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Abstract. In classification problems, a dataset is said to be imbalanced
when the distribution of the target variable is very unequal. Classes con-
tribute unequally to the decision boundary, and special metrics are used
to evaluate these datasets. In previous work, we presented pairwise rank-
ing as a method for binary imbalanced classification, and extended to the
ordinal case using weights. In this work, we extend ordinal classification
using traditional balancing methods. A comparison is made against tra-
ditional and ordinal SVMSs, in which the ranking adaption proposed is
found to be competitive.

Keywords: Ordinal classification - Class imbalance - Ranking - SVM

1 Introduction

Ordinal classification, also known as ordinal regression, is a subset of multiclass
classification problems where the target variable has an ordinal scale, and so it
is possible to establish an order between any two classes. Often, it is desirable
to punish more an error incurred from misclassification of an observation as an
adjacent class than an error when the observation is misclassified as a more dis-
parate classes. The extra ordinal constrains can, and have been used, to produce
models that specifically optimize for these ordinal metrics.

Classification datasets, which feature a disproportion in the distribution of
observations in each class, are said to be class imbalance. Traditional methods
favor too much the majority classes. Furthermore, traditional metrics such as
accuracy can produce apparently good results for models which consider only
the majority class, and special metrics have been devised for the purpose of
evaluating models applied to class imbalance problems. Much literature exists
in the topic, but only one attempt has been made using ranking, by the same
authors, in a binary [1] and ordinal [2] classification context.
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Pairwise scoring rankers are an attractive family of models, since the problem
is solved in the space of the differences between classes, and so is inherently
balanced for the binary case. However, when transporting the problem to a
multi-class ordinal context, the imbalance problem arises again between pairs
of classes. In this work, approaches of tackling this imbalance are proposed and
evaluated.

The work is divided as follows. Section2 overviews some existing methods
for ordinal classification. Section 3 overviews some methods for class imbalance.
Section 4 details our proposal of combining ranking with traditional methods for
ordinal class imbalance. Section5 provides empirical experiments and results.
Section 6 concludes the work.

2 Ordinal Classification

Many ordinal classifiers currently exist. oSVM [3] takes advantage of the fact that
the decision boundaries are necessarily parallel in a well-formed ordinal problem.
It transforms the original ordinal problem into a binary problem by increasing
the number of dimensions, after which the multiple decision boundaries can be
recreated.

SVOR [4] encompasses SVORIM and SVOREM which differ on how the
constraints are defined. The idea is to find k—1 parallel discriminant hyperplanes
in order to properly separate the data into ordered classes by modelling ranks
as intervals [4].

Herbrich et al. [5] addresses ordinal classification using pairs in the space of

differences. Let C; < Cy < -+ < Ci be the K classes involved. Let S, = {xglk)}

be the set of Ny samples from C, with N = Zszl Nj.. Construct the differences
xsyljfl) = x,(ﬁ) — xsf) with C, < Cy. Like in the binary setting, solve the binary

classification problem in the set of the differences {(xﬁ,’ifB, +1), (—x%), -1)},

where +1 and —1 are the labels of the samples xs,%) and —xn’ffl), respectively.

An issue with this approach arises when one of the classes is strongly mis-
represented when compared with the others. The data from each class Cj is
involved in Ni(N—Nj) points in the set of the differences. If Ny < Ny then
also Ni(N—Ny) < Nyg(N—Ny). For instance, if Ny = 10 and Ny = N3 = 100,
then the data from C; is contributing to 2000 elements in the new space, while
the data from Cy or Cs is contributing to 11000. So, the new learning problem
will be dominated by the samples from C; and Cs and it is likely that C; will be
poorly estimated.

Traditional one-vs-rest or one-vs-all ensembles can also be used for ordinal
classes, even if they do not take order in consideration. However, they do not take
advantage of that extra information, and do not optimize for ordinal metrics.
Furthermore, they may produce models whose decision boundaries make little
sense in an ordinal context; for instance, decision boundaries should not cross in
an ordinal context [6].
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3 Traditional Methods for Class Imbalance

Several methods have been proposed in tackling class imbalance, which usually
involve:

(a) Pre-processing;
(b) Training with costs;
(¢) Ensembles.

(a) Pre-processing usually involves a mix of undersampling the majority class
and creating new synthetic examples of the minority class [7,8]. (b) Training with
costs involves the use of a cost matrix so that the cost of misclassifying a class
is inversely proportional to its frequency, and therefore the estimation algorithm
minimize an weighted loss function, rather than the original imbalanced loss
function, so that the minority class contributes more to the loss than it would
otherwise. (¢) Ensembles by which each model within the ensemble is trained
with balanced subsets of the data, coupled with the previous preprocessing
techniques [9].

Some strategies of tackling multiclass problems such as one-vs-rest exacerbate
the imbalance problem by training. Given K classes with N observations, this
strategy solves the problem using an ensemble of binary classifiers, training each
classifier ¢ with N; positively labeled data against the rest N—IN; negatively
labeled data. This creates an imbalance problem, even if all classes are equally
represented [10].

Another strategy is known as one-vs-one, whereby each classifier 7 is trained
K using N; positively labeled data and N;, Vj # ¢, negatively labeled data,
resulting in an ensemble of K (K —1) classifiers. Even this strategy is not optimal
for ordinal datasets because it generates decision boundaries that make little
sense in the context of ordinal data due to the fact the decision boundaries are
not parallel [6].

Work already exists to adapt these methods to be used with ordinal classifiers
in imbalance situations [8]. In the rest of the work, we propose using these
methods as-is combined with ranking.

4 Combining Ranking with Traditional Methods

Class imbalance has been previously addressed using pairwise scoring rank-
ing in [1]. Ordinal classification seems like a natural extension because, unlike
ordinary multi-class problems, any two classes can be compared, as in ranking
applications.

4.1 Ranking for Binary Class Imbalance

In pairwise scoring ranking, a function f: X — R is constructed so that f(x;) >
f(x;) when x; > x; for every pair of observations (x;,x;), where > means
“preferred”.
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In the case here considered, as in [5], a base estimator is trained using the
space of differences. Consider two classes, C; and Cs, with a set Sy of N7 examples
from C; and a set Sy with Ny examples from Cy. Construct all N; x Ny pairs
Xij = X; — X; with x; € §; and x; € Sy. Solve the binary classification problem
using an ordinary SVM estimator in the set of the differences

{(xiz, +1), (=x45, —1) | xi5 = xi — X},

where +1 and —1 are the labels of the samples x;; and —x;;, respectively.

The big families of rankers are pointwise, pairwise and listwise. We focus
on pairwise and, in particular, scoring pairwise rankers in order to produce a
function f: X — R so that we can afterwards build a threshold to convert back
the ranking score to classes.

4.2 Ranking for Ordinal Class Imbalance

We have already suggested an initial ordinal class adaption of ranking in previous
work [2]. Consider all K-tuples (x(V),x® ... x(5)) with x(*) € S). There are
Hszl Ny, of such K-tuples. Generate all pairwise differences between ordered ele-
ments in the K-tuple: x(¥) —x(®). There are K (K —1) pairs built from a K-tuple.
Like before, learn a binary classifier from the w H?Zl Ny, pairs positively
labeled, and the corresponding symmetric differences negatively labeled.

Note that in this case, each class is present in exactly the same number of
elements in the new space: (K—1) Hszl Nj, times. The imbalance binary case
presented initially is a special case of this formulation, obtained by setting K = 2.

This approach is however repeating the pairs multiple times. A pairwise dif-
ference could be constructed with pairs (Cg,Cy,), repeated (]_[kK:1 Ni)/NeNy,
times. This would, however, be impractical. Several alternatives will be
considered.

4.3 Balanced Difference Pairs

In order to balance the pairs of differences, conventional approaches from class
imbalance are used, as mentioned in Sect. 3:

(a) Pre-processing;
(b) Training with costs;
(¢) Ensembles.

Classes are balanced using the median of the distribution, so that, for every
class k, Nj, = N , where N is the median. The difference in the number of
observations for each class is AN = N — Nj,. Therefore, the training sampling
is oversampled if AN > 0 and undersampled if AN < 0.

For (a) Pre-processing, SMOTE [7] and MSMOTE [11] are evaluated. These
oversampling techniques work by creating new synthetic examples based on the
minority classes using an average of the nearest neighbors. While the original
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Fig. 1. Balanced ranking training.

paper [7] regards only binary problems, it is easily generalized to multiclass
problems. MSMOTE is an extension that adds heuristics to identify points as
outliers and refraining from oversampling using those.

(b) Training with costs involves using a cost matrix for each pair in the
difference space defined to be inversely proportional to the frequency of each
pair so that each pair contributes equally to the decision boundary.

When using (¢) Ensembles, several strategies have been proposed which make
use of either oversampling of the minority class or undersampling of the majority
class so that each classifier is trained using balanced data [9]. Some work makes
use of boosting where, in addition to fixing the imbalance problem, each classifier
is trained to emphasize the most problematic cases. Boosting seems to muddle
the causes of the balancing performance gain, and we suggest using bagging.

For the full picture of the method here proposed, with these several
approaches, see Fig. 1.

4.4 Threshold for Ordinal Classes

After building the decision boundary from the difference pairs, the resulting score
from the pairwise scoring ranker needs then to be transformed back to classes.
Based on the training data, we obtain a ranking score s; for each observation
X;, which can be ordered, assuming that the score represents the order of y;.
We here define the proposed threshold strategy recursively. Let s; be the
ordered score of observation 7 and k; be the true class, we search the threshold
left-to-right by invoking the function min_error with initial parameters (sq, ko, 0).
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N €u.h» Wheni=N,
min_error(s;, ki, k) = !

min Cpi T min_error(s;11, ki+1, k), min_error(s;, ki, k + 1)}

where € = [&:kk] is a cost matrix. Informally, min_error tests whether, at any

given time, it is less costly to continue assuming observation i to be of class k

or if it less costly to make a threshold and start assuming observations are now

k+1. Notice observations are ordered by the score and classes are ordinal.
For the cost matrix, absolute costs have been used, £,; = {|k — k| | Vk, k}.

5 Experiments

Pairwise scoring ranking has already been experimented within a binary classifi-
cation context [1]. It has been found that, in a multi-class context, the difference
space is no longer balanced. In this section, we experiment with the different
balancing approaches previously discussed.

The proposed method is contrasted against state-of-the-art methods: One-
vs-Rest SVM, One-vs-Rest SVM with a balanced cost matrix, SVOR [4], and
0oSVM [3]. All of which also use an SVM as the base estimator.

Each model is cross-validated by grid-search with C' € {1073,1072,...,103}
using k-fold with k£ = 3. Final scores are obtained by 30-fold validation, using
the same folds from [8].

Both linear and RBF kernels are tested. The proposed model with linear
kernel is implemented by ourselves, while the RBF kernel version uses SVMank
by Thorsten Joachims'. His version has been modified to allow setting weights
for each pair of differences. All implementations from our work including the
dataset folds are made publicly available?. Python and scikit-learn were used.

5.1 Evaluation Metrics

Typically, in binary imbalance problems, special balanced metrics are used. The
most popular are F; and G-mean. But these metrics are only well-established
for binary settings. For ordinal classification, Mean Absolute Error (MAE) is

widely used,

1 -
MAE = NZVQ — k).

K3

But this metric suffers from two problems. First, it treats an ordinal variable
as a cardinal variable. Second, the metric is sensible to the per-class distribution
of the magnitude of the errors, and is therefore not suitable for class imbalance.
Like Pérez-Ortiz et al. [8], since the datasets are imbalance, we will contrast our
imbalance ranking approach against conventional methods by using the Maxi-
mum Mean Absolute Error (MMAE) metric proposed by [12]. MMAE is defined
as

MMAE = max{MAE, |k =1,...,K}.

! https://www.cs.cornell.edu/people/tj/svm _light /svm_rank.html.
2 http://vemi.inescporto.pt/reproducible_research /iwann2017/Ordinallmbalance/.
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Table 1. Datasets used in the experiments.

Dataset N #vars | K | IR

balance-scale 625 | 4 3 10.170
car 1728 | 21 4 10.054
contact-lenses 24 | 6 3 10.267
cooling 768 | 8 8 | 0.066
diabetesb 43 | 2 5 10.091
diabetes10 43 | 2 10 |0.167
newthyroid 215 | 5 3 10.200
pyrimb 74 |27 5 10.250
pyrim10 74 27 10 0.143
squash-stored 52 |51 3 10.348
squash-unstored | 52 |52 3 10.167
stock10 950 | 9 10 [0.131
toy 300 | 2 5 10.356
triazinesb 186 | 60 5 |0.081
triazines10 186 | 60 10 |0.040

5.2 Data

The datasets used come from real problems. The ordinal classification datasets
are extracted from the benchmark repositories UCI [13] and mldata.org [14].
Some were originally regression problems converted into ordinal classification,
and were obtained from the website of Chu and Ghahramani [15].

Datasets from [8] were used for the experiments, see Table 1. Here, the Imbal-
ance Ratio (IR) metric represents IR = E—g{%ﬁ, i.e. the ratio between the num-
ber of elements of the minority class to that of the majority class. IR € [0, 1],
ranging from very imbalance to balanced, respectively. This provides a sense of
the imbalance in each dataset.

Tables are ordered alphabetically. For performance reasons, not all datasets
are used for the RBF kernel.

5.3 Models

The SVM models tested are WRank, BRank, SRank, and MSRank, which
correspond to the proposed ranking method balancing difference pairs through
weights, bagging and oversampling through SMOTE and MSMOTE, respec-
tively. OvR and OvR/w are traditional SVM without and with balanced
weights. SVOREX and SVORIM are from [4], and oSVM from [3].

These models are compared using linear and RBF SVM kernels. Two tables
are presented for each kernel using the metrics discussed above: MAE and
MMAE. The average of these metrics for each dataset is exhibited for the 30-fold
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validation. The best scores are presented in bold. Also in bold are scores which
are statistically identical to the best score, using a paired difference Student’s
t-test with a 95% confidence level.

5.4 Results

Linear kernel results are presented in Table 2 for the aforementioned MAE and
MMAE metrics. RBF kernel results are presented in Table 3.

Table 2. Results for SVMs with Linear kernel.

MAE

Dataset WRank | BRank | SRank | MSRank | OvR | OvR/w | SVOREX | SVORIM | oSVM
balance-scale 0.12 0.52 0.11 1.00 0.20 | 0.19 0.11 0.11 0.12
car 0.09 0.11 0.09 1.07 0.12 | 0.09 0.14 0.12 0.08
contact-lenses 0.42 0.48 0.38 0.39 0.42 | 0.44 0.51 0.54 0.42
cooling 0.41 1.05 1.13 1.28 0.44 | 0.55 0.48 0.50 0.49
diabetesb 0.64 0.67 0.74 0.77 0.72 | 0.95 0.84 0.67 0.85
diabetes10 1.68 1.72 1.77 1.77 2.06 | 2.15 1.81 1.69 2.41
newthyroid 0.04 0.18 0.05 1.00 0.04 | 0.03 0.04 0.04 0.03
pyrim5 0.58 0.99 1.16 1.16 0.58 | 0.70 1.08 0.99 0.65
pyrim10 1.34 1.26 1.29 1.33 1.52 | 1.49 2.89 1.32 1.50
squash-stored 0.46 0.86 1.11 1.13 0.47 | 0.47 0.41 0.44 0.38
squash-unstored | 0.27 0.27 0.27 0.26 0.30 | 0.30 0.26 0.26 0.33
stock10 0.64 0.66 0.67 1.02 0.42 | 0.42 0.68 0.63 0.70
toy 0.84 0.93 0.87 1.21 1.02 | 1.01 1.13 0.95 0.96
triazines5 0.70 1.31 0.98 1.08 0.69 | 0.67 0.67 0.67 0.70
triazines10 1.40 1.95 2.01 1.97 1.33 | 1.51 1.37 1.39 1.45
Average 0.64 0.86 0.84 1.10 0.69 | 0.73 0.83 0.69 0.74
Deviation 0.48 0.52 0.58 0.42 0.55 | 0.58 0.73 0.48 0.62
Winner 40% 26% 26% 13% 26% | 26% 33% 33% 33%
MMAE

Dataset WRank | BRank | SRank | MSRank | OvR | OvR/w | SVOREX | SVORIM | oSVM
balance-scale 0.21 1.01 0.15 1.10 1.00 | 0.96 0.17 0.14 0.21
car 0.47 1.06 0.28 1.15 0.77 | 0.29 1.36 1.01 0.49
contact-lenses 0.81 1.20 0.78 0.76 0.88 | 0.73 0.97 1.04 0.82
cooling 2.32 1.72 1.73 1.81 2.24 | 1.80 2.98 2.88 2.07
diabetesb 1.15 1.17 1.20 1.23 1.48 | 1.52 1.51 1.30 1.43
diabetes10 3.09 3.16 3.12 3.26 3.82 | 3.98 3.47 2.94 4.33
newthyroid 0.14 1.00 0.09 1.04 0.16 | 0.13 0.14 0.14 0.13
pyrimb 1.40 1.83 2.26 2.31 1.30 | 1.62 3.00 2.00 1.87
pyrim10 3.80 3.91 3.84 3.75 3.86 | 3.84 6.37 4.33 4.18
squash-stored 0.83 1.23 1.42 1.46 1.06 | 0.94 0.76 0.83 0.66
squash-unstored | 0.57 1.00 0.55 0.52 0.76 | 0.80 0.46 0.46 0.57
stock10 1.02 1.04 0.97 1.64 1.03 | 0.85 1.30 1.05 1.29
toy 1.79 2.17 1.67 2.49 1.92 | 1.57 3.00 2.00 1.82
triazinesb 2.77 2.11 1.73 2.52 2.99 | 2.94 3.00 3.00 2.79
triazines10 6.14 4.46 4.58 4.55 6.58 | 6.35 7.00 6.83 6.80
Average 1.77 1.87 1.63 1.97 1.99 | 1.89 2.37 2.00 1.96
Deviation 1.58 1.08 1.30 1.12 1.63 | 1.64 2.02 1.74 1.81
‘Winner 40% 33% 66% 26% 20% | 40% 13% 13% 26%
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Table 3. Results for SVMs with RBF kernel.

MAE

Dataset WRank | BRank | SRank | MSRank | OvR | OvR/w | SVOREX | SVORIM
balance-scale 0.11 0.92 0.14 0.15 0.14 | 0.18 0.11 0.05
car 0.13 0.19 0.25 0.24 0.12 | 0.21 0.41 0.41
contact-lenses 0.52 0.51 0.45 0.46 0.47 | 0.33 1.31 0.98
cooling 0.62 0.61 0.63 0.63 0.54 | 0.62 0.58 0.55
diabetesb 0.65 P0.68 0.64 0.65 0.65 | 0.67 0.72 0.69
diabetes10 1.35 1.53 1.38 1.37 1.75 | 1.78 1.62 1.56
newthyroid 0.29 0.31 0.29 0.29 0.25 | 0.23 0.16 0.16
pyrim5 0.47 0.64 0.56 0.60 1.08 | 1.10 1.08 0.99
pyrim10 1.02 1.18 1.03 1.06 2.73 | 2.18 2.88 2.00
squash-stored 0.57 0.57 0.57 0.57 0.73 | 0.57 0.73 0.57
squash-unstored | 0.54 0.54 0.54 0.54 0.44 | 0.44 0.49 0.50
stock10 1.35 1.38 1.33 1.30 0.18 | 0.17 0.27 0.26
toy 0.03 0.12 0.03 0.04 0.91 | 0.66 1.08 0.95
triazines5 0.68 1.10 0.88 0.87 0.67 | 1.18 0.67 0.67
triazines10 1.28 1.76 1.67 1.64 1.37 | 2.45 1.37 1.37
Average 0.64 0.80 0.69 0.69 0.80 | 0.85 0.90 0.78
Deviation 0.42 0.48 0.46 0.45 0.68 | 0.72 0.69 0.52
‘Winner 53% 6% 20% 26% 33% | 20% 6% 20%
MMAE

Dataset WRank | BRank | SRank | MSRank | OvR | OvR/w | SVOREX | SVORIM
balance-scale 0.20 1.79 0.19 0.19 1.00 | 0.24 1.00 0.13
car 1.98 2.00 1.00 1.01 1.13 | 0.27 3.00 3.00
contact-lenses 1.27 1.97 1.23 1.22 0.88 | 0.53 1.82 1.32
cooling 1.26 1.22 0.99 0.98 1.77 | 1.01 2.00 2.00
diabetesb 1.90 1.97 1.97 1.88 2.00 | 2.00 2.00 2.00
diabetes10 3.57 3.77 3.63 3.57 4.27 | 4.27 3.06 2.84
newthyroid 1.00 1.03 1.00 1.00 1.00 | 0.97 0.64 0.64
pyrimb 1.15 1.78 1.14 1.22 3.00 | 2.90 3.00 2.00
pyrim10 2.65 3.65 2.82 2.82 6.63 | 5.67 6.30 4.93
squash-stored 1.00 1.00 1.00 1.00 2.00 | 1.00 2.00 1.00
squash-unstored | 1.00 1.00 1.00 1.00 1.00 | 1.00 1.00 1.00
stock10 3.71 4.84 3.27 3.16 0.66 | 0.45 1.14 1.11
toy 0.10 1.00 0.10 0.10 1.83 | 1.15 2.80 2.00
triazinesb 2.66 1.93 1.97 1.91 3.00 | 2.82 3.00 3.00
triazines10 5.83 4.73 4.99 4.69 7.00 | 5.66 7.00 7.00
Average 1.95 2.25 1.75 1.72 2.48 | 1.99 2.65 2.26
Deviation 1.47 1.29 1.32 1.25 1.95 | 1.81 1.76 1.71
Winner 40% 20% 40% 40% 0% 26% 13% 13%

Using absolute costs in the thresholds performs usually better, albeit inverse
frequency costs offers some competitiveness, especially in weighted models using
MMAE. Interestingly, the RBF kernel is more stable across the two metrics.

Weighted difference pairs seem to provide the best results, albeit sometimes
surpassed by SMOTE. MSMOTE is not found to be a competitive variant of
SMOTE; rarely performing better and suffering from higher validation deviation
for the linear kernel. These results are similar to the binary experiments from [1].
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Bagging with models trained using undersampled and simple oversample of
pairs did not offer much compelling results.

One-vs-Rest SVM is sometimes competitive, possibly due to the fact that its
decision boundaries are not parallel constrained like traditional ordinal models.

6 Conclusion

Four traditional approaches are used in improving imbalance datasets metrics:
pre-processing, using cost matrices, post-processing and ensembles, and often
combinations of these. In a previous work, we have suggested ranking as an
unexplored alternative to imbalance problems [1], in particular pairwise scoring
ranking. Pairwise ranking models use an underlying estimator training in the
space of difference pairs, therefore a necessarily balanced dataset in the binary
case.

In a follow-up, the ordinal case was addressed [2]. However, it was verified
that the imbalance problem was co-occurring in the new space. In this work,
the new space is balanced through traditional balancing approaches, with the
application of weights being generally superior.
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