosen. Thus,
we would like to mainly investigate in this paper if it is possible to achieve such benefits
when applying SLS algorithms in the theory revision process. We compare the determinis-
tic approach of the revision system and a standard ILP system to each stochastic algorithm
devised in this work, regarding the accuracy and running time. In addition, we also would like
to verify whether theory revision is actually capable of providing better accuracies compared
to learning from scratch, in a feasible time.

To investigate these questions, we designed two separated sets of experiments. The first
one relies on the revision of a human crafted theory. The second one tries to revise theories
generated from an ILP system. In this last case, we experiment in two ways: (1) the learning
system gets a reduced amount of the training set while the revision system gets all of them,
and (2) both systems get the same training set. Next sections we present the details and results
of each set of experiments.

5.1 Human-engineered theory revision

We considered the UW-CSE domain to revise a human-crafted theory, since a number of
clauses written by people at the University of Washington is provided, together with facts

123



Mach Learn (2017) 106:197–241 219

and positive examples (Richardson and Domingos 2006). This domain contains facts related
to the Department of Computer Science and Engineering of the University of Washington.
The examples represent the relationship advisedby between a professor and a student. The
dataset used in this paper is composed of 113 positive instances, 2711 negative instances,
5082 ground atoms and 43 definite clauses, from which 8 of them have the target predicate
advisedby in their head, and the rest of them are intermediate clauses. As intermediate
clauses can also be selected as revision points, it is essential to have the procedure that
fabricates instances described in Sect. 3.3.1.

We performed three main changes in the set of provided clauses to make it possible to
apply the revision system on them:

1. A clause with more than one positive literal was split into two clauses, as YAVFORTE
is only able to deal with definite clauses.

2. In case the target predicate advisedby/2 appeared as a negative literal in a clause, it
would be removed from the body, to avoid recursion.

3. Clauses with mutual recursion were removed from the set of clauses, otherwise it could
become very hard to prove some examples without causing an overflow in the stack of
the inference engine.

Experimental Methodology This dataset is already provided with five disjoint folds, where
each one represents a Computer Science area of the University of Washington. Besides the
revision system, we run Aleph (Srinivasan 2001) as the baseline learning ILP system. The
m-estimate evaluation function (Dzeroski and Bratko 1992) was used as the optimization
function, both in YAVFORTE and Aleph. In order to compare the performance obtained
by the algorithms, we use F-measure, since this is a highly skewed dataset. All the other
parameters were left at their default values, except for minpos and noise, which were set
to 2 and 100, respectively. Without the first one, Aleph would generate only a single literal
clause for each positive example. As the target predicate is binary, relational pathfinding
algorithm is the default choice to specialize clauses in YAVFORTE.

Concerning the stochastic algorithms, we considered two possible values of probabilities
for pursuing a random move, which are 50 and 100%. In the last case, a random move is
always performed. Each stochastic algorithmwas executed 5 times, to diminish the possibility
of getting a result simply because of luck (or out of it). Next, we present the results for the
deterministic and stochastic algorithms. The plots show the average values obtained from the
runs and also an error bar representing the standard deviation, computed over each run.

All the experiments were run on YAP Prolog (Santos Costa et al. 2012) on Power Edge
R420 Intel Xeon-12 cores RAM 16GB HD 500GB Net 1GB/s machines. In order to verify
statistical significance, we used the two-tailed paired t test with p < 0.05.

5.1.1 Results

Deterministic Approaches Figure 1 exhibits the results of predictive precision and recall for
each fold in theUW-CSEdataset, concerning the deterministic version ofYAVFORTE,Aleph
system and the values collected from the human-crafted theory. Note that the recall is 1.0
in the initial theory, since all positive examples are correctly classified, while the precision
is very low, as all of the negative examples are also proved. This indicates that the theory
needs to be primarily specialized. The other implication of this fact is that when we include
the initial theory in the Background Knowledge provided to Aleph, it has nothing to do,
as its default algorithm construct clauses starting from unprovable positive examples, and

123



220 Mach Learn (2017) 106:197–241

Fig. 1 Scatter plot with precision versus recall, where each point represents the values obtained from each
one of the fivefolds of the UWCSE dataset

in this case there is none. Because of that, Aleph only properly worked when the BK was
composed with the 5082 facts and not with the human-crafted clauses. The same set positive
and negative examples is used for all the approaches.

From the figure, we can observe that although Aleph reaches better values of recall, the
precision is rather low, as a large number of negative examples remain covered. YAVFORTE
exhibits almost an opposite behavior, as it reaches better precision than recall. AsYAVFORTE
is presentedwith a large number of negative examples, the revision process tends to specialize
the initial theory more than generalize it. Because of that, it can yield a theory with less
negative examples covered, compared to Aleph and the initial theory, in detriment of making
some positive examples unprovable. However, while YAVFORTE is significantly better than
Aleph concerning the precision values, there is no statistical difference between the recall
values reached by both systems. This indicates that YAVFORTE is capable of providing a
better trade-off between precision and recall.

This better trade-off between bothmeasures can be better visualized in Fig. 2, that presents
the F-measure and runtime results of each fold in the UW-CSE dataset. Note that we set the
running time of the initial theory as 0, as there is no learning associated with it. YAVFORTE
presents statistically better results of F-Measure than Aleph in this domain, and also executes
in less time, which are consequences of specializing an initial theory, followed by alternating
between specialization and generalization of faulty points, rather than learning from scratch.

Stochastic Approaches In order to verify the behavior of the stochastic algorithms, we exe-
cute each one of them varying its essential parameters. We compare their performance to the
deterministic revision system and Aleph system.We start with the algorithm that randomizes
revision points, which, instead of selecting all the revision points, with a certain probability
chooses at random only a previously specified number of revision points. We set the proba-
bility to 50 and 100% and the number of revision points to 1, 2, 4, 6, 8, 10. The real number
of revision points is at most twice each one of these values, since we get the same amount of
generalization and specialization revision points.

123



Mach Learn (2017) 106:197–241 221

Fig. 2 Scatter plot with F-measure and runtime, where each point represents the values obtained from each
one of the fivefolds in the UWCSE dataset. Time is represented in a logarithm-10 scale

Fig. 3 Bar plot with the F-measure (left) and running time in logarithmic scale (right), obtained from the
UW-CSE dataset, comparing different choices of number of revision points chosen at random and deterministic
revision and learning

Figure 3 presents the F-measure and running time results computed for each version of the
number of revision points parameter in the stochastic revision points algorithm, compared to
deterministic YAVFORTE and Aleph. The bars of stochastic algorithms are annotated with
the standard deviation collected from the 5 executions.

Themost interesting result was achieved when the algorithmwas set to always performing
stochastic moves (probability of 100% and to return at most 2 revision points at each itera-
tion.1 Note that, in this case, the stochastic version runs in more than one order of magnitude
faster than the deterministic version, while even reaching better F-measure values, although
not significantly better.

1 We say it returns at most X revision points because it may be the case that there is no revision type of a type.
For example, in the first iteration of the algorithm, there is no generalization revision point, since initially all
positive examples are covered.

123



222 Mach Learn (2017) 106:197–241

This domain has a relatively large number of clauses, where a good part of them are
intermediate clauses, creating a highly nested theory. Finding out revision points in this kind
of theory is an expensive task, as this process is based on generating all refutation (failure)
paths in case of misclassified negative (positive) examples and annotate them. The whole
process is usually more expensive than only trying to prove examples. Because of that, we
can save a great amount of time when avoiding searching for all possible revision points.
On the other hand, the initial theory has a limited base clauses that can, in fact, improve its
score. The majority of clauses in this set are responsible for misclassifying a large number of
examples. Because of that, when we choose an example at random, is highly probable that it
will point out exactly the revision points that can improve the theory.

Although we do not exactly follow an incremental revision process here, as we do not
keep changing the theory along the arrival of new examples, this result suggests that it is
possible to improve theories even when considering only a single example to indicate the
revision points. Albeit we bound the number of generated revision points, when this is only
one, it is certain that we got it from a single misclassified example. This suggests that this
stochastic method can be further investigated to act in domains where the examples arrive in
streams (Gama 2010).

Considering the further results, we can see that by setting the random move probability
as 50% the F-measure is better or the same as the one obtained in the deterministic version.
However, the speedup in running time is only obtained when we collect up to 6 revision
points of each type. In the best of these specific cases, we can reduce the running time to half
of the deterministic version. When the probability is defined as 100%, we obtained a small
decrease in the performance with 2 revision points of each type. However, with 4 revision
points the stochastic version is slightly better than the deterministic approach. This variance
is too small and it is probably due to the random moves in a space larger than the one of only
1 revision point of each type.

When collecting 8 or 10 revision points of each type, the stochastic algorithm practically
gets the same results as the deterministic version. This happens because, on average, the
deterministic version also finds about this same amount of revision points. Note, however,
that evenwhen definingmore revision points than it needed, the performance of the stochastic
revision is not worse than the one of the deterministic version.

Next, we present the results of the algorithms that randomize revisions. There are three
of them in this work, where the number of iterations is the stopping criteria for two of them
(SHC , the Stochastic Hill Climbing approach, stops only when it is not possible to improve
the score anymore). This parameter also fixes the maximum number of revisions that are
going to be implemented, as at most one revision is implemented at each iteration. Note
that it is possible to pass through an iteration without implementing any revision, which
happens in two situations: (1) the move is greedy and the best revision cannot improve the
score, or (2) the algorithm is Stochastic Hill-Climbing Escape, the move is random but the
selected revision does not fulfill the scoring criteria.We set the maximum number of iteration
parameter as 1, 2, 4, 8, 12, 16 and 20, when applied.2

Figure 4 presents the F-measure and running time results regarding the Stochastic Greedy
(SGreedy) and Stochastic Hill-Climbing Escape (SHC-Escape) with the different numbers
of maximum implemented revisions, the Stochastic Hill-Climbing (SHC) and the results of
the deterministic approaches, for comparison.

2 Clearly, the algorithms can also stop when there are no more revision points available, but this is rarely the
case. Specifically in this domain, the final theory never correctly classifies all the training examples.

123



Mach Learn (2017) 106:197–241 223

Fig. 4 Bar plot with the F-measure (top) and running time in logarithmic scale (down), obtained from the
UW-CSE dataset. Here we visualize the results of the algorithms that randomize revisions, considering the
parameters of the maximum number of iterations when this is the stopping criteria, and the deterministic
revision and learning

123



224 Mach Learn (2017) 106:197–241

On average, the deterministic version of the revision takes 6 iterations to finish the process,
when it does not find any profitable revisions to be implemented. This indicates a possible
number of ideally implemented revisions on this dataset, as the F-measure values obtained by
SGreedy and SHC-escape start to rapidly decrease when the maximum iterations parameters
are greater or equal to 12. Although this is the double of revisions implemented by the
deterministic version, it is important to notice that the stochastic versions may improve the
scoring function slower than the deterministic process, since they do not always select the best
possible revision, due to the random nature of the algorithms. Because of that, observe that
the Stochastic Hill Climbing approach, for example, cannot achieve the same performance
as the deterministic Hill Climbing, while still does not reduce much the running time. In this
specific case, setting the probability to 50% makes the algorithm behave quite similar to the
deterministic version. On the other hand, when the probability of taking a move at random is
100%, the running time of the Stochastic Hill Climbing is 40% the time of the deterministic
version, while the F-measure is only a little affected by always choosing a revision at random.

The behavior of the SGreedy and SHC-Escape algorithms are quite similar, which is
actually expected as they are both similar approaches, changing only when a greedy move is
followed. However, in general, the SGreedy algorithm presents an unstable behavior, as its
final performance varies both within the 5 runs and with the different numbers of maximum
iterations.

We emphasize once again that the initial theory written for this domain is large, highly
nested and contains only a small number of points that once revised makes a number of
examples to become correctly classified. Thus, the greatest cost of the revision process is
actually to find such revision points.

Finally, Fig. 5 presents the results obtained when randomizing literals to be added to or
deleted from a clause. Surprisingly, this randomization was not able to reduce the running
time, but actually it increased the total running time. This was caused by two reasons: (1) as
any literal capable of improving the score can be added to the clause in a random move, in a
number of attempts of specializations the algorithm tookmore time to converge, addingmore
literals than it was necessary up to reaching the maximum number of literals in a clause, and
(2) relational pathfinding does not obey this limit of literals, as this could make the algorithm
not finding a correct path. In the deterministic version, the best path is the one that covers
more positive examples and, in case of a tie, the smaller one. The stochastic version just
chooses the first path that is able to cover more than one positive example. Because of that,
in several cases, the path chosen at random had more than five literals, which is the limit of
literals in a clause when adding one literal at a time. This fact does not affect directly the
searching for literals, but instead affect the cost of proving examples in the next steps of the
revision process.

To sum up, Fig. 6 presents the average F-measure and running time results of the determin-
istic algorithms and of all the stochastic approaches, with different parameters. Furthermore,
we include there the results of combining the stochastic approaches at each key step of the
revision process. Thus, we execute together the randomization of the revision points (choos-
ing at most five of them), the randomization of the antecedents and the randomization of the
revisions with the stochastic Hill-Climbing approach. In order to also observe the impact of
the probabilities when combining the stochastic approaches, we consider 50 and 100% of
probability for each strategy, yielding eight different values.

First, notice from the figure, that the best trade-off between running time and F-measure
is achieved by the execution that only randomizes revision points and by the execution that
combines the randomization at each key step of the revision process. In this last case, the

123



Mach Learn (2017) 106:197–241 225

Fig. 5 Bar plot with the F-measure (left) and running time in logarithmic scale (right), obtained from the
UW-CSE dataset. Here we visualize the results of the algorithms that randomize literals (or a path of them, in
the case of relational pathfinding algorithm), and the deterministic revision and learning

running time is better than the former, and, although the F-measure values are slightly worse,
there is no statistical difference among them.

Second, we observed that, in the vast majority of the cases, the F-measure results obtained
from the stochastic approaches are not statistically different from the results of the determin-
istic version. On the other hand, even in the cases where the F-measure values are slightly
worse than the deterministic revision, they are still usually better than the results obtained
from Aleph. Furthermore, the running time of the stochastic approaches is often lower than
both Aleph and deterministic YAVFORTE.

Third, on the negative side, observe that there is a number of cases with low running time
but achieving F-measure results that are significantly worse than the deterministic revision,
and equal or worse than the results obtained with Aleph (the ones below the 0.25 F-measure
mark). Those are the runs where the choice of the parameters demanded more revisions than
necessary. This is the case for Stochastic Greedy and Stochastic Hill-Climbing Escape with
16 and 20 as the maximum number of iterations. This is mostly due to the fact that the
algorithms allowed bad moves and could not recover from them thereafter.

This is not the case for the randomization of revision points: evenwhenwe let the algorithm
to select more revision points than the deterministic version could find, the performance of
the algorithm is the same, as the real number of revision points is an upper bound, since
it is not possible to return more revision points than in fact exist. Thus, in domains with
characteristics similar to UW-CSE, when randomizing the revisions and using the number of
iterations as stopping criteria, it is better to let the maximum number of iterations low than
high. One would still get an improvement in the initial theory in this case, without taking
risks of gaining nothing after the entire revision process.

5.2 Revising theories generated by an ILP system

In this section we experimentally investigate the behavior of the revision systems by simu-
lating two scenarios: (1) an initial theory has been induced by a learning system, considering
a certain amount of examples, and new examples arrive, that may require such theory to be
adjusted; and (2) a theory has been induced by a learning system but it might be still room for
improving it. To verify the behavior of the deterministic and stochastic revision procedure in
these two scenarios, we once again use the standard learning system Aleph as the baseline
inducer of the initial theories. Next, we briefly present the benchmark datasets that we have

123



226 Mach Learn (2017) 106:197–241

Fig. 6 Scatter plot comparing the running time and F-measure of the deterministic algorithms, the algorithms
that randomize each search step individually, varying their parameters, and combinations of the algorithms
that randomize each search step (3 combined, in the legend), varying their probabilities

used in the experiments, the methodology that was followed to simulate both scenarios and
the results obtained from them.

Datasets We considered four domains in this work:

– Pyrimidines is a Quantitative Structure Activity Relationships (QSAR) problem, con-
cerning the inhibition of E. Coli Dihydrofolate Reductase by pyrimidines, which are
antibiotics acting by inhibiting Dihydrolate Reductase, an enzyme on the pathway to
forming DNA (King et al. 1992; Hirst et al. 1994). The dataset we used in this work
is composed of 2361 positive examples, 2361 negative examples, about 2200 facts in
the Background knowledge and 28 templates of literals in the language bias. The target
predicate is great/2.

– Yeast_sensitivity (Kadupitige et al. 2009) is a dataset concerning the problem of
gene interaction of the yeast Saccharomyces cerevisiae. It is composed of 430 posi-
tive examples, 680 negative examples, approximately 170,000 facts and 18 templates
of literals in the language bias, to yield literals to clauses. The target predicate is
general_responder/1.

– Proteins domain is a task of secondary structure protein prediction. The task is to learn
rules to identifywhether a position in a protein is in an alpha-helix (Muggleton et al. 1992),
where the target predicate is . We considered a dataset with 1070 positives examples,
970 negative examples, about 5200 facts in the Background knowledge and 46 different
template of literals in the language bias. The target predicate is alpha/2.

– Metabolism is based on the data provided by the 2001 KDDCup (Cheng et al. 2002). The
data consists of about 6900 ground facts about 115 positive instances and 115 negative
instances. There are 10 possible templates of literals to be added to clauses. The target
predicate is metabolism/1.

Experimental Methodology The datasets were split into 10 disjoint folds sets to use a K-
fold stratified cross-validation approach. Each fold keeps the rate of original distribution

123



Mach Learn (2017) 106:197–241 227

of positive and negative examples (Kohavi 1995). In order to simulate the arrival of new
examples, we reduced the training set of the learning system to 40, 50, 60, 70 and 80%
of examples of the original training set. The revision system receives as input the theories
generated from such sets and the whole set of training examples. In all these cases, the
validation set was left as in the original folds, so that we would not mix up training and
test sets in different executions. Also, a different theory was generated for each run of the
cross-validation procedure. In addition, we would like to see if the revision system is able
to improve the theory induced by the learning system when both have as input the same
training set. Thus, we also generated a theory with Aleph with the whole set of training
examples for each run of the cross-validation procedure and give such theories as input to the
revision system, i.e., the same training set is used to learn and to revise the theory. Stochastic
algorithms were run 5 times because of the random choices. The plots report the average
values obtained from all folds and all runs and the standard deviation computed from the
runs.

The initial theories were obtained from Aleph system using its default parameters, except
for the five following: (1) clauselength, which is defined as 10, except for Yeast Sensitivity
that took too long to run, and then we set such parameter to 5; (2) noise, defined as 50, (3)
nodes set to 10000, (4) minpos, set to 2 and rules were induced through (5) induce_cover
command. The use of those parameters has been inspired on the work of Muggleton et al.
(2010b). We used the default evaluation function of both systems and used the Accuracy to
compare their performance. Concerning deterministic YAVFORTE parameters, besides the
evaluation function, it has only the clause length parameter in common with the cited just
before, which we let with the same value. Relational pathfinding was used in the datasets that
have a binary target predicate. We do not argue that those are the best parameters neither for
Aleph nor for the revision procedure. Tuning parameters of a system with several parameters
as Aleph is not a trivial task and it is not essential to our experiments, as we would like to
investigate the revision behavior with an ad-hoc received theory.

All the experiments were run onYAPProlog (Santos Costa et al. 2012) onmachines Power
Edge R420 Intel Xeon—12 cores RAM 16GB HD 500GB Net 1GB/s (first two datasets)
and Dells Optiplex core i7—4 cores RAM 8GB HD 500GB Net 1GB/s (2GB per core) (last
two datasets). In order to verify statistical significance, we used a two-tailed paired t test with
p < 0.05.

5.2.1 Results

We first present the results of the revision process when revising theories generated with
different training set sizes. Then, we compare the results of the stochastic approaches to the
deterministic algorithms.

Deterministic Approaches In this case, we used all the settings of training sets to see how the
revision system behaves when facing a theory that was not generated with all the examples
that the revision itself has; andwhen facing a theory generatedwith exactly the same examples
that it has.

Figures 7 and 8 exhibit the results of accuracy and running time for each setting of training
set size. We present the accuracies obtained from the learning from scratch with a (possibly)
reduced training set and the accuracies that the revision system achieves, always revising the
initial theory with the whole training set. In addition, we present the results of Aleph when it
gets the same input as the revision system, i.e., an initial theory obtained from the different

123



228 Mach Learn (2017) 106:197–241

Fig. 7 Accuracy of deterministic revision and learning, for all datasets. A whole bar indicates the total
accuracy obtained by a system. Different hatches frequencies represents the percentage of examples used to
generate the initial theories

Fig. 8 Running time for generating initial theories (Aleph) and for revising them (YAVFORTE). A whole
bar indicates the total time obtained by a system. Different hatches frequencies represent the percentage of
examples used to generate the initial theories

settings of size for the training set and the whole set of training examples. The running time
is computed for each process as well.

As expected, the revision system was always capable of improving the accuracies of the
initial theories, even when the initial theory was built from the exactly same set of examples
that the revision process received. This shows the efficacy of the revision process even as
a sort of post-pruning procedure. Observe that, in general, the better is the initial theory, a
higher accuracy the revision system reaches. In these results, the only extreme exception to
that pattern happened in the Yeast_sensitivity dataset with 50% of the examples generating

123



Mach Learn (2017) 106:197–241 229

the initial theory, as the initial accuracy was the worst one and the final accuracy was the best
one.

Note that in the most of the cases when providing Aleph with the whole set of examples
and the initial theories obtained from a subset of them, the accuracies of the induced theories
are either the same of worse than when considering only the initial theory. Aleph does not
start from the initial theory in the background knowledge as the revision does, but only uses it
in coverage tests. Because of that, such induced theories are quite similar to the one obtained
by learning from scratch with the whole set of examples. In addition, notice that if the original
clauses cover negative examples, they still will be provable after the learning process, what
may diminish the final accuracies.

We do not guarantee that the initial theories get better following the number of examples.
As can be seen, only Pyrimidines dataset had this behavior (the more examples the learning
from scratch system has, the better is the initial theory). However, as the revision process got
different results even that it considers the same set of examples to revise them, it is possible
to conclude that they require different improvements. Also, notice that there are some cases
where learning with the whole training set does not yield the best accuracy. This is the case
of Proteins and Metabolism datasets. It could be the case that the learning system reached a
local maximum that even the revision system could not escape from.

Furthermore, even when the learning from scratch system gets the same examples as the
revision systems (the last column of each set of bars), the revision process still reaches better
accuracies, nomatter which set of examples generated the initial theory. In otherswords, if we
compare the results that YAVFORTE achieves from theories originally learned from scratch
with 40–80% of the training set, while YAVFORTE itself sees the whole set of examples,
to the results that Aleph achieves with the whole set of examples, the revision achieves
better results. Such differences are almost always statistically significant, comparing both
the improvement that the YAVFORTE system gets after revising the initial theories, and the
accuracies that YAVFORTE and Aleph reach with the same set of examples. The exceptions
are in the Metabolism dataset with 80 and 100% of the training set. In these cases, neither
the improvement is statistically significant nor the revision of the theory obtained from 80%
of the training is better than the theory induced by Aleph with the whole set of examples.
Although, on average, the difference is quite high, this is due only to a few folds, which is
not enough for the statistical test.

Finally, the learning process is always faster than the revision procedure, even when both
systems receive the same set of examples. For the learning process, the more examples we
provide, the higher is the running time. This is not the case of the revision process, as it always
receive the same set of examples (thewhole training set). Even though,we can still see that the
running time of the revision smoothly increases, as the initial theories are larger according to
the set of examples (eventually, more clauses are generated to cover more examples, and also
the clauses got bigger to diminish the covering of negative examples). Note that Metabolism
dataset did not follow this pattern. However, what happened here is that, with 40 and 50% of
the examples, the noise parameter was higher than the number of negative examples. Because
of that, Aleph produced a trivial clause that covered all the examples. Also, with 60 and 70%
of the examples, the theories were too simple and the revision system did not have to explore
a costly search space. Those are the only cases where the revision process was faster than
the learning from scratch procedure.

We would like to emphasize that in this work we do not intend to simulate an incremental
revision process (Esposito et al. 2000) that keeps revising a theory along with the arrival
of new examples. Instead, we would like to observe the behavior of the revision process
with ad-hoc initial theories. In an incremental revision, only the new examples would be

123



230 Mach Learn (2017) 106:197–241

considered when revising the theory and an appropriate mechanism should be employed to
do not make it stopping representing the previous examples. Such an incremental process
could be very useful to learn streams of data (Gama 2010), especially in the presence of
concept drift (Widmer and Kubat 1996; Gama et al. 2004).

Stochastic approaches Wecompare the stochastic algorithms setwith a number of parameters
with the deterministic approaches. Regarding the algorithm that randomizes revision points,
we set the number of revision points as 1, 2, 4, 8, 16 of each type, thus limiting the number of
returned revision points to be the double of these values. The maximum number of revisions
implemented in a whole process of the algorithms that randomize revisions are established
as 2, 4, 8, 16, 32.

Randomizing Revision Points Figures 9, 10, 11, and 12 shows the results of accuracies and
running time when randomizing revision points. First of all, notice that the learning from
scratch bounds below the majority of final accuracies, showing that even when the revision
process chooses only one revision point of each type to propose modifications, it is still
possible to improve the initial theory. This is particularly evident in Yeast Sensitivity dataset
(Fig. 10).

On the other hand, the deterministic revision frequently bounds above the accuracies,
although from 8 chosen revision points, the accuracies achieved by the stochastic approaches
start to get quite close, and sometimes even better than, to the accuracies reached by the
deterministic revision process. Note, however, that between 16 and 32 revision points the
difference is quite small. In Metabolism dataset, which has the smallest initial theories, and
consequently less revision points, choosing 32 revision points makes the stochastic algorithm
to behave worse, as it loses its randomness component and achieves the same results as the
deterministic revision process, regarding both probabilities. On the other hand, with only a
total of 2 revision points, the stochastic algorithm already achieves better performance than
the deterministic approach.

With regard to the probabilities, when it is 50%, the results are slightly better, showing
more difference when there are <8 revision points chosen at random. From this value, the
differences in the accuracies obtained from both settings are often quite small. This suggests
that when the number of pre-defined revision points is enough, there is no need of employing
greedy moves and selecting all the possible revision points. Additionally, the number of

Fig. 9 Accuracy (left) and running time in logarithmic scale (right), obtained from the Pyrimidines dataset,
when randomizing revision points. The legend is the same for both plots

123



Mach Learn (2017) 106:197–241 231

Fig. 10 Accuracy (left) and running time in logarithmic scale (right), obtained from the Yeast Sensitivity
dataset, when randomizing revision points

Fig. 11 Accuracy (left) and running time in logarithmic scale (right), obtained from the Proteins dataset,
when randomizing revision points

pre-defined revision points follows the size of the initial theories, as in these experiments,
the more clauses we have in the initial theory, the more revision points the revision system
will probably find. Roughly speaking, the stochastic algorithm already achieves good results
considering less than half the revision points that the deterministic revision finds.

Concerning the running time, as expected, the stochastic algorithm is faster when fewer
revision points are considered. In some cases, it can be actually faster than the learning from
scratch system. Notice that the learning from scratch system sees the same examples as the
revision process only in the solid blue line and in a number of cases, this specific line is above
the markers of the stochastic algorithm, even more when only random moves are considered
(probability = 100%). As the number of revision points grows, the running time of the
stochastic algorithm approaches the ones of the deterministic revision.

Notice that there are cases where the stochastic algorithm can even reach better accura-
cies than the deterministic approach while running in a substantially reduced time (see, for
example, the blue markers and dotted blue lines in Metabolism and Proteins datasets). In
general, the accuracies of both approaches are competitive, usually when at least 8 revision
points are considered, while the stochastic approach executes faster than the deterministic
algorithm, and in some cases even faster than the learning from scratch system.

123



232 Mach Learn (2017) 106:197–241

Fig. 12 Accuracy (left) and running time in logarithmic scale (right), obtained from the Metabolism dataset,
when randomizing revision points

Randomizing Revisions Next, we present the results obtained from the algorithms that ran-
domize the choice of the revision to be implemented in Figs. 13, 14, 15, and 16. Differently
from the other stochastic algorithms, the Stochastic Hill Climbing (SHC) does not limit the
number of implemented revisions (i.e. its stopping criteria is not the number of iterations of
the overall revision process, but instead when it cannot find any revision that improves the
current scoring). Because of that, it is represented in the figures similarly to the deterministic
algorithms, with a dashed line. We limit the beginning and ending of this line with different
symbols to differentiate the both probabilities used in the experiment.

Concerning the accuracies achieved by the Stochastic Hill Climbing approach first, we
can see that the only dataset where the tree settings of initial theories and the both values of
probabilities behave the same is the Pyrimidines dataset. In this specific case, the accuracies
are always the same as the deterministic approach, while the running time of the former is
lower than the later, reaching an order ofmagnitude for the 100%of probability and examples
generating the initial theory. This is the dataset that yields the larger theories. In the others
datasets, the 100 and 70% setting of examples usually present better cases for the stochastic
approaches, while the 40% setting is usually better for the deterministic approach. However,
in all of these cases, the running time is greatly reduced, even being smaller than Aleph in
the proteins dataset, 100% setting and 100% of probability. Notice that, as only 40% of
the examples are used to generate the initial theory, in this setting the theories are smaller
than in the others cases. Also, observe that the smallest difference between the stochastic
and deterministic algorithms appears in the Metabolism dataset, which is the one with the
smallest initial theories. Finally, while the choice of probabilitymakes a reasonable difference
in the running time, it little influences the final accuracies. What happens here is that with
the probability of 100%, the algorithm takes more iterations to converge. However, as it
always chooses the revisions at random, it still has smaller search spaces. Taking all those
observations into account, these results suggest that the presence of large theories benefits
this type of stochastic algorithm, as the search space of possible revisions may be also very
large.

The size of initial theories also largely influences the results of both Stochastic Greedy
and Stochastic Hill Climbing with Random Escape algorithms, but in this case it is more
likely to be due to the stopping criteria, which is the number of implemented revisions. First
of all, notice that both of them have similar behavior, and therefore it seems to make no
difference to require an improvement in greedy moves, as it is the case of the second one.

123



Mach Learn (2017) 106:197–241 233

Fig. 13 Markers with the accuracy (left) and running time in logarithmic scale (right), obtained from the
Pyrimidines dataset

Fig. 14 Markers with the accuracy (left) and running time in logarithmic scale (right), obtained from the
Yeast Sensitivity dataset

Fig. 15 Markers with the accuracy (left) and running time in logarithmic scale (right), obtained from the
Proteins dataset

123



234 Mach Learn (2017) 106:197–241

Fig. 16 Markers with the accuracy (left) and running time in logarithmic scale (right), obtained from the
Metabolism dataset

This is possibly due to the requirement that the chosen revision has a score constrained by
the grasp-like function, irrespective of the kind of move that the Stochastic Greedy algorithm
follows. After all, in most cases we observed that this grasp-like function also demands an
improvement in the current score, which makes both algorithms present similar accuracy
results.

Thus, observe that the stochastic approaches reach the best results when the stopping
criteria is set to 32 implemented revisions. The most evident exception is the Metabolism
dataset, where the results are already good for the stochastic algorithms even with only
4 implemented revisions. In general, this is still less than the number of iterations of the
deterministic approach. Once again, the probabilities seem to have little influence on the
final results of accuracies.

Finally, the running time of the stochastic algorithms with the best stopping criteria para-
meters for the accuracies is always lower than the running time of the deterministic approach.
Concisely, the closer results are in the Metabolism dataset, where the small size of the initial
theories does not make the deterministic algorithm have a hard time.

Randomizing Literals Finally, we present the results of randomizing the literals to be added
to/deleted from clauses in Fig. 17. First of all, the stochastic algorithm is always capable of
improving the initial theories. Moreover, when comparing the accuracies achieved within all
three settings of initial theories (40, 70 and 100) to the accuracy obtained by the learning from
scratch with the whole set of examples (100), the revision also performs better. Furthermore,
in Proteins dataset, the best accuracies of the stochastic version regarding the 5 runs, with both
probabilities, are significantly better than the deterministic algorithm, as well as the average
values of the 70% setting. Proteins dataset has a preference for large clauses (Muggleton et al.
2010a) and the randomization of literals also tends to yield large clauses, as this algorithm
converges slowly, sometimes even reaching the maximum number of literals in the clauses.

This also happens in other datasets, although less regularly, namely in one setting of the
Metabolism dataset (100% training set, 100$ of probability) and with Yeast Sensitivity
best accuracies in three settings (40% of the training set, 50% of probability; 70% of the
training set, 100% of probability; 100% training set, 50$ of probability). In almost all the
others cases, including the whole set of experiments with Pyrimidines, the accuracies of
both the stochastic and deterministic versions do not present significant difference. The only
exception is the Metabolism dataset, with the 40% setting and 100% of probability, where

123



Mach Learn (2017) 106:197–241 235

Fig. 17 Bar plot with the accuracies (left) and running time in logarithmic scale (right), obtained from all
benchmark datasets. The results are obtained from theAlgorithm that randomizes literals to be added to clauses

the stochastic version behaves worse. Notice that this is the setting where the initial theory
has only the trivial clause, which may suggest that it is not a good idea to randomize literals
when creating theories from scratch within a revision procedure.

However, the running time is not reduced as we would expect. Observe that the greatest
reduction in time is in the Pyrimidines dataset, where the final accuracies are practically the
same in both systems. Yeast Sensitivity, which is the dataset with the largest set of facts, has
a running time behavior similar to Pyrimidines, except that the accuracies are higher or the
same as in the deterministic version. The datasets that got highest accuracies also got the
highest running time. Besides taking longer for the algorithm itself to converge, when the
stochastic algorithm suggests a revision composed of large clauses, and this such revision is
selected to be implemented, all the next coverage tests will also take more time to execute. In
addition, the more literals there are in the clause, the larger the search space of next candidate
literals is. This happens because more literals in a clause indicate more valid literals in the
BottomClause according to themodes. Based on both the accuracies and running time results,
it is advisable to use the stochastic randomization of literals in cases where large clause are
better to represent the domain, since higher accuracies are probably to be achieved, with little
cost in the running time.

Comparing all the algorithms and a combination of them Figures 18 and 19 compare the
accuracy and running time of all the results presented before, together with the results of
the revision process that combines three stochastic strategies, namely, randomizing revision
points (choosing atmost ten of them in a randomwalk), randomizing literals and randomizing
revisions with the stochastic Hill-Climbing. We varied the probabilities of the random walks
of these three strategies, considering 50 and 100%, yielding in the end eight cases. As before,
we present the results obtained from initial theories generated with 40, 70 and 100% of the
training set.

Concerning the results of the combination of the three strategies, the majority of them pre-
sented no significant difference in accuracies compared to the deterministic revision, while
the running time is greatly reduced by one order or more of magnitude, sometimes even being
faster than the ILP system. There are even caseswhere the accuracy is higher than in the deter-
ministic approach (Metabolism dataset, 100% of examples setting, for example), although
not significantly better. The only dataset that escapes from this pattern is Pyrimidines, where
a number of the combined results were significantly worse than the deterministic revision.

123



236 Mach Learn (2017) 106:197–241

Fig. 18 Scatter plot comparing running time and accuracy of the deterministic approaches, the randomization
with all strategies and a combination of the strategies for the Yeast Sensitivity (top) and Pyrimidines (down)
datasets

123



Mach Learn (2017) 106:197–241 237

Fig. 19 Scatter plot comparing running time and accuracy of the deterministic approaches, the randomization
with all strategies and a combination of the strategies for the Proteins (top) and Metabolism (down) datasets

123



238 Mach Learn (2017) 106:197–241

Remember that this dataset has the largest initial theories, which in turn, in this case, also
yielded a large number of revision points. Therefore, it seems that in this case it is not a good
idea to reduce that much the search spaces altogether.

Once again, as also happenedwith the human-engineered theory, the best trade-off between
accuracy and running time are achieved by either the combined approach or the randomization
of revision points alone. Randomizing the revisions only performs a good job in a few cases
where they are able to reduce the runtime without significantly decreasing the accuracy.
However, in the Metabolism dataset, the majority of the results obtained from randomizing
the revisions achieve competitive or better accuracies than the deterministic approach.

6 Conclusions

In this paper a set of stochastic local search algorithms were presented, for exploring the key
search spaces of the revision process more efficiently. The algorithms abandon completeness
in favor of finding good solutions in a reasonable time. They are based on random walks, so
that the choice of pursuing a greedy or a stochastic move is made according to a probability
parameter. Stochastic algorithms were implemented in YAVFORTE system in every key
search of the revision process.

First, an SLS algorithm was built to avoid collecting all revision points from all misclassi-
fied examples.With a probability p, misclassified examples are randomized and a pre-defined
number of revision points is generated. The search is alternated with greedy moves, since
without the probability p all revision points found in the theory from each misclassified
instance are collected. Through experimental results we found out that in a number of cases
there is no need of employing greedy moves, since defining the probability parameter as
100% already achieves good results: the revision time is greatly reduced, accuracies of the
initial theories are greatly improved at the same time that they are not statistically significant
different compared to the baseline revision system, when an appropriate number of revision
points is selected. Thus, the performance of the stochastic component in the search for revi-
sion points is more influenced by the parameter defining the number of revision points that
should be returned.

Second, three different stochastic components were included to decide which revision is
going to be implemented, yielding a randomization of revision operators. In the results, we
could see that the simplest strategy, which with a certain probability randomizes revisions
and implements the first one improving the score, achieved the best overall results. The size
of initial theories has a great influence on these results, as in the majority of the cases, the
biggest reduction in running time and best improvement of accuracies are reached within the
largest theories. On the other hand, the algorithms that accept possibly bad moves (bounded
by a grasp-like evaluation function) usually achieve good results only when a large number
of iterations is set as the stopping criteria. In our results, this number is the largest we set.
Such results are also better following the size of the theories, but, in this case, as probably
the number of iterations is not big enough, the best results are achieved with the setting with
smallest theories.

Third, SLS components were included in the search for literals to be added to or removed
from a clause. Stochastic search was included in both hill climbing and relational pathfinding
algorithms for specializing clauses. In the first case, when themove is stochastic, literals from
the Bottom Clause are randomized and the first literal found that improve the score is added
to the clause. In relational pathfinding, paths created from the Bottom Clause and a positive

123



Mach Learn (2017) 106:197–241 239

instance are randomized. In this work, we used both algorithms cooperating with each other,
when relational pathfinding was applicable. We noticed from the empirical evaluation that,
this approach is more likely to improve the accuracies, reaching higher values than the
deterministic approach, than to reduce the runtime. Actually, in two datasets the running
time was higher than the deterministic approach. The reasons for that are mainly due to
the Bottom clause: either it is small or with few valid literals according to the modes, and,
therefore, does not produce a large search space of literals, or it is large but in this case the use
of stochasticmove takesmore iterations to converge than the original approach. Once again, it
is better to always make random moves, instead of alternating them with greedy approaches.

To sum up, we showed in this paper that the revision process is able to improve the
initial score of theories, in three scenarios: (1) with a human crafted initial theory, (2) with
initial theories generated from training sets with reduced size and (3) with initial theories
generated from the same set of examples provided to the revision system.Moreover, in several
cases the stochastic algorithms were able to reduce the runtime while still improving the
accuracy of the initial theories. Additionally, in some experiments the stochastic algorithms
were able to achieve even higher accuracies than the deterministic approach. Putting our
contribution together with the fast development of rich knowledge bases in areas such as
biology (Muggleton 2005), suggests a strong case for theory revision.

There is a number of open directions for future work. First, we observed that the successful
results obtained by YAVFORTE benefit from (1) the use of specialization and generalization
operators, both at the clause and theory level; and (2) the use of stochastic search. We would
like to investigate whether these techniques can be as effective on other ILP settings, such
as learning from scratch or when using different theory revision algorithms. We believe that
the rapid progress in stochastic search deserves further research in ILP.

Second, we would like to add to YAVFORTE rapid randomized restart strategies, already
employed in ILP (Železný et al. 2006), that would avoid being stuck in unproductive refine-
ments by restarting after a certain criteria from another random point.

Third, we would like to develop general mechanisms for obtaining initial theories from
experts, supported by the recent progress in collective intelligence (Woolley et al. 2010).
Also, some domains receive data in streams and we believe that they could benefit from
an incremental revision process. Finally, we believe that it is straightforward to apply the
stochastic local methods developed here when revising probabilistic logical models, starting,
for example, from PFORTE (Paes et al. 2005) and BFORTE (Paes 2011) systems.

Acknowledgements Aline Paes and Gerson Zaverucha would like to thank the Brazilian Research Agency
CNPq (483448/2013-3; 304399/2013-2). Vítor Santos Costa gratefully acknowledges Project “NanoSTIMA:
Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health Monitoring and Analytics/ NORTE-
01-0145-FEDER-00001” financed by the North Portugal Regional Operational Programme (NORTE 2020),
under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF). We would like to thank all the authors of previous work that made their systems and datasets publicly
available. We also would like to thank the anonymous reviewers and the MLJ action editor for the profoundly
valuable comments.

References

Adé, H., Malfait, B., & De Raedt, L. (1994). RUTH: An ILP theory revision system. In 8th international
symposium onmethodologies for intelligent systems (ISMIS-94), LNCS (Vol. 869, pp. 336–345). Springer

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial
Intelligence, 101(1–2), 285–297.

Bratko, I. (1999). Refining complete hypotheses in ILP. In Proceedings of the 9th inductive logic programming
(ILP-99), LNAI (Vol. 1634, pp. 44–55) Springer.

123



240 Mach Learn (2017) 106:197–241

Buntine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the 17th annual conference
on uncertainty in artificial intelligence (UAI-91), San Mateo, CA (pp. 52–60).

Cheng, J., Hatzis, C., Hyashi, H., Krogel, M. A., Morishita, S., Page, D., et al. (2002). KDD Cup 2001 report.
SIGKDD Explorations, 3(2), 47–64.

Chisholm, M., & Tadepalli, P. (2002). Learning decision rules by randomized iterative local search. In Pro-
ceedings of the 19th international conference on machine learning (ICML-02) (pp. 75–82).

DeRaedt, L., &Bruynooghe,M. (1993). A theory of clausal discovery. InProceedings of the 13th international
joint conference on artificial intelligence (IJCAI-93) (pp 1058–1063).

Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., & Tadepalli, P. (2008). Structured machine learning:
The next ten years. Machine Learning, 73, 3–23.

Duboc, A. L., Paes, A., & Zaverucha, G. (2009). Using the bottom clause and modes declarations on FOL
theory revision from examples. Machine Learning, 76(1), 73–107.

Dzeroski, S., & Bratko, I. (1992). Handling noise in inductive logic programming. In Proceedings of the 2nd
international workshop on inductive logic programming.

Esposito, F., Semeraro, G., Fanizzi, N., & Ferilli, S. (2000). Multistrategy theory revision: Induction and
abduction in INTHELEX. Machine Learning, 38(1–2), 133–156.

Gama, J. (2010). Knowledge discovery from data streams. Boca Raton: CRC Press.
Gama, J.,Medas, P., Castillo, G.,&Rodrigues, P. (2004). Learningwith drift detection. InAdvances in artificial

intelligence-SBIA 2004 (pp. 286–295) Springer.
Garcez, A., & Zaverucha, G. (1999). The connectionist inductive learning and logic programming system.

Applied Intelligence, 11, 59–77.
Hirst, J. D., King, R. D., & Sternberg, M. J. E. (1994). Quantitative structure-activity relationships by neural

networks and inductive logic programming. I. The inhibition of dihydrofolate reductase by pyrimidines.
Journal of Computer Aided Molecular Design, 8(4), 405–420.

Hoos, H. H., & Stützle, T. (2005). Stochastic local search: Foundations and applications (1st ed.). California:
Elsevier.

Joshi, S., Ramakrishnan, G., & Srinivasan, A. (2008). Feature construction using theory-guided sampling and
randomised search. In Proceedings of the 18th international conference on ILP, LNAI (Vol. 5194, pp.
140–157) Springer.

Kadupitige, S. R., Julia, K. C. L., Sellmeier, S. J., Catchpoole, D. R., Bain, M., & Gaeta, B. A. (2009).
MINER: Exploratory analysis of gene interaction networks by machine learning from expression data.
BMC Genomics, 10(Suppl 3), S17.

King, R. D., Muggleton, S., & Sternberg, M. (1992). Drug design by machine learning: The use of inductive
logic programming to model the structure-activity relationships of trimethoprim analogues binding to
dihydrofolate reductase. Proceedings of the National Academy of Sciences, 89(23), 11,322–11,326.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In
Proceedings of the 14th international joint conference on artificial intelligence (IJCAI-95) (pp 1137–
1145).

Kowalski, R. A., & Kuehner, D. (1971). Linear resolution with selection function. Artificial Intelligence,
2(3/4), 227–260.

Lloyd, J. (1987). Foundations of logic programming (2nd ed.). Berlin: Springer.
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3&4), 245–286.
Muggleton, S. (2005). Machine learning for systems biology. In Proceedings of the 15th international con-

ference on inductive logic programming (ILP-05), lecture notes in computer science (Vol. 3625, pp.
416–423) Springer.

Muggleton, S., & Bryant, C. H. (2000). Theory completion using inverse entailment. In Proceedings of the
10th international conference on ILP, LNAI (Vol. 1866, pp. 130–146) Springer.

Muggleton, S., & Tamaddoni-Nezhad, A. (2008). QG/GA: A stochastic search for Progol.Machine Learning,
70(2–3), 121–133.

Muggleton, S., Paes, A., Costa, V. S., & Zaverucha, G. (2010a). Chess revision: Acquiring the rules of chess
variants through FOL theory revision from examples. In Inductive logic programming, 19th international
conference, ILP 2009. Revised papers, LNCS (Vol. 5989, pp. 123–130) Springer.

Muggleton, S., Santos, J. C. A., &Tamaddoni-Nezhad, A. (2010b). ProGolem:A system based on relativemin-
imal generalisation. In Proceedings of the 1th international conference on inductive logic programming
(ILP-09), LNAI (Vol. 5989, pp. 131–148) Springer.

Muggleton, S. H., King, R. D., & Sternberg, M. J. E. (1992). Protein secondary structure prediction using
logic-based machine learning. Protein Engineering, 5(7), 647–657.

Paes, A., Revoredo, K., Zaverucha, G., & Santos Costa, V. (2005). Probabilistic first-order theory revision
from examples. In Proceedings of the 15th international conference on inductive logic programming
(ILP-05), LNAI (Vol. 3625, pp. 295–311) Springer.

123



Mach Learn (2017) 106:197–241 241

Paes, A., Železný, F., Zaverucha, G., Page, D., & Srinivasan, A. (2006). ILP through propositionalization and
stochastic k-term DNF learning. In Proceedings of the revised papers of 16th international conference
on ILP (ILP-06), LNAI (Vol. 4455, pp. 379–393) Springer.

Paes, A., Zaverucha, G., & Santos Costa, V. (2007). Revising first-order logic theories from examples through
stochastic local search. In Proceedings of the 17th international conference on ILP (ILP-07), LNAI (Vol.
4894, pp. 200–210) Springer.

Paes, A. M. (2011). On the Effective revision of (Bayesian) logic programs from examples. Ph.D. thesis.
Quinlan, J. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Ramachandran, S., & Mooney, R. (1998). Theory refinement of Bayesian networks with hidden variables. In

Proceedings of the 15th international conference on machine learning (ICML-98) (pp. 454–462).
Richards, B. L., &Mooney, R. J. (1992). Learning relations by pathfinding. In Proceedings of the 10th annual

national conference on artificial intelligence (AAAI-92) (pp. 50–55).
Richards, B. L., & Mooney, R. J. (1995). Automated refinement of first-order Horn-clause domain theories.

Machine Learning, 19(2), 95–131.
Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–136.
Rückert, U., & Kramer, S. (2003). Stochastic local search in k-term DNF learning. In Proceedings of the 20th

international conference on machine learning (ICML-03) (pp. 648–655).
Rückert, U., & Kramer, S. (2004). Towards tight bounds for rule learning. In Proceedings of the 21st interna-

tional conference on machine learning (ICML-04), ACM (Vol. 69).
Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Englewook Cliffs, NJ:

Prentice-Hall.
Santos Costa, V., Damas, L., & Rocha, R. (2012). The yap prolog system. Theory and Practice of Logic

Programming, 12(Special Issue 1–2), 5–34.
Selman, B., Levesque, H., & Mitchell, D. (1992). A new method for solving hard satisfiability problems. In

Proceedings of the 10th annual national conference on artificial intelligence (AAAI-92) (pp. 440–446).
Selman, B., Kautz, H. A., & Cohen, B. (1996). Local search strategies for satisfiability testing. Cliques, col-

oring, and satisfiability: Second DIMACS implementation challenge, October 11–13, 1993. In DIMACS
series in discrete mathematics and theoretical computer science (Vol. 26, pp. 521–532).

Serrurier, M., & Prade, H. (2008). Improving inductive logic programming by using simulated annealing.
Information Sciences, 178(6), 1423–1441.

Shapiro, E .Y. (1981). The model inference system. In Proceedings of the 7th international joint conference
on artificial intelligence (IJCAI-81) (p. 1064) William Kaufmann.

Specia, L., Srinivasan, A., Joshi, S., Ramakrishnan, G., & Nunes, M. D. G. V. (2009). An investigation into
feature construction to assist word sense disambiguation. Machine Learning, 76(1), 109–136.

Srinivasan, A. (2000). A study of two probabilistic methods for searching large spaces with ILP. Tech. Rep.
PRG-TR-16-00, Oxford University Computing Laboratory, Oxford.

Srinivasan, A. (2001). The Aleph Manual. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/
aleph.html.

Tamaddoni-Nezhad, A., & Muggleton, S. (2000). Searching the subsumption lattice by a genetic algorithm.
In Proceedings of the 10th international conference on ILP (ILP-00), LNAI (Vol. 1866, pp. 243–252)
Springer.

Towell, G., & Shavlik, J. (1994). Knowledge-based artificial neural networks. Artificial Intelligence, 70(1–2),
119–165.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts. Machine
Learning, 23(1), 69–101.

Wogulis, J., & Pazzani, M. (1993). A methodology for evaluationg theory revision systems: Results with
Audrey II. In Proceedings of the 13th international joint conference on artificial intelligence (IJCAI-93)
(pp. 1128–1134).

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., & Malone, T. W. (2010). Evidence for a collective
intelligence factor in the performance of human groups. Science, 330(6004), 686–688.

Wrobel, S. (1994). Concept formation during interactive theory revision.Machine Learning, 14(1), 169–191.
Wrobel, S. (1996). First-order theory refinement. In L. De Raedt (Ed.), Advances in inductive logic program-

ming (pp. 14–33). Netherlands: IOS Press.
Železný, F., Srinivasan, A., & Page, D. (2002). Lattice-search runtime distributions may be heavy-tailed. In

Proceedings of the twelth international conference on inductive logic programming (ILP-02), LNAI (Vol.
2583, pp. 341–358) Springer.

Železný, F., Srinivasan,A.,&Page,D. (2006).Randomised restarted search in ILP.MachineLearning,64(1–3),
183–208.

123

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html

	On the use of stochastic local search techniques to revise first-order logic theories from examples
	Abstract
	1 Introduction
	2 Stochastic local search
	2.1 Stochastic local search methods

	3 Theory revision from examples and YAVFORTE
	3.1 YAVFORTE
	3.2 Finding revision points
	3.3 YAVFORTE revision operators
	3.3.1 Adding antecedents to clauses in YAVFORTE


	4 Stochastic local search to revise first-order logic theories from examples
	4.1 Stochastic local search for revision points
	4.2 Stochastic local search for revisions
	4.3 Stochastic local search for literals
	4.3.1 Stochastic component when searching for literals


	5 Experimental results
	5.1 Human-engineered theory revision
	5.1.1 Results

	5.2 Revising theories generated by an ILP system
	5.2.1 Results


	6 Conclusions
	Acknowledgements
	References




