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Abstract—In a partitioned Bloom Filter (PBF) the bit vector is split into disjoint parts, one per hash function. Contrary to hardware
designs, where they prevail, software implementations mostly ignore PBFs, considering them worse than standard Bloom filters (SBF),
due to the slightly larger false positive rate (FPR). In this paper, by performing an in-depth analysis, first we show that the FPR
advantage of SBFs is smaller than thought; more importantly, by deriving the per-element FPR, we show that SBFs have weak spots in
the domain: elements that test as false positives much more frequently than expected. This is relevant in scenarios where an element
is tested against many filters. Moreover, SBFs are prone to exhibit extremely weak spots if naive double hashing is used, something
occurring in mainstream libraries. PBFs exhibit a uniform distribution of the FPR over the domain, with no weak spots, even using naive
double hashing. Finally, we survey scenarios beyond set membership testing, identifying many advantages of having disjoint parts, in
designs using SIMD techniques, for filter size reduction, test of set disjointness, and duplicate detection in streams. PBFs are better,
and should replace SBFs, in general purpose libraries and as the base for novel designs.

Index Terms—Probabilistic data structures, Information filtering, Partitioned Bloom filters
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1 INTRODUCTION

A Bloom filter [1] is a probabilistic data structure to repre-
sent a set in a compact way. An element which has been
inserted will always be reported as present; an element not
in the set may erroneously be reported as present (i.e., false
positives may arise), but the Bloom filter may be configured
such that the probability of false positives may be as low
as desired. Bloom filters are used in many settings, such as
networking [2] and distributed systems [3].

A standard Bloom filter is a single array of m bits over
which k independent hash functions range. When inserting
an element, each of the k functions is used to produce an
index, and the corresponding bit is set. When querying, an
element is considered present if all bits in the positions given
by the k hash functions are set.

A variant, partitioned Bloom filters, proposed by
Mullin [4], divides the array into k disjoint parts of size m/k
(assuming m multiple of k). Each of the k hash functions
ranges over m/k, being used to set or test a bit in the
corresponding part. The more obvious feature in partitioned
Bloom filters is the complete independence of each of the
k parts and of each corresponding bit setting/testing. This
has some obvious advantages, such as parallel access to
each part, which has made partitioned Bloom filters widely
adopted in hardware implementations [5], [6], where they
are sometimes called parallel Bloom signatures.

A hybrid variant divides the filter in k/h parts, with h
hash functions per part, such as a hardware implementa-
tion [7] where k/h independent multi-port memory cores,
each allowing h accesses per cycle is used. An important
consideration [6] for hardware designs is that using single-
port SRAM, for the partitioned scheme, requires much less
area than using k-ported SRAM for the standard scheme,
or h-ported SRAM for the hybrid scheme, because the size
of an SRAM cell increases quadratically with the number of
ports. This seems to settle the standard-versus-partitioned

choice for hardware designs, leading them to typically opt
for the partitioned variant.

Concerning software implementations, standard Bloom
filters prevail. The general feeling towards partitioned
Bloom filters is that they are almost the same as standard
ones, but produce slightly worse false positive rate (FPR),
specially in small Bloom filters. This comes from the obser-
vation [8] that partitioned Bloom filters will have slightly
more bits set than standard ones, and this slightly higher fill
ratio (proportion of set bits) will result in a correspondingly
higher FPR.

As we will demonstrate in this paper, the issue is more
subtle, and this slight advantage comes at a substantial
cost, including in the false positive rate itself. The main
contributions of this paper are:

• Perform an in-depth analysis of the FPR in Bloom
filters where we: provide a simpler explanation, com-
pared with current literature, of why the standard
formula is a strict lower bound of the true FPR;
address the effect due to different hash functions
colliding for a given element; obtain for the first
time an exact formula for the per-element FPR, i.e.,
the expected FPR, for each specific element of the
domain, over the range of filters that do not contain
it.

• Point out the consequences for standard Bloom filters
of the above hash collision problem, namely the oc-
currence of weak spots in the domain: elements which
will be tested as false positives much more frequently
than expected. This can be a problem, both for stan-
dard small capacity Bloom filters, or for blocked Bloom
filters [9], and its unexpectedly frequent occurrence
can be as surprising as the Birthday Problem [10].

• Expose pitfalls when using Double Hashing with
standard Bloom filters, of which many widespread
libraries seem to be unaware off, and contrast it with
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Fig. 1. Standard Bloom filter using 4 hash functions.

the robustness of partitioned Bloom filters in this
matter.

• Survey usages for Bloom filters other than testing set
membership, identifying many advantages that re-
sult from having disjoint parts that can be individu-
ally sampled, extracted, added or retired. We identify
how the partitioned scheme leads to superior designs
for SIMD techniques, testing set disjointness, reduc-
ing filter size, and duplicate detection in streams.

2 BLOOM FILTERS AND THE BIRTHDAY PROBLEM

While most Bloom filters are used to represent large sets,
in some scenarios small Bloom filters are used. If a small
FPR is also wanted, the combination of a small m and a
(relatively) large k will cause, for a standard Bloom filter, a
non-negligible probability that two or more of the k hash
functions, applied to a given element, collide (produce the
same index). Such a collision is illustrated in Figure 1, in
yellow, where two of the 4 hash functions applied to y
produce the same index, resulting in a total of three bits
being set for y, instead of the expected 4 bits. Such intra-
element hash collisions are not normally illustrated (or
discussed) in Bloom filter presentations, which just focus
on inter-element collisions, such as the one between x and
y, in red.

In fact the surprisingly high probability of intra-element
hash collisions is precisely an instance of the Birthday
Problem, stated in 1927 by H. Davenport1, as described by
Coxeter [10]. The probability that, for a given element, two
or more of the k independent hash functions return the same
value is:

1− P (m, k)

mk
, (1)

where P (m, k) denotes the k-permutations of m. We now
give some examples.

Sets of words in small strings: Mullin [12] used Bloom
filters to store sets of words occurring in strings (e.g., titles
and authors of articles), typically up to 15 words per string,
with filters ranging from 32 up to 256 bits, the most common
one being 96 bits, and using 8 hash functions per filter. With
m = 96 and k = 8 two or more hash function will collide in
one out of four cases (25.88%), where the FPR will be at least
twice the expected from the classic formula (for filters that
reached design capacity), or much higher than expected (for
filters still far away from design capacity).

Packet forwarding: Whitaker and Wetherall [13] used small
Bloom filters in packets to detect possible forwarding loops
in experimental routing protocols. In this case 64 bit filters

1. But frequently misattributed to von Mises, who stated a similar
but different version of the problem. Some archaeology about its origin
can be found at [11].
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Fig. 2. Partitioned Bloom filter using 4 hash functions, represented as a
bidimensional bit array with one row per part.

were used, with “4 bits set to one”. With m = 64 and
k = 4 two or more hash function will collide 9.1 percent of
the time. Interestingly, and different from the more normal
usage, in this case a given element (node) is tested against
many Bloom filters (packets), and instead of using k hash
functions for the element, a Bloom mask with exactly 4 ones
at random positions is computed at start time, overcoming
the collision problem.

Blocked Bloom filters: One problem with Bloom filters is
the spreading of memory accesses, hurting performance.
This is avoided by blocked Bloom filters [9], where the filter
is divided into many blocks, each block a Bloom filter fitting
into a single cache line (e.g., 512 bits), and using an extra
hash function to select the block. For a very high precision
filter, with k = 16 and m = 512, hash collisions will occur
for 21 percent of elements, and even for a more normal
setting of k = 8, there will be collisions for 5.3 percent of
elements. For an extreme performance BBF that requires a
single memory access, using word sized blocks, m = 64,
for k = 8 we have collisions 36 percent of time, or 9
percent of the time for the more reasonable k = 4. So, the
collision problem occurs in practice for BBFs. It should be
emphasized that using blocking is the only way that Bloom
filters can remain performance-wise competitive [14] with
dictionary-based approaches (such as Cuckoo Filters [15],
Morton Filters [16]), or Xor Filters [17]. Therefore, the sce-
nario of a small Bloom filter (a block of a BBF) is important,
even for scenarios with huge (on the whole) filters.

The above mentioned hash collision possibility is not a
problem in partitioned Bloom filters because each of the k
functions is used to set/test bits in a different part. While
in standard Bloom filters hash collisions will lead to bit
collisions (the same bit being used for different functions),
in partitioned Bloom filters such hash collisions will not lead
to bit collisions. This is illustrated in Figure 2, which shows
a partitioned Bloom filter using 4 parts, represented as a
bidimensional bit array with one row per part. It can be
seen that even if two of the 4 hash functions applied to y
produce the same value (column index), two different bits
in the filter are set.

So, while for partitioned Bloom filters, exactly k distinct
bits in the filter are accessed, in standard Bloom filters up to k
distinct bits are accessed (most times k bits, but sometimes
less than k bits). As we will see, this makes the standard
false positive formula incorrect, producing a value lower
than the actual one, and complicating the exact false positive
calculation (something that has been addressed before) but
it also produces a non-uniform distribution of the FPR, with
the occurrence of weak spots in the domain, something that
we address here for the first time.
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Interestingly, in the original proposal by Bloom [1] ex-
actly k bits are set/tested: “each message in the set to be
stored is hash coded into a number of distinct bit addresses”
and “where d is the number of distinct bits set to 1 for
each message in the given set”. The original formula for
the FPR is consistent with this behavior. This fact seems to
have been mostly ignored in the literature, being one notable
exception [18] “In [Bl70], the assumption was that the k
locations are chosen without repetitions; it is also possible
to allow repetitions, which makes the program simpler”
and more recently [19] a comparison between the original
proposal and standard Bloom filters.

The original Bloom proposal is not practical, as it de-
mands some extra effort to ensure exactly k distinct ad-
dresses, e.g., iterating over an unbounded family of hash
functions until k different values have been produced (with
the need to compare each new value to all the previous
ones); or a way to directly produce a pseudo-random k-
permutation of m, keyed by the element. And even if little
cost seems to be required [20], practitioners typically would
not be aware of the problem or solution, and would not
bother to address such minutiae. So, it is not surprising that
what became adopted as standard Bloom filters differs from
the original proposal.

Partitioned Bloom filters, which differ both from the
original and the standard ones, not only are immune to the
birthday problem (being in a sense more in the spirit of the
original proposal) but are also practical to implement.

3 FALSE POSITIVE ANALYSIS

We now do a theoretical analysis of the FPR, revisiting the
Bloom’s analysis, the standard analysis, existing improve-
ments to the standard analysis producing a correct formula,
the formula for partitioned Bloom filters, and compare stan-
dard with partitioned Bloom filters. In the next section we
present a novel per-element false positive analysis, showing
how the expected FPR behaves for different elements in the
domain.

3.1 Original Bloom’s analysis

Bloom’s analysis [1] states that the probability of a bit still
being zero after n elements are added is(

1− k

m

)n

, (2)

which, contrary to what sometimes is said, is correct, but for
the original Bloom proposal where exactly k distinct bits are
set, and that the false positive rate is:(

1−
(
1− k

m

)n)k

. (3)

The analysis is almost correct, but it suffers from the same
problem as the standard analysis below. But it is irrelevant
for standard Bloom filters used in practice, as they differ
from the original Bloom proposal.

3.2 Standard analysis

The standard analysis, by Mullin [4], and widely used, states
that the probability of a bit still being zero after n elements
are added is (

1− 1

m

)kn

, (4)

which is correct, and that the FPR is

Fa(n,m, k) =

(
1−

(
1− 1

m

)kn
)k

. (5)

which is only approximate, as we discuss below.

3.3 The exact formula for standard Bloom filters

There is one problem with the standard analysis, which has
already been detected and corrected before. The standard
analysis derives the FPR only as function of the mean fill
ratio p, as pk. Even though this gives a very good approxi-
mation for large Bloom filters, given the high concentration
of the fill ratio around its mean [21], it is not an exact
formula.

Exact formulas for standard Bloom filters were devel-
oped [22], [23], by deriving the probability distribution of
the fill ratio and weighing the false positive rate incurred by
each concrete fill ratio with the probability of it occurring.
A similar result had already been derived [18], for a Bloom
filter variant divided in pages (essentially, a blocked Bloom
filter with typically large blocks), and a formula for the
original Bloom filters was derived more recently [19].

A simpler strict lower bound argument: The standard
formula, in Equation 5, has also been proven to be a strict
lower bound for the true FPR [22] using considerations of
conditional probability, and to be a lower bound [23] by
resorting to Hölder’s inequality [24]. We now present a
simpler and more elegant reasoning of why it is a strict
lower bound. It results from a direct application of Jensen’s
inequality [25]: for a convex function, such as f(x) = xk

when k > 1 and x > 0, and for a non-constant random
variable R, such as the fill ratio,

f(E[R]) < E[f(R)]. (6)

This means that, for k > 1, raising the expected fill ratio to
the power of k, as done in the standard formula, produces
a value always smaller than the expected value of the fill
ratio raised to the power of k, which is what gives the exact
average FPR.

As presented by the above mentioned works, computing
the fill ratio distribution is an instance of the well known
balls into bins experiment. It can be computed by resorting
to the number of surjective functions from an n-set to an i-
set, eni [26], that can be directly derived using the inclusion-
exclusion principle (in the complementary form) as:

eni =
i∑

j=0

(−1)j
(
i

j

)
(i− j)n. (7)

The probability B(n,m, i) of having exactly i non-empty
bins, after throwing n balls randomly into m bins is then:
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B(n,m, i) =

(m
i

)
eni

mn
. (8)

The probability of having exactly i bits set after inserting
n elements into an m sized standard Bloom filter using k
hash functions is then:

S(n,m, k, i) = B(nk,m, i), (9)

and the FPR for a standard Bloom filter is then:

Fs(n,m, k) =
m∑
i=1

S(n,m, k, i)

(
i

m

)k

. (10)

3.4 The exact formula for partitioned Bloom filters
As the k parts are independently set/tested, the expected
FPR is the product of the individual expected rates, and
so computed as the one for each part to the power of k.
For each part, the standard formula, with k = 1, gives the
exact part FPR, as the inequality in Equation 6 becomes an
equality when k = 1. So, for a partitioned Bloom filter of
size m, made up of k parts, each m/k bits, the exact FPR
when n elements were inserted is given by:

Fp(n,m, k) =

(
1−

(
1− k

m

)n)k

, (11)

which is much simpler than the exact formula for standard
Bloom filters (as well as the exact formula for original Bloom
filters [19]). Interestingly, it coincides with Bloom’s formula
for his original proposal, while being exact.

This formula simplicity results from the conceptual sim-
plicity: a partitioned Bloom filter can be seen as an AND of k
independent single-hash filters, all used for each insertion. It
also translates to a simplicity of presentation, which is better,
pedagogically, than standard Bloom filters, as it allows
deriving a more complex (composite) concept in terms of
a simpler one (single-hash filters).

3.5 Comparison with partitioned Bloom filters
Common folklore is that partitioned Bloom filters are not
worth over standard ones [8]: “partitioned filters tend to
have more 1’s than nonpartitioned filters, resulting in larger
false positive probabilities”. But in spite of hash collisions
decreasing the fill ratio, they increase the false positives for
elements with collisions, and so the question is more subtle.
Using the exact formulas for each case, Table 1 shows how
partitioned and standard Bloom filters compare, namely the
ratio of false positives Fp/Fs, for some combinations of m
and k for filters at full capacity with n = m

k ln 2.
We focus on small/medium sized filters for two reasons:

1) for large (plain) filters standard and partitioned variants
exhibit almost the same FPR, being essentially indistinguish-
able; there is no point in comparing them and; 2) even if
we want a large (on the whole) filter, the best performance
will be achieved using a blocked Bloom filter, which will
have relatively small blocks. The three sizes chosen (64, 512,
and 4096 bits) are the more important ones for which it is
meaningful to compare SBF and PBF. The first two, the word
sized (64 bits) filter and the cache line sized (typically 512
bits) filter, the typical block in a BBF, are the more important

TABLE 1
Comparison between partitioned and standard Bloom filters FPRs, for

different combinations of m and k, for filters at nominal occupation
(n = m

k
ln 2), showing both the approximate (Fa) and the exact (Fs)

values for standard filters, the value for partitioned filters (Fp) and the
ratio Fp/Fs.

m k Fa Fs Fp Fp/Fs

64 4 0.06244514 0.06423247 0.06676410 1.03941360
8 0.00227672 0.00260362 0.00316870 1.21703762

512
4 0.06126247 0.06148344 0.06176528 1.00458411
8 0.00375309 0.00381650 0.00389940 1.02172097

16 0.00001409 0.00001513 0.00001661 1.09783475

4096
4 0.06233016 0.06235819 0.06239353 1.00056676
8 0.00385474 0.00386284 0.00387308 1.00265094

16 0.00001486 0.00001499 0.00001516 1.01143019

ones. The last one (4096 bits) is still small enough such that
some difference between SBFs and PBFs can be observed.
The trio forms a sequence, each pair roughly separated by
(almost) an order of magnitude (512/64 = 4096/512 = 8).

It can be seen that although partitioned filters have
indeed slightly more false positives, the difference is less
than what the standard formula (Fa) would suggest, and
for all purposes irrelevant in practice. The largest increase
is for the word sized Bloom filter with k = 8, with 22%
higher FPR. This extra 22%, which would be significant
for other metrics like CPU usage, is not very relevant for
the FPR, where mostly orders of magnitude matter. In
this specific example, a PBF would have the same FPR
as a standard filter by reducing the nominal capacity to
compensate, roughly to 1/(1.22(1/8)) = 0.975, so by having
only 2.5% less capacity than a standard BF. Moreover this
combination m = 64 and k = 8 is an extreme case, more
for illustration purposes, as it is not really suitable, allowing
just a few elements in the filter or, in the case of a BBF,
would lead to FPR degradation due to the danger of some
blocks being too overloaded [9] (occupancies of blocks of a
BBF follow a binomial distribution). BBFs normally aim for
larger blocks of cache line size, typically with m = 512, with
word sized blocks not causing significant FPR degradation
only for smaller values of k (and larger FPRs).

Figure 3 plots the ratio of false positives Fp/Fs over m,
for some values of k. For filters of cache line size (512 bits)
or larger, the difference between partitioned and standard
filters is practically irrelevant, and only for cases that are
not practically usable due to minuscule capacity (very small
high accuracy filters) would the difference be significant.

Table 2 shows the ratio of false positives Fp/Fs for filters
at different occupations (namely 1/4, 1/2, and 1/1) relative
to the nominal capacity. The ratio increases somewhat for
word sized filters and small occupations, but those occupa-
tions for those filters are degenerate cases, with just a few
elements inserted, and negligible FPR, whether for standard
or partitioned filters.

So, the average FPR is not relevant in practice for making
a choice between standard versus partitioned Bloom filters.
But as we discuss next, a more relevant issue is the distri-
bution of false positives over the elements in the domain
subject to being tested.
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Fig. 3. Ratio Fp/Fs between partitioned and standard Bloom filters
FPRs, for filters at nominal occupation (n = m

k
ln 2).

TABLE 2
Ratio between partitioned and standard Bloom filters FPR, Fp/Fs, for
different combinations of m, k, and occupation (fraction of the nominal

capacity n = m
k
ln 2).

occupation

m k 1/4 1/2 1/1

64 4 4.42059447 1.11720759 1.03941360
8 8.91227883 1.77601565 1.21703762

512
4 1.00616297 1.00527287 1.00458411
8 1.02790590 1.02512045 1.02172097

16 1.13309283 1.11474124 1.09783475

4096
4 1.00069246 1.00064963 1.00056676
8 1.00324437 1.00303940 1.00265094

16 1.01404449 1.01313731 1.01143019

4 WEAK SPOTS IN THE DOMAIN

There are two ways that Bloom filters can be used, and two
different points of view regarding false positives:

1) Filter point of view: having a filter, in which ele-
ments were inserted along time, test new elements
using the filter.

2) Element point of view: for a specific element, test it
against many different filters that show up, to see if
the element is present in them.

The first usage is the more normal, for which we want
to know the global average FPR. The second usage corre-
sponds to the packet forwarding scenario, where at each
node (representing an element) many different filters arrive
(each one representing a path that a packet took to reach
the node). For this second usage we want to know, for each
specific element in the domain, the average FPR over all
possible filters that do not include the element, for each
given combination of k, m, and n. Particularly relevant is
the question of whether this per-element rate is the same
for all elements (the global average) or whether it is non-
uniform, varying for different elements.

For partitioned Bloom filters, with k independent parts,
accessed by k independent hash functions, the per-element
FPR is the same for all elements, and equal to the global av-
erage. But for standard Bloom filters, the possibility of hash
collisions makes some elements have less than k indepen-
dent bits to test. We have thus a non-uniform distribution of
false positives: for a given element having d < k different
bit positions to test, the average FPR will be higher than
for those elements for which no collisions occur. Elements
suffering collisions are then weak spots in the domain: they
will be considered more often than expected as belonging
to filters against which they are tested. As we will see, for
elements suffering several hash function collisions, the false
positive rate can be more than one order of magnitude larger
than expected. We now derive an exact formula for the per-
element FPR.

4.1 Per-element false positive analysis

Consider a specific element e of the domain, having d
different bit positions resulting from the k independent hash
functions, where d ≤ k. We want to know the average FPR
Fs(n,m, k, d) when e is tested against standard Bloom filters
of size m where a set of n elements not containing e was
inserted.

A first observation is that the per-element rate cannot
be obtained by simply going to the exact formula in Equa-
tion 10, where the fill ratio is raised to the power of k, and
replacing (i/m)k with (i/m)d, i.e.,

Fs(n,m, k, d) 6=
m∑
i=1

S(n,m, k, i)

(
i

m

)d

. (12)

The reason is that by saying that there are d different
positions, they are not independent, and we cannot use the
independent testing assumption as for the k positions. This
can be seen by a simple example of a filter with k = 2,
m = 2, n = 1, and computing the FPR for elements with
d = 2 different bits. When considering the case i = 1, i.e.,
one bit set in the filter, being the fill ratio 1/2, for d = 2
there is no possibility of a false positive, while using (i/m)d

would give the erroneous (1/2)2 = 1/4.
The correct formula for the probability of d different bits

being set when i of the m bits in the filter are set is:

d−1∏
j=0

i− j

m− j
, (13)

i.e., the first of the d positions is one of the i bits set, the
second is one of the remaining i − 1, the third one of the
remaining i− 2 and so on. The probability is zero for d > i.

The correct formula for the per-element FPR is then
obtained by averaging over the different possible numbers
of bits set, weighted by their probability of occurring, as
before, resulting in:

Fs(n,m, k, d) =
m∑
i=1

S(n,m, k, i)
d−1∏
j=0

i− j

m− j
. (14)

Table 3 shows how the per-element FPR com-
pares with the (global) average FPR, showing the ratio
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TABLE 3
Ratio between per-element and global FPR for standard Bloom filters,
Fs(n,m, k, d)/Fs(n,m, k), for different combinations of m, k, and hash

collisions c = k − d, for filters at different occupations.

collisions

occupation m k 0 1 2 3

1/1
64 4 0.91 1.88 3.85 7.78

8 0.59 1.39 3.25 7.47

512
8 0.95 1.92 3.89 7.88

16 0.79 1.62 3.31 6.78

1/2
64 4 0.76 3.21 12.92 50.00

8 0.14 1.09 7.50 47.38

512
8 0.87 3.09 10.87 38.10

16 0.56 2.03 7.41 26.86

1/4
64 4 0.38 5.90 74.86 804.25

8 0.00 0.07 4.45 134.33

512
8 0.74 5.03 33.76 224.42

16 0.23 1.87 15.28 123.08

Fs(n,m, k, d)/Fs(n,m, k) for different numbers of hash
collision c = k − d, from no collision (d = k) up to three
collisions (d = k − 3), for filters at different occupations
(ratios relative to nominal capacity n = m

k ln 2).
It can be seen that the FPR increases noticeably with the

number of hash collisions that occur for the element being
tested, in relation to the global average rate for the filter. This
effect is more prevalent for small occupations, with the FPR
reaching two orders of magnitude larger than the global
average for 1/4 occupation and three collisions. This may
cause surprises in scenarios where a filter is dimensioned
with some expectations about the FPR over its lifetime, from
empty to full. Some elements will incur much more false
positives than what planned for, if using either the standard
or exact formula for the global average.

4.2 Probability distribution of hash collisions
The question of how frequent are those weak spots in the
domain, specially the “very weak” spots having more than
one hash collision is easily answered. The probability of an
element being a weak spot is an instance of the birthday
problem, as discussed above, with value given by Equa-
tion 1. For an m sized Bloom filter, the probability of the k
hashes resulting in d different bits (i.e., c = k − d collisions)
is an instance of the balls into bins experiment, with value
B(k,m, d) as given by Equation 8.

Table 4 shows the probability of having some (one or
more) hash collisions, and of having exactly 0 ≤ c ≤ 3
collisions, for some combinations of k and m.

It can be seen that collisions happen frequently not only
in word sized filters (36% of elements for m = 64 and
k = 8) but also for the important case of cache line sized
blocks (m = 512) in blocked Bloom filters, reaching 21%
for very high accuracy (k = 16) filters. Two collisions
can happen with non-negligible frequency, in 5 percent of
elements for the word sized filters with k = 8, or in two
percent of elements in the (m = 512, k = 16) case. And
while three collisions is indeed very rare, 3 in a thousand
for the (m = 64, k = 8) filter or one in a thousand for the

TABLE 4
Probability of having some hash collision(s) and of having exactly
0 ≤ c ≤ 3 hash collisions, for some combinations of k and m.

collisions

m k some 0 1 2 3

64 4 0.0911 0.9089 0.0894 0.0017 0.0000
8 0.3660 0.6340 0.3115 0.0510 0.0034

512 8 0.0535 0.9465 0.0525 0.0010 0.0000
16 0.2108 0.7892 0.1905 0.0192 0.0011

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Probabiity

100

101

102

Fs
(n

,m
,k

,d
)/F

s(
n,

m
,k

)

m=64,k=4
m=64,k=8
m=512,k=4
m=512,k=8
m=512,k=16

Fig. 4. Inverse of tail distribution of ratio between per-element and global
FPR for standard Bloom filters, Fs(n,m, k, d)/Fs(n,m, k), for different
combinations of m, k, for filters at nominal occupation (n = m

k
ln 2).

(m = 512, k = 16) filter, this is no consolation when those
“unlucky” elements are subject to being tested against many
filters.

We now combine the per-element FPR values (as shown
in Table 3) with the probabilities of their occurrence (as
shown in Table 4. Figure 4 plots the inverse of the tail
distribution (ignoring values with very low probability of
occurrence) of the ratio between per-element and global
FPR for standard Bloom filters, Fs(n,m, k, d)/Fs(n,m, k),
for different combinations of m and k, for filters at nominal
occupation (n = m

k ln 2). From it, it can be seen that, e.g.,
for a m = 512, k = 16 high accuracy filter, for one in one
thousand elements the FPR will be more than 6 times the
global FPR, and for almost one in a million elements it will
be almost 30 times the global FPR.

5 PITFALLS IN DOUBLE HASHING

One technique used to improve performance, by avoiding
the need to compute k hash functions, is to resort to dou-
ble hashing, which amounts to using two hash functions
{h1, h2}, to simulate k hash functions. In the more naive
form it amounts to computing g0, . . . , gk−1 as:

gi(x) = h1(x) + ih2(x) mod m

The first time that double hashing was applied to Bloom
filters seems to have been by Dillinger and Manolios [27], for
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Fig. 5. Effects of double hashing when inserting an element x in a
standard (left) versus partitioned (right) Bloom filter, when b = h2(x)
is 0, 1/2, or 1/4 the size of the vector being indexed (filter or part).

model checking. It was popularized after Mitzenmacher [8]
showed that it could be used to implement a Bloom filter
without any loss in the asymptotic false positive probability,
and experimentally validating it for medium sized Bloom
filters, starting with m = 10000 bits. However, small Bloom
filters were not considered (e.g., a 512 bits block in a BBF)
and, as usual, only the global FPR was considered.

Here we address small filters and the possibility of a
non-uniform distribution of false positives, with weak spots
in the domain. We show that standard Bloom filters, but
not partitioned ones, are prone to even more problematic
weak spots caused by the use of double hashing. Although
more sophisticated variants, like enhanced double hashing
or triple hashing have been proposed, naive doubling hash-
ing in particular has become relatively popular, and can
be found in many Bloom filter implementations. Therefore,
these issues have practical consequences.

Dillinger’s PhD dissertation [28], which includes a de-
tailed study of different forms of double and triple hashing,
already recognized the existence of pitfalls, specially in
naive double hashing. It identified three issues, which we
now show that only affect standard, but not partitioned,
Bloom filters.

Issue 1: Some possibilities for b = h2(x) can result in many
repetitions of the same index. The worse case would be if
b = 0 (mod m), in which case all indices would be the
same, but the existence of common factors between b and
m also causes problems. Figure 5 shows some examples,
with b = 0, b = m/2 and b = m/4. On the left, for standard
Bloom filters, there is overwhelming index collision, which
causes bit collisions, resulting in very weak spots. In a BBF
with 512 bit blocks, one out of 512 elements in the domain
will have a single bit set/tested, resulting in a disastrous
1/2 probability of them being tested as a false positive in
filters at nominal capacity (1/2 fill ratio). Then, one out 512
elements 1/4 probability, and so on. For partitioned Bloom
filters, index collisions do not cause bit collisions, resulting
always in k bits being set/tested.

Issue 2: The indices generated by double hashing, used to
index a standard Bloom filter are treated as a set, not a
sequence, and we can compute the same set going “for-
ward” or going “backward”. Two elements x and y, can
have a full overlap of the k bits without both h1 and h2

colliding, if h1(y) = h1(x) + (k − 1)h2(x) mod m and
h2(y) = m − h2(x) mod m. For a partitioned Bloom filter,
such overlap does not occur, as the different parts are

Fig. 6. Full overlap between x and y when using double hashing in a
standard Bloom filter, when h1(y) = h1(x)+ (k− 1)h2(x) mod m and
h2(y) = m − h2(x) mod m (left), and the lack of such overlap in a
partitioned Bloom filter (right).

Fig. 7. Partial overlap (yellow) between x (green) and y (blue) when
using double hashing in a standard Bloom filter, when h2(x) = h2(y)
mod m (left), and the lack of such overlap in a partitioned Bloom filter
(right).

indexed in order, and so we have effectively a sequence of
indices. Figure 6 illustrates the full overlap between x and
y, for a standard Bloom filter and the absence of overlap in
a partitioned Bloom filter.

Issue 3: Using double hashing in a standard Bloom filter is
prone to partial overlapping of the k indices, namely when
h2(x) = h2(y) mod m. This is illustrated in Figure 7. In the
same figure, it can be seen that in partitioned Bloom filters
such overlap does not occur.

Standard Bloom filters are thus subject to these anoma-
lies, the more serious being the possibility of extreme weak
spots, if naive double hashing is used. In theory, Issue 1
(which causes weak spots) is easy to overcome, by ensuring
there are no collisions, e.g., in the popular case when m
is a power of two by restricting b = h2(x) to produce
odd numbers. In practice, implementers have been sold
the idea that double hashing can be used harmlessly, and
commonly do not take precautions, namely when the filter
is parameterized, being m arbitrary and possibly small. This
has occurred even in mainstream libraries, such as in Google
Core Libraries for Java [29]. Partitioned Bloom filters have
the advantage of not being subject to such weak spots, and
thus are robust to naive double hashing implementations.

It should be noted that if Issue 1 is addressed, the impact
of double hashing on the global FPR is larger for partitioned
Bloom filters than for the standard ones. This impact comes
from the probability of the pair of indices for one element
colliding with the pair from another element, i.e., h1(x) =
h1(y) and h2(x) = h2(y) (modulo vector size). Between two
elements it is 1/m2 for standard Bloom filters and 1/(m/k)2

for partitioned.
In practice, for large Bloom filters the contribution of

double hashing for the global FPR is negligible, unless high
accuracy filters are wanted, in which case care must be
taken and triple hashing may be needed. For small filters,
or in general when BBFs are used, neither double nor triple
hashing should be used, as only a few bits per index are
needed, and a single hash word can be split to obtain the k
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indices. Concretely, in a BBF with 512 bit blocks and k = 8,
we need 9 bits per index for standard and 6 bits per index
for partitioned filters. This means that a partitioned scheme
needs 6 ∗ 8 = 48 bits per block and a single 64 bit hash
word is enough for filters up to 264−48 = 65536 blocks,
i.e., 225 = 33554432 bits, while if standard filters are used
9 ∗ 8 = 72 bits per block are needed and a 64 bit hash
word is not enough even for small filters. This reinforces
the superiority of partitioned Bloom filters over standard
ones.

6 THE FLEXIBILITY ADVANTAGE OF DISJOINT
PARTS

Regardless of the FPR itself, the disjointness of the parts in
a partitioned Bloom filter provides several advantages over
standard filters, either in terms of obtaining fast implemen-
tations or making the partitioned scheme more flexible to be
used in more scenarios, or as the base for further extensions.
Each disjoint part can be sampled, extracted, added, or
retired individually, leading to interesting outcomes. We
conclude our case by surveying some of these usages and
advantages.

6.1 Fast Bloom filters through SIMD
In addition to improving memory accesses, through blocked
Bloom filters, another way to improve performance is to
use Single Instruction Multiple Data (SIMD) processor ex-
tensions, to test multiple bits in a single processor cycle.
However, standard Bloom filters are not directly suitable to
SIMD, because the k bits are spread over memory, needing
an extra gather step to collect and place them appropriately,
causing some slowdown.

A sophisticated SIMD approach [30] for standard Bloom
filters uses precisely gather instructions to collect bits spread
over memory. It achieves higher throughput, by testing
different hashes of different elements at each step, but not
lower latency of individual query operations.

Even using BBFs based on standard Bloom filter blocks
is not directly suitable to SIMD, because the k bits are
not placed over independent disjoint parts of the cache
line (e.g., words) to be used together as a vector register.
When introducing BBFs the authors already discussed SIMD
usage, and to overcome this problem they propose using
a table of k bit block-sized patterns. However, to avoid
collisions between elements when indexing, the table cannot
be too small, competing for cache usage.

Partitioned Bloom filters are more directly suitable to
SIMD. A blocked Bloom filter using the partitioned scheme,
with cache-line sized blocks and word sized parts is perfect
for SIMD, and arises as the natural combination of blocking
and partitioning. This is precisely what Ultra-Fast Bloom
Filters [31] have recently proposed. We may conjecture that,
had partitioned Bloom filters been the norm at the time
when BBFs were introduced, this combination could have
appeared one decade earlier.

6.2 Set disjointness
Bloom filters can also be used for set union and intersection.
Unlike for union (bitwise or) which is exact, intersection

of filters (bitwise and) over-represents the filter for the
intersection: given sets S1 and S2, we have F (S1)∧F (S2) ≥
F (S1 ∩ S2). In addition to testing for the presence of some
element, an important use case is testing for set disjointness,
i.e., that the intersection is an empty set. An example is
checking whether two sets of addresses, representing a
read-set and a write-set are disjoint, when implementing
transactional memory.

Using standard Bloom filters, being sure that the sets are
disjoint is only possible when the resulting filter intersection
is completely empty (all zeroes). Having less than k one bits
is not enough, due to weak spots. As already noticed [32],
even if the intersection result had a single bit it could be
(even if extremely unlikely) due to an element, present in
both sets, having the k hash functions collide.

Partitioned Bloom filters are much better suited for test-
ing set disjointness, as it is enough that one of the k parts
of the filter intersection is empty to conclude that the set
intersection is empty. This was already exploited [5] for
speculative multithreading. A comparison of set disjoitness
testing concluded [32] that the probability of false set-overlap
reporting was substantially smaller for partitioned Bloom
filters than standard Bloom filters. This probability, for
standard (Ps) and partitioned (Pp) m sized filters with k
hash functions, representing sets with n1 and n2 elements,
compares as:

Ps = 1−
(
1− 1

m

)k2n1n2

> 1−
(
1− k

m

)n1n2

>

(
1−

(
1− k

m

)n1n2
)k

= Pp.

This is intuitively easy to understand: the probability of
a false set-overlap for a standard m sized filter, due to some
of the k ∗n1 ∗k ∗n2 pairs of indices colliding, is greater than
the probability of such an overlap in a given m/k sized part
for the partitioned scheme, which is substantially greater
than the probability that there is an overlap in each of the k
parts.

6.3 Size reduction
Sometimes it is useful to obtain a smaller sized, lower
accuracy, version of a Bloom filter. Either because the filter
was overdimensioned and we do not need the resulting
overly high accuracy; or we want to obtain an explicitly
lower accuracy view (but enough for some purpose), e.g., to
ship over the network, wanting to save bandwidth.

A standard Bloom filter is not suitable for this purpose
because of the mingling of bits from different hash func-
tions. What can be done is to use the same k hashes, but
remap the indices to a smaller m′ sized vector (preferably
with m some multiple of m′), moving the bit in position i
to i modulo m′, and using modulo m′ indexing for the new
filter. The problem is that the resulting fill rate renders the
filter, when not immediately useless, having an overly high
FPR, when comparing with the optimal for the new smaller
size and the same number of elements [33].

Partitioned Bloom filters are much better for this pur-
pose. Due to the disjointness of the k parts, we can simply
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TABLE 5
Comparison between Bloom filter variants and common fingerprint-based approaches.

Bloom fingerprint

SBF PBF SBBF PBBF Cuckoo Xor Ribbon BFF

weak spots yes no yes no no no no no
incremental construction yes yes yes yes yes no no no
delete possible no no no no yes no no no
construction time normal normal fast fast slow slow normal–slowest normal
query time normal normal fastest fastest fast fast normal fast
memory usage high high highest highest normal low low-lowest lower
trivial intersection over-representation high low high low - - - -
suitable for trivial disjointness test no yes no yes - - - -
extract lower accuracy views no yes no yes immut. immut. immut. immut.

consider the first k′ parts as a smaller Bloom filter, e.g.,
to be shipped elsewhere. For the worst case of a filter
already at full capacity, the new one will provide the optimal
FPR for the new smaller size. Considerable size reductions
are viable, which would render a standard Bloom filter
useless due to the fill rate approaching 1. The same paper
proposes Block-partitioned Bloom filters, composed of several
blocks (each block a standard filter, with insertions in each
block, and using AND for queries), to be able to extract
some blocks as a new filter. It mentions that maximum size
flexibility is achieved by using one hash per block, i.e., by
using a partitioned Bloom filter.

6.4 Duplicate detection in streams
Bloom filter based approaches to achieve queries over a
sliding window of an infinite stream tend to be space
inefficient. Traditionally they have been based either on
some variation of Counting Bloom filters [34], on storing the
insertion timestamp [35], or using several disjoint segments
which can be individually added and retired, one example
being Double Buffering [36]. This uses a pair of active and
warm-up Bloom filters, using the active for queries and
inserting in both until the warm-up is half-full, at which
point it becomes the active, the previous active is discarded
and a new empty warm-up is added.

While with standard Bloom filters a segment must be a
whole filter, partitioned Bloom filters can be used as a base
for better designs, in which each disjoint part can be treated
as a segment. Age-Partitioned Bloom Filters [37] use k + l (for
some configurable l) parts in a circular buffer, using the k
more “recent” parts for insertions, discarding (zeroing) the
“oldest” part after each generation (batch of insertions), and
testing for the presence of k adjacent matches for queries.
This is the currently best Bloom filter based design for
querying a sliding window over a stream. As for the other
usages, starting from partitioned instead of standard filters
was essential to be able to reach this new design.

7 COMPARISON

Partitioned Bloom filters may have several feature advan-
tages, compared with the standard, but is it enough for
them to be competitive with alternative approaches? A
common view is that Bloom filters have been superseded
by fingerprint-based mechanisms, such as Cuckoo [15] or

Xor [17] filters. This is not necessarily the case: while that is
true if the main concern is memory consumption and high
accuracy, for moderate accuracy and when query time is
important but memory less of a concern, Bloom filters, in
blocked variants, remain the best [14].

We now summarize how the Bloom filter variants com-
pare among themselves, and with some fingerprint-based
approaches: the well known Cuckoo and Xor filters, and two
recent state-of-the-art mechanisms, Ribbon filters [38] and
binary fuse filters (BFF) [39]. Table 5 presents a feature-wise
and qualitative comparison of filters (detailed quantitative
results can be found elsewhere [17], [38], [39]). The columns,
from left to right depict Bloom filters, in standard and parti-
tioned variants, blocked Bloom filters using either standard
or partitioned filters in blocks, and then fingerprint-based
mechanisms: Cuckoo, Xor, Ribbon and binary fuse filters.

From all mechanisms, only standard Bloom filters (nor-
mal or blocked) suffer from the weak-spots problem in
the per-element FPR distribution. Bloom approaches and
cuckoo filters allow an incremental (progressive) construc-
tion, starting from an empty set, essential for an “online” op-
eration. The others, XOR-probe based filters, are immutable,
having to be built from a given set. Cuckoo filters also
allow deletes (Counting Bloom Filters [40] allow deletes but
consume too much memory).

Except for Ribbon, most fingerprint-based mechanisms
are fast for queries, but lose to BBFs, which are also the
fastest for construction. Cuckoo and Xor filters are slow to
build. Fingerprint-based mechanisms are better in memory
usage, specially for high accuracy filters, in which case
BBFs start to become too memory hungry, leading to the
need for large blocks or multiblocking [9]. If incremental
construction is not needed, the two recent mechanisms are
very appealing, BFF as very good both in memory usage and
query speed, and Ribbon filters by being very configurable,
allowing the lowest memory usage of all.

Where partitioned Bloom filters shine (whether plain
or blocked variants) is in allowing extra features, such as
trivial intersections leading to less over-representation than
standard Bloom filters, or being suitable for trivial disjoit-
ness tests (e.g., for read/write sets in transactional memory).
Cuckoo filters could allow such tests, but not in the trivial
way Bloom approaches allow, while the XOR-probe based
filters do not allow intersections at all. Finally, partitioned
Bloom filters allow extracting lower accuracy views, which
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can themselves be used as first class filters (allowing fur-
ther insertions) while the fingerprint-based filters (including
Cuckoo filters) only allow obtaining immutable views.

8 CONCLUSIONS

Frequently, a focus on one small difference in one quanti-
tative aspect misses the whole picture. Partitioned Bloom
filters have thus been considered worse than standard, and
frequently not adopted, due to having slightly more false
positives. This is ironic given that the difference amounts to
a negligible variation of capacity, for the same FPR.

In this paper we have shown how much simpler, ele-
gant, robust and versatile partitioned Bloom filters are. The
simplicity of the exact formula results from the conceptual
simplicity of them being essentially the AND of single-hash
filters. Standard Bloom filters have a more complex nature
due to the possibility of intra-element hash collisions, with
a resulting complex exact formula, normally approximated,
leading sometimes to surprises.

But essentially, we have shown how standard Bloom
filters exhibit a non-uniform distribution of the false positive
probability, with weak spots in the domain: elements that
are reported much more frequently as false positives than
expected. This is an aspect than has been neglected from the
literature. Moreover, the issue of weak spots is much aggra-
vated when naive double hashing is used. Even though eas-
ily circumventable, many libraries, including mainstream
ones, suffer from this anomaly. The lesson seems to be that
practitioners frequently skim over published results, failing
to notice subtle problems. Partitioned Bloom filters have
a uniform distribution of false positives over the domain,
with no weak spots, even if naive double hashing is used.
Moreover, the need for less hash bits makes such schemes
less warranted.

Finally, going beyond set-membership test, by surveying
other usages, the flexibility of being able to sample, extract,
add or retire individual parts becomes clear, showing the
partitioned scheme to be better. Like the hardware commu-
nity already did, partitioned Bloom filters should be widely
adopted by software implementers, and used as a better
starting point for new designs, replacing standard Bloom
filters as the new normal.
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