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Abstract—Understanding network workload through the char-
acterization of network flows, being essential for assisting net-
work management tasks, can benefit largely from traffic sampling
as long as an accurate snapshot of network behavior is captured.
This paper is devoted to evaluate the real applicability of using
sampling to support flow analysis. Considering both classical
and emerging sampling techniques, a comparative performance
study is carried out to assess the accuracy of estimating flow
parameters through sampling. After identifying the main building
blocks of sampled-based measurements, a sampling framework
has been implemented to provide a versatile and fair platform
for carrying out the testing and comparison process. Through an
encompassing coverage of representative sampling techniques, the
present study aims to provide useful insights regarding the use
of sampling in traffic flow analysis.

I. INTRODUCTION

The importance of traffic characterization for planning and
managing effectively todays networks is undeniable. Associ-
ating network traffic with the corresponding applications and
studying flows characteristics allows gathering valuable infor-
mation about network usage and, hence, devising solutions
able to accommodate applications’ requirements. However, the
massive volume of data to process impair applying traffic
classification and characterization algorithms efficiently. In
this way, packet sampling is viewed as a promising strategy
to cope with large data amounts by resorting to a subset of
the entire traffic to classify and characterize network usage.

Most of the current research efforts in developing sampling-
based measurement tools are usually focused on classical
sampling approaches (i.e., systematic and random packet cap-
ture), not covering the use of recent sampling techniques.
This includes adaptive sampling approaches deployed to bring
flexibility and scalability to network management tasks. In
addition, many of the current classification approaches do not
consider sampling, assuming that the input data is based on
the entire traffic.

The ability to generate accurate inputs about traffic profiles
is a crucial requirement imposed to a sampling technique
in order to supply the traffic classifier properly. To reduce
the computational burden involved, traffic data is usually
handled as flow statistics, including flow identification, flow
size (number of packets), flow load and duration.

In this context, the main objective of the present work
is to assess the applicability and performance of sampling
techniques for network flow analysis. This involves analyzing
the accuracy of flow statistics produced by current and recently

proposed sampling techniques in capturing the characteristics
of traffic flows crossing the networks. The test methodology
resorts to a sampling framework developed with the purpose
of implementing different sampling techniques in a flexible
way, allowing the combination of their inner characteristics in
forthcoming operational scenarios. The performance study is
carried out using recent traffic traces gathered at Portuguese
National Statistics Institute network.

Facing the above considerations, the contributions of this
work are threefold: (i) identification of functional layers and
tasks involved in a sampling-based measurement architecture;
(ii) adoption of a unified sampling taxonomy identifying
the inner characteristics distinguishing sampling techniques
(providing the basis for the sampling framework); and (iii)
evaluation of the impact of using distinct sampling techniques
for network flow characterization.

This paper is organized as follows: the related work is
discussed in Section II; the sampling-based measurement
architecture and corresponding traffic sampling taxonomy are
introduced in Section III; the methodology of tests used in the
flow analysis is presented in Section IV; the performance eval-
uation results are discussed in Section V; and the conclusions
are included in Section VI.

II. RELATED WORK

The usefulness of traffic sampling has been explored in mul-
tiple network tasks, namely: network security - for anomaly
and intrusion detection, botnet and DDoS identification [1];
SLA compliance and QoS control - for estimating parameters
such as packet delay, jitter and loss [2]; traffic engineering -
to assist traffic classification and characterization [3].

The importance of accuracy in traffic classification and
characterization based on sampled packets is increasing at
the same pace as traffic sampling is becoming mandatory to
reduce the burden of traffic analysis. Current research on this
topic is typically focused on identifying the complexity and
limitations introduced by the missing data during the analy-
sis of sampled traffic [4] [5], the statistical performance of
different classification approaches, such as machine learning-
based [3] [6]. However, these works only consider the widely
deployed systematic count-based or random count-based sam-
pling approaches, in which packets are selected according
to their position in the stream under analysis by resorting
to a deterministic or probabilistic function [7], respectively.
Recent approaches, such as adaptive sampling, or even already
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standardized proposals, such as time-based sampling [7], are
usually not covered.

Facing this gap within sampling research, this paper aims
to provide useful insights regarding the use of sampling
for flow analysis, resorting to an encompassing coverage of
representative sampling techniques applied to real traffic.

III. A SAMPLING-BASED MEASUREMENT ARCHITECTURE

A sampling-based measurement architecture can be viewed
as comprising three planes, as illustrated in Figure 1. The
management plane includes tasks deployed directly in mea-
surement points or in external management entities. It is re-
sponsible for selecting and configuring the measurement points
to participate in the sampling process, and estimating the
relevant metrics using data reports sent by the control plane.
The metrics estimation resorts to flow statistics which are
received from the lower plane following IP Flow Information
eXport (IPFIX) specifications.

Fig. 1. Architecture description

A modular design of the control plane allows a flexible
sampling technique selection and configuration. Considering
IETF PSAMP work [7] and recent sampling proposals, a
sampling taxonomy is used to identify the inner characteristics
distinguishing sampling techniques and also supporting the
definition of new sampling techniques which can be adjusted
to each traffic/service measurement scenario. The proposed
taxonomy defines that sampling techniques can be classified
into three well-defined components according to the granu-
larity, selection scheme and selection trigger in use. Then
each component is further divided into a set of approaches
commonly followed in existing sampling techniques.

• Granularity - identifies the atomicity of the element under
analysis in the sampling process: in flow-level approach,
the sampling process is only applied to packets belonging
to a specific set of flows of interest; in packet-level
approach, packets are eligible as independent entities.

• Selection scheme - identifies the function defining which
traffic packets will be selected and collected; this scheme
may follow a systematic approach, in which the process
of packet selection is ruled by a deterministic function
that imposes a fixed sampling frequency, independently of
the packet contents or treatment; a random approach, that
rules the sampling frequency through a random process,
usually resorting to a pseudo-random generator or to a
probabilistic function; or an adaptive approach, in which
the sampling technique is endowed with the ability to
change the selection of packets during the course of
measurements aiming to identify the most important parts
of a traffic stream according to the measurement needs
or to save network resources during critical periods.

• Selection trigger - determines the spatial and temporal
sample boundaries; it may use a time-based approach, in
which the sampling beginning and end are driven based
on the packets arrival time at the measurement point; a
count-based approach, in which the sampling boundaries
are defined based on the packet position in the incoming
stream; or an event-based approach, in which the decision
on when a sample starts and ends takes into account some
particular event observed in the traffic being monitored.
This event may be some value in the packet contents, the
treatment of the packet at the measurement point or a
more complex observation.

As presented in Figure 1, at the control plane, the sam-
pled packets received from the data plane are processed and
the relevant field contents are extracted according to the
classification algorithm requirements. These values are then
aggregated (both in time and space) and exported following
IETF guidelines [8] [9], and using IPFIX specifications.

At data plane, traffic is collected from network interfaces
by applying the sample rules defined in the control plane. The
unprocessed packets are then reported to the control plane to
be processed, simplifying the data plane.

Following this architecture, firstly introduced in [10], a
framework implemented in Java using libpcap, connects the
sampling components in order to enable a versatile deployment
of sampling techniques. This framework can be applied to
both online and offline measurement scenarios and currently
supports a large number of classical and recently proposed
sampling techniques. These techniques are summarized in
Table I, as well as their components under the proposed
taxonomy. The most relevant techniques for this work and
corresponding notation are briefly explained in Section IV-A.
As an example, the notation Syst identifies the systematic
technique, the notation C, T and Evt identifies the selection
trigger and _F a flow-level granularity.
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TABLE I
SAMPLING TECHNIQUES AVAILABLE IN THE FRAMEWORK

Technique Granularity Selection trigger Selection scheme
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IV. FLOW ANALYSIS: METHODOLOGY OF TESTS

In order to assess the traffic sampling impact on flow anal-
ysis, the methodology of tests consists in applying different
sampling techniques to real traffic scenarios, evaluating the
estimation accuracy of common flow parameters. The study
also extends the analysis to flow classification for different
sampling frequencies of the same technique. The following
sections detail the sampling techniques under evaluation, the
flow parameters used in the comparative study, and the traffic
scenario in use.

A. Sampling techniques
The sampling techniques evaluated correspond to: (i) the

main techniques currently used in network measurement tools,
i.e., SystC - systematic count-based and RandC - random
count-based [7], following a deterministic or uniform ran-
dom function for packet selection, respectively; (ii) SystT -
systematic time-based, a technique also defined in [7] and
scarcely deployed in current measurement points due to the
computational complexity in manipulating timestamps with
fine grain precision; and (iii) two adaptive techniques, i.e., LP
- adaptive linear prediction [11] and MuST - multiadaptive
sampling [12]. In the present study, due to the nature of the
traffic classification process where traffic is addressed as an
aggregate, all these techniques have packet-level granularity,
being flow identification and statistics then derived from the
sampled packets.

B. Comparative parameters
For comparing the ability of distinct sampling techniques

in assisting network flow analysis correctly, several flow
parameters are considered, namely: (i) the amount of flows
identified; (ii) the percentage of heavy-hitter (HH) flows
identified, where the notion of heavy hitter refers to 20% of
the largest flows in terms of size (number of packets) [13]; (iii)
the utilization share at transport level; (iv) the utilization share
at application level; and, (v) the accuracy of load estimations
for the identified flows.

Considering that when flow characterization is based on
sampling only a subset of the packets is available, estimat-
ing the underlying metrics involves the usage of statistical
estimators to overcome missing data. In particular, the load
estimation of each flow is an additional challenge as it needs
to be often inferred from a small number of collected packets.
Following the discussion in [4] and the notation in Table II,
the specific estimators in this comparative work are as follows:

• Flow Mean Packet Size (X̄f ): the average number of
sampled packet sizes of flow f .

X̄f =

Pnf
i=1

Xi

nf
(1)

• Estimated Flow Size (Sf ): the estimated number of
packets in flow f .

Sf = N ⇤ nf

ns
(2)

• Estimated Flow Load (Lf ): the byte count of an individ-
ual flow f .

Lf = Sf ⇤ X̄f (3)

TABLE II
NOTATION

Xi the size of the ith sampled packet of flow f
nf number of sampled packets of flow f
ns total number of sampled packets
N estimated total number of packets (ns/sampling_frequency)

Regarding the estimated flow load, this work applies an
innovative way to assess accuracy by resorting to a nonpara-
metric method to estimate the density distribution of load
estimation (i.e., KDE - Kernel Density Estimation method)
and thereby fostering the discussion on the estimation bias
when applying each sampling technique. Each distribution
corresponds to a nonparametric probability density function
estimated using the Kernel method and a Gaussian smoothing
scale. This method consists in drawing a continuous and
smooth density distribution, weighted by the distance from
a central value (the Kernel), where the population is inferred
from a finite number of observations. In this context, as defined
in [14], let (Lf1, ..., Lfn) be the estimated load of all identified
flows (n) for which the density p is under evaluation. The
shape of this function using the kernel estimator is given by:

p̂bw(Lf ) =
1
n

nX

i=1

K(
Lf � Lfi

bw
), (4)

where K() is the kernel scaled by a Gaussian function,
and bw is a smoothing parameter called bandwidth which
defines the variance of the kernel in order to concentrate the
density distribution within a specific interval. This interval is
defined using the standard deviation of the smooth kernel when
considering both unsampled traffic and traffic resulting from
all sampling techniques.

When useful, the present study includes the mean absolute
error (MAE) and the mean square error (MSE) of the estimated
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values, which are commonly used to evaluate the accuracy of
estimators [4]. Note that, the evaluation of flow classification
methodologies and tools is beyond the scope of this work,
which resorts to a port-based classification technique for
distinguishing flows.

C. Traffic scenario
The data used to evaluate sampling accuracy consists of

four traffic traces collected from a high-utilization production
network, providing multiple services such as videoconference,
VoIP, distributed databases, private cloud, ftp, etc. Each trace,
gathered at Portuguese National Statistics Institute network,
corresponds to a twenty minutes capture in different workload
periods aiming to include load scenarios in which flow analysis
is commonly used. The traffic traces are then handled as an
aggregate, reflecting a continuous and heterogeneous network
activity period of 252,087 individual unidirectional flows,
comprising nearly 3 million packets.

V. EVALUATION RESULTS

This section includes the main test results evaluating the per-
formance of the sampling techniques described in Section IV.
After performing an initial tuning of the systematic count-
based technique (SystC) to assess the impact of sampling
frequency, the discussion is focused on evaluating the accuracy
of all sampling techniques under study when estimating the
flow parameters defined in Section IV-B.

A. Identifying existing flows and heavy hitters
Intuitively, the sampling frequency is directly proportional

to the estimation accuracy, as increasing the collected traffic
results in a larger dataset for statistical analysis. While this
may be true for analysis carried out using the same sampling
technique, when the sampling selection scheme changes, the
trade-off between overhead and accuracy may differ signifi-
cantly. Even within the same technique, studying this trade-
off may bring useful information for reducing the amount of
traffic collected and processed as, for several flow parameters,
this reduction does not have a significant impact on accuracy.

Considering the evaluation of SystC sampling technique,
the results in Table III confirm that decreasing the number
of sampled packets leads to a decrease on the number of
flows identified. As illustrated in Figure 2(a), while SystC 1/81

identifies 40% of existing flows, SystC 1/256 only detects
2,3% of flows. However, reducing the sampling frequency does
not impact significantly on the accuracy in the identification
of the heavy-hitter flows. For instance, despite SystC 1/256
manipulates only 6% of the traffic processed by the technique
SystC 1/16, the accuracy of heavy hitters identification is
almost equivalent. This performance analysis is useful to guide
activities in which accounting for heavy flows is relevant.

Regarding the different sampling techniques2, a larger num-
1The notation SystC 1/8 denotes that one packet is collected from each

eight incoming packets at the measurement point.
2Despite of the values presented in Table III, the following comparative

evaluation tests use the frequency 1/100 for SystC and RandC techniques,
as suggested in [6]. For SystT technique, the sampling frequency in use is
100/1000 as it led to the best results for the analysis performed.

TABLE III
SYSTC FLOW IDENTIFICATION

# Sampled packets # Distinct flows % Heavy hitters

SystC 1/8 373124 101168 40%
SystC 1/16 186562 61022 33%
SystC 1/32 93280 35523 33%
SystC 1/64 46639 19854 34%
SystC 1/128 23319 10891 36%
SystC 1/256 11665 5889 32%

ber of sampled packets also implies a larger number of flows
identified, as illustrated in Table IV. Nevertheless, count-based
techniques are more efficient as, for the same proportion of
sampled packets, the percentage of identified flows is signif-
icantly higher. This is visible when comparing the results of
SystC 1/8 and SystT in Figures 2(a) and (b), respectively. This
is due to the distinct packet selection policies in use, as the
process of packet selection in count-based techniques increases
the probability of capturing distinct flows, contrarily to time-
based techniques in which packets are selected sequentially.

TABLE IV
SAMPLING TECHNIQUES FLOW IDENTIFICATION

# Sampled packets # Distinct flows % Heavy hitters

SystC 29849 13652 33%
SystT 296579 44590 30%
RandC 29849 13577 33%
LP 196007 30186 30%
MuST 156382 21009 33%
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35.0#
40.0#
45.0#
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(a) SystC
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(b) Sampling Techniques

Fig. 2. Identifying flows - comparative analysis

B. Utilization share at transport and application level
Regarding the analysis at transport level, the reduction on

the number of sampled packets promoted by a lower sampling
frequency of SystC does not affect accuracy, as presented in
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Figure 3 and confirmed by the low MAE and MSE throughout
all frequencies. However, considering the application level, the
estimated distribution is significantly affected, resulting in an
overestimation of http traffic.

Fig. 3. Analysis at application and transport level - systematic count-based

Although changing the sampling technique also maintains
the accuracy in classifying the transport protocol (see Figure
4), the classification of applications shows more variability
for the different techniques. As presented in Figure 4, time-
based techniques lead to a more realistic distribution of the
application share, with MuST providing the more accurate
result. Globally, the results evince that an adequate yet small
fraction of network traffic is able to provide a useful panoramic
view of the protocolar mix of network flows.

Fig. 4. Analysis at application and transport level - comparative techniques

C. Load estimation

Attending to the formulation in Section IV-B, the results in
Figure 5 show the distribution of the estimated flow load Lf

(in logarithmic scale) when applying the different sampling
approaches. The resulting graphics demonstrate the ability
to represent the load distribution of all flows identified in
the traffic trace, instead of only the more significant ones.
This analysis plays a key role for traffic characterization and
resource management activities.

The results show that time-based techniques achieve a
distribution closer to the real flow behavior (unsampled case in
Figure 5 (a)) when compared with the count-based approaches
(Figures 5 (b) and (d)). In addition, time-based approaches also
lead to more accurate estimations of individual flows; this is
observed through a better adjustment on the x-axis, meaning
that the load estimations are closer to the real values. This
suggests that a positive aspect (sparse packet selection) in
flow identification becomes a drawback of the count-based
techniques in flow dimensioning, since the current heuris-
tics for flow load estimation consist in linear extrapolation
proportional to the sampling frequency. This implies that a
lower sampling frequency leads to overestimation of the flow
load, deforming the density distribution to the right, and also
concentrating the trend of load estimations (as detailed in
Figure 5 (g) and (h), for two sampling frequencies of SystC
technique), which evinces statistical loss of accuracy. This may
interfere with network tasks in which the classification of small
flows are of particular interest, such as intrusion detection and
DDoS attacks.

Conversely, once time-based techniques select successive
packets, the bursty behavior of larger flows tends to be better
identified and dimensioned, resulting in more accurate flow
load distributions, as presented in Figures 5(c), (e) and (f).

Table V includes statistics (mean, standard deviation and
mode) to complement the above flow load analysis for the
sampling techniques under study. As shown, the average flow
load, the dispersion and the mode of the load estimations cor-
roborate the behavior depicted in Figure 5. For the systematic
count-based technique, as the sampling frequency decreases,
the overestimation and concentration tendency is stressed.

TABLE V
FLOW LOAD STATISTICAL DESCRIPTION

Mean Standard deviation Mode

Unsampled 6.08 1.48 4.18
SystC 9.78 1.36 8.79
SystT 8.04 1.47 4.49
RandC 9.78 1.37 8.79
LP 8.40 1.50 6.82
MuST 8.74 1.54 6.58

SystC 1/8 7.26 1.40 6.26
SystC 1/16 7.91 1.39 6.89
SystC 1/32 8.61 1.38 7.62
SystC 1/64 9.34 1.37 8.33
SystC 1/128 10.06 1.37 9.03
SystC 1/256 10.79 1.38 9.73
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Fig. 5. Density of flow load estimation

VI. CONCLUSIONS

The present research work was focused on evaluating the
performance of distinct traffic sampling techniques to support
network flow analysis. Attending to the potential relevance of
combining these tasks to allow cost-effective network manage-
ment, evaluating the real applicability of current and emerging
sampling techniques for flow characterization is an important
step to avoid misleading estimation of network usage.

Globally, the obtained results evince that: (i) distinct sam-
pling techniques led to variable yet reduced sampling data
volumes attending the overall traffic; this gain in traffic han-
dling has a cost regarding the small to moderate ratio of flows
identified. Nevertheless, count-based techniques revealed to
be more efficient as they allow to identify more flows with
the same amount of sampled traffic. Heavy-hitter flows are
generically detected in the same proportion for all sampling
techniques, independently of the sampling frequency; (ii)

despite the small number of detected flows, the protocolar
analysis both at transport and application levels provided a
comprehensive snapshot of the protocolar scene, being MuST
the more accurate technique at application level. The sampling
frequencies adopted for SystC technique did not affect the
protocolar analysis significantly; (iii) flows load estimation is
hard to achieve accurately as it needs to be inferred from
a reduced number of packets of each flow. Using specific
estimators to overcome missing data, time-based techniques
are more effective in estimating flows load, leading to a
probability density function close to the unsampled flow case.

In summary, a higher sampling frequency does not neces-
sarily lead to more accuracy and, depending of the network
tasks assisted by sampling, one can take advantage of either
a low-frequency sampling or a specific sampling technique in
order to improve the trade-off between overhead and accuracy
when studying network flows behavior.
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