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Local management of the nonlinearity of Bose-Einstein condensates with pinched potentials
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We present a proposal for the local control of the nonlinearity in quasi-one-dimensional Bose-Einstein
condensates induced by a local pinching of the transverse confining potential. We investigate the scattering of
bright matter-wave solitons through a pinched potential using numerical simulations of the full three-dimensional
Gross-Pitaevskii equation and the corresponding effective one-dimensional model with spatially varying
nonlinearity.
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I. INTRODUCTION

Local and temporal management of nonlinearities is
emerging for the manipulation of soliton dynamics [1]. For
the case of localized matter-wave solitons in Bose-Einstein
condensates (BECs), this is closely related to the control of
the atomic interactions and constitutes an important tool in the
exploration of macroscopic quantum-mechanical effects and
the development of future quantum-enhanced technologies [2].
Temporal management has been explored for a myriad of
effects, from generation and stabilization of bright solitons
in high dimensional systems [3–5], to the creation of matter-
wave breathers [6–8], periodic matter waves [9], and shock
waves [10]. Yet, much of the research in controlling soliton
dynamics has been focused on exploiting the local manage-
ment of the nonlinearity. In fact, there has been a wide variety
of unusual nonlinear phenomena reported in these so-called
collisionally inhomogeneous media, which include adiabatic
compression of matter waves [11], atomic soliton lasers
[12–14], enhanced transmission of matter waves through a
potential barrier [15,16], observation and control of Faraday
waves [17], Bloch oscillations and dynamical trapping of mat-
ter wave solitons [18–20], and even the investigations of acous-
tic black holes and Hawking radiation [21–23], just to name a
few. Therefore, for the experimental realization of these phe-
nomena, it is of paramount importance to develop techniques
that provide spatial management of the nonlinearity in BECs.

The standard approach to local management of the non-
linearity in BECs is the localized control of the interac-
tions through the Feshbach resonance management (FRM).
Conceptually, it consists in using an external control field
(such as a magnetic [24] or an optical [25] field) to vary
the atomic scattering length in the vicinity of the Feshbach
resonance. Unfortunately for many interesting experiments
involving spatial varying nonlinearities, both magnetic and
optical FRM have proven to be unsuitable: the former because
the length scale of the variations of the magnetic field is much
larger than the size of the condensate, which strongly limits the
experimental applications, and the latter because, in addition
to a reduction of the lifetime of the quantum gas, a parasitic
dipole force potential is produced that typically dominates the
dynamics [26].
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An alternative approach is available for quasi-one-
dimensional (1D) settings, where the BEC is tightly confined
in a cigar-shaped trap. In such systems, one can exploit the
dependence of the effective nonlinearity on the strength of the
confinement potential to mimic both a temporal [11] and a
spatial [27,28] management of the nonlinearity. In the case of
spatial management, a variation of the confinement potential
results in a spatial modulation of an additional effective linear
potential, which typically dominates the dynamics of the
solitons [28].

In this work, we propose a strategy for the local manage-
ment of the nonlinearity in quasi-1D systems based on a pinch
of the confinement potential. First, in Sec. II, we introduce
an effective model for the quasi-1D BEC and demonstrate
how a specific anisotropic variation of the transverse trapping
potential along the longitudinal direction allows us to control
independently the effective linear and nonlinear parameters of
the model. In Sec. III, we further explore the effect of a pinch
of the potential in terms of the transverse dynamics of the BEC,
comparing the strategy with the standard FRM techniques and
advancing a proposal for an experimental realization of such
traps. In Sec. IV we study the dynamics of the scattering
of a bright soliton through a pinched potential, comparing
the numerical results obtained for full three-dimensional
Gross-Pitaevskii equation and of the corresponding effective
one-dimensional model, which are found to be in very good
agreement. Finally in Sec. V we present our conclusions and
discuss future directions of research.

II. MODEL

In the mean-field approximation, the dynamics of a BEC
tightly confined in the transverse xy plane by an external
harmonic potential can be described by a macroscopic wave
function �(r,t), obeying the Gross-Pitaevskii equation (GPE)

i�∂t� + �
2

2m
∇2� − Vext(r)� + g|�|2� = 0, (1)

such that
∫

d r|�(r,t)|2 = Na is the number of atoms. Also,
g = 4π�

2as/m is the nonlinear constant in terms of the
atomic mass m and scattering length as . This work con-
siders an external trapping potential of the form Vext(r) =
m[ω2

xx
2 + ω2

yy
2]/2 with frequencies ωx = ωx(z) and ωy =

ωy(z) that vary along the longitudinal direction z. In this
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setting, provided that the confinement potential is sufficiently
strong, the kinetic energy in the transverse directions typically
governs over interatomic interaction and Eq. (1) can be
reduced to an effective quasi-1D model. This paper follows
the approach described in Refs. [29,30], although alternative
approaches can be found in the literature with wide validity
ranges [27,28]. For slowly varying ωx and ωy along z,
the ansatz solution � ≡ ψ(x,y,z,t) = ϕ(z,t)χ (x,y,z) can be
used, where ϕ(z,t) and χ (x,y,z) describe respectively the
fast longitudinal and slow transverse dynamics (corresponding
to ∂2

z χ ≈ 0). Then, Eq. (1) can be recast into two coupled
equations:

i�∂tϕ = − �
2

2m
∂2
z ϕ + μ̄ϕ, (2)

μ̄χ = − �
2

2m
∇2

⊥χ + m

2

[
ω2

xx
2 + ω2

yy
2
]
χ − g|ϕ|2|χ |2χ. (3)

For small values of the nonlinear term g|ϕ|2, the chemical
potential μ̄ is obtained by perturbative methods [29,31].
Taking the transverse wave function χ close to the ground
state of the two-dimensional (2D) anisotropic harmonic
potential χ0(x,y,z) = √

m/(�π )(ωxωy)1/4 exp[−m(ωxx
2 +

ωyy
2)/(2�)], the perturbative expansion of the chemi-

cal potential to the lowest order of the density |ϕ|2 is
given by

μ̄ ≈ μ̄0 − μnl = μ̄0 − g
m

2π�

√
ωxωy |ϕ|2, (4)

with μ̄0 = �[ωx + ωy]/2 and the first-order correction term
computed from μnl = g|ϕ|2 ∫ |χ0|4dxdy. Direct substitution
of μ̄ into Eq. (2) yields the reduced 1D GPE

i�∂tϕ + �
2

2m
∂2
z ϕ − Veff(z)ϕ + geff(z)|ϕ|2ϕ = 0, (5)

where Veff(z) ≡ �[ωx(z) + ωy(z)]/2 and geff(z) ≡
[gm/(2π�)]

√
ωx(z)ωy(z) are the effective linear potential and

the nonlinear coefficient, respectively. Thus, the longitudinal
variation of the confinement potential results in a spatial
variation of both the effective linear potential and nonlinear
coefficient of the reduced 1D model, which resembles the
results of Refs. [27] and [28]. However, our approach allows
us to control geff and Veff independently by considering
distinct ωx and ωy . In particular, imposing

ωx(z) = ω̄ + 	ω(z) and ωy(z) = ω̄ − 	ω(z) (6)

provides a practical way of producing spatial modu-
lations of the effective nonlinear coefficient geff(z) ≡
[gm/(2π�)]

√
ω̄2 − 	ω(z)2 that keep the effective potential

Veff = �ω̄ constant along z. Under these conditions, the
transformation ϕ → exp(−iω̄t)ϕ followed by the normaliza-
tions t → ω̄t , z → z/

√
�/ω̄m, and ϕ → √

2π�/(gm)ϕ recast
Eq. (5) as

i∂tϕ + 1
2∂2

z ϕ + g̃eff(z)|ϕ|2ϕ = 0, (7)

with a normalized nonlinearity given by g̃eff(z) =√
1 − [	ω(z)/ω̄]2. This approach captures many features of

the original 3D GPE, including the conservation of the total

mass N and hamiltonian H, given by

N =
∫ +∞

−∞
|ϕ|2dz, (8)

H = 1

2

∫ +∞

−∞

[
|∂zϕ|2 − g̃eff(z)

2
|ϕ|4

]
dz. (9)

The main limitations of the effective 1D model arise from
the two approximations used, namely the assumptions of slow
transverse dynamics and the small nonlinear term.

The assumption of slow transverse dynamics is valid as
long as the contribution to the chemical potential μ̄ from the
terms proportional to ∂2

z χ and ∂zχ∂zϕ/ϕ (which have been
neglected) are small when compared to the nonlinear term.
The contribution to the chemical potential from these terms,
μslow, calculated using perturbation theory to the first order is

μslow = (∂zωx)2

8ω2
x

+ (∂zωy)2

8ω2
y

, (10)

which can be neglected as long as

|μslow|
|μnl| 	 1. (11)

In systems that do not satisfy the condition of Eq. (11), it is still
possible to use the reduced 1D model if one takes into account
the contribution of μslow that plays a role of an additional
potential.

The other approximation of the 1D effective model re-
quires the nonlinear term g|ϕ|2 to be small, such that the
corresponding contribution to the chemical potential can be
treated using perturbative methods and truncated after the
first order contribution. As a result, the 1D model does not
preserve the characteristic matter-wave collapse of the 3D
GPE observed for N > 2kc (with the critical value kc typically
around kc ≈ 0.627 for isotropic transverse traps according
to Ref. [31]). Other approaches are known to surpass these
limitations [27,31], but our model should be suitable for typical
experiments with low atomic densities.

III. SPATIAL MODULATION OF THE NONLINEAR
COEFFICIENT USING PINCHED TRANSVERSE

POTENTIALS

When the variation of the trapping frequencies is suffi-
ciently slow along the longitudinal direction, the two degrees
of freedom of the equivalent oscillator associated with the
transverse confinement exchange energy adiabatically. For
the particular choice proposed in Eq. (6), this process preserves
the linear term of the expansion of the chemical potential in
terms of |ϕ|2, which corresponds to the effective 1D linear
potential Veff . The changes of the chemical potential occur
only for higher order terms, associated with the effective
nonlinearity. Indeed, as the imbalance between ωx and ωy

increases, the equipotential lines of Vext(r) change from
circumferences to ellipses, with increased area. This behavior,
which resembles a pinching of the equipotential lines in the xy

plane, distorts the unperturbed ground-state wave function χ0

in a similar way, as illustrated in Fig. 1. Since the effective
1D nonlinearity scales with

∫ |χ0|4dxdy, as the density
becomes pinched and dispersed in the larger area, the nonlinear
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FIG. 1. Representation of the spatial structure of a pinch of
the confinement potential described by Eq. (12). The black surface
represents the lower half of an isosurface of Vext and illustrates the
transition from a region with (a) ωx = ωy = ω̄ to (b) ωx = ω̄ − 	ω

and ωy = ω̄ + 	ω for 	ω = 0.4ω̄. In both insets equipotential lines
(dashed lines) as well the local density of the transverse wave function
χ0 are represented.

coefficient becomes weaker. For example, a relative change of
the confinement frequencies 	ω/ω̄ around 50% produces a
relative change of g̃eff of about 13%. Conversely, starting from
an anisotropic transverse potential and decreasing the pinch on
the potential towards the isotropic case increases the effective
nonlinearity.

Compared with the standard technique of FRM, this
pinching strategy presents two major advantages. First, it
does not depend on the nature of the condensate and could
even be employed in systems that do not support Feshbach
resonances and where FRM is therefore not possible. Second,
as it is independent of the confinement mechanism, it can
be obtained both with magnetic and optical confinement.
Experimentally, we anticipate that pinched magnetic potentials
could be feasible by exploiting the geometry of the magnetic
coils, using, for example, two rectangular coils [32] in
anti-Helmholtz configuration with some misalignment. In the
case of optical traps, one could superimpose two orthogonal
light sheet potentials obtained by a time-averaged optical
dipole potential using red-detuned laser fields [33,34]. In this
setting, the strength of the dipole potential can be spatially
modulated by controlling the velocity or intensity of the
moving scanning laser [33]. Realizing such an experiment
with optical confinement should be particularly relevant as it
allows us to attain local variations of Veff and geff at length
scales much closer to the size of the condensate.

IV. SCATTERING OF MATTER-WAVE SOLITONS
THROUGH A PINCH

The results of the 1D effective model can be compared
against the full 3D GPE, using a problem well established in
the literature. In particular, we consider the scattering of matter
wave solitons through a pinched potential characterized by

	ω(z)

ω̄
= η

2
[1 + tanh (γ z)], (12)

corresponding to a model for a smooth transition between
two sections with constant yet distinct nonlinear coefficient,
more precisely from geff(z→ − ∞) = 1 to geff(z→ + ∞) =√

1 − η2. The parameters η and γ characterize the strength
and smoothness of the pinch, respectively. For z → ±∞, ωx ,
ωy , and g̃eff(z) are approximately constant and Eq. (7) supports
soliton solutions that can be either of the bright or dark type de-
pending on if the nonlinearity is positive or negative. Here, we
choose to consider the case of bright solitons and to leave dark
solitons for a future work. For a region of constant nonlinearity
g0, a bright soliton solution can be expressed as [35]

ϕ(z,t) = a

g0
sech[a(z − vt)] exp[ivz − i(a2 − v2)t/2],

(13)

where a and v are the amplitude and the velocity of the soliton,
respectively. The analysis of the scattering of solitons through
the region near z = 0 was investigated in terms of their
transmission or reflection using numerical simulations based
on the pseudospectral split-step Fourier method to integrate
both the full 3D and 1D GPEs [respectively, Eqs. (1) and (7)]
with initial condition given by Eq. (13) and corresponding to
an initial amplitude ai and velocity vi . Also, we choose the
initial position of the center of the soliton z0 	 0, such that
the soliton is initially far away from the pinch. The numerical
simulations consider pinch strengths η in the range [0,0.6],
soliton amplitudes within [0.2,0.4], as well as velocities in the
interval [0.01,0.07]. Under these conditions, the requirement
described in Eq. (11) is satisfied for γ 	 2a, which leads to
the choice of γ = 0.1.

Typical results of the 3D simulations for the scattering
process are presented in Figs. 2 and 3 and they show that
matter-wave soliton exhibits two distinct behaviors depending
on the strength of the pinch η. For weak pinches (η < ηc),
the soliton is totally transmitted with a decrease in the

FIG. 2. Numerical simulations for the evolution of a bright soliton
with initial amplitude ai = 0.2 and velocity vi = 0.05 scattered by
a pinching of strength η = 0.4 centered at z = 0. (a) Timeframes of
the transmission of the soliton. The black isosurface corresponds to
an isosurface of Vext, and the yellow isosurface to the wave-function
density |�|2. (b) Spatiotemporal contour plots of the density |ϕ|2
obtained after integration of the transverse dependence. Animation
of the simulation is included in the Supplemental Material [36].
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FIG. 3. Same as Fig. 2 for a soliton with initial amplitude ai = 0.2
and velocity vi = 0.05 scattered by a pinching of strength η = 0.5
centered at z = 0. Animation of the simulation is included in the
Supplemental Material [36].

velocity, whereas for strong pinches (η > ηc) it undergoes total
reflection. Indeed, numerical calculations of the transmission
coefficient T ≡ ∫ +∞

0 |ϕ|2dz/N show a steplike dependence
on the pinch strength η (see Fig. 4). Simulations using the 1D
effective model yield similar results, with an error below 5%
when compared to the full 3D simulations, thus confirming the
validity of our model and that the pinching of the transverse
confinement potential is equivalent to a spatial modulation of
the nonlinearity.

The critical value of the pinch strength ηc can be estimated
analytically assuming that the asymptotic initial and final states
(respectively for t → −∞ and t → +∞) are localized far
away from z = 0 (i.e., where the nonlinear coefficient geff is
constant) and are of the form of Eq. (13). Then, using the
conservation laws of Eq. (7), namely of N and H, the final
amplitude af and velocity vf (for t → +∞) for a totally

FIG. 4. Numerical results of the 3D GPE (circles) and of the 1D
effective model (crosses) for the outcome of the scattering process
of a bright soliton with initial amplitude ai = 0.2 and velocity
vi = 0.05, in comparison with the theoretical prediction (dashed
lines). (a) Transmission coefficient in function of the pinch strength.
Dependence of the critical value ηc on the (b) initial amplitude and
(c) initial velocity.

reflected soliton are

af = ai, vf = −vi, (14)

while for totally transmitted solitons they are

af = ai

√
1 − η2, v2

f = v2
i − a2

i η
2

3
. (15)

For physical solutions, the right-hand side of the velocity
law should be positive, which is only allowed for a pinch
strength below the critical value η < ηc = √

3v/a. Figure 4
shows a good agreement between the simulation results and
the analytical predictions for ηc as a function of the initial
amplitude and the velocity for soliton amplitudes below the
collapse threshold (well within the validity of the model).
These results are qualitatively similar to those described in
the literature for the scattering of solitons through combined
linear and nonlinear inhomogeneities, as well as pure nonlinear
inhomogeneities, which in some cases also predict regimes of
total transmission and total reflection [15,19]. Still, in our case
it is noteworthy that transition between the two regimes is
steplike at a critical parameter. This behavior arises from the
nonlinear inhomogeneity exclusively, since no linear inhomo-
geneity is present (at least from the point of view of the 1D
model). Also, as the nonlinearity produced by the pinch varies
at scales larger than the soliton width, it can evolve almost
adiabatically, and preserve the soliton-like shape [16,19]. This
steplike transition between total transmission and reflection
could in principle be used to develop a tunable pinch valve
or filter. A richer phenomenology is predicted to occur when
one considers not only the scattering of bright solitons by a
spatial modulation of the nonlinearity but also the effect of
additional linear potentials. Examples include the observation
of the enhancement of transmission through a potential barrier
in the presence of nonlinear inhomogeneities [15,16] and the
population of bound states in potential wells [37]. Such effects
could be explored under the formalism of the pinching of the
trapping potential by selecting other forms for the variation of
the ωx(z) and ωy(z) transverse trapping frequencies.

V. CONCLUSIONS

Through the development of an effective model, we have
presented how an anisotropic variation of the transverse
confinement potential can be used to control independently the
effective linear potential and effective nonlinearity along the
longitudinal direction of a quasi-1D Bose-Einstein condensate
(BEC). We have also demonstrated that the pinching of
the potential allows us to produce pure modulations of the
nonlinearity, unlike other approaches [27,28]. This method
can be realized for any kind of BEC, using either magnetic
or optical confinement strategies, and could be specially
relevant to study the dynamics of condensates when the use
of the Feshbach resonance is inadequate. Using numerical
simulations, we have investigated the scattering of bright soli-
tons through a pinched potential, finding excellent agreement
between the results obtained for the reduced 1D and the
complete 3D Gross-Pitaevskii equation. By considering the
parameters for a condensate made of 7Li atoms [38], the results
obtained in terms of dimensionless variables can easily provide
quantitative estimations of the scales involved. Considering a
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typical scattering length of as = −1.45 nm and a transverse
confining frequency ω̄ = 2π × 100 Hz, the soliton amplitude
a = 0.2 corresponds to a condensate of about Na ≈ 500 atoms
with a typical size of Lc ≈ √

�/ω̄m/a ≈ 20 μm. Under these
conditions, a pinching of the potential of the form suggested in
Sec. IV could be realized in a spatial scale Lp ≈ √

�/ω̄m/γ ≈
40 μm, which is still comparable to the size of the soliton.

Finally, it is also relevant to mention that despite our
focus on the case of bright solitons, which results in atomic
condensates with attractive interactions, the 1D effective
model is independent of the sign of the scattering length and
can be extended to explore nonlinear phenomena in systems
with repulsive interactions, such as the dynamics of dark
matter waves. We hope that this confinement pinch mechanism

stimulates experimental proposals not only to test it but also
to explore and control matter-wave dynamics in BECs.
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Pérez-Garcı́a, Phys. Rev. A 74, 013619 (2006).

[14] H. Michinel, A. Paredes, M. M. Valado, and D. Feijoo, Phys.
Rev. A 86, 013620 (2012).

[15] J. Garnier and F. K. Abdullaev, Phys. Rev. A 74, 013604
(2006).

[16] P. Niarchou, G. Theocharis, P. G. Kevrekidis, P. Schmelcher,
and D. J. Frantzeskakis, Phys. Rev. A 76, 023615 (2007).
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[29] V. M. Pérez-Garcı́a, H. Michinel, and H. Herrero, Phys. Rev. A
57, 3837 (1998).

[30] A. Gammal, L. Tomio, and T. Frederico, Phys. Rev. A 66, 043619
(2002).

[31] L. Khaykovich and B. A. Malomed, Phys. Rev. A 74, 023607
(2006).

[32] Y.-W. Lin, H.-C. Chou, P. P. Dwivedi, Y.-C. Chen, and A. Y. Ite,
Opt. Express 16, 3753 (2008).

[33] S. K. Schnelle, E. D. van Ooijen, M. J. Davis, N. R. Heckenberg,
and H. Rubinsztein-Dunlop, Opt. Express 16, 1405 (2008).

[34] T. A. Bell, J. A. Glidden, L. Humbert, M. W. Bromley, S.
A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H.
Rubinsztein-Dunlop, New J. Phys. 18, 035003 (2016).

[35] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118
(1971) [Sov. Phys. JETP 34, 62 (1972)].

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.94.063602 for animations of the numerical
simulations of the scattering process of solitons through a pinch.

[37] F. Damon, B. Georgeot, and D. Guéry-Odelin, Europhys. Lett.
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