Experience with a Middleware Infrastructure for
Service Oriented Financial Applications

José Pedro Oliveira
ParadigmaXis, S.A.

jpo@di.uminho.pt

ABSTRACT

Financial institutions, acting as financial intermediaries, need to
handle numerous information sources and feed them to multiple
processing, storage, and display services. This requires filtering
and routing, but these feeds are usually provided in custom formats
and protocols that are not the best fit for further processing. More-
over, the sheer volume of information and stringent timeliness and
reliability requirements make this a substantial task.

In this paper, i) we characterize one of these information feeds
(the Exchange Data Publisher feed from the NYSE Euronext Euro-
pean Cash Markets) and ii) we present and evaluate a dissemination
system for this particular feeder based on commodity hardware and
open-source message-oriented middleware (Apache Qpid). This al-
lows us to assess the feasibility of this approach and to point out the
main challenges to be overcome.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; J.1 [Administrative Data Pro-
cessing]: Financial (e.g., EFTS)

General Terms

Experimentation, Performance.

Keywords

Distributed event processing, Financial market data, AMQP.

1. INTRODUCTION

Market data feeds such as the NYSE Euronext XDP [5] provide
to financial institutions a detailed account of orders, trades, and
quotes in real time. This information is needed for trading activities
within the institution as well as to serve external clients through
Web- based trading and home banking platforms. This requires that
these feeds are processed, filtered, and routed towards a number of
different services that encapsulate processing, storage, and further
dissemination activities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

479

José Pereira
Universidade do Minho

jop@di.uminho.pt

This is however a challenging task. First, due to the sheer vol-
ume of information and to stringent timeliness and reliability re-
quirements. But also because the protocol used to deliver the data
across a wide area network from the market systems is custom tai-
lored to a specific set of requirements and not fit for further pro-
cessing and usage within the institution. As further detailed in Sec-
tion 2, this protocol is tailored to providing reliable transmission
with minimal recovery latency while minimizing feedback to the
sender for greater scalability and resilience of market systems. As
a consequence, the coarse granularity of subscriptions and upfront
redundant data transmission cause a large bandwidth overhead.

Reconciling this with the typical requirements of a financial in-
stitution means publishing the market data feed to a more flexible
event dissemination system. In this paper we describe an exper-
iment to assess the feasibility of achieving this with off-the-shelf
hardware and software and minimal additional configuration and
performance tuning effort. This leads to two contributions:

e We characterize the workload imposed by a typical market
data feed in terms of number and type of events, but also
how frequently and far apart related events are found in the
incoming data.

e We deploy a test system using Apache Qpid [3] message bro-
ker and several event consumers and measure the latency in-
troduced while accounting for resources used.

The rest of the paper is structured as follows. The NYSE Euronext
data feed is characterized in Section 2, followed by a description
of our experimental setting in Section 3. Then, in Section 4 we
present the experimental results. Finally, we summarize the lessons
learned, discuss the results and lay plans for future work.

2. NYSE EURONEXT XDP

The NYSE Euronext European Cash Markets Exchange Data
Publisher (XDP) feed is disseminated in real-time via dual mul-
ticast channels with different Market Data product sets having its
own pair of dedicated multicast channels (Figure 1). In particular,
the Exchange Data Publisher feed, has seven main different prod-
uct sets, or services: Euronext Equities - Referential Data (101),
Euronext Equities - Trades (102), Euronext Equities - Quotes (103),
Euronext Equities - Orders (104), Euronext Warrants - Trades (105),
Euronext Warrants - Quotes (106), and Euronext Indices - Compo-
sition and Values (107).

The usability of these feeds, in terms of packet recovery, is as-
sured by three components: i) the Market Data Server (MDS) that
provides the real-time data via dual multicast channels (the data of
each of the above services is received independently in two chan-
nels), ii) the Retransmission Server (RTS) that is able to fill, upon

Retransmission
Services

Real-Time Refresh
Services Services

Multicast TCP/IP TCP/IP Multicast
Y Y Channels L 2 ¥ Y Channels

Client

Figure 1: NYSE Euronext UTP-MD platform

request and by TCP connections, the packet gaps that clients may
experience, and iii) the Refresh Server (RFS) that is able to pro-
vide a snapshot of the current market state using a second set of
multicast channels or, upon request, via TCP connection.

2.1 Protocol

The real-time market data is delivered as payload of IPv4 UDP
datagrams with fixed length fields. Each Euronext packet has, at
least, 16 bytes in a packet header and never exceeds 1400 bytes.
It can also have several market data messages in its payload (the
number of messages is specified in one field of the packet header).
And each packet will only contain complete messages.

The 16-byte packet header has these fields: PacketLength(2),
PacketType(2), PacketSeqNum(4), SendTime(4), ServiceID(2), De-
liveryFlag(1), and NumberMsgEntries(1). Each Market Data mes-
sage also has a 4 byte message header with two fields: MsgSize(2)
and MsgType(2).

2.2 Session traffic

Table 1 and Figures 2 and 3 represent the raw data, in terms of
packets and bytes, received from the Euronext network in a typical
session during a March 2011 session starting at 05:10 and finish-
ing at 22:00. The resulting data is representative of most sessions,
although it is not the worst case scenario that was observed.

This Euronext session traffic, arriving through a single 48 Mbps
leased line, was captured [6] by a software based solution - dump-
cap ! - without any packets being dropped. The capture process
only listened for multicast packets and no switch port-mirror facil-
ity was used.

Packets Data size
Service Number % Bytes %
Realtime | 78790668 97.0 | 26872066702 95.9
101 69943 0.1 17595944 0.1
102 4450056 5.5 561680548 2.0
103 28504078 35.1 | 12073599450 43.1
104 28762398 35.4 | 10014669786 35.7
105 649279 0.8 125315792 0.4
106 15731559 194 3851438560 13.7
107 623355 0.8 227766622 0.8
Refresh | 2426944 3.0 [1153843507 4.1
Total [81217612 100.0 | 28025910209 100.0

Table 1: Real-time services: traffic summary

For this particular session more than 81 million packets (ethernet
frames), totaling 26.1 GiB of data, were captured. For Euronext
traffic these numbers can be further divided in Realtime and Re-
fresh traffic, where 97% of the packets belong to the first category
and 3% belong to the second. The 81 millions of Euronext packets

"Dumpcap is part of the Wireshark [2] software suite.

480

300000 — ‘ : : :

T T T T
Packets

250000 -
200000 - h

Packets / minute

150000 -

100000 -

il

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Hour

Figure 2: Packets per minute

1.4e+08 T T T T T T —

—
Bytes
1.2e+08 |- -

\s \‘ i
“(M o

M R

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Hour

1e+08 |-

8e+07 -

6e+07 -

Bytes / minute

4e+07

2e+07

Figure 3: Bytes per minute

contained more than 410 millions of Euronext messages, the aver-
age Euronext packet size (the UDP datagram payload) was 287.53
bytes, the average Euronext message size was 53.74 bytes, and the
average number of Euronext messages per packet was 5.05.

Figures 4 and 5 show the raw incoming data splitted by the seven
real-time services. The ten bigger traffic peaks for this particular
session, in terms of packet and bytes rates, are listed in Tables 2
and 3.

Time Packets Bytes
09:33:42 10297 5480480
13:29:56 9349 4802572
08:24:47 8871 5488584
13:50:39 8634 4603524
08:05:00 8545 3845246
09:33:43 8453 4870922
08:04:58 8386 3250192
08:05:11 8184 2088188
09:33:47 8162 4724620
09:33:46 8153 5414590

Table 2: Packet peaks

Finally, we characterize how often related events are found in
the stream by computing the interarrival time of events referring to
the same Symbollndex. As can be seen in Figure 6, containing the
corresponding empirical cumulative distribution, when a symbol is
repeatead in the same stream, approximately 70% of times it will
be within the same millisecond and 80% of times before 10 mil-
liseconds. This means that multiple references to the same symbol
appear in bursts. Note that the interarrival time was calculated us-

120000

o
Service 101 ——

Service 102 ——
100000 |- Service 103 ——— 7
Service 104 ———
2 80000 - Service 105 B
2 Service 106 ——
€ Service 107
% 60000 -
]
x
3
& 40000 - N
20000 ‘ E
) ﬂ fy Wﬁ W
0 1l L,J:”f” | | 1
04:00 06:00 08:00 10:00 12:00 14:00 16:00 1800 20:00 22:00
Hour
Figure 4: Real-time services: packets per minute
7e+07 — T 7
Service 101 ———
6e+07 - Service 102 —— |
Service 103 ——
Service 104 ——
5e+07 - Service 105 b
% [Service 106 ———
E 4e+07 - I Service 107 -
— 1] [
8 3e+07 |- ‘ -
> I [
) I k‘ ’ 4{
26+07 |- . & M i
4
l
1e+07 - WV } | W’"M 4
) u
MW WM/; i\ *‘W*M‘“ il b
0 N T TR | “)
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 2000 2200
Hour

Figure 5: Real-time services: bytes per minute

ing only packets from the first channel of each service. This means
that there is potential for caching of rules within the broker when
filtering and routing messages based on the symbol.

@
o

0.6

P(Interarrival<=x)
0.4

0.2

0.0

Figure 6: Same symbol interarrival

The challenge is thus to determine to what extent an off-the-shelf
middleware package can be used on typical hardware components
to perform the information dissemination and filtering activities re-
quired to support a service oriented infrastructure. In particular,
we are concerned with the ability to meet desired latency targets in
spite of traffic bursts when performing dissemination and filtering
at different granularities, namely, by service or by symbol.

481

Time Packets Bytes
16:34:55 4790 5975840
05:16:29 4660 5912564
07:59:58 5989 5899770
05:16:24 5237 5897868
05:16:23 5496 5793488
05:16:25 4319 5670150
05:16:30 4459 5668254
05:16:26 4611 5628434
08:24:47 8871 5488584
09:33:42 10297 5480480

Table 3: Byte peaks

3. EXPERIMENTAL SETUP

M1 ubP TCP

Replay

M2
Gateway

M3
Broker

1Gbps. 1Gbps

TCP M4
1Gbps Client D

1Gbps

cC

Figure 7: Experimental setup

To address this challenge, we setup an infrastructure that can de-
terministically replay a representative sample of traffic and feed it
into different middleware configurations. In detail, the architec-
ture used is depicted in Figure 7, showing the main computers used
and their network connections. All computers had at least an In-
tel Core2 Duo CPU, 2 network interfaces, and 2 GB of RAM 2
and were running Scientific Linux 6.1 x86_64, a Red Hat Enter-
prise Linux clone, with kernel 2.6.32 (2.6.32-131.6.1.e16.x86_64).
The two switches used, one for interconnecting the broker with the
clients, and the other for the command-and-control network, are
both gigabit. All links are gigabit with the exception of the replay
machine (M1) command-and-control link that is only 100 Mbps.

Server M1 was responsible for impersonating the NYSE Eu-
ronext XDP feed. This impersonation was done by replaying traf-
fic captured during a real Euronext session. The traffic, which has
been previously captured, was replayed with the tcpreplay [7] tool,
after being modified with tcprewrite * in order to change the frame
source mac address and the source IP address. It basically replayed
the multicast XDP packets (Ethernet/IPv4/UDP/XDP).

Server M2 had a simple thread-based software component im-
plemented in C++ that received the feeder real-time multicast traf-
fic (XDP data over UDP), dropped the duplicate packets, optionally
splitted the packets in its messages, and injected them in the Qpid
broker as AMQP messages (Eth/IPv4/TCP/AMQP/XDP). Note that
this application ignored the Refresh multicast traffic, i.e., it didn’t
join the Refresh multicast groups. This application was linked
against the Qpid client and the Boost [1] libraries.

Server M3 runned a Qpid broker, an open source implementa-
tion of the Advanced Message Queuing Protocol (AMQP) [4]. This
particular Qpid broker was installed via yum using the RPMs avail-
able in the Scientific Linux repositories (qpid-cpp-server-0.10). All

The gateway had 3 gigabit network interfaces; the broker had a
quad core CPU (Intel i7), 5 gigabit network interfaces, and 8 GB of
RAM

3Tcprewrite is part of the tcpreplay software suite.

system components, in particular the kernel and the broker, had
their default configurations, with the exception of the broker de-
fault queue size that was increased to 500 MiB. All published and
subscribed data was handled over AMQP messages.

Hosts M4, M5, M6, and M7 executed the client application, that
consumed or subscribed the feed information using either a direct
or a topic exchange *. The client application was also done in C++,
linked with the Qpid client and the Boost libraries. All subcribed
data was transported in AMQP messages.

Finally, CC was used to start the tests and collect the system
under test statistics. These operations were performed through a
second and independent gigabit network.

4. MEASUREMENTS

The latency introduced by the middleware system, an Apache
Qpid broker, was measured in two major scenarios: i) a publish/
subscribe scenario where every non-duplicated real-time Euronext
packet was independently published and ii) a publish/subscribe sce-
nario where every Euronext message of non-duplicated real-time
Euronext packets was independently published. Each of the previ-
ous scenarios was further subdivided in two separated experiments:
i) using a broker direct exchange for the publish/subscribe opera-
tions and ii) using a broker topic exchange for the publish/subscribe
operations.

Other important system considerations were:

e A subset of the captured Euronext session traffic was re-
played at 40 Mbps from M1 system. The subset used, the
captured traffic between 07:55 and 10:00, contained approxi-

mately 20.1 millions Euronext packets that represented roughly

9.99 millions non-duplicated real-time Euronext packets con-
taining 50.6 millions Euronext messages.

e Every time a non-duplicated Euronext real-time packet ar-
rived at the gateway (M2), it was pushed to its respective ser-
vice queue °. Another thread, one for each real-time service,
was used to consume the packets from the service queue, and
publishing them on the Qpid broker. In the second scenario,
this thread was also responsible for splitting the Euronext
packets in its messages, suffixing them with a 7 byte tag (Ser-
vice ID, PacketSeqNum, and MessageNum), before publish-
ing them to the Qpid broker.

In the first scenario, and for every odd PSN Euronext packet,
an UDP control message containing the current packet tag
was sent to the CC system where it was timestamped on
arrival. In the second scenario, an UDP message was sent
for every odd message of every odd PSN Euronext packet
(roughly 1 control message for every 4 Euronext messages).

e The publish/subscribe control client (M4), either a direct or
a topic exchange client, for every message with an odd PSN
it received, extracted the message tag and sent it in an UDP
control message to the CC system, where it was also times-
tamped on arrival. In the second scenario, an UDP control
message was sent for every odd message of every odd PSN
Euronext packet.

e The CC machine, by timestamping the messages it received
from the gateway and from the control client, and matching
their tags, was able to calculate the latency introduced on the
system by the Qpid broker.

*The topic exchange supports multiple words keys

SRemember that every service receives data via two independent
channels

482

4.1 Scenario 1 - Euronext packets as AMQP
messages data

The results of this setup, where there is a one-to-one relation
between the number of non-duplicated real-time Euronext packets
and the number of AMQP messages published, are summarized in
Tables 4 and 5 and in Figures 8, 9, and 10.

Clients Mean Min Max P(50%) P(90%)
1 0.786 0.008 421.028 0.762 1.007
2 0.871 0.008 271.007 0.836 1.137
4 0918 0.008 323.354 0.883 1.193
6 1.216 0.008 347.970 1.026 1.946
8 1.464 0.008 264.230 0.999 2.932
10 1.519 0.008 277.401 0.975 3.119

Table 4: Packets: direct exchange latencies (ms)

Clients Mean Min Max P(50%) P(90%)
1 0.807 0.009 301.832 0.783 1.034
2 0.903 0.008 383.946 0.856 1.167
4 0.990 0.008 1595.953 0.931 1.303
6 1.326 0.008 265.208 1.048 2.327
8 1.516 0.008 253.650 1.002 3.097
10 1.566 0.009 404.169 1.000 3.201

Table 5: Packets: topic exchange latencies (ms)

1.6

T
Direct

1.5 - Topic
14t
S
g 131
7 12f
8
SRR
&
s 1t
2
09t
08— i
07 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Clients
Figure 8: Euronext packets: latencies

During this setup runs, the machines CPU load, network load,
and memory consumption were monitored using Dstat [8], and no
resource related problems were detected in any of them. In partic-
ular, the system load of the broker (M3) oscillated between 2% and
12% while its user load oscillated between 8% and 30%; the replay
system transmitted 5 MB/sec, the gateway transmitted 3 MB/s in
its publishing link, and the client consumed data at 3.4 MB/s.

The conclusion is that it is possible to use the proposed middle-
ware as the backbone for dissemination, even if topic subscribtion
is being performed instead of direct exchange. Note however that
if the application is highly sensitive to delay, the long tails in Fig-
ures 9 and 10 indicate that, even in this case in which broker re-
sources are far from being exhausted, there are some packets that
are delayed significantly more than the average delay.

4.2 Scenario 2 - Euronext messages as AMQP
messages data

The results of this setup, where there is a one-to-five relation
between the number of non-duplicated real-time Euronext packets

0.8 1.0

P(Latency<=x)
0.6
1

0.4

— f1client
—— 2clients
— d4clients

6clients

0.2

8clients
—— 10clients

0.0

ms

1.0

0.8

=X)
0.6
I

P(Latency<:
0.4

— f1client
—— Z2clients
| — 4clients
6clients

0.2

8clients
—— 10clients

0.0

Figure 10: Packets: topic exchange latencies

and the number of AMQP messages published, are summarized in
Tables6 and 7 and in Figures 11, 12, and 13.

Clients Mean Min Max P(50%) P(90%)
1 0.762 0.009 505.393 0.709 1.024
2 0.809 0.021 589.011 0.702 1.081
3 0974 0.018 567.455 0.754 1.183
4 2.230 0.022 592.593 1.001 3.763
5 60.652 0.088 705414 53.199 125.689

Table 6: Messages: direct exchange latencies (ms)

During this setup runs, the machines CPU load, network load,
and memory consumption were monitored using Dstat [8], and
some resource related problems start to appear. While the broker
(M3) maintained its resources under control, where its system load
oscillated between 2% and 10% and its user load oscillated between
15.5% and 38%, the gateway started to experience some CPU and
memory stress: the broker producer flow-control and what appears
to be a single-thread per connection publishing started to increase
the memory consumption and CPU load. In this setup the replay
system transmitted 5 MB/sec, the gateway transmitted 6.1 MB/s in

483

Clients Mean Min Max P(50%) P(90%)
1 0.775 0.018 530.459 0.713 1.033
2 1.062 0.009 596.690 0.753 1.340
3 2.185 0.022 613.629 0.969 3.512
4 10.850 0.043 503.512 3.985 29.263
5 120.456 0.221 720.153 120.128 146.817

Table 7: Messages: topic exchange latencies (ms)

140

Direct
Topic J

120 |-
100 |- i
80 |- /A
60 |-

40 -

Average delay (msec)

20 -

Clients

Figure 11: Euronext messages: latencies

0.6

P(Latency<=x)

0.4

— 1client
—— 2clients
—— 3clients
4clients
Sclients

0.2

0.0

ms

Figure 12: Messages: direct exchange latencies

its publishing link, and the client consumed data at 7.8 MB/s.

In this case, in which the broker has to manage a substantially
higher number of messages, even if smaller in size, it becomes clear
that it becomes a bottleneck fairly quickly. In fact, with as little as 5
subscriptions, there is significant queuing happening with dramatic
impact in latency.

S. LESSONS LEARNED

These experiments, where the data was replayed at a constant bit
rate and every client subscribed to all data published, allowed us to
uncover the following lessons.

First, splitting the XDP packets too soon in the dissemination
path causes several problems: i) the broker CPU load (as seen in
figure 15) increased sharply with the higher number of smaller mes-
sages being published, ii) the broker network bandwidth usage in
the link where the subcribers were connected (as seen in figure 14)
more than duplicated; this also show us how critical the protocols
overheads were and how easy it would be to saturate a 1 Gbps net-

1.0

0.8

=X)
0.6
I

P(Latency<

0.4

1client
2clients
- —— 3clients
4clients
Sclients

0.2

0.0

40 60 80 100

ms

Figure 13: Messages: topic exchange latencies

50

< — packetsdirect

—— packetstopic
messagesdirect

—— messagestopic

40

Linkusage(MB/s)
20
L

T T T T T
2 4 6 8 10

Numberofclients

Figure 14: Broker network bandwidth used by the subscribers

work link even with a small number of clients, iii) the end-to-end
latencies increased rapidly (Tables 6 and 7 vs Tables 4 and 5) mak-
ing the SUT become unusable with only 5 clients.

Second, the fine grained pub/sub also caused problems in the
gateway system, making its memory usage grow steadly (due to
queueing of messages) as the broker started to throttle back the
producer message rate (Qpid producer flow control feature). This
behaviour was observed in the Messages/Topic experiment of the
second scenario (Figure 16). This also made the gateway a prime
contributer to the end-to-end latency.

6. CONCLUSIONS

In this paper we describe an experiment with an event process-
ing and dissemination infrastructure for handling a typical finan-
cial market data feed within a financial institution. The first con-
tribution is thus a characterization of this workload, that should be
useful when researching event dissemination systems, for instance,
when generating realistic workloads for testing.

Although our setup handles the load while consuming only a
fraction of available CPU and memory bandwidth of the broker, we
observed that additional clients, in particular with fine grained pub-
lication/subscription, quickly cause an increasing share of events to
be delayed for an increasingly larger period. This is worrisome and
thus future work should explore the scalability limits of the system.
Moreover, the large number of related events close together in the

484

50

< — packetsdirect
—— packetstopic
messagesdirect

—— messagestopic

40

30
I

CPUload(%)

20
I

Numberofclients

Figure 15: Broker CPU load

500

1cent +
2clients x
3clients
4clients 0
5 clients

450

400 |-

350 |-

300

Memory usage (MB)

250

200 -

150 i i i ! !
0 200 400 600 800 1000

Time (secs)

1200

Figure 16: Scenario 2 Msg/Topic - gateway memory usage

event stream found by this study should also be considered in future
research.

7. ACKNOWLEDGMENTS

Partially funded by FCT through grant SFRH/ BDE/ 33304/ 2008
and by ParadigmaXis - Arquitectura e Engenharia de Software,
S.A.

8. REFERENCES

[1] Boost C++ Libraries. http://www.boost.org/.

[2] Wireshark - network protocol analyzer.
http://www.wireshark.org/.

T. Apache Software Foundation. Apache Qpid: Open Source
AMQP Messaging. http://gpid.apache.org/.

A. W. Group. Advanced Message Queuing Protocol.
http://www.amgp.org/.

NYSE Technologies, http://www.nyxdata.com/doc/32342.
NYSE Euronext European Cash Markets Exchange Data
Publisher Client Specification, version 3.6 edition, September
2012.

V. Paxson. Strategies for sound internet measurement. In
Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, IMC 04, pages 263-271, New York,
NY, USA, 2004. ACM.

A. Turner. tcpreplay.
http://tcpreplay.synfin.net/.

D. Wieers. Dstat: versatile resource statistics tool.
http://dag.wieers.com/home-made/dstat/.

(3]
(4]

(5]

[6

—_

(7]
(8]

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

