
Accelerating Recommender Systems using GPUs

André Valente Rodrigues
LIAAD - INESC TEC

DCC - University of Porto

Alípio Jorge
LIAAD - INESC TEC

DCC - University of Porto

Inês Dutra
CRACS - INESC TEC

DCC - University of Porto

ABSTRACT
We describe GPU implementations of the matrix recom-
mender algorithms CCD++ and ALS. We compare the pro-
cessing time and predictive ability of the GPU implemen-
tations with existing multi-core versions of the same algo-
rithms. Results on the GPU are better than the results of
the multi-core versions (maximum speedup of 14.8).

Keywords
Recommender Systems, Parallel Systems, NVIDIA CUDA

1. INTRODUCTION
Recommendation (or Recommender) systems are capable

of predicting user responses to a large set of options [4, 12,
14]. They are generally implemented in web site applications
related with music, video, shops, among others, and collect
information about preferences of different users in order to
predict the next preferences. More recently, social network
sites such as Facebook, also started to use recommender
algorithms [2, 7].

Many recommendation systems are implemented using
matrix factorization algorithms [10, 16]. Given a user-item
interaction matrix A, the objective of these algorithms is
to find two matrices W and H such that W ×HT approxi-
mate A. Matrix W represents user profiles and H represents
items. With W and H we can easily predict the preference
of user i regarding an item j. The fact that these recommen-
dation systems are based on matrices operations make them
suitable to parallelization. In fact, due to the huge sizes of
W and H and the nature of these algorithms, many authors
have pursued the parallelization path. For example, popular
algorithms like the Alternating Least Squares (ALS), or the
Stochastic Gradient Descent (SGD) have parallel versions
for either shared-memory or distributed memory architec-
tures [17, 19, 20, 23]. Recently, Yu et al. [19] demonstrated
that coordinate descent based methods (CCD) have a more
efficient update rule compared to ALS. They also show more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SAC’15 April 13-17, 2015, Salamanca, Spain
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695850

stable convergence than SGD. They implemented a new rec-
ommendation algorithm using CCD as the basic factoriza-
tion method and showed that CCD++ is faster than both
SGD and ALS.

With the increasing popularity of general purpose graph-
ics processing units (GPGPU), and their suitability to
data parallel programming, algorithms that are based on
data matrices operations have been successfully deployed
to these platforms, taking advantage of their hundreds of
cores. Regarding recommendation systems, we are only
aware of the work of Zhanchun et al. [21] that implemented
a neighborhood-based algorithm for GPUs. In this paper,
we describe GPU implementations of two recommendation
algorithms based on matrix factorization. This is, to our
knowledge, the first proposal of this kind in the field.

We implement CCD++ and ALS GPU versions using the
CUDA programming model in Windows and Linux. We
tested our versions on typical benchmarks found in the lit-
erature. We compare our results with an existing multi-core
version of CCD++ and our own multi-core implementation
of ALS. Our best results with GPU-CCD++ and GPU-ALS
versions show speedups of 14.8 and 6.2, respectively over
their sequential versions (single core). The fastest CUDA
version (CCD++ on windows) is faster than the fastest 32-
core version. All results on the GPU and multi-core have
the same recommendation quality (same root mean squared
error) as the sequential implementations.

GPU-CCD++ can be a better parallelization choice over
a multi-core implementation, given that it is much cheaper
to buy a machine with a GPGPU with hundreds of cores
than to buy a multi-core machine with a few cores.

Next, we present basic concepts about GPU programming
and architecture, explain the basics of factorization algo-
rithms and their potential to parallelization, describe our
own parallel implementation of ALS and CCD++, show re-
sults of experiments performed with typical benchmark data
and, finally, we draw some conclusions and perspectives of
future work.

2. THE CUDA PROGRAMMING MODEL
The CUDA programming model [8, 15, 18], developed by

NVIDIA, is a platform for parallel computing on Graph-
ics Processing Units (GPU). One single host machine can
have one or multiple GPUs, having a very high potential
for parallel processing. GPUs were mainly designed and
used for graphics processing tasks, but currently, with tools
like CUDA or OpenCL [6], other kinds of applications can
take advantage of the many cores that a GPU can provide.

This motivated the design of what today is called a GPGPU
(General Purpose Graphics Processing Unit), a GPU for
multiple purposes [8, 15, 18].

GPUs fall in to the single-instruction-multiple-data
(SIMD) architecture category, where many processing
elements simultaneously run the same program but on
distinct data items. This program, referred to as the
kernel, can be quite complex including control statements
such as if and while.

Scheduling work for the GPU is as follows. A thread in
the host platform (e.g., a multi-core) first copies the data to
be processed from host memory to GPU memory, and then
invokes GPU threads to run the kernel to process the data.
Each GPU thread has a unique id which is used by each
thread to identify what part of the data set it will process.
When all GPU threads finish their work, the GPU signals
the host thread which will copy the results back from GPU
memory to host memory and schedule new work [18].

GPU memory is organized hierarchically and each (GPU)
thread has its own per-thread local memory. Threads are
grouped into blocks, each block having a memory shared by
all threads in the block. Finally, thread blocks are grouped
into a single grid to execute a kernel — different grids can
be used to run different kernels. All grids share the global
memory.

All data transfers between the host (CPU) and the GPU
are made through reading and writing global memory, which
is the slowest. A common technique to reduce the number
of reads from global memory is coalesced memory access,
which takes place when consecutive threads read consecu-
tive memory locations allowing the hardware to coalesce the
reads into a single one.

Programming a GPGPU is not a trivial task when algo-
rithms do not present regular computational patterns when
accessing data. But a GPU brings a great advantage over
multiprocessors, since it has hundreds of processing units
that can perform data parallelism, present in many applica-
tions, specially the ones that are based on recommendation
algorithms, and because it is much cheaper than a (CPU)
with a few cores.

3. MATRIX FACTORIZATION
Collaborative filtering Recommendation algorithms can

be implemented using different techniques, such as
neighborhood-based and association rules. One powerful
family of collaborative filtering algorithms use another
technique known as matrix factorization [10, 16]
resourcing to the UV-Decomposition or SVD (Singular
Value Decomposition) matrix factorization methods. SVD
is also commonly used for image and video compression [1,
3, 10, 16].

The UV-Decomposition approach is applied to learning a
recommendation model as follows. Matrix A is them×n rat-
ings matrix and contains a non-zero Ai,j value for each (user
i)–(item j) interaction. Using a matrix factorization (MF)
algorithm, we obtain matrices W ∈ Rm×k and H ∈ Rn×k

whose product approximates A (Figure 1). The matrix W
profiles the users using k latent features, known as factors.
The matrix H profiles the items using the same features. By
the nature of the recommendation problem, A is a sparse
matrix that contains mostly zeros (user-item pairs without
any interaction). In fact, this matrix is never explicitly rep-
resented, but we can estimate any of its unknown values Ai,j

by computing the dot product of row i of W and row j of
H. With these estimated values we can produce recommen-
dations.

{ {

{ {{

{

k
(concepts)

n
(items)

m
(users)

k
(concepts)

m
(users)

n
(items)

≈ XA W HT

Figure 1: Obtaining A.

The matrices W and H are obtained by minimizing the
objective function in eq. (1). In this function, A ∈ Rm×n is
the classification matrix, m is the number of users and n is
the number of items.

min
W∈Rm×k

H∈Rn×k

∑
(i,j)∈Ω

(Aij − ωT
i hj)

2 + λ(||W ||2F + ||H||2F), (1)

Assuming that the classification matrix is sparse (i.e., a
minority of ratings is known), Ω is the set of indexes re-
lated to the observed classifications (ratings), i is the user
counter and j is the item counter. The sparse data is rep-
resented by the triplet i, j, classification. The λ param-
eter is a regularization factor, which determines how pre-
cise will be the factorization given by the objective func-
tion. In other words, it allows to control the error level
and overfitting. The Frobenius norm indicated by ||?||F , is
used to calculate the distance between the matrix A and
its approximate matrix rank − k = Ak. In this context,
E = A−Ak, is the Frobenius norm, which consists of calcu-
lating ||E||2F =

∑
i,j |Ei,j |2. The lower the integer produced

by the summation, the nearer is A to Ak [13]. The ωT
i

vector corresponds to line i of matrix W and the hj vec-
tor corresponds to the line j of matrix H. Summarizing,
the objective function is used to obtain an approximation
of the incomplete matrix A, where W and H are matrices
rank − k.

It is not trivial to directly calculate the minimum of the
objective function in eq. (1). Therefore, to solve the prob-
lem, several methods are used. Next, we explain some of
them, most relevant to this work.

3.1 Alternating Least Squares (ALS)
This method divides the minimization function in two

quadratic functions. That way, it minimizes W keeping H
constant and it minimizes H keeping W constant. When H
is constant to minimize W , in order to obtain an optimal
value to ω∗i , the function in eq. (2) is derived.

minωi

∑
j∈Ωi

(Aij − wT
i hj)

2 + λ||wi||2 (2)

Next, it is necessary to minimize function in eq. (2). The
expression:

ω∗i = (HT
Ωi
HΩi + λI)−1HT ai

gives a minimal value for ω∗i , given that λ is always positive.
The algorithm alternates between the minimizations of W

and H until its convergence, or until it reaches a determined
number T of iterations, given by the user [17, 19, 20].

In our implementation, the inverse matrix is obtained us-
ing the Cholesky decomposition, since it is one of the most
efficient methods for matrix inversion [11].

The complete sequential ALS is shown in Algorithm 1.

Algorithm 1: ALS [17]

input : A,W,H, λ, T
1 Initialize(H ← (small random numbers));
2 for iter ← 1 to T Step = 1 do
3 Compute the W using ω∗i = (HT

Ωi
HΩi

+ λI)−1HT ai;

4 Compute the H using h∗j = (WT
Ωj
WΩj

+ λI)−1WT aj ;

3.2 Cyclic Coordinate Descent (CCD)
The algorithm is very similar to ALS, but instead of min-

imizing function in eq. (1) for all elements of H or W , it
minimizes the function for each element of H or W at each
iteration step [9, 19]. Assuming ωi represents the line i of
W , then ωit represents the element of line i and column t.
In order to operate element by element, the objective func-
tion in eq. (1) needs to be modified such that only ωit can
be assigned a z value. This reduces the problem to a single
variable problem, as shown in function in eq. (3).

min
z
f(z) =

∑
j∈Ωi

(Aij − (ωT
i hj − ωithjt)− zhjt)

2 + λz2, (3)

Given that this algorithm performs a non-negative matrix
factorization and function in eq. (3) is invariably quadratic,
it has one single minimum. Therefore, it is sufficient to min-
imize function in eq. (3) in relation to z, obtaining eq. (4).

z∗ =

∑
j∈Ωi

(Aij − ωT
i hj + ωithjt)hjt

λ+
∑

j∈Ωi

h2
jt

, (4)

Finding z∗ requires O(|Ωi|k) iterations. If k is large, this
step can be optimized after the first iteration, thus requiring
onlyO(|Ωi|) iterations. In order to do that, it suffices to keep
a residual matrix R such that Rij ≡ Aij −ωT

i hj ,∀(i, j) ∈ Ω.
Therefore, after the first iteration, and after obtaining Rij ,
the minimization of z∗ becomes:

z∗ =

∑
j∈Ωi

(Rij + ωithjt)hjt

λ+
∑

j∈Ωi

h2
jt

, (5)

Having calculated z∗, the update of ωit and Rij proceeds
as follows:

Rij ← Rij − (z∗ − ωit)hjt,∀j ∈ Ωi, (6)

ωit ← z∗. (7)

After updating each variable ωit ∈W using (7), we need to
update the variables hjt ∈ H in a similar manner, obtaining:

s∗ =

∑
i∈Ω̄j

(Rij + ωithjt)ωit

λ+
∑

i∈Ω̄j

ω2
it

, (8)

Rij ← Rij − (s∗ − hjt)ωit,∀i ∈ Ω̄j , (9)

hjt ← s∗. (10)

Having obtained the updating rules shown in eqs. (6), (7),
(9) and (10), we can now apply any sequence of updates to
W and H. Next, we describe two ways of performing the
updates: item/user-wise and feature-wise.

3.2.1 Update item/user-wise CCD
In this type of updating, W and H are updated as in

Algorithm 2.
In the first iteration W is initialized with zeros, therefore

the residual matrix R is exactly equal to A.

Algorithm 2: CCD [19]

input : A,W,H, λ, k, T
1 initialize(W ← 0, R← A);
2 for iter ← 1 to T Step = 1 do
3 for i← 1 to m Step = 1 do // � Update W.
4 for t← 1 to k Step = 1 do
5 obtain z∗ using (5);
6 update R and ωit using (6) and (7);
7 for j ← 1 to n Step = 1 do // � Update H.
8 for t← 1 to k Step = 1 do
9 obtain s∗ using (8);

10 update R and hjt using (9) and (10);

3.2.2 Update feature-wise CCD++
Assuming that ω̄t corresponds to the columns of W and

h̄t, the columns of H, the factorization WHT can be repre-
sented as a summation of k outer products.

A ≈WHT =
k∑

t=1

ω̄th̄
T
t , (11)

Some modifications need to be made to the original CCD
functions. Assuming that u∗ and v∗ are the vectors to be
injected over ω̄t and h̄t, then u∗ and v∗ can be calculated
using the following minimization:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(Rij + ω̄tih̄tj −uivj)2 +λ(||u||2 + ||v||2), (12)

Rij ≡ Aij−ωT
i hj , ∀(i, j) ∈ Ω is the residual entry of (i, j).

But using this type of update, there is one more possibility
which is to have pre-calculated values using a second residual

matrix R̂ij :

R̂ij = Rij + ω̄tih̄tj , ∀(i, j) ∈ Ω, (13)

This way, the objective function equivalent to (1) is rewrit-
ten as:

min
u∈Rm,v∈Rn

∑
(i,j)∈Ω

(R̂ij − uivj)2 + λ(||u||2 + ||v||2). (14)

To obtain u∗ it suffices to minimize the function (14) re-
garding ui:

ui ←

∑
j∈Ωi

R̂ijvj

λ+
∑

j∈Ωi

v2
j

, i = 1, . . . ,m, (15)

To obtain v∗ it suffices to minimize (14) regarding vj :

vj ←

∑
i∈Ω̄j

R̂ijuj

λ+
∑

i∈Ω̄j

u2
i

, j = 1, . . . , n. (16)

Finally, after obtaining u∗ e v∗ we update (ω̄t, h̄t) and
Rij :

(ω̄t, h̄t)← (u∗, v∗), (17)

Rij ← R̂ij − u∗i v∗j ,∀(i, j) ∈ Ω, (18)

Algorithm 3 formalizes the feature-wise update of CCD,
called CCD++.

Algorithm 3: CCD++ [19]

input : A,W,H, λ, k, T
1 initialize(W ← 0, R← A);
2 for iter ← 1 . . . Step = 1 do
3 for t← 1 to k Step = 1 do

4 build R̂ using (13);
5 for inneriter ← 1 to T Step = 1 do // � T

iterations CCD to (14).
6 update u using (15);
7 update v using (16);

8 update (ω̄t, h̄t) and R using (17) and (18);

4. PARALLEL ALS
Parallelizing ALS consists of distributing the matrices W

and H among threads. Synchronization is needed as soon as
the matrices are updated in parallel [22]. Algorithm 4 shows
the modifications related to the sequential ALS algorithm.

Algorithm 4: Parallel ALS

input : A,W,H, λ, T
1 begin
2 Initialize(H ← (small random numbers));
3 for iter ← 1 to T Step = 1 do
4 Compute in parallel the W using

ω∗i = (HT
Ωi
HΩi

+ λI)−1HT ai; // Sync;

5 Compute in parallel the H using

h∗j = (WT
Ωj
WΩj

+ λI)−1WT aj ; // Sync;

5. GPU-ALS
We also parallelized ALS for CUDA. Data are copied to

the GPU and the host is responsible for the synchronization.
When the computation finishes in the GPU, W and H are
copied from the device to the host. Algorithm 5 shows how
ALS was parallelized using CUDA.

Algorithm 5: GPU-ALS

input : A,W,H, λ, T
1 Allocate GPU memory for matrices A, W and H;
2 Copy matrices A, W and H from the host to the GPU;
3 begin
4 Intialize(H ← (small random numbers));
5 for iter ← 1 to T Step = 1 do
6 Update W using ω∗i = (HT

Ωi
HΩi

+ λI)−1HT ai;

// Host Sync;

7 Update H using h∗j = (WT
Ωj
WΩj

+ λI)−1WT aj ;

// Host Sync;
8 Copy matrices W and H from GPU to host;

6. PARALLEL CCD++
In the CCD++ algorithm, each solution is obtained by

alternately updating W and H. When v is constant, each
variable ui is updated independently (eq. 15). Therefore,
the update of u can be made by several processing cores.

Given a computer with p cores, we define the partition of
the row indexes of W, {1, . . . ,m} as S = S1, . . . , Sp. Vector
u is decomposed in p vectors u1, u2, . . . , up, where ur is the
sub-vector of u corresponding to Sr. When the matrix W

is uniformly split in parts |S1| = |S2| = . . . = |Sp| = m
p

,
there is a load balancing problem due to the variation of the
size of the row vectors contained in W . In this case, the
exact amount of work for each r core to update ur is given
by

∑
i∈Sr

4|Ωi| [19]. Therefore, different cores have different
workloads. This is one of the limitations of this algorithm. It
can be overcome using dynamic scheduling, which is offered
by most parallel processing libraries (e.g. OpenMP [5]).

For each subproblem, each core r builds R̂ with,

R̂ij ← Rij + ω̄tih̄tj , ∀(i, j) ∈ ΩSr , (19)

where ΩSr = ∪i∈Sr{(i, j) : j ∈ Ωi. Then, for each core r
we have,

ui ←

∑
j∈Ωi

R̂ijvj

λ+
∑

j∈Ωi

v2
j

, ∀i ∈ Sr. (20)

The update of H is analogous to the one of W in (20). For
p cores the row indexes of H, {1, . . . , n} are partitioned into
G = G1, . . . , Gp. So, for each core r we have,

vj ←

∑
i∈Ω̄j

R̂ijuj

λ+
∑

i∈Ω̄j

u2
i

,∀j ∈ Gr. (21)

Since all cores share the same memory, no communication
is needed to access u and v. After obtaining (u∗, v∗), the
update of R and (ω̄r

t , h̄
r
t) is also implemented in parallel by

the r cores as follows.

(ω̄r
t , h̄

r
t)← (ur, vr), (22)

Rij ← R̂ij − ω̄tih̄tj ,∀(i, j) ∈ ΩSr . (23)

Algorithm 6 summarizes the parallel CCD operations.

Algorithm 6: Multi-core version of CCD++ [19]

input : A,W,H, λ, k, T
1 initialize(W ← 0, R← A);
2 for iter ← 1 . . . Step = 1 do
3 for t← 1 to k Step = 1 do

4 in parallel, build R̂ split by r cores using (19);
5 for inneriter ← 1 to T Step = 1 do
6 in parallel, update u with r cores using (20);
7 in parallel, update v with r cores using (21);

8 in parallel, update (ω̄r
t , h̄

r
t) using (23);

9 in parallel, update R using (23);

7. CCD++ IN CUDA
Our CUDA implementation of the CCD++ algorithm

uses explicit memory management. It is inspired by the
parallel version of CCD++ found in LIBPMF (Library for
Large-scale Parallel Matrix Factorization). This is an open
source library for Linux [19]. LIBPMF is implemented in
C++ for multi-core environments with shared memory. The
parallel version uses the OpenMP library [5]. It employs
double precision values. Our version uses floats because
GPUs are faster when floats are used.

Algorithm 7 shows our implementation of the CCD++ for
the GPUs.

We use the same stream in all copies from host to device,
device to host and for kernels. Therefore, each of the oper-
ations is always blocking with respect to the main thread in
the host.

Algorithm 7: CCD++ GPU Implementation

input : A,W,H, λ, k, T
1 initialize(W ← 0, R← A);
2 Allocate memory on GPU for matrices A and R and for

vectors u and v;
3 Copy matrices A and R from host to GPU;
4 for iter ← 1 to T Step = 1 do
5 for t← 1 to k Step = 1 do
6 u← ω̄t and v ← h̄t;
7 Copy vectors u and v from host to GPU;

8 call kernel to update R̂ on GPU using (19);
9 for inneriter ← 1 to T Step = 1 do

10 update u and v on GPU using (20) and (21);
11 Copy vectors u and v from GPU to host;

12 ω̄t ← u and h̄t ← v;

13 update R̂ on GPU using (23);

8. MATERIALS AND METHODS
We performed our experiments using two operating systems:
Windows 8.1 pro x64 and Linux fedora 20. The CUDA ver-
sions for these two systems can vary greatly in performance.
The hardware used is described as follows: GPU: Gainward
GeForce GTX 580 Phantom, ≈ $600, with total dedicated
memory 3GB GDDR5 and 512 CUDA Cores; Processors:
2 × IntelR© XeonR© X5550, 2× $999 ≈ $1998, with 24GB of
RAM (6 × 4GB HYNIX HMT151R7BFR4C-H9); Mother-
board: Tyan S7020WAGM2NR.

All experiments use the Netflix dataset (100,480,507 rat-
ings that 480,189 users gave to 17,770 movies). Our qual-
itative evaluation metric is the root mean squared error
(RMSE) produced on the probe data generated by the
model. Our quantitative measure is the speedup (how fast
it is the parallel implementation related to the sequential,
calculated as the sequential execution time divided by the
parallel execution time).

Ideally, we needed a secondary GPU with dedicated mem-
ory, but this was not possible. In our GPU, the memory is
shared with the display memory. We used 16 blocks of 512
threads in our experiments.

The parameters used by both CCD++ and ALS are k = 5,
λ = 0.1 and T = 15. These were selected according to an
empirical selection. Lower values of k give better speedups
for the GPU implementation, while a variation of the k val-
ues does not impact the multi-core implementation. Higher
values of k also implies that more data will be copied to the
GPU memory, which is not advisable.

We performed our experiments with two versions of the
CCD++, one using float (single decimal precision) and the
other using doubles (double decimal precision), in order to
evaluate how the GPU would behave with both kinds of
numeric types.

All experiments for CCD++ resulted on RMSE equals to
0.94 and for ALS resulted in RMSE equals to 0.97.

9. RESULTS AND DISCUSSION
Table 1 shows the performance of the original CCD++

(using the library libpmf) on the multi-core machine with
Linux and Windows, running the Netflix benchmark, us-
ing the original double decimal precision (C double). The
speedups achieved in Windows are higher than in Linux,
but this was expected, since the base execution of Windows
(717.3 s for 1 thread) is higher than the Linux (521.5 s). The

maximum speedup achieved is 4.4 with 32 threads.

Table 1: LIBPMF with double in OMP.
OS: Linux

Test Execution time Speedup
1 thread ±521.512s
2 threads ±316.701s 1.6
8 threads ±136.2s 3.8
16 threads ±126.81s 4.1
32 threads ±136.023s 3.8

OS: Windows 8.1 pro x64
Test Execution time Speedup
1 thread ±717.307s
2 threads ±407.873s 1.8
8 threads ±179.499s 4.0
16 threads ±166.746s 4.3
32 threads ±161.48s 4.4

Table 2 shows the same experiments, but now with our
version of CCD++, that uses a single decimal precision. The
results are exactly the same in terms of RMSE, but the per-
formance is highly benefited by the numeric data type in this
case. By using floats, instead of doubles, we reach speedups
of 9.5 (at 32 threads), which is more than twice the speedup
achieved with the version that used a double numeric repre-
sentation. Note that the original libpmf uses doubles instead
of floats. We could achieve even better speedups than they
reported, by just using single precision data. The use of float
or double did not affect much the Linux implementations,
but it considerably affected the Windows implementations.

Again, with this version, the Windows implementation
achieves higher speedups than Linux. This was expected,
since the base execution time for 1 thread is much higher
for Windows.

Table 2: CCD++ with float in OMP and CUDA.
OS: Linux

Test Execution time Speedup
1 thread ±528.538s
2 threads ±309.707s 1.7
8 threads ±111.968s 4.7
16 threads ±98.1266s 5.3
32 threads ±99.8027s 5.2
CUDA ±168.109s 3.1

OS: Windows 8.1 pro x64
Test Execution time Speedup
1 thread ±1252.35s
2 threads ±540.973s 2.3
8 threads ±181.501s 6.9
16 threads ±131.881s 9.5
32 threads ±131.661s 9.5
CUDA ±84.7718s 14.8

But our best results are for the CUDA implementation.
We obtained a speedup of 14.8 just using the GPU run-
ning our implementation of the CCD++ in Windows. We
managed to surpass the performance of a machine that costs
more than twice as much as a GPU card, showing that these
architectures have a great potential for the implementation
of recommender systems based on matrix factorization.

9.1 ALS
We also implemented the ALS algorithm in CUDA and

results are presented in Table 3 for comparison. In this

Table 3: ALS with float in OMP and CUDA.
OS: Linux

Test Execution time Speedup
1 thread ±429.539s
2 threads ±224.99s 1.9
8 threads ±93.8716s 4.6
16 threads ±98.3057s 4.3
32 threads ±95.8294s 4.5
CUDA ±98.71s 4.4

OS: Windows 8.1 pro x64
Test Execution time Speedup
1 thread ±665.74s
2 threads ±355.144s 1.9
8 threads ±158.912s 4.2
16 threads ±121.667s 5.5
32 threads ±122.121s 5.5
CUDA ±107.214s 6.2

table we show execution times and speedups for the multi-
core version and for the GPU. Once more the multi-core
version presents better speedups with a higher number of
threads, for the Windows environment.

10. CONCLUSIONS
We showed the advantage of using GPUs to implement

recommender systems based on matrix factorization algo-
rithms. Using a benchmark popular in the literature, Net-
flix, we obtained maximum speedup of 14.8, better than the
best speedup reported in the literature.

The advantages of using a CUDA implementation over
a multi-core server are: lower energy consumption, lower
price and the ability of leaving the main host or other cores
to be used by other tasks. Currently, almost every computer
comes with PCI slots that can be used to install a GPU or
various GPUs. Thus, it is relatively simple to expand the
computational capacity of an existing hardware.

We plan to perform more tests with our algorithms on
more recent GPUs and on larger datasets. One potential
problem of GPUs is their memory limitation. Therefore,
one path to follow is to implement efficient memory man-
agement mechanisms capable of dealing with bigger data.
Another track we would like to follow is to implement a
load balancing mechanism to these algorithms.

11. ACKNOWLEDGMENTS
National Funds through the FCT - Fundação para a Ciên-

cia e a Tecnologia (proj. FCOMP-01-0124-FEDER-037281).

12. REFERENCES
[1] H. Andrews and C. Patterson. Singular value

decompositions and digital image processing. Acoustics,
Speech and Signal Processing, IEEE Transactions on,
24(1):26–53, Feb 1976.

[2] E.-A. Baatarjav, S. Phithakkitnukoon, and R. Dantu.
Group recommendation system for facebook. In Proceedings
of the OTM Confederated International Workshops and
Posters on On the Move to Meaningful Internet Systems,
OTM ’08, pages 211–219, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] O. Bretscher. Linear Algebra With Applications. Pearson
Education, Boston, 2013.

[4] R. Burke. The adaptive web. In P. Brusilovsky, A. Kobsa,
and W. Nejdl, editors, Lecture Notes In Computer Science,

Vol. 4321., chapter Hybrid Web Recommender Systems,
pages 377–408. Springer-Verlag, Berlin, Heidelberg, 2007.

[5] R. Chandra. Parallel Programming in OpenMP. High
performance computing. Morgan Kaufmann, 2001.

[6] J. Fang, A. L. Varbanescu, and H. Sips. A comprehensive
performance comparison of cuda and opencl. In Proceedings
of the 2011 International Conference on Parallel
Processing, ICPP ’11, pages 216–225, Washington, DC,
USA, 2011. IEEE Computer Society.

[7] J. He. A Social Network-based Recommender System. PhD
thesis, UCLA, Los Angeles, CA, USA, 2010. AAI3437557.

[8] R. Hochberg. Matrix multiplication with cuda-a basic
introduction to the cuda programming model. Shodor, 2012.

[9] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent
methods with variable selection for non-negative matrix
factorization. In Proceedings of the 17th ACM SIGKDD,
KDD ’11, pages 1064–1072, New York, NY, USA, 2011.
ACM.

[10] Y. Koren and R. Bell. Advances in collaborative filtering.
In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor,
editors, Recommender Systems Handbook, pages 145–186.
Springer US, 2011.

[11] A. Krishnamoorthy and D. Menon. Matrix inversion using
cholesky decomposition. In Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA),
2013, pages 70–72, Sept 2013.

[12] T. Mahmood and F. Ricci. Improving recommender systems
with adaptive conversational strategies. In Proceedings of
the 20th ACM Conference on Hypertext and Hypermedia,
HT ’09, pages 73–82, New York, NY, USA, 2009. ACM.

[13] C. D. Meyer, editor. Matrix Analysis and Applied Linear
Algebra. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

[14] P. Resnick and H. R. Varian. Recommender systems.
Commun. ACM, 40(3):56–58, Mar. 1997.

[15] J. Sanders and E. Kandrot. CUDA by Example: An
Introduction to General-Purpose GPU Programming.
Addison-Wesley Professional, 1st edition, 2010.

[16] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl.
Application of dimensionality reduction in recommender
system – a case study. In IN ACM WEBKDD
WORKSHOP, 2000.

[17] G. Takács and D. Tikk. Alternating least squares for
personalized ranking. In Proceedings of the Sixth ACM
Conference on Recommender Systems, RecSys ’12, pages
83–90, New York, NY, USA, 2012. ACM.

[18] N. Wilt. The CUDA Handbook: A Comprehensive Guide to
GPU Programming. Pearson Education, 2013.

[19] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon. Parallel matrix
factorization for recommender systems. Knowledge and
Information Systems, pages 1–27, 2013.

[20] D. Zachariah, M. Sundin, M. Jansson, and S. Chatterjee.
Alternating least-squares for low-rank matrix
reconstruction. Signal Processing Letters, IEEE,
19(4):231–234, April 2012.

[21] G. Zhanchun and L. Yuying. Improving the collaborative
filtering recommender system by using gpu. In
Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2012 International Conference on,
pages 330–333, Oct 2012.

[22] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the netflix
prize. In Proc. 4th Int’l Conf. Algorithmic Aspects in
Information and Management, LNCS 5034, pages 337–348.
Springer, 2008.

[23] M. A. Zinkevich, A. Smola, M. Weimer, and L. Li.
Parallelized stochastic gradient descent. In Advances in
Neural Information Processing Systems 23, pages
2595–2603, 2010.

