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Photosynthesis is an important and complex physical process in nature, whose comprehensive understanding would have many
relevant industrial applications, for instance, in the field of energy production. In this paper, we propose a quantum algorithm for
the simulation of the excitonic transport of energy, occurring in the first stage of the process of photosynthesis. +e algorithm
takes in account the quantum and environmental effects (pure dephasing), influencing the quantum transport. We performed
quantum simulations of such phenomena, for a proof of concept scenario, in an actual quantum computer, IBMQ, of 5 qubits. We
validate the results with the Haken-Ströbl model and discuss the influence of environmental parameters on the efficiency of the
energy transport.

1. Introduction

Photosynthesis is a vital and pervasive complex physical
process in nature, where the radiation of the sun is captured
by certain living beings, such as plants and bacteria, and
transformed into the necessary carbohydrates needed for their
survival [1, 2]. From the physics and chemistry perspective, it
is a complex process occurring through several stages with
several kinds of physical phenomena involved, namely, the
light absorption, energy transport, charge separation, pho-
tophosphorylation, and carbon dioxide fixation [3]. +e
understanding of such phenomena has greatly progressed in
the past 40 years with the physical characterization of the
structure of many photosynthetic complexes [4–6]. +e
comprehension of such processes would allow for many
potential huge-impact industrial breakthroughs in the field of
energy, from the great efficiency improvement in energy

capture of solar panels [7] to the construction of artificial
light-harvesting devices and solar fuels [8–11].

+e photosynthesis begins by the absorption of a photon.
It occurs via excitation of a pigment molecule, which acts as
a light-harvesting antenna connected to the rest of the
photosynthetic apparatus by protein molecules. Photosyn-
thetic pigment-protein complexes transfer the absorbed
sunlight energy, in the form of molecular electronic exci-
tation, to the reaction center, where charge separation ini-
tiates a series of biochemical processes [2]. +is work is
focused on the first stage of photosynthesis, more precisely
on the transport of the absorbed radiation energy from the
antenna to the reaction center, which proceeds in the form of
the so-called Excitonic Energy Transfer (EET), as sche-
matically shown in Figure 1.

+is transport is known to be very efficient in photo-
synthesis, as is the whole process, with the overall quantum
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efficiency of initiation of charge separation per absorbed
photon up to 95% [2]. +e absorbed photon creates an
exciton on the antenna molecule, which can eventually
transfer it to other molecules. In this context, it is called
donor, while the others are called acceptors and the EET
process can be described by the following reaction equation:

D
∗

+ A⟶ D + A
∗
. (1)

+e physics of the mechanisms behind equation (1) will
be discussed in the following section. Here we just notice
that EET is a complex process that can be irreversible (i.e.,
unidirectional) or reversible, that is, coherent over some
period of time, as evidenced by experimental observations of
long-lived oscillatory features in the dynamical response of
several photosynthetic systems [12–14]. Moreover, it is
strongly influenced by the environment.+e donor-acceptor
pair is not isolated from the rest of the world and is an
example of so-called open systems [15]. It must be treated as
a subsystem of a larger system including a thermal bath. +e
properties of the latter are crucial because it introduces
relaxation and dephasing into the system directly involved in
the EETand, therefore, influences the efficiency of the energy
transport.

Open quantum systems cannot be described by a wave
function because one does not have enough information to
specify it; only a (less detailed) description in terms of a
density matrix is possible, which represents a statistical
mixture of states or a mixed state (see Supplementary In-
formation A.1). +e dynamics of such a system can be
determined by solving an equation of motion for the density
matrix. Such equations of motion are called quantummaster
equations. Finding exact solutions to the master equations is
extremely difficult but there is a wide range of theoretical
approaches and techniques available to make their

mathematical simplification and numerical simulations.
+ese approaches can be divided into several groups
according to the regime under study, characterized by the
coupling strength between the bath and the system and the
existence of memory effects in the bath (i.e., whether the
system can be considered as Markovian or not). Broadly
speaking, for the weak-coupling Markovian regimes, per-
turbative approaches are applicable, such as the Bloch-
Redfield and Lindbladmaster equations [2, 16], which can be
extended tomedium coupling strengths and non-Markovian
regimes by including higher-order system-bath interaction
terms [17, 18]. For the latter regime, there are also non-
perturbative techniques based on the use of path integrals to
dissipative systems [19], which can be used to create sets of
solvable systems of hierarchical equations, the so-called
hierarchical equations of motion (HEOM) [20–22]. Open
quantum systems that do not have the Markovian property,
for example, because of a too small size of the bath effectively
coupled to the system, which keeps memory of the past, are
much more difficult for theoretical description because the
dynamics equation is nonlocal in time.

However, even within the Markov approximation, the
calculations quickly become computationally intractable for
realistic photosynthetic systems and environment models.
+e computational cost of simulating a photosynthetic
complex consisting of N molecules with a theoretical tool
such as the HEOM grows exponentially with N. A possible
computational solution that has been arising to bypass this
type of problems is the use of quantum simulation, where it
is expected to obtain large performance increases in terms of
space, as the number of qubits’ growth is just polynomial,
and in terms of time, where an exponential gain is expected.

+e use of quantum mechanics to make calculations
about quantum mechanics, promising great computational
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Figure 1: Schematics of the energy transfer process from light-harvesting antenna (the donor) through a chain of acceptor molecules to the
reaction center. +e excited states of the participating molecules, denoted as εm, are broadened and they allow for resonance energy transfer
via irreversible Förster-type resonant process of exciton transfer from donor to acceptor even if εm ≠ εm+1, which is denoted by the thick
arrow labelled FRET. However, if the coupling between the donor and the acceptor molecules is strong enough, the process becomes
reversible and the exciton can go to and through many times before it is transferred; this situation is labelled by “reversible EET” and it does
not require matching of the energy levels εm and εm+1.
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advantages, was firstly proposed by Feynman [23, 24]. +e
field of quantum simulation is under a fast-paced and in-
tense development, finding already application across all
fields of physics and using many different physical imple-
mentations [25]. Closer to the present work, there are works
on quantum transport [26, 27] and on the quantum sim-
ulation of dissipative systems [28]. Particularly on the
quantum simulation of photosynthesis, we would like to
highlight the papers in [29–31], using superconducting
qubits and [32] employing a Nuclear Magnetic Resonance
(NMR) simulator [33].+e latter is of particular relevance to
the work carried out here as it was dedicated to the quantum
simulation of the energy transport with environmental ac-
tions, where the environment effect is simulated naturally by
an appropriate filtering of environmental noise [34], within
the NMR system. In this case, the implementation is specific
for the EET (i.e., nonuniversal), and the model Hamiltonian
was extracted from spectroscopic data for a photosynthetic
system [35]. We are simulating the same Hamiltonian as in
[32] and starting from the same assumptions, however, the
simulation algorithm is completely different, since we
conceived a digital quantum simulation designed to run in a
universal quantum computer, the commercially available
IBM Q of 5 qubits [36]. Our implementation contains a
quantum part, aimed at simulating the unitary part of the
system’s evolution, and a classical part that simulates the
stochastic interaction with the environment, the latter only
being able to mimic pure dephasing environmental effects.

2. Physics of the Energy
Transport in Photosynthesis

2.1. Förster and Redfield Approaches. +e molecules of the
light-harvesting complexes usually are not electronically
coupled to each other and charge transfer via electron
tunneling is improbable. Hence, energy transfer can occur
between them through electromagnetic interaction, without
net charge transport, because the whole (neutral) exciton is
transferred. Such processes are known to take place between
molecules [37] or artificial nanostructures such as quantum
dots [38] if appropriate conditions are met, which were first
formulated by Förster [39]:

(i) +e distance between the donor and acceptor
molecules must be sufficiently small because the
transfer probability decreases quickly with the
distance between them (R), usually as R− 6

(ii) +ere must be a resonance between the excited
states of the donor and acceptor molecules (“Res-
onance” here means that the energy spectra of the
two molecules, broadened because of a number of
natural reasons, overlap-see Figure 1)

(iii) An increase of the refractive index of the sur-
rounding medium decreases the transfer rate

Förster’s approach is based on the second-order per-
turbation theory (the so-called “Fermi’s Golden Rule”),
where the perturbation operator is the electromagnetic

interaction between two transient dipoles corresponding to
allowed optical transitions in the donor and acceptor
molecules, respectively. It originated the term “Förster
resonance energy transfer” (FRET), which applies to an
irreversible hopping of an exciton from the donor to the
acceptor. +e FRET rate (transition probability per unit
time) can be expressed by the following relation [2]:

kF �
J
2

2πZ
2 􏽚

+∞

− ∞
dωLD(ω)IA(ω), (2)

where J is the coupling constant, ω is the angular frequency
of the electromagnetic field, and LD(ω) and IA(ω) denote
dimensionless lineshape functions of the donor and acceptor
molecules, directly related to the energy spectrum of each
molecule. +e integral is called the spectral overlap between
the molecules. +e coupling constant, in the dipole-dipole
approximation, is given by [37]

J �
1

η2R3 dA · n( 􏼁 · dD( 􏼁 − 3 dA · n( 􏼁 dD · n( 􏼁􏼂 􏼃􏼪 􏼫, (3)

where η is the refractive index of the medium, dD(dA) is the
transient dipole moment of the donor (acceptor) molecule,
n � (R/R), R is the radius vector between the two molecules,
and the angular brackets stand for angular average over
different orientations of the dipoles.

Even though equation (2) (and the approach itself ) is too
simplistic to describe all possible situations in EET, defining
this characteristic transfer rate allows for the formulation of
the following conditions for FRET to occur:

(i) If the difference between the energies of the excited
state energy of the donor (ε0) and acceptor (ε1)
molecules is small, |ε0 − ε1|≪ J, and these states are
in resonance, the energy transfer between the
molecules can occur with a high probability

(ii) If |ε0 − ε1|≫ J (off-resonance), the exciton is trapped
in the donor molecule because it has a very low
probability of being transferred; in this case, it either
stays in the molecule and later the donor molecule
will decay to the ground state, dissipating the energy,
or transfers the energy to a different acceptor nearby

As pointed out above, the initial idea of Förster was that
an exciton is irreversibly transferred from a donor to an
acceptor. More recently, it has been shown experimentally
that quantum coherent transport, where energy is trans-
ported in the form of wave-packets, has a significant role in
many important physical effects, including the photosyn-
thesis [40–42]. +e Förster theory does not apply in this
regime, as it simply ignores coherence. Later, in 1957,
Redfield [43] proposed a transport theory, which applies to
the opposite regime of strong coupling between the donor
and acceptor [2, 40, 44] (although originally it appeared in
the context of NMR spectroscopy). Within this concept, the
exciton forms a coherent state based on the whole donor-
acceptor pair and oscillates between the two molecules. +is
system can be described by the following Hamiltonian:
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􏽢HS � 􏽘
1

m�0
εm|m〉 m| + J(|0〈 〉 1| +|1〈 〉 0|),〈 (4)

where |m〉 denotes the exciton on the molecule m. +e
eigenstates of (4) are linear combinations of |0〉 and |1〉.
Coherent dynamics correspond to the presence of nonzero
off-diagonal elements in the density matrix describing the
evolution of the quantum system. +eir oscillation (or
quantum beating) is indicative of coherence [2]. For the
system with Hamiltonian (4), the description in terms of
state vectors is perfectly possible but it will not be the case if
interactions with environment are taken into account.
+erefore, we may introduce the density matrix description
at this point. +e evolution of the off-diagonal elements of
the system’s density matrix, written in the energy basis
(where the Hamiltonian is diagonal) and denoted as ρij, is
given by

ρij(t) � e
− it

���������
ε0− ε1( )

2
+ 4J2

􏽰
/Z( 􏼁ρij(0), i≠ j, (5)

(see Supplementary Information A.2 for the derivation).
+ese states are perturbed by interactions with the envi-
ronment (the bath), which destroys their coherence.
Mathematically, it is expressed in the form of a master
equation, which is known as the Bloch-Redfield equation; its
general form can be found, for example, in [16]. +is
consideration is extendable to a chain of molecules and can
be seen as (partially) coherent transport [40]. +e presence
of the latter, observable through coherent oscillations of the
energy levels of molecules across different sites (the quantum
beating), was first conjectured in the 30s [45] and theo-
retically predicted in more recent works [44, 46]. It became
possible to observe them more recently, thanks to the ad-
vances of optical spectroscopy techniques [12–14, 47], and it
was achieved even at room temperature [42]. In these ex-
periments, it was possible to confirm the substantial impact
of such coherent effects on the excitation energy transfer in
photosynthetic systems [2]. Moreover, the importance of
environmental noise in the quantum transport involving
coherence was also discussed more recently [15, 48] and it is
not fully understood yet.

2.2. Decoherence. Processes caused by the molecules’ envi-
ronment may destroy coherence and thus influence this type
of energy transport [2, 15, 49]; moreover, they can foster it.
Indeed, completely coherent oscillations (called Rabi flop-
pings in atomic physics) between different molecular sites do
not correspond to an energy flux. Breaking the oscillatory
evolution at some moment may help in transferring the
exciton along the molecular chain.

If interactions exist between a system and its environ-
ment, they affect the (pure) states of the system, introducing
“errors” and making these states mixed. It means the so-
called phenomenon of decoherence, which, by the way, has
been the main obstacle to the success of quantum com-
putation. Decoherence processes can be divided into three
categories: (i) amplitude damping, (ii) dephasing, and (iii)
depolarization, which are briefly described below [50].

2.2.1. Amplitude Damping. Environment interactions with
the system may cause a loss of the amplitude of one or more
system’s states. +e spontaneous emission of a photon from
the system (i.e., from one of the molecules) to the envi-
ronment is an example of this kind of process, so that the
system returns to its ground state (without exciton) [51]. For
a two-level system (e.g., a qubit), this type of decoherence
contracts the Bloch sphere along the z-axis (see Supple-
mentary Information A.1).

2.2.2. Phase Damping or Dephasing. Such interactions
conserve the energy of the system, contrary to the amplitude
damping. A phase damping channel removes the super-
position of the system state; that is, the off-diagonal terms of
the system’s density matrix decay over time down to zero. It
is a process of removing the coherence of the system, causing
a classical probability distribution of states and, therefore,
imposing some classical behaviour in a quantum system. A
simple way to look at this type of decoherence is also to think
of the system interacting with the environment, where the
relative phases of the system’s states become randomized by
the environment. +is randomness comes from a distri-
bution of energy eigenvalues of the environment. As a result,
the evolution of the quantum system’s Rabi cycle ceases but
the time-average populations of the states may not change
and this is the case of the pure dephasing. For a two-level
system with a pure dephasing interaction, the Bloch sphere
contracts in the x − y plane.

2.2.3. Depolarization. +is type of decoherence changes
system’s state, which initially is pure, to a mixed state, with a
probability P of another pure state and the probability (1 −

P) of the initial state of the system. It is equivalent to saying
that, for a single qubit, an initial pure state represented on
the Bloch sphere has suffered a contraction over all di-
mensions of the sphere (with the contraction degree that
depends on the probability P). It can be thought of as a
combination of the other two types of decoherence.

+e amplitude damping is certainly detrimental for
EET, since the energy is simply dissipated into the envi-
ronment. +e action of dephasing processes progressively
eliminates the coherence (off-diagonal) elements in the
system’s density matrix, causing the oscillation amplitude
to decay (beating suppression). It eventually turns the
diagonal matrix elements (populations) into (non-
correlated) classical probabilities, a process known as
thermal relaxation, for which the existence of coherence in
a system is time-limited. On the other hand, it has also been
shown that dephasing processes can have a positive role in
the coherent transport of energy [2]. First, it yields random
fluctuations in the energy spectrum of each molecule,
which can bridge the energy gap between the molecules,
momentarily turning a nonresonant system into a resonant
one. Second, dephasing can also help in avoiding the ex-
istence of the so-called coherence traps in a molecular
chain, a kind of deadlocks in energy transport where the
exciton can be confined [2]. +us, the result of action of a
decoherence source on an EET system is not obvious a
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priori. Below we shall consider a simple model of pure
dephasing consisting in a telegraph-type classical noise
affecting the donor-acceptor pair.

3. Materials and Methods

We aim at exploring the energy transport underlying the
photosynthesis, throughout time, under two regimes: (i) in
an isolated system and (ii) under an action of the envi-
ronment causing decoherence. In the “no-decoherence” case
(i), one can study the evolution of system’s state vector,
which obeys the following equation:

Ψtf

􏼌􏼌􏼌􏼌􏼌 􏼝 � e
− i􏽢H tf − ti( 􏼁/Z( 􏼁 Ψti

􏼌􏼌􏼌􏼌􏼌 􏽅 ≡ 􏽢U Ψti

􏼌􏼌􏼌􏼌􏼌 􏽅, (6)

for a time-independent Hamiltonian. Here tf and ti are the
upper and lower limits of the time interval to study. In order
to be able to do the calculation of the system’s evolution on a
quantum computer, it is necessary to provide a suitable qubit
encoding for the possible states and an approximation for
the Hamiltonian evolution operator, 􏽢U, in terms of quantum
gates and circuits (computational Hamiltonian). +e time, a
continuous entity in equation (6), has to be discretized onto
a set of intervals, Δt, where the Hamiltonian of interest can
be approximated as constant. +e actual computational
process is given by the repeated application of the evolution
operator on the prepared state |Ψi〉, for s times, of the
computational Hamiltonian, such that ti + s · Δt � tf. +e
process is finished by the observation of the desired prop-
erties, that is, a set of measurements, in the appropriate basis,
on the end state.

Concerning the particular qubit encoding chosen, a
chain of N � 2q molecules is encoded by a set of q qubits,
where |m〉 corresponds to the excitation (exciton) on the
m-th molecule; for example, for a two-molecule chain, state
|0〉 represents the exciton on the first molecule and |1〉

represents the excitation on the second one, and a possible
successful transport of energy would correspond to the
transition of the state |0〉 to the state |1〉. We denote this as
the site basis. +e computational Hamiltonians under this
encoding for the cases under study are discussed in the
following sections. From now on, we shall set Z � 1. Also, it
is convenient to measure the energies/frequencies in cm− 1,
as this is common in spectroscopy.

3.1. No-Decoherence Hamiltonian. Considering a small
chain of N molecules, the system’s Hamiltonian in the site
basis reads as follows:

􏽢HS � 􏽘
N− 1

m�0
εm|m〉 m| + 􏽘

m≠n
Jmn|m􏼪 􏼫 n|,〈 (7)

where εm is the first excited state energy of the molecule m

and Jnm is the electronic coupling between the molecules n

and m. +e Hamiltonian (7) for just two molecules (1
qubit), identical to equation (4), in the 2 × 2 matrix form,
reads

􏽢HS �
ε0 J

J ε1
􏼠 􏼡. (8)

Its evolution operator is given by

|Ψ(t)〉 � e
− i􏽢HSt

|Ψ(0)〉 ≡ 􏽢U(t)|Ψ(0)〉. (9)

Although the Hamiltonian (8) possesses nondiagonal
elements, finding a good approximation in terms of quan-
tum circuits is relatively straightforward. A possible strategy
for this is by finding a diagonalizing transformation,T, of the
Hamiltonian, such that

􏽢HS � T
† 􏽢HS− diagT. (10)

where 􏽢HS− diag is the diagonal Hamiltonian. +erefore, the
evolution operator can be rewritten as follows:

􏽢U(t) � e
− i􏽢HSt

� T
†
e

− i􏽢HS− diagt
T. (11)

+e problem now reduces to the approximation of the T

operator (and its adjoint) and the Hamiltonian 􏽢HS− diag,
which can all be efficiently approximated in quantum cir-
cuits. +e latter operator is diagonal in the site basis; thus the
unitary evolution operator can be expressed as

􏽢U(t) � e
− i􏽢HSt

� T
†

e
− i 􏽘
m�0 1Emt⎡⎣ ⎤⎦T � T

†
􏽙

1

m�0
e

− iEmt
]T.⎡⎣

(12)

+e T and T† matrices can be implemented by simple
rotations, Ry(θ) and Ry(− θ), for a two-molecule system.
However, for a higher number of molecules, a rotational
decomposition algorithm together with the Gray code [51],
which decomposes a matrix in the multiplication of a single
qubit and CNOTgates, has to be used. Using this particular
algorithm, the gate complexity for N molecules is
O(N2log2[N]) [51]. On the other hand, the diagonalized
evolution operator,

􏽢U(t) �
e

− iE0t 0

0 e
− iE1t

⎛⎝ ⎞⎠, (13)

translates into trivial phase rotations over each of the energy
eigenstates |Ei〉 of the system with the respective energy
eigenvalues Ei. +is operator can be constructed as a se-
quence of CRZ(ϕi) gates applied to an ancilla qubit (ini-
tialized at |1〉), where the angle is given by ϕi � − 2Eit,
i � 1, 2. +e X gates are used to “select” the eigenvector to
which the controlled rotation is to be applied. +e circuit
implementation of the operator defined in (13) is illustrated
in Figure 2. +e gate complexity of this operator, in terms of
single qubit and CNOT gates for N molecules, is
O(N log[N]).

For the whole circuit, resulting from the sequencing of
T† 􏽢HS− diagT, the number of qubits required to simulate a
molecular chain of N elements is 2 log2 N and the gate
count scales withO(N2log22N) single qubit and CNOTgates.
+e transformations T and T†, in the general case, possess a

Complexity 5



high circuit depth, which makes the system hard to simulate
accurately, with low error rate, in the current available
quantum computers.

3.2. Introducing Decoherence into the System. We shall
implement artificial decoherence as pure dephasing by
adding Markovian fluctuations to the Hamiltonian. +is
approach is considered a good approximation in the high-
temperature regime for the bath [15, 44, 50]. +e actual
algorithm to be used is the one of [52], which is used to
simulate open quantum systems, with pure dephasing,
modeling the action of the decoherence as classical ran-
dom fluctuations (a telegraph-type classical noise affect-
ing the system). +e actual Hamiltonian for this system
reads

􏽢H � 􏽢HS + 􏽢HF, (14)

and it consists of the system Hamiltonian, 􏽢HS, of the pre-
vious section and the perturbation of a bistable fluctuator
environment, 􏽢HF. +e latter simply shifts the energy by a
constant value for each molecule, ( ± gm/2), as illustrated in
Figure 3. Explicitly,

􏽢HF � 􏽘
1

m�0
χm(t)􏽢Am, (15)

where 􏽢Am|m〉 m|〈 is the projection operator and, considering
one fluctuator interacting with each molecule m,

χm(t) � gmξm(t). (16)

+e function ξm(t) switches the fluctuator between the
positive and negative values (appearing randomly) at a given
fixed rate c and gm is the fluctuation strength (or the
coupling strength to a molecule m). Physically, the action of
the fluctuations is typically stronger for the excited states
[44, 53] and g can be larger than the donor-acceptor cou-
pling J.

+e implementation of such random bivalued func-
tion ξm(t) can be done in a straightforward way by a
classical pseudorandom numbers generator with a
probability of 50% of the values (− 1/2) and (1/2). For
circuit generation purposes, the values resulting from the
random sampling have to be provided in advance of the
quantum simulation.

+e fluctuator interaction Hamiltonian and the system
Hamiltonian do not commute, so, in order to generate an
appropriate quantum circuit, one needs to apply an

approximation technique such as the Trotter product for-
mula [54]. Under this approximation, the unitary evolution
operator of the Hamiltonian, for a time t � NiΔt, where Ni

is the number of iterations and Δt is the iteration time-step,
becomes

U NiΔt( 􏼁 � e
− i􏽢HΔt

􏼒 􏼓
Ni

� e
− i􏽢HFΔtT

†
e

− i􏽢HSΔtT􏼒 􏼓
Ni

� 􏽙
1

m�0
e
±i gm/2( )Δt⎡⎣ ⎤⎦T

†
􏽙

1

m�0
e

− iEmΔt⎡⎣ ⎤⎦T⎛⎝ ⎞⎠

Ni

,

(17)

where Em denote the eigenvalues of the systemHamiltonian.
Note that the projection operator 􏽢Am is not present in

the evolution operator (17) because the latter is used in its
eigenbasis, that is, the site basis. +e fluctuator interaction
evolution operator e±i(gm/2)Δt is a selective rotational gate
over a moleculem |m〉, which can be implemented by a set of
X gates and a controlled gate CRZ(ϕm) with angle
ϕm � ± gmΔt, applied over an ancilla qubit initialized at |1〉.
+e whole circuit is presented in Figure 4 for one iteration.
+e fluctuator waiting time (interval of time between
switches), that is, (1/c), can only be equal to or higher than
the iteration time-step, Δt. +e switching in the fluctuator-
molecule coupling strength is performed at every (1/cΔt)
iteration, where aΔt � (1/c), a ∈ N.

Usually in the study of open quantum systems with a
dilated system’s Hilbert space (as is the case here), different
measurement techniques are required [51, 52]; however, in
this case, the open system is simulated in a closed form so,
similar to the no-decoherence case, the measurement over
the site basis suffices. +e full algorithm (random values
generator plus the actual simulation) must be performed
several times, so that the results of all runs are averaged.

Let us consider the simulation for a time t, using an
iteration time-step Δt, and assuming that the environment
can have more than one fluctuator interacting with each

Ground state

J

E

t

g1

g0

ε1

ε0

Figure 3: Uncorrelated random fluctuations applied to donor and
acceptor’s excited state energies, ε0 and ε1. Eachmolecule is affected
by one fluctuator, which generates a telegraph-type classical noise.
+e fluctuators switch randomly between the positive and negative
values at a given fixed rate, so that the periods of time when the
molecule energy is constant, εm + (gm/2) or εm − (gm/2), are
random. J is the coupling strength between the molecules that can
be seen as the rate of hoppings between these fluctuating energy
levels.

∣qsystem〉

∣1〉anc

X X

RZ (–2E′0t) RZ (–2E′1t)

Figure 2: Implementation of the system’s evolution operator.
|qsystem〉 is the state vector of the system’s qubit in the energy
eigenbasis.
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molecule as well as the chain can have more than just two
elements. +en the fluctuator interaction evolution operator
requires the following gate resource complexity for a single
run:O((t/Δt)[N(log2 N + F)]) single qubit and CNOT
gates, where N is the number of molecules and F is the
number of fluctuators interacting with each one.

In the implementation of the system with decoherence,
the algorithm gate resources complexity is O((t/Δt)[N2 ×

log22N + NF]) for a single run. +is simulation, yet again,
possesses a very high circuit depth, which makes its ap-
plication unfeasible in quantum computers. +e number of
necessary qubits is the same as that in the no-decoherence
simulation (2 log2 N).

It also requires O(NR􏽐
F
j�0 tcj) random numbers to be

classically generated, where R is the number of runs of the
algorithm and cj is the switching rate of the fluctuator j

interacting with the molecule. +e number of required
simulation runs to average the results and obtain an error
ϵ> 0 is predicted to scale as O(([F(t/Δt)]2/ε2)). +is com-
plexity is calculated based on the possible nondegenerate
energy state outcomes of the entire chain in the simulation
for a time t. +ese outcomes are caused by the bistable
random fluctuations; therefore, the possible nondegenerate
energy state outcomes for each molecule obey a discrete
Gaussian probability distribution.

4. Results

We conducted simulation experiments for the quantum
transport in a molecular chain using the algorithm described
in the previous section. We executed the simulation for the
coherent system on a real quantum computer, IBM Q of 5
qubits, while the pure dephasing scenario was simulated on
the QASM quantum simulator in both the near-resonant
and nonresonant regimes. For the validation purposes, we
compared the results for the coherent system with the
theoretical predictions obtained by solving the Schrödinger
equation (see Supplementary Information A.2).

As for the decoherent regime, we used a classical
computation of the stochastic Haken-Ströbl model [15, 55].
+e simulations and circuits involved, encoded in the Qiskit
platform [36], can be performed in the following url: https://
github.com/jakumin/Photosynthesis-quantum-simulation.

4.1. Coherent Regime. +e scenario for this regime was
simulated with a simple chain of twomolecules. As discussed
in Materials and Methods and using the parameters pro-
posed in [32], we define the system’s Hamiltonian as follows:

Near-resonant regime:

HS �
13000 126

126 12900
􏼠 􏼡 cm− 1

. (18)

Nonresonant regime:

HS �
12900 132

132 12300
􏼠 􏼡 cm− 1

. (19)

+e results for both regimes were obtained using an actual
quantum device (IBMQ London of 5 qubits) and can be seen
in Figures 5 and 6, respectively. Due to the stochastic nature of
quantum computers, the experiments were conducted with
2048 shots for each time value. +e specific optimized
quantum circuits used in this experiment are presented in
Supplementary Information A.3. In the following results, the
probability of the donor and acceptor molecules being excited
is denoted by P(0) � 0|ρS(t)|0􏼊 􏼋 and P(1) � 1|ρS(t)|1􏼊 􏼋,
respectively.Taking the fluctuator’s switching rate to be c � 0
or the fluctuator-molecule coupling strength to be g � 0, one
has the coherent regime. +ese simulations show the limiting
case of the Redfield regime, that is, the very weak system-
environment coupling, g≪ J. +e quantum beatings, ob-
served in the simulation results, can be thought of as a re-
versible transfer of energy between the molecules, where the
excitation goes back and forth across the molecules [56].

In the performed simulations, the near-resonant and
nonresonant regimes have a maximum probability of ∼90%
and ∼20%, respectively, of the energy being transferred to
the acceptor molecule. Using the quantum Liouville equa-
tion [2] (see Supplementary Information A.2), the period of
the quantum beating is Tnear− res ≈ 123 fs for the near-reso-
nant regime and Tnon− res ≈ 51 fs for the nonresonant regime.
+ese periods are in the femtosecond timescale of the ex-
perimentally observable quantum beatings [12, 41, 42]. +e
simulation results show a similar behaviour to that of those
predicted by the Schrödinger and quantum Liouville
equations, where the off-curve points are predominantly
originated by errors in the quantum hardware.

4.2. Decoherent Regime. +e scenario for the regime with
decoherence introduced is, in some respect, similar to the one
presented for the coherent regime for a chain of two molecules.
No further changes are made to the Hamiltonian discussed in
the Introduction of decoherence in the system. +e quantum
simulation results are compared with a theoretical evolution
based on the stochastic Haken-Ströbl model in the form of the
Lindblad master equation [15, 55].+e Lindblad equations were
solved in a classical computer using QuTiP [57], a quantum
open-systems software framework. +e set of Lindblad equa-
tions, correspondent to the model in this setting, had one free

∣qsystem〉

∣1〉anc

X X X X

RZ (–2E′0Δt)

Ry (θ) Ry (–θ)

RZ (–2E′1Δt) RZ (±g′Δt) RZ (±g′Δt)

Figure 4: Implementation of one iteration of the system with decoherence algorithm. Here |qsystem〉 represents the system’s qubit state
vector in the site basis.
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parameter regarding the environment, the dephasing rate, cdeph.
+e Lindblad equation in the Haken-Ströbl model reads

dρ
dt

� L[ρ] � − i HS, ρ􏼂 􏼃 + cdeph 􏽘
m

Lmρ(t)L
†
m −

1
2
ρ(t)L

†
mLm􏼒

−
1
2
L
†
mLmρ(t)􏼓,

(20)

where Lm � |m〉 m|〈 are the Lindblad operators, responsible
for the system-environment interaction. +e system Hamil-
tonian,HS, is given by thematrix in (18) for the near-resonant
system and the matrix in (19) for the nonresonant system.

For each quantum simulation performed, a fitting
process has been employed by adjusting the dephasing rate

of the Haken-Ströbl model, so that the system’s evolutions in
both classical and quantum algorithms have similar be-
haviours. +is enables one to perform a direct comparison
between both theories and to find the actual dephasing rate
of the modeled environment over the various regimes
considered in this work.

+e environment contains only one fluctuator inter-
acting with each molecule with switching rate c � 125 THz.
As mentioned above, the dephasing rate, cdeph, for the
Lindblad equation is adjusted to the behaviour of the system
under the action of a fluctuation strength g. For the fluc-
tuation strength in the algorithm varying within the interval
[100, 1000] cm− 1, and the corresponding dephasing rate of
the Haken-Ströbl model lies in the ∼[2.3, 70]THz range.
Due to the existence of random fluctuations, a large number
of samples had to be generated. +e algorithm was imple-
mented with 250 runs, where 5000 shots were performed for
each time t. Figures 7 and 8 present the simulation results for
different values of the fluctuation strength, along with the
theoretical evolution dynamics, for the near-resonant and
nonresonant systems, respectively.

It is seen in Figures 7 and 8 that oscillation amplitudes
decay over time, as expected, due to the loss of relative phase
coherence between the excited states of the two molecules,
evidenced by the disappearance of the quantum beatings.
+is is associated with the irreversible evolution when the
system loses its capacity of performing coherent transport.
Additionally, it is clear that the system is led to a classical
distribution of the populations in the site eigenbasis.

In the regime under the study, where the environment is
assumed to be at thermal equilibrium, the final probability
distribution is calculated in the limit of the classical
Boltzmann distribution m|ρS(t⟶∞)|m􏼊 􏼋 � const×

e− (εm/kBT). Here kB is the Boltzmann constant, T is the
temperature of the bath, and const is a normalization
constant [50]. Taking the limit of very high temperatures, the
population terms approach the Boltzmann distribution
0|ρS(t⟶∞)|0􏼊 􏼋 ≈ 1|ρS(t⟶∞)|1􏼊 􏼋 ≈ (1/2), which is
compatible with the results obtained. +e relaxation cannot
be fully observed in Figures 7(a), 8(a), and 8(b) because a
very large number of iterations would be required for this.

+e switching rate must be high enough to observe the
dephasing effects. Here we used a value ≈33 times larger than
the transfer rate, J (i.e., the fluctuator waiting time must be
shorter than J− 1). As observed in the simulations, it is a
suitable value for observing the relevant effects of random
fluctuations in the system. At very low rates, it leads the
system’s evolution to a behaviour similar to the previously
observed in the no-decoherence regime (Figures 5 and 6).

+e time that coherence lasts in the system is essentially
defined by the fluctuation strength, g: in Figures 7(a), 7(b),
8(a), and 8(b) (lower g) the coherence is maintained for
some time, while in Figures 7(c), 7(d), 8(c), and 8(d) (higher
g) it is quickly suppressed. In the latter regime, an ap-
proximated diffusive motion drives the system’s evolution,
where quantum beating is practically absent. +e time that
the quantum beating lasts in these simulations (until it
reaches an approximate nonoscillating behaviour) is about
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Figure 5: Evolution dynamics of the isolated system obtained by
employing the quantum algorithm for the near-resonant system:
simulation results (points) and theory (lines).

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Time (ps)

1.0

0.8

0.6

0.4

0.2

0.0

Pr
ob

ab
ili

ty

Theory - P (0)
Theory - P (1)

Simulation - P (0)
Simulation - P (1)

Figure 6: Evolution dynamics of the isolated system obtained by
employing the quantum algorithm for the nonresonant system:
simulation results (points) and theory (lines).
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Figure 7: Evolution dynamics of the system with decoherence obtained by employing the quantum algorithm for the near-resonant system:
simulation results (points) and theory (lines). (a) g � 1000 cm− 1; cdeph � 2.3 THz. (b) g � 300 cm− 1; cdeph � 10 THz. (c) g � 700 cm− 1;
cdeph � 41 THz. (d) g � 1000 cm− 1; cdeph � 70 THz.
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Figure 8: Continued.
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350 fs in Figure 7(b) (near-resonant system) and 200 fs in
Figure 8(b) (nonresonant system), with a fluctuation
strength g � 300 cm− 1. At a longer time, it has been ex-
perimentally observed to persist (t> 660 fs [42]), a timescale
which could be modeled in the present simulation by
changing the environment parameters, that is, lowering the
fluctuation strength g, as can be observed in Figures 7(a) and
8(a).

5. Discussion and Conclusions

Two main conclusions can be drawn from the presented
results:

(i) +ere is a very good agreement between the solution
of the Schrödinger equation and the coherent
quantum algorithm results in the reproduction of
the purely oscillatory evolution of the isolated
quantum system.

(ii) +ere also is a good agreement between the results
obtained by the Haken-Ströbl model and the
quantum algorithm. +e increase of the dephasing
rate implies an increase in the fluctuation strengths;
thus, a faster suppression of the quantum beatings
can be observed, as predicted theoretically [15].

+erefore, the correctness of the results obtained in the
quantum simulations is verified.

+e results obtained in the present work were not directly
compared with [32] due to the different timescales used. +e
major difference lies in the physical implementation, NMR
versus universal quantum computer, where there might be an
advantage for the former from the viewpoint of the scalability
and reliability, at the current state of quantum technology.
However, there is a clear advantage of the quantum computer,
from the viewpoint of easiness of implementation, as it is also
possible to implement circuits of arbitrary precision, harder to
do with the NMR simulator, which is dependent on a

Hamiltonian mapping process. +e computational advantage
verified for the NMR simulator still holds after the present
work, as the number of executions for the algorithm of this
work is polynomial on the precision required, although the
circuit generation may be problematic, as a matrix diagonal-
ization operation is necessary (complexity estimated in
O(N3)).

To conclude, we proposed a quantum algorithm to
simulate the energy transfer phenomenon present in general
photosynthesis, under the presence of quantum coherence
between themolecules and the decoherence effects caused by
environmental interference. Using this algorithm, we also
performed simulations in the commercially available
quantum computer of IBM, IBM Q of 5 qubits, for the
coherent scenario, and in the quantum simulator (QASM)
for the decoherent scenario. For validation purposes, we also
computed the evolution of analogous systems using well-
established (classical) methods in literature, obtaining quite
similar results between the methods. +e results obtained
were also in agreement with the predictions that can be
found in literature, for the role of the quantum coherent and
dephasing effects in the energy transport of photosynthesis:
for the high-temperature environment defined here, it was
clear that dephasing, modeled as energy fluctuations in the
site energies, limited the time quantum coherence lasts in
light-harvesting antenna. Moreover, it was also verified that
the fluctuation strength and the switching rate of the
Markovian fluctuator environment are directly related to the
energy transfer efficiency, allowing the simulation of dif-
ferent transport regimes by setting them appropriately.

Similar to [32], this setting revealed itself as an inter-
esting platform for the study of the quantum and envi-
ronmental effects in a small photosynthetic system, and
therefore we consider that the use of quantum simulations
may be a feasible alternative in systems with medium-strong
coupling and non-Markovian systems in the future. How-
ever, the algorithm obtained, due to the high requirements of
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Figure 8: Evolution dynamics of the system with decoherence obtained by employing the quantum algorithm for the nonresonant system:
simulation results (points) and theory (lines). (a) g � 1000 cm− 1; cdeph � 2.3 THz. (b) g � 300 cm− 1; cdeph � 10 THz. (c) g � 700 cm− 1;
cdeph � 41 THz. (d) g � 1000 cm− 1; cdeph � 70 THz.
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gates and qubits, is not scalable to real-world photosynthetic
systems, with the current state of quantum technology.
Hence, this simulation should be seen as a proof of concept,
since a realistic quantum simulation of a photosynthetic
system would have to involve hundreds of light-harvesting
molecules, which is beyond the current quantum technol-
ogy. Furthermore, the algorithm only effectively simulates
pure dephasing baths. For future work, we aim at extending
it to new types of bath, that is, those allowing for higher
exciton recombination rates and non-Markovian effects, as
well as to new geometries of photosynthetic systems, in
particular to the Fenna-Matthews-Olson complex [2].
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