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Abstract—The blooming of different cloud data stores has 
turned polystore systems to a major topic in the nowadays 
cloud landscape. Especially, as the amount of processed data 
grows rapidly each year, much attention is being paid on 
taking advantage of the parallel processing capabilities of the 
underlying data stores. To provide data federation, a typical 
polystore solution defines a common data model and query 
language with translations to API calls or queries to each data 
store. However, this may lead to losing important querying 
capabilities. The polyglot approach of the CloudMdsQL query 
language allows data store native queries to be expressed as 
inline scripts and combined with regular SQL statements in 
ad-hoc integration queries. Moreover, efficient optimization 
techniques, such as bind join, can still take place to improve 
the performance of selective joins. In this paper, we introduce 
the distributed architecture of the LeanXcale query engine that 
processes polyglot queries in the CloudMdsQL query language, 
yet allowing native scripts to be handled in parallel at data 
store shards, so that efficient and scalable parallel joins take 
place at the query engine level. The experimental evaluation of 
the LeanXcale parallel query engine on various join queries 
illustrates well the performance benefits of exploiting the 
parallelism of the underlying data management technologies in 
combination with the high expressivity provided by their 
scripting/querying frameworks. 
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I.  INTRODUCTION 
A major trend in cloud computing and data management 

is the understanding that there is no “one size fits all” 
solution [22]. Thus, there has been a blooming of different 
NoSQL cloud data management infrastructures, distributed 
file systems (e.g. Hadoop HDFS), and big data processing 
frameworks (e.g. Hadoop MapReduce, Apache Spark, or 
Apache Flink), specialized for different kinds of data and 
tasks and able to scale and perform orders of magnitude 
better than traditional relational DBMS. This has resulted in 
a rich offering of services that can be used to build cloud 
data-intensive applications that can scale and exhibit high 
performance. However, this has also led to a wide 
diversification of DBMS interfaces and the loss of a common 
programming paradigm, which makes it very hard for a user 
to efficiently integrate and analyze her data sitting in 
different data stores. 

For example, let us consider a banking institution that 
keeps its operational data in a SQL database, but stores data 
about bank transactions in a document database, because 
each record typically contains data in just a few fields, so 
they make use of the semi-structured nature of documents. 
And because of the big volumes of data, both databases are 
sharded into multiple nodes in a cluster. On the other hand, a 
web application appends data to a big log file, stored in 
HDFS. In this context, an analytical query that involves 
datasets from both databases and the HDFS file would face 
three major challenges. First, in order to execute efficiently, 
the query needs to be processed in parallel, taking advantage 
of parallel join algorithms. Second, in order to do this, the 
query engine must be able to retrieve in parallel the partitions 
from the underlying data stores. And third, the query needs 
to be expressive enough, so as to combine an SQL subquery 
(to the relational database or the HDFS log file through an 
SQL engine, e.g. Hive) with an arbitrary code in a scripting 
language (e.g. JavaScript) that requests a dataset from the 
document database. Existing polystore solutions provide 
SQL mappings to document collections. However, this leads 
to limitations of important querying capabilities, as the 
underlying schema may be very far from relational and data 
transformations need to take place before being involved in 
relational operations. Therefore, we rather focus our work on 
leveraging the underlying data stores’ scripting (querying) 
mechanisms. 

A number of polystores that have been recently proposed 
partially address our problem. In general, they provide 
integrated access to multiple, heterogeneous data stores 
through a single query engine. Loosely-coupled polystores 
[5,9,10,17,18,21,25] typically respect the autonomy of the 
underlying data stores and rely on a mediator/wrapper 
approach to provide mappings between a common data 
model / query language and each particular data store’s data 
model. CloudMdsQL [13,15] even allows data store native 
queries to be expressed as inline scripts and combined with 
regular SQL statements in ad-hoc integration queries. 
However, even when they access parallel data stores, 
loosely-coupled polystores typically do centralized access, 
and thus cannot exploit parallelism for performance. Another 
family of polystore systems [1,8,11,16,26] uses a tightly-
coupled approach in order to trade data store autonomy and 
query expressivity for performance. In particular, much 
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attention is being paid on the integration of unstructured big 
data (e.g. produced by web applications), typically stored in 
HDFS, with relational data, e.g. in a (parallel) data 
warehouse. Thus, tightly-coupled systems take advantage of 
massive parallelism by bringing in parallel shards from 
HDFS tables to the SQL database nodes and doing parallel 
joins. But they are limited to accessing only specific data 
stores, usually with SQL mappings of the data stores’ query 
interfaces. However, according to a recent benchmarking 
[14], using native queries directly at the data store yields a 
significant performance improvement compared to mapping 
native datasets and functions to relational tables and 
operators. Therefore, what we want to provide is a hybrid 
system that combines high expressivity (through the use of 
native queries) with massive parallelism and optimizability. 

In this paper, we present a query engine that addresses 
the afore-mentioned challenges of parallel multistore query 
processing. To preserve the expressivity of the underlying 
data stores’ query/scripting languages, we use the polyglot 
approach provided by the CloudMdsQL query language, 
which also enables the use of bind joins to optimize the 
execution of selective queries. And to enable the parallel 
query processing, we incorporated the polyglot approach 
within the LeanXcale 1  Distributed Query Engine (DQE), 
which provides a scalable database that operates over a 
standard SQL interface. 

The rest of this paper is organized as follows. Section 2 
gives an overview of the query language and its polyglot 
capabilities. Section 3 discusses the distributed architecture 
of LeanXcale query engine. Our major contribution is 
presented in Section 4, where we describe the architectural 
extensions that turn the DQE into a parallel polyglot 
polystore system. Section 5 presents the experimental 
evaluation of various parallel join queries across data stores 
using combined SQL and native queries. Section 6 discusses 
related work. Section 7 concludes. 

II. LANGUAGE OVERVIEW 
The CloudMdsQL language is SQL-based with the 

extended capabilities for embedding subqueries expressed in 
terms of each data store’s native query interface. 

A. Query Language 
The design of the query language is based on the 

assumption that the programmer has deep expertise and 
knowledge about the specifics of the underlying data stores, 
as well as awareness about how data are organized across 
them. Queries that integrate data from several data stores 
usually consist of native subqueries and an integration 
SELECT statement. A subquery is defined as a named table 
expression, i.e., an expression that returns a table and has a 
name and signature. The signature defines the names and 
types of the columns of the returned relation. A named table 
expression can be defined by means of either an SQL 
SELECT statement (that the query compiler is able to 
analyze and possibly rewrite) or a native expression (that the 

                                                             
1 http://www.leanxcale.com 

query engine considers as a black box and delegates its 
processing directly to the data store). For example, the 
following simple CloudMdsQL query contains two 
subqueries, defined by the named table expressions T1 and 
T2, and addressed respectively against the data stores rdb 
(an SQL database) and mongo (a MongoDB database): 
T1(x int, y int)@rdb = (SELECT x, y FROM A) 
T2(x int, z array)@mongo = {* 
  return db.A.find( {x: {$lt: 10}}, {x:1, z:1} ); 
*} 
SELECT T1.x, T2.z FROM T1, T2 
WHERE T1.x = T2.x AND T1.y <= 3 

The two subqueries are sent independently for execution 
against their data stores in order the retrieved relations to be 
joined at query engine level. The SQL table expression T1 is 
defined by an SQL subquery, while T2 is a native 
expression (identified by the special bracket symbols {* *}) 
expressed as a native MongoDB call. The subquery of 
expression T1 is subject to rewriting by pushing into it the 
filter condition y <= 3, to increase efficiency.  

CloudMdsQL allows named table expressions to be 
defined as functions in a scripting language (e.g., Python, 
JavaScript), which is useful for querying data stores that 
have only API-based query interface. A scripting expression 
can either yield tuples to its result set (like a user-defined 
table function) or return an iterable object that represents the 
result set (like in the MongoDB example above). 

B. Bind Join 
CloudMdsQL uses bind join as an efficient method for 

performing semi-joins across heterogeneous data stores that 
uses subquery rewriting to push the join conditions. For 
example, the list of distinct values of the join attribute(s), 
retrieved from the left-hand side subquery, is passed as a 
filter to the right-hand side subquery.  To illustrate it, let us 
consider the following CloudMdsQL query: 
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a) 
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b) 
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id 

Let us assume that the optimizer has decided to use the 
bind join method and that the join condition will be bound to 
the right-hand side of the equi-join operation. First, the 
relation B is retrieved from the corresponding data store 
using its query mechanism. Then, the distinct values of B.id 
are used as a filter condition in the query that retrieves the 
relation A from its data store. Assuming that the distinct 
values of B.id are b1 … bn, the query to retrieve the right-
hand side relation of the bind join uses the following SQL 
approach (or its equivalent according to the data store’s 
query language), thus retrieving from A only the rows that 
match the join criteria: 
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn) 

The way to do the bind join analogue for native queries is 
through the use of a JOINED ON clause in the named table 
signature, like in the named table A below, defined as a 
MongoDB script. 
 

1758



A(id int, x int JOINED ON id 
    REFERENCING OUTER AS b_keys)@mongo = 
{*  return db.A.find( {id: {$in: b_keys}} );  *} 

Thus, when A.id participates in an equi-join, the values 
b1,…,bn are provided to the script code through the 
iterator/list object b_keys (in this context, we refer to the 
table B as the “outer” table, and b_keys as the outer keys). 

III. LEANXCALE ARCHITECTURE OVERVIEW 
The LeanXcale database has derived its OLAP query 

engine from Apache Derby, a Java-based open-source SQL 
database. Apache Derby is a centralized OLTP database. 
LeanXcale database is a scalable distributed Full ACID Full 
SQL database with OLTP and OLAP support. LeanXcale 
has three main subsystems: the query engine, the 
transactional engine and the storage engine, all three 
distributed and highly scalable (i.e. to 100s of nodes). The 
query engine is a distributed MPP engine that process OLAP 
workloads over the operational data, so that analytical 
queries are answered over real-time data. LeanXcale, thus, 
enables to avoid ETL processes to migrate data from 
operational databases to data warehouses by providing both 
functionalities in a single database manager. The parallel 
implementation of the query engine for OLAP queries 
follows the single-program multiple data (SPMD) approach 
[6], where multiple symmetric workers (threads) on different 
query instances execute the same query/operator, but each of 
them deals with different portions of the data. In this section 
we provide a brief overview of the query engine distributed 
architecture. 

Figure 1 illustrates the architecture of LeanXcale’s 
Distributed Query Engine (DQE). Applications connect to 
one of the multiple DQE instance running, which exposes a 
typical JDBC interface to the applications, with support for 
SQL and transactions. The DQE executes the applications' 
requests, handling transaction control, and updating data, if 
necessary. The data itself is stored on a proprietary relational 
key-value store, KiVi, which allows for efficient horizontal 
partitioning of LeanXcale tables and indexes, based on the 
primary key or index key. Each table is stored as a KiVi 
table, where the key corresponds to the primary key of the 
LeanXcale table and all the columns are stored as they are 
into KiVi columns. Indexes are also stored as KiVi tables, 
where the index keys are mapped to the corresponding 
primary keys. This model enables high scalability of the 
storage layer by partitioning tables and indexes across KiVi 
Data Servers (KVDS). 

This architecture scales by allowing analytical queries to 
execute in parallel, in this way supporting intra-query and 
intra-operator parallelism. For parallel query execution, 
the initial connection (which creates the master worker) will 
start additional connections (workers), all of which will 
cooperate on the execution of the queries received by the 
master. 

When a parallel connection is started, the master worker 
starts by determining the available DQE instances, and it 
decides how many workers will be created on each instance. 
For each additional worker needed, the master then creates a 

thread, which initiates a JDBC connection to the worker. 
Each JDBC connection is initialized as a worker, creating a 
communication end-point for an overlay network to be used 
for intra-query synchronization and data exchange. After the 
initialization of all workers the overlay network is connected. 
After this point, the master is ready to accept queries to 
process. 

 
Figure 1.  DQE distributed architecture. 

As queries are received, query plans are broadcast and 
processed by all workers. For parallel execution, an 
optimization step is added, which transforms the generated 
sequential query plan into a parallel one. This transformation 
involves replacing table scans with parallel table scans, and 
adding shuffle operators to make sure that, in stateful 
operators (such as Group By, or Join), related rows are 
handled by the same worker. Parallel table scans will divide 
the rows from the base tables among all workers, i.e., each 
worker will retrieve a disjoint subset of the rows during table 
scans. This is done by dividing the rows and scheduling the 
obtained subsets to the different DQE instances. Each worker 
then processes the rows obtained from subsets scheduled to 
its DQE instance, exchanging rows with other workers as 
determined by the shuffle operators added to the query plan. 

Let us consider the query Q1 below, which we will use as 
a running example throughout the paper to illustrate the 
different query processing modes. The query assumes a 
TPC-H [24] schema. 
Q1: SELECT count(*) 
    FROM LINEITEM L, ORDERS O 
    WHERE L_ORDERKEY = O_ORDERKEY 
    AND L_QUANTITY < 5 

This query is parsed into a query execution plan, where 
leaf nodes correspond to tables or index scans. The master 
worker then broadcasts to all workers the generated query 
plan, with the additional shuffle operators (Figure 2a). Then, 
the DQE scheduler assigns evenly all database shards across 
all workers. To handle the leaf nodes of the query plan, each 
worker will do table/index scans only at the assigned shards. 
Let us assume for simplicity that the DQE launches the same 
number of workers as KVDS servers, so each worker 
connects to exactly one KVDS server and reads the partition 
of each table that is located in that KVDS server. Then 
workers execute in parallel the same copy of the query plan, 
exchanging rows across each other at the shuffle operators 
(marked with an S box). 
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(a) with shuffles 

 
(b) with broadcasts 

Figure 2.  Query processing in parallel mode. 

To process joins, the query engine may use different 
strategies. First, to exchange data across workers, shuffle or 
broadcast methods can be used. The shuffle method is 
efficient when both sides of a join are quite big; however, if 
one of the sides is relatively small, the optimizer may decide 
to use the broadcast approach, so that each worker has a full 
copy of the small table, which is to be joined with the local 
partition of the other table, thus avoiding the shuffling of 
rows from the large table (Figure 2b). Apart from the data 
exchange operators, the DQE supports various join methods 
(hash, nested loop, etc.), performed locally at each worker 
after the data exchange takes place. 

IV. PARALLEL POLYGLOT QUERY PROCESSING ACROSS 
DATA STORES 

LeanXcale DQE is designed to integrate with arbitrary 
data management clusters, where data resides in its natural 
format and can be retrieved (in parallel) by running specific 
scripts or declarative queries. These can range from 
distributed raw data files, through parallel SQL databases, to 
sharded NoSQL databases (such as MongoDB, where 
queries can be expressed as JavaScript programs). This turns 
LeanXcale DQE into a powerful “big data lake” polyglot 
query engine that can process data from its original format, 
taking full advantage of both expressive scripting and 
massive parallelism. Moreover, joins across any native 
datasets, including LeanXcale tables, can be applied, 
exploiting efficient parallel join algorithms. Here we 
specifically focus on parallel joins between a relational table 
and the result of a JavaScript subquery to MongoDB, but the 
concept relies on an API that allows its generalization to 
other script engines and data stores as well. To enable ad-hoc 
querying of an arbitrary data set, using its scripting 
mechanism, and then joining the retrieved result set at DQE 
level, DQE processes queries in the CloudMdsQL query 
language, where scripts are wrapped as native subqueries. 

To better illustrate the necessity of enabling user-defined 
scripts to MongoDB as subqueries, rather than defining SQL 
mappings to document collections, let us consider the 
following MongoDB collection orders that has a highly 
non-relational structure: 
{order_id: 1, customer: "ACME", status: "O", 
 items: [ 
  {type: "book", title: "Book1", author: "A.Z."}, 
  {type: "phone", brand: "Samsung", os: "Android"} 

] }, ... 

Each record contains an array of item objects whose 
properties differ depending on the item type. A query that 
needs to return a table listing the title and author of all books 
ordered by a given customer, would be defined by means of 
a flatMap operator in JavaScript, following a MongoDB 
find() operator. The example below wraps such a subquery 
as a CloudMdsQL named table: 
BookOrders(title string, author string)@mongo = {* 
  return db.orders.find({customer: "ACME"}) 
  .flatMap( function(v) { 
    var r = []; 
    v.items.forEach( function(i){ 
      if (i.type == "book") 
        r.push({title:i.title, author:i.author}); 
    } ); 
    return r; }); 
*} 

And if this table has to be joined with a LeanXcale table 
named authors, this can be expressed directly in the main 
SELECT statement of the CloudMdsQL query: 
SELECT B.title, B.author, A.nationality 
FROM BookOrders B, Authors A 
WHERE B.author = A.name 

Furthermore, we aim at processing this join in the most 
efficient way, i.e. in parallel, by allowing parallel handling of 
the MongoDB subquery and parallel retrieval of its result set. 

By processing such queries, DQE takes advantage of the 
expressivity of each local scripting mechanism, yet allowing 
for results of subqueries to be handled in parallel by DQE 
and involved in operators that utilize the intra-query 
parallelism. The query engine architecture is therefore 
extended to access in parallel shards of the external data 
store through the use of DataLake distributed wrappers that 
hide the complexity of the underlying data stores’ 
query/scripting languages and encapsulate their interfaces 
under a common DataLake API to be interfaced by the query 
engine. 

 
Figure 3.  Generic architecture extension for accessing external data 

stores. 

A. DataLake API 
For a particular data store, each DQE worker creates an 

instance of the DataLake wrapper that is generally used for 
querying and retrieval of shards of data. Each wrapper 
typically uses the client API of the corresponding data 
management cluster and implements the following DataLake 
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API methods to be invoked by the query engine in order to 
provide parallel retrieval of shards (Figure 3). 

The method init(ScriptContext) requests the execution of 
a script to retrieve data from the data store. It provides 
connection details to address the data store and the script as 
text. It may also provide parameter values, if the 
corresponding named table is parameterized. Normally, the 
wrapper does not initiate the execution of the script before a 
shard is assigned by the setShard method (see below). 

After the initialization, the DQE selects one of the 
wrapper instances (the one created by the master worker) as 
a master wrapper instance. The method Object[] listShards() 
is invoked by the DQE only to the master wrapper to provide 
a list of shards where the result set should be retrieved from. 
Each of the returned objects encapsulates information about 
a single shard, which is implementation-specific, therefore 
transparent for the query engine. Such an entry may contain, 
for example, the network address of the database shard, and 
possibly a range of values of the partition key handled by 
this shard. Since the query engine is unaware of the structure 
of these objects, the wrapper provides additional methods for 
serializing and deserializing shard entries, so that DQE can 
exchange them across workers. 

Having obtained all the available shards, the DQE 
schedules the shard assignment across workers and invokes 
the method setShard(Object shard) to assign a shard to a 
particular wrapper instance. Normally, this is the point where 
the connection to the data store shard takes place and the 
script execution is initiated. This method might be invoked 
multiple times to a single wrapper instance, in case there are 
more shards than workers. 

Using the method boolean next(Object[] row), the query 
engine iterates through a partition of the result set, which is 
retrieved from the assigned shard. When this iteration is 
over, the DQE may assign another shard to the wrapper 
instance. 

By interfacing wrappers through the DataLake API, the 
DQE has the possibility to retrieve in parallel disjoint subsets 
of the result set, much like it does with LeanXcale tables. A 
typical wrapper implementation should use a scripting 
engine and/or a client library to execute scripts (client- or 
server-side) against the data store. 

B. Implementation for MongoDB 
In this section, we introduce the design of the distributed 

MongoDB wrapper. The concept of parallel querying against 
a MongoDB cluster is built on the assumption that each DQE 
worker can access directly a MongoDB shard, bypassing the 
MongoDB router in order to sustain parallelism. This, 
however, forces the DQE to define certain constraints for 
parallel processing of document collection subqueries, in 
order to guarantee consistent results, which is normally 
guaranteed by the MongoDB router. The full scripting 
functionality of MongoDB JavaScript library is still 
provided, but in case parallel execution constraints fail, the 
execution falls back to a sequential one. First, the wrapper 
verifies that the MongoDB balancer is not running in 
background, because otherwise it may be moving chunks of 
data across MongoDB shards at the same time the query is 

being executed, which may result in inconsistent reads. For 
an optimal operation of the parallel analytics engine, for 
example, the database administrator may schedule the 
balancer to be active only in not intensive for the analytics 
engine hours. Second, the subquery should use only stateless 
operators (Op) on document collections, as they are 
distributive over the union operator. In other words, for any 
disjoint subsets (shards) S1 and S2 of a document collection 
C, Op(S1)ÈOp(S2) = Op(S1ÈS2) must hold, so that the 
operator execution can be parallelized over the shards of a 
document collection while preserving the consistency of the 
resulting dataset. In our current work, we specifically focus 
on enabling the parallel execution of filtering, projection 
(map), and flattening operators with user-defined as 
JavaScript functions transformations. 

The distributed wrapper for MongoDB comprises a 
number of instances of a Java class that implements the 
DataLake API, each of which embeds a JavaScript scripting 
engine that uses MongoDB’s JavaScript client library. To 
support parallel data retrieval, we further enhance the client 
library with JavaScript primitives that wrap standard 
MongoCursor objects (usually returned by a MongoDB 
JavaScript query) in ShardedCursor objects, which are aware 
of the sharding of the underlying dataset. In fact, 
ShardedCursor implements all DataLake API methods and 
hence serves as a proxy of the API into the JavaScript 
MongoDB client library. The client library is therefore 
extended with the following document collection methods 
that return ShardedCursor and provide the targeted operators 
(find, map, and flat map) in user scripts. 

The findSharded() method accepts the same 
arguments as the native MongoDB find() operator, in 
order to provide the native flexible querying functionality, 
complemented with the ability to handle parallel iteration on 
the sharded result set. Note that, as opposed to the behavior 
of the original find() method, a call to findSharded() 
does not immediately initiate the MongoDB subquery 
execution, but only memorizes the filter condition (the 
method argument), if any, in the returned ShardedCursor 
object. This delayed iteration approach allows the DQE to 
internally manipulate the cursor object before the actual 
iteration takes place, e.g. to redirect the subquery execution 
to a specific MongoDB shard. And since an instance of 
ShardedCursor is created at every worker, this allows for the 
parallel assignment of different shards. 

In order to make a document result set fit the relational 
schema required by a CloudMdsQL query, the user script 
can further take advantage of the map() and flatMap() 
operators. Each of them accepts as argument a JavaScript 
mapper function that performs a transformation on each 
document of the result set and returns another document 
(map) or a list of documents (flatMap). Thus, a composition 
of findSharded and map/flatMap (such as in the 
BookOrders example above) makes a user script 
expressive enough, so as to request a specific MongoDB 
dataset, retrieve the result set in parallel, and transform it in 
order to fit the named table signature and further be 
consumed by relational operators at the DQE level. 

1761



Let us consider the following modification Q1
ML of query 

Q1, which assumes that the LINEITEM table resides as a 
sharded document collection in a MongoDB cluster and the 
selection on it is expressed by means of the 
findSharded() JavaScript method, while ORDERS is 
still a LeanXcale table, the partitions of which are stored in 
the KV storage layer. 
Q1

ML: LINEITEM( L_ORDERKEY int, … )@mongo = {* 
      return db.lineitem.findSharded( 
          {l_quantity: {$lt: 5}} ); 
    *} 

    SELECT count(*) 
    FROM LINEITEM L, ORDERS O 
    WHERE L_ORDERKEY = O_ORDERKEY 

Let us assume for simplicity the same number of DQE 
workers, KVDS servers, and MongoDB shards, so each 
worker gets exactly one partition of both tables by 
connecting to one MongoDB shard (through a wrapper 
instance) and one KVDS (Figure 4). 

 
Figure 4.  Parallel join between sharded datasets: LeanXcale table and 

MongoDB collection. 

The DQE initiates the subquery request by passing the 
script code to each wrapper instance through a call to its 
init() method. At this point, the ShardedCursor object 
does not yet initiate the query execution, but only memorizes 
the query filter object. Assuming that W1 is the master 
worker, it calls the listShards() method of its wrapper 
instance WR1 to query the MongoDB router for a list of 
MongoDB shards (database instances identified by host 
address and port), where partitions of the lineitem 
collection are stored. The list of shards is then reported to the 
DQE scheduler, which assigns one MongoDB shard to each 
of the workers by calling the setShard() method. Each 
worker then connects to the assigned shard and invokes the 
find() method to a partition of the lineitem collection 
using the memorized query condition, thus retrieving a 
partition of the resulting dataset (if a flatMap or map 
follows, it is processed for each document of that partition 
locally at the wrapper). The dataset partition is then 
converted to a partition of an intermediate relation, according 
to the signature of the LINEITEM named table expression. 
At this point, the DQE is ready to involve the partitioned 

intermediate relation LINEITEM in the execution of a 
parallel join with the native LeanXcale partitioned table 
ORDERS. 

C. Implementation for HDFS Files 
The distributed HDFS wrapper is designed to access in 

parallel tables stored as HDFS files, thus providing the 
typical functionality of a tightly-coupled polystore, but 
through the use of the DataLake API. We assume that each 
accessed HDFS file is registered as table in a Hive metastore. 
Therefore, a wrapper instance can use the Hive metastore 
API to get schema and partitioning information for the 
subqueried HDFS table and hence to enable iteration on a 
particular split (shard) of the table. Note that Hive is 
interfaced only for getting metadata, while the data rows are 
read directly from HDFS. To better illustrate the flow, let us 
consider another modification Q1

HL of query Q1, which 
assumes that the LINEITEM table is stored as file in a 
Hadoop cluster. 
Q1

HL: SELECT count(*) 
    FROM LINEITEM@hdfs L, ORDERS O 
    WHERE L_ORDERKEY = O_ORDERKEY 

 
Figure 5.  Parallel join between LeanXcale and HDFS tables. 

To schedule parallel retrieval of the LINEITEM table, 
the DQE redirects the subquery to the HDFS wrapper, 
preliminarily configured to associate the @hdfs alias with 
the URI of the Hive metastore, which specifies how the file 
is parsed and split. This information is used by the master 
wrapper, which reports the list of file splits (instances of 
Hive API’s InputSplit class) to the DQE scheduler 
upon a call to the listShards() method. Then, the 
scheduler assigns a split to each of the workers, which 
creates a record reader on it in order to iterate through the 
split’s rows (Figure 5). 

V. EXPERIMENTAL EVALUATION 
The goal of our experimental validation is to assess the 

scalability of the query engine when processing integration 
(join) queries across diverse data sources, as our major 
objective is to be able to fully exploit both the massive 
parallelism and high expressivity, provided by the underlying 
data management technologies and their scripting 
frameworks. We evaluate the scalability of processing a 
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particular query by varying the volume of queried data and 
the level of parallelism and analyzing the corresponding 
execution times. In particular, we strive to retain similar 
execution times of a particular query when keeping the level 
of parallelism (in number of data shards and workers) 
proportional to the scale of data. 

The experimental evaluation was performed on a cluster 
of the GRID5000 platform2. Each node in the cluster runs on 
two Xeon E5-2630 v3 CPUs at 2.4GHz, 16 logical cores per 
CPU (i.e. 32 per node), 128 GB main memory, and the 
network bandwidth is 10Gbps. The highest level of 
parallelism is determined by the total number of cores in the 
cluster. We performed the experiments varying the number 
of nodes from 2 to 16 and the number of workers from 32 to 
512 (several workers per node). All the three data stores and 
the query engine are evenly distributed across all the nodes, 
i.e. shards of each data store are collocated at each node. For 
each experiment, the level of parallelism determines the 
number of data shards, as well as the highest number of 
workers, in accordance with the total number of cores in the 
cluster. As the number of nodes did not show significance 
compared to the number of workers, our experimental 
conclusions refer only to the number of workers. 

We performed our experiments in three general groups of 
test cases, each having a distinct objective. All the queries 
were run on a cluster of LeanXcale DQE instances, running 
the distributed wrappers for MongoDB and Hive. For 
comparison with the state of the art, the large scale test case 
queries were also performed on a Spark SQL cluster, where 
we used the MongoDB Spark connector to access MongoDB 
shards in parallel. 

A. Generic Scalability 
The first group of test cases aims at generic evaluation of 

the performance and scalability of joins across any pair of 
the three involved data stores. The data used was based on 
the TPC-H benchmark schema [24], particularly for the 
tables LINEITEM, ORDERS, and CUSTOMER. All the 
generated datasets were: loaded in LeanXcale as tables; 
loaded in MongoDB as document collections; copied to the 
HDFS cluster as raw CSV files, to be accessed through Hive 
as tables. To perform the tests on different volumes of data, 
the datasets were generated with three different scale factors 
– 60GB, 120GB, and 240GB. Note that here we focus just 
on the evaluation of joins; therefore, our queries involve only 
joins over full scans of the datasets, without any filters.  

The six queries used for this evaluation are variants of the 
following: 
Q1: SELECT count(*) 
    FROM LINEITEM L, ORDERS O 
    WHERE L_ORDERKEY = O_ORDERKEY 

We will refer to them with the notation Q1XY, where X is 
the first letter of the data store, from which LINEITEM is 
retrieved, while Y refers to the location of ORDERS. For 
example, Q1ML joins LINEITEM from MongoDB with 
ORDERS from LeanXcale. Subqueries to MongoDB are 

                                                             
2 http://www.grid5000.fr 

expressed natively in JavaScript and intermediate result sets 
from MongoDB and HDFS retrieved in parallel, as described 
in Section 4. 

 
Figure 6.  Execution times (in seconds) of Q1 queries on TPC-H data with 

different scales of data (60, 120, and 240 GB) and different levels of 
parallelism (32, 64, 128, 256, and 512 workers). 

Figure 6 shows the performance measurements on 
queries of the first test case, executing joins between 
LINEITEM and ORDERS tables in any configuration of 
pairs between the three data stores. 

In general, the execution speed is determined by the 
performance of processing the LINEITEM side of the join, 
as this table is much larger than ORDERS. When 
LINEITEM resides at LeanXcale, the performance is 
highest, as the query engine processes it natively. For HDFS 
tables, some overhead is added, due to data conversions, 
communication with the Hive metastore, and possibly 
accessing HDFS splits through the network. MongoDB 
subqueries show lowest performance as data retrieval passes 
through the embedded at each worker JavaScript interpreter. 

All the graphs show reasonable speedup with increase of 
the parallelism level. Moreover, the correspondence between 
scale of data and parallelism level is quite stable. For 
example, quite similar execution times are observed for 
60GB with 64 workers, 120GB with 128 workers, and 
240GB with 256 workers. This means that, as the volume of 
data grows, performance can be maintained by simply 
adding a proportional number of workers and data shards. 
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B. High Expressivity and Scalability 
The second test case aims at the evaluation of highly 

expressive JavaScript subqueries, such as the BookOrders 
example from Section 4. The goal is to show that even with 
more sophisticated subqueries, scalability is not 
compromised. For the purpose, we created a MongoDB 
nested document collection named Orders_Items, where 
we combined the ORDERS and LINEITEM datasets as 
follows. For each ORDERS row we created a document that 
contains an additional array field items, where the 
corresponding LINEITEM rows were added as 
subdocuments. Each of the item subdocuments was assigned 
a type field, the value of which was randomly chosen 
between “book” and “phone”. Then, “title” and “author” fields 
were added for the “book” items and “brand” and “os” – for 
the “phone” items, all filled with randomly generated string 
values. Thus, the following BookOrders named table was 
used in the test queries: 
BookOrders(custkey int, orderdate date, 
           title string, author string)@mongo = 
{* 
  return db.orders_items.findSharded() 
  .flatMap( function(doc) { 
    var r = []; 
    doc.items.forEach( function(i){ 
      if (i.type == "book") 
        r.push({custkey: doc.custkey, 
                orderdate: doc.orderdate, 
               title: i.title, author: i.author}); 
    } ); 
    return r; }); 
*} 

We ran two queries under the same variety of conditions 
– three different scale factors for the volume of data and 
varying the level of parallelism from 32 to 512. Query Q2M 
evaluates just the parallel execution of the BookOrders 
script, while Q2ML involves a join with the CUSTOMER table 
from the LeanXcale data store: 
Q2

M: SELECT count(*) FROM BookOrders 

Q2
ML: SELECT count(*) 

     FROM BookOrders O, CUSTOMER C 
     WHERE O.CUSTKEY = C.C_CUSTKEY 

 
Figure 7.  Execution times (in seconds) of Q2 queries on more 

sophisticated JavaScript MongoDB subqueries with scales of data from 60 
to 240 GB and levels of parallelism from 32 to 512. 

Figure 7 shows the performance measurements of Q2 
queries that stress on the evaluation of the parallel processing 

of highly expressive JavaScript queries, with and without 
join with a LeanXcale table. Similar conclusions on 
performance and scalability can be done, like for the Q1 
queries. 

C. Large Scale and Bind Joins 
The third test case evaluates the parallel polyglot query 

processing in the context of much larger data. Q3 performs a 
join between a 600GB version of the Orders_Items 
collection (containing ~770 million documents and ~3 
billion order items) and a LeanXcale table CLICKS of size 
1TB, containing ~6 billion click log records. 
Q3: SELECT O.CUSTKEY, O.TITLE, C.URL, O.ORDERDATE 
    FROM CLICKS C, BookOrders O 
    WHERE C.UID = O.CUSTKEY 
      AND C.CLICKDATE = O.ORDERDATE 
      AND C.IPADDR BETWEEN a AND b 

The query assumes a use case that aims to find orders of 
books made on the same day the customers visited the 
website. The predicate C.IPADDR BETWEEN a AND b filters a 
range of source IP addresses for the web clicks, which results 
in selecting click data for a particular subset of user IDs. This 
selectivity makes significant the impact of using bind join 
within the native table BookOrders. The definition of the 
named table is hence slightly modified, to allow for the bind 
join to apply early filtering to reduce significantly the 
amount of data processed by the MongoDB JavaScript 
subquery: 
BookOrders(custkey int, orderdate date, 
           title string, author string 
           JOINED ON custkey 
           REFERENCING OUTER AS uids )@mongo = 
{* 
  return db.orders_items.findSharded( 
    {custkey: {$in: uids}} ) 
  .flatMap( function(doc) {...} ); 
*} 

The query executes by first applying the filter and 
retrieving intermediate data from the CLICKS table, which is 
not indexed, therefore a full scan takes place. The 
intermediate data are then cached at the workers and a list of 
distinct values for the UID column is pushed to the 
MongoDB wrapper instances, to form the bind join 
condition. We use the parameters a and b to control the 
selectivity on the large table, hence the selectivity of the bind 
join. We ran experiments varying the selectivity factor SF 
between 0.02%, 0.2%, and 2%. Smaller values of SF result in 
shorter lists of outer keys for the bind join condition and 
hence faster execution of the BookOrders subquery. 
However, when not using bind join, the predicate selectivity 
does not affect significantly the query execution time, as full 
scans take place on both datasets anyway. 

For comparison with Spark SQL, the CLICKS dataset was 
loaded as an HDFS file in order to be accessible by Spark. 
To run an analogue of the BookOrders subquery through 
the MongoDB connector for Spark SQL, we used the 
MongoDB aggregation framework against the same sharded 
collection in our MongoDB cluster as follows: 
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db.orders_items.aggregate([{$unwind: "$items"}, 
       {$match: {"items.type": "BOOK"}}, ...]) 

Figure 8 shows the times for processing Q3 queries with 
Spark SQL, with LeanXcale without using bind join, and 
with LeanXcale using bind join. The level of parallelism for 
both storing and querying data is 512. Without bind join, 
Spark SQL shows a slight advantage compared to LeanXcale 
DQE, which is explainable by the overhead of the JavaScript 
interpreting that takes place at DQE wrappers for MongoDB. 
However, the ability for applying bind join that cannot be 
handled with Spark SQL gives our approach a significant 
advantage for selective queries, which is very useful in a 
wide range of industrial scenarios. 

 
Figure 8.  Execution times (in seconds) of Q3 queries joining an expressive 

JavaScript MongoDB subquery on a 600GB document collection with a 
1TB click logs dataset. The level of parallelism was set to 512, i.e. 512 

MongoDB shards, 512 LeanXcale DQE instances, and 512 Spark 
executors. To assess bind join, SF varied between 0.02%, 0.2%, and 2%. 

VI. COMPARISON WITH RELATED WORK 
The problem of accessing heterogeneous data sources has 

long been studied in the context of multidatabase and data 
integration systems [19,23]. More recently, with the advent 
of cloud databases and big data processing frameworks, 
multidatabase solutions have evolved towards polystore 
systems that provide integrated access to a number of 
RDBMS, NoSQL, NewSQL, and HDFS data stores through 
a common query engine. Early polystores [17,18,21] 
typically mediate heterogeneous data stores through a single 
common data model. The polystore BigDAWG [9,10] goes 
one step further by defining “islands of information”, where 
each island corresponds to a specific data model and its 
language and provides transparent access to a subset of the 
underlying data stores through the island’s data model. The 
system enables cross-island queries (across different data 
models) by moving intermediate datasets between islands in 
an optimized way. Myria [25] is another recent polystore, 
built on a shared-nothing parallel architecture, that efficiently 
federates data across diverse data models and query 
languages. Its extended relational model and the imperative-
declarative hybrid language MyriaL span well all the 
underlying data models, where rewrite rules apply to 
transform expressions into specific API calls, queries, etc. 
for each of the data stores. In addition to typical loosely-
coupled systems, some polystore solutions [5,7,12] consider 

the problem of optimal data placement and/or selection of 
data source, mostly driven by application requirements. 

Hybrid polystore systems support data source autonomy 
as in loosely-coupled systems, and preserve parallelism by 
exploiting the local data source interface as in tightly-
coupled systems. They usually serve as parallel query 
engines with parallel connectors to external sources. As our 
work fits in this category, we will briefly discuss some of the 
existing solutions, focusing on their capabilities to integrate 
with MongoDB as a representative example of a non-
relational data store. However, although they enable parallel 
integration with data clusters (like MongoDB), none of these 
systems support the combination of massive parallelism with 
native queries and the optimizability of bind joins, the way 
the LeanXcale engine does. 

Spark SQL [4] is a parallel SQL engine built on top of 
Apache Spark and designed to provide tight integration 
between relational and procedural processing through a 
declarative API that integrates relational operators with 
procedural Spark code, taking advantage of massive 
parallelism. Spark SQL provides a DataFrame API that can 
map to relations arbitrary object collections and thus enables 
relational operations across Spark’s RDDs and external data 
sources. Spark SQL can access a MongoDB cluster through 
its MongoDB connector that maps a sharded document 
collection to a DataFrame, partitioned as per the collection’s 
sharding setup. Schema can be either inferred by document 
samples, or explicitly declared. 

Presto [20] is a distributed SQL query engine, running on 
a cluster of machines, and designed to process interactive 
analytic queries against data sources of any size. Presto 
follows the classical MPP (massively parallel processing) 
DBMS architecture, which, similarly to LeanXcale, consists 
of a coordinator, multiple workers and connectors (storage 
plugins that interface external data stores and provide 
metadata to the coordinator and data to workers). To access a 
MongoDB cluster, Presto uses a connector that allows the 
parallel retrieval of sharded collections, which is typically 
configured with a list of MongoDB servers. Document 
collections are exposed as tables to Presto, keeping schema 
mappings in a special MongoDB collection. 

Apache Drill [2] is a distributed query engine for large-
scale datasets, designed to scale to thousands of nodes and 
query at low latency petabytes of data from various data 
sources through storage plugins. The MPP architecture runs 
a so called “drillbit” service at each node. The drillbit that 
receives the query from a client or application becomes the 
foreman for the query and compiles the query into an 
optimized execution plan, further parallelized in a way that 
maximizes data locality. The MongoDB storage allows 
running Drill and MongoDB together in distributed mode, by 
assigning shards to different drillbits to exploit parallelism. 
Since MongoDB collections are used directly in the FROM 
clause as tables, the storage plugin translates relational 
operators to native MongoDB queries. 

Impala [3] is an open-source MPP SQL engine operating 
over Hadoop data processing environment. As opposed to 
typical batch processing frameworks for Hadoop, Impala 
provides low latency and high concurrency for analytical 
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queries. Impala can access MongoDB collections through a 
MongoDB connector for Hadoop, designed to provide the 
ability to read MongoDB data into Hadoop MapReduce jobs. 

VII. CONCLUSIONS 
In this paper, we introduced a parallel polyglot polystore 

system that builds on top of LeanXcale’s distributed query 
engine and processes queries in the CloudMdsQL query 
language. This allows data store native subqueries to be 
expressed as inline scripts and combined with regular SQL 
statements in ad-hoc integration statements. 

We contribute by adding polyglot capabilities to the 
distributed data integration engine that takes advantage of the 
parallel processing capabilities of underlying data stores. We 
introduced architectural extensions that enable specific 
native scripts to be handled in parallel at data store shards, so 
that efficient and scalable parallel joins take place at query 
engine level. We focused on parallel joins between a 
relational table and the result of a JavaScript subquery to 
MongoDB, but the concept relies on an API that allows its 
generalization to other script engines and data stores as well. 

Our experimental validation evaluated the scalability of 
the query engine by measuring the performance of various 
join queries. In particular, even in the context of 
sophisticated JavaScript subqueries, parallel join processing 
shows good speedup with increase of the parallelism level. 
This means that, as the volume of data grows, performance 
can be maintained by simply extending the parallelism to a 
proportional number of workers and data shards. This 
evaluation illustrates the benefits of combining the massive 
parallelism of the underlying data management technologies 
with the high expressivity of their scripting frameworks and 
optimizability through the use of bind join, which is the 
major strength of our work. 
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