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7 Abstract
8 Language designers usually need to implement parsers and printers. Despite being

9 two closely related programs, in practice they are often designed separately, and

10 then need to be revised and kept consistent as the language evolves. It will be more

11 convenient if the parser and printer can be unified and developed in a single pro-

12 gram, with their consistency guaranteed automatically. Furthermore, in certain

13 scenarios (like showing compiler optimisation results to the programmer), it is

14 desirable to have a more powerful reflective printer that, when an abstract syntax

15 tree corresponding to a piece of program text is modified, can propagate the

16 modification to the program text while preserving layouts, comments, and syntactic

17 sugar. To address these needs, we propose a domain-specific language BIYACC,

18 whose programs denote both a parser and a reflective printer for a fully disam-

19 biguated context-free grammar. BIYACC is based on the theory of bidirectional

20 transformations, which helps to guarantee by construction that the generated pairs of

21 parsers and reflective printers are consistent. Handling grammatical ambiguity is

22 particularly challenging: we propose an approach based on generalised parsing and

23 disambiguation filters, which produce all the parse results and (try to) select the only

24 correct one in the parsing direction; the filters are carefully bidirectionalised so that

25 they also work in the printing direction and do not break the consistency between

26 the parsers and reflective printers. We show that BIYACC is capable of facilitating

27 many tasks such as Pombrio and Krishnamurthi’s ‘resugaring’, simple refactoring,

28 and language evolution.

29
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35 Introduction

36 Whenever we come up with a new programming language, as the front-end part of

37 the system we need to design and implement a parser and a printer to convert

38 between program text and an internal representation. A piece of program text, while

39 conforming to a concrete syntax specification, is a flat string that can be easily

40 edited by the programmer. The parser extracts the tree structure from such a string

41 to a concrete syntax tree (CST), and converts it to an abstract syntax tree (AST),

42 which is a more structured and simplified representation and is easier for the back-

43 end to manipulate. On the other hand, a printer converts an AST back to a piece of

44 program text, which can be understood by the user of the system; this is useful for

45 debugging the system, or reporting internal information to the user.

46 Parsers and printers do conversions in opposite directions and are closely

47 related—for example, the program text printed from an AST should be parsed to the

48 same tree. It is certainly far from being economical to write parsers and printers

49 separately: the parser and printer need to be revised from time to time as the

50 language evolves, and each time we must revise the parser and printer and also keep

51 them consistent with each other, which is a time-consuming and error-prone task. In

52 response to this problem, many domain-specific languages [6, 7, 13, 37, 44, 53]

53 have been proposed, in which the user can describe both a parser and a printer in a

54 single program.

55 Despite their advantages, these domain-specific languages cannot deal with

56 synchronisation between program text and ASTs. Let us look at a concrete example

57 in Fig. 1: the original program text is an arithmetic expression, containing a

58 negation, a comment, and parentheses (one pair of which is redundant). It is first

59 parsed to an AST (supposing that addition is left-associative) where the negation is

60 desugared to a subtraction, parentheses are implicitly represented by the tree

61 structure, and the comment is thrown away. Suppose that the AST is optimised by

62 replacing Add (Num 1) (Num 1) with a constant Num 2. The user may want to

63 observe the optimisation made by the compiler, but the AST is an internal

64 representation not exposed to the user, so a natural idea is to propagate the changes

65 on the AST back to the program text to make it easy for the user to check where the

66 changes are. With a conventional printer, however, the printed result will likely

67 mislead the programmer into thinking that the negation is replaced by a subtraction

68 by the compiler; also, since the comment is not preserved, it will be harder for the

Fig. 1 Comparison between conventional printing and reflective printing
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69 programmer to compare the updated and original versions of the text. The problem

70 illustrated here has also been investigated in many other practical scenarios where

71 the parser and printer are used as a bridge between the system and the user, for

72 example,

73 • in bug reporting [51], where a piece of program text is parsed to its AST to be

74 checked but error messages should be displayed for the program text;

75 • in code refactoring [18], where instead of directly modifying a piece of program

76 text, most refactoring tools will first parse the program text into its AST, perform

77 code refactoring on the AST, and regenerate new program text; and

78 • in language-based editors, as introduced by Reps [45, 46], where the user needs

79 to interact with different printed representations of the same underlying AST.

80

81 To address the problem, we propose a domain-specific language BIYACC, which

82 enables the user to describe both a parser and a reflective printer for a fully

83 disambiguated context-free grammar (CFG) in a single program. Different from a

84 conventional printer, a reflective printer takes a piece of program text and an AST,

85 which is usually slightly modified from the AST corresponding to the original

86 program text, and propagates the modification back to the program text. Meanwhile

87 the comments (and layouts) in the unmodified parts of the program text are all

88 preserved. This can be seen clearly from the result of using our reflective printer on

89 the above arithmetic expression example in Fig. 1. It is worth noting that reflective

90 printing is a generalisation of the conventional notion of printing, because a

91 reflective printer can accept an AST and an empty piece of program text, in which

92 case it will behave just like a conventional printer, producing a new piece of

93 program text depending on the AST only.

94 From a BIYACC program, we can generate a parser and a reflective printer; in

95 addition, we want to guarantee that the two generated components are consistent

96 with each other. Specifically, given a pair of parser parse and reflective printer print,

97 we want to ensure two (inverse-like) consistency properties: first, a piece of program

98 text s printed from an abstract syntax tree t should be parsed to the same tree t, i.e.1

parse ðprint s tÞ ¼ t . ð1Þ

100100 Second, updating a piece of program text s with an AST parsed from s should leave s

101 unmodified (including formatting details like parentheses and whitespaces), i.e.

print s ðparse sÞ ¼ s . ð2Þ

103103

1FL01 1 We assume basic knowledge about functional programming languages and their notations, in particular

1FL02 HASKELL [5, 34]. In HASKELL, an argument of function application does not need to be enclosed in (round)

1FL03 parentheses, i.e. we write f x instead of f(x); type variables are implicitly universally quantified,

1FL04 i.e. f :: a! b! a is the same as f ::8a b: a! b! a where :: means has type. Additionally, we omit

1FL05 universal quantification for free variables in an equation; for instance, parse ðprint s tÞ ¼ t is in fact

1FL06 8s t: parse ðprint s tÞ ¼ t.
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104 These two properties are inspired by the theory of bidirectional transformations

105 [19], in particular lenses [17], and are guaranteed by construction for all BIYACC

106 programs.

107 An online tool that implements the approach described in the paper can be

108 accessed at http://www.prg.nii.ac.jp/project/biyacc.html. The webpage also contains

109 the test cases used in the paper. The structure of the paper is as follows: we start

110 with an overview of BIYACC in Sect. 2, explaining how to describe in a single

111 program both a parser and a reflective printer for synchronising program text and its

112 abstract syntax representation. After reviewing some background on bidirectional

113 transformations in Sect. 3, in particular the bidirectional programming language

114 BIGUL [22, 27, 28], we first give the semantics of a basic version of BIYACC that

115 handles unambiguous grammars by compiling it to BIGUL in Sect. 4, guaranteeing

116 the properties (1) and (2) by construction. Then, inspired by the research on gen-

117 eralised parsing [50] and disambiguation filters [26], in Sect. 5 we revise the basic

118 BIYACC architecture to allow the use of ambiguous grammars and disambiguation

119 directives while still retaining the above-mentioned properties. We present a case

120 study in Sect. 6, showing that BIYACC is capable of describing TIGER [4], which

121 shares many similarities with fully fledged languages. We demonstrate that BIYACC

122 can handle syntactic sugar, partially subsume Pombrio and Krishnamurthi’s ‘re-

123 sugaring’ [42, 43], and facilitate language evolution. In Sect. 7, we present detailed

124 related work including comparison with other systems. Contributions are sum-

125 marised in Sect. 8.

126 This is the extended version of our previous work Parsing and Reflective

127 Printing, Bidirectionally presented at SLE’16 [55], and the differences are mainly as

128 follows: (1) we propose the notion of bidirectionalised filters and integrate them into

129 BIYACC for handling grammatical ambiguity (Sect. 5); the related work section is

130 also updated accordingly. (2) We restructure the narration for introducing the basic

131 BIYACC system and in particular elaborate on the isomorphism between program

132 text and CSTs. (3) We present the definitions and theorems in a more formal way,

133 and complete their proofs. (4) We make several other revisions such as renewing the

134 figures for introducing the BIYACC system and the syntax of BIYACC programs.

135 Throughout this paper, we typeset general definitions and properties in math style

136 and specific examples in code style.

137 A First Look at BIYACC

138 We first give an overview of BIYACC by going through the BIYACC program shown

139 in Fig. 2, which deals with the arithmetic expression example given in Sect. 1. This

140 program consists of definitions of the abstract syntax, concrete syntax, directives,

141 and actions for reflectively printing ASTs to CSTs; we will introduce them in order.

142 Syntax Definitions

143 Abstract syntax The abstract syntax part, which starts with the keyword #Abstract, is

144 just one or more definitions of HASKELL data types. In our example, the abstract
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145 syntax is defined in lines 2–7 by a single data type Arith whose elements are

146 constructed from constants and arithmetic operators. Different constructors—

147 namely Num, Var, Add, Sub, Mul, and Div—are used to construct different kinds of

148 expressions.

149 Concrete syntax The concrete syntax part, beginning with the keyword

150 #Concrete, is defined by a context-free grammar. For our expression example, in

151 lines 10–21 we use a standard unambiguous grammatical structure to encode

152 operator precedence and order of association, involving three nonterminal symbols

153 Expr, Term, and Factor: an Expr can produce a left-sided tree of Terms, each of

154 which can in turn produce a left-sided tree of Factors. To produce right-sided trees

155 or operators of lower precedence under those with higher precedence, the only way

156 is to reach for the last production rule Factor�[ ‘ð’ Expr ‘Þ’ , resulting in

157 parentheses in the produced program text. There are also predefined nonterminals

158 Numeric and Identifier, which produce numerals and identifiers, respectively.

159 Directives The #Directives part defines the syntax of comments and disambigua-

160 tion directives. For example, line 23 shows that the syntax for single line comments

161 is ‘‘//’’,2 while line 24 states that ‘‘/*’’ and ‘‘*/’’ are, respectively, the beginning mark

162 and ending mark for block comments. Since the grammar for arithmetic expressions

163 is unambiguous, there is no need to give any disambiguation directive for this

164 example (whereas the ambiguous version of the grammar in Fig. 6 needs to be

165 augmented with a few such directives).

Fig. 2 A BIYACC program for the expression example

2FL01 2 While single quotation marks are for characters, double quotation marks are for strings. For simplicity,

2FL02 the user can always use double quotation marks.
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166 Printing Actions

167 The main part of a BIYACC program starts with the keyword #Actions and describes

168 how to update a CST with an AST. For our expression example, the actions are

169 defined in lines 27–42 in Fig. 2. Before explaining the actions, we should first say

170 that program text is identified with CSTs when programming BIYACC actions:

171 conceptually, whenever we write a piece of program text, we are actually describing

172 a CST rather than just a sequence of characters. We will expound on this

173 identification of program text with CSTs in Sect. 4.2 in detail.

174 The #Actions part consists of groups of actions, and each group begins with a

175 ‘type declaration’ of the form HsType ‘þ[’ Nonterminal stating that the actions in

176 this group specify updates on CSTs generated from Nonterminal using ASTs of type

177 HsType. Informally, given an AST and a CST, the semantics of an action is to

178 perform pattern matching simultaneously on both trees, and then use components of

179 the AST to update corresponding parts of the CST, possibly recursively. (The

180 syntax ‘þ[’ suggests that information from the left-hand side is embedded into the

181 right-hand side.) Usually, the nonterminals in a right-hand side pattern are overlaid

182 with updated instructions, which are also denoted by ‘þ[’.

183 Let us look at a specific action—the first one for the expression example, at line

184 28 of Fig. 2:

Add x yþ[ ½xþ[ Expr� ‘þ’ ½yþ[ Term�;

186186 The AST-side pattern Add x y is just a HASKELL pattern; as for the CST-side pattern,

187 the main intention is to refer to the production rule Expr�[ Expr ‘þ’ Term and use it

188 to match those CSTs produced by this rule—since the action belongs to the group

189 Arithþ[ Expr, the part ‘Expr�[’ of the production rule can be inferred and thus is

190 not included in the CST-side pattern. Finally, we overlay ‘xþ[’ and ‘yþ[’ on the

191 nonterminal symbols Expr and Term to indicate that, after the simultaneous pattern

192 matching succeeds, the subtrees x and y of the AST are, respectively, used to update

193 the left and right subtrees of the CST.

194 Having explained what an action means, we can now explain the semantics of the

195 entire program. Given an AST and a CST as input, first a group (of actions) is

196 chosen according to the types of the trees. Then, the actions in the group are tried in

197 order, from top to bottom, by performing simultaneous pattern matching on both

198 trees. If pattern matching for an action succeeds, the updating operations specified

199 by the action is executed, otherwise the next action is tried. Execution of the

200 program ends when the matched action specifies either no updating operations or

201 only updates to primitive data types such as Numeric. BIYACC’s most interesting

202 behaviour shows up when all actions in the chosen group fail to match—in this case

203 a suitable CST will be created. The specific approach adopted by BIYACC is to

204 perform pattern matching on the AST only and choose the first matched action. A

205 suitable CST conforming to the CST-side pattern is then created, and after that the

206 whole group of actions is tried again. This time the pattern matching will succeed at

207 the action used to create the CST, and the program will be able to make further

208 progress. For instance, assuming that the source is 1 * 2 while the view is Add (Num
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209 1) (Num 2), a new source skeleton representing � þ � will be created and the � part

210 will be updated recursively later. We will elaborate more on this in Sect. 4.

211 Deep patterns Using deep patterns, we can write actions that establish nontrivial

212 relationships between CSTs and ASTs. For example, the action at line 38 of Fig. 2

213 associates abstract subtraction expressions whose left operand is zero with concrete

214 negated expressions; this action is the key to preserving negated expressions in the

215 CST. For an example of a more complex CST-side pattern: suppose that we want to

216 write a pattern that matches those CSTs produced by the rule Factor�[ ‘�’ Factor,

217 where the inner nonterminal Factor produces a further ‘-’ Factor using the same rule.

218 This pattern is written by overlaying the production rule on the first nonterminal

219 Factor (an additional pair of parentheses is required for the expanded nonterminal):

220 ‘�’ ðFactor�[ ‘�’ FactorÞ. More examples involving this kind of deep patterns can

221 be found in Sect. 6.

222 Layout and comment preservation The reflective printer generated by BIYACC is

223 capable of preserving layouts and comments, but, perhaps mysteriously, in Fig. 2

224 there is no clue as to how layouts and comments are preserved. This is because we

225 decide to hide layout preservation from the user, so that the more important logic of

226 abstract and concrete syntax synchronisation is not cluttered with layout preserving

227 instructions. Our approach is fairly simplistic: we store layout information following

228 each terminal in an additional field in the CST implicitly, and treat comments in the

229 same way as layouts. During the printing stage, if the pattern matching on an action

230 succeeds, the layouts and comments after the terminals shown in the right-hand side

231 of that action are preserved; on the other hand, layouts and comments are dropped

232 when a CST is created in the situation where pattern matching fails for all actions in

233 a group. The layouts and comments before the first terminal are always kept during

234 the printing.

235 Parsing semantics So far, we have been describing the reflective printing

236 semantics of the BIYACC program, but we may also work out its parsing semantics

237 intuitively by interpreting the actions from right to left, converting the production

238 rules to the corresponding constructors. (This might remind the reader of the usual

239 YACC [23] actions.) In fact, this paper will not define the parsing semantics formally,

240 because the parsing semantics is completely determined by the reflective printing

241 semantics: if the actions are written with the intention of establishing some relation

242 between the CSTs and ASTs, then BIYACC will be able to derive the only well-

243 behaved parser, which respects that relation. We will explain how this is achieved in

244 the next section.

245 Foundation of BIYACC: Putback-Based Bidirectional Programming

246 From a BIYACC program, in addition to generating a parser and a printer, we also

247 need to guarantee that the two generated programs are consistent with each other,

248 i.e. satisfy the properties (1) and (2) stated in Sect. 1. It is possible to implement the

249 print and parse semantics separately in an ad hoc way, but verifying the two

250 consistency properties takes extra effort. The implementation we present, however,

251 is systematic and guarantees consistency by construction, thanks to the well-
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252 developed theory of bidirectional transformations (BXs for short), in particular

253 lenses [17]. We will give a brief introduction to BXs below; for a comprehensive

254 treatment, the readers are referred to the lecture notes for the 2016 Oxford Summer

255 School on Bidirectional Transformations [19].

256 Parsing and Printing as Lenses

257 The parse and print semantics of BIYACC programs are potentially partial—for

258 example, if the actions in a BIYACC program do not cover all possible forms of

259 program text and abstract syntax trees, parse and print will fail for those uncovered

260 inputs. Thus, we should take partiality into account when choosing a BX framework

261 in which to model parse and print. The framework we use in this paper is an

262 explicitly partial version [32, 40] of asymmetric lenses [17].

263 Definition 1 (Lenses) A lens between a source type S and a view type V is a pair of

264 functions

get :: S! Maybe V

put :: S! V ! Maybe S

266266 satisfying the well-behavedness laws:

put s v ¼ Just s0 ) get s0 ¼ Just v ðPutGetÞ
get s ¼ Just v ) put s v ¼ Just s ðGetPutÞ

268268

269 Intuitively, a get function extracts a part of a source of interest to the user as a

270 view, and a put function takes a source and a view and produces an updated source

271 incorporating information from the view. Partiality is explicitly represented by

272 making the functions return Maybe values: a get or put function returns Just r where

273 r is the result, or Nothing if the input is not in the domain. The PUTGET law enforces

274 that put must embed all information of the view into the updated source, so the view

275 can be recovered from the source by get, while the GETPUT law prohibits put from

276 performing unnecessary updates by requiring that putting back a view directly

277 extracted from a source by get must produce the same, unmodified source.

278 The parse and print semantics of a BIYACC program will be the pair of functions

279 get and put in a lens, required by definition to satisfy the two well-behavedness

280 laws, which are exactly the consistency properties (1) and (2) reformulated in a

281 partial setting:

282 Definition 2 (The Partial Version of Consistency Properties)

print s t ¼ Just s0 ) parse s0 ¼ Just t

parse s ¼ Just t ) print s t ¼ Just s

283
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284 Putback-Based Bidirectional Programming in BiGUL

285 Having rephrased parsing and printing in terms of lenses, we can now construct

286 consistent pairs of parsers and printers using bidirectional programming techniques,

287 in which the programmer writes a single program to denote the two directions of a

288 lens. Specifically, BIYACC programs are compiled to the putback-based bidirectional

289 programming language BIGUL [28]. It has been formally verified in Agda [39] that

290 BIGUL programs always denote well-behaved lenses, and BIGUL has been ported

291 to HASKELL as an embedded DSL library [22]. BIGUL is putback-based, meaning

292 that a BIGUL program describes a put function, but—since BIGUL is bidirec-

293 tional—can also be executed as the corresponding get function. The advantage of

294 putback-based bidirectional programming lies in the fact that, given a put function,

295 there is at most one get function that forms a (well-behaved) lens with this put

296 function [16]. That is, once we describe a put function as a BIGUL program, the get

297 semantics of the program is completely determined by its put semantics. We can

298 therefore focus solely on the printing (put) behaviour, leaving the parsing (get)

299 behaviour only implicitly (but unambiguously) specified. How the programmer can

300 effectively work with this paradigm has been more formally explained in terms of a

301 Hoare-style logic for BIGUL [27].

302 Compilation of BIYACC to BIGUL (Sect. 4) uses only three BIGUL operations,

303 which we briefly introduce here; more details can be found in the lecture notes on

304 BiGUL programming [22]. A BIGUL program has type BiGUL s v, where s and v

305 are, respectively, the source and view types.

306 Replace The simplest BIGUL operation we use is

Replace :: BiGUL s s

308308 which discards the original source and returns the view—which has the same type as

309 the source—as the updated source. That is, the put semantics of Replace is the

310 function k s v! Just v.

311 Update The next operation update is more complex, and is implemented with the

312 help of Template Haskell [49]. The general form of the operation is

$ðupdate ½pj spat j� ½pj vpat j� ½dj bs j�Þ :: BiGUL s v.

314314 This operation decomposes the source and view by pattern matching with the

315 patterns spat and vpat, respectively, pairs the source and view components as

316 specified by the patterns (see below), and performs further BIGUL operations listed

317 in bs on the source–view pairs; the way to determine which source and view

318 components are paired and which operation is performed on a pair is by looking for

319 the same names in the three arguments. For example, the update operation

$ðupdate ½pj ðx; Þ j� ½pj x j� ½dj x ¼ Replace j�Þ

321321 matches the source with a tuple pattern ðx; �Þ and the view with a variable pattern x,

322 so that the first component of the source tuple is related with the whole view; during

323 the update, the first component of the source is replaced by the whole view, as

324 indicated by the operation x = Replace. (The part marked by underscore (�) simply
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325 means that it will be skipped during the update.) Given a source (1,2) and a view 3,

326 the operation will produce (3,2) as the updated source. In general, any (type-correct)

327 BIGUL program can be used in the list of further updates, not just the primitive

328 Replace.

329 Case The most complex operation we use is Case for doing case analysis on the

330 source and view:

Case :: ½Branch s v� ! BiGUL s v .

332332 Case takes a list of branches, of which there are two kinds: normal branches and

333 adaptive branches. For a normal branch, we should specify a main condition using a

334 source pattern spat and a view pattern vpat, and an exit condition using a source

335 pattern spat0:

$ðnormalSV ½pj spat j� ½pj vpat j� ½pj spat0 j�Þ :: BiGUL s v! Branch s v .

337337 An adaptive branch, on the other hand, only needs a main condition:

$ðadaptiveSV ½pj spat j� ½pj vpat j�Þ :: ðs! v! sÞ ! BiGUL s v .

339339 Their semantics in the put direction are as follows: a branch is applicable when the

340 source and view, respectively, match spat and vpat in its main condition. Execution

341 of a Case chooses the first applicable branch from the list of branches, and con-

342 tinues with that branch. When the applicable branch is a normal branch, the asso-

343 ciated BIGUL operation is performed, and the updated source should satisfy the exit

344 condition spat0 (or otherwise execution fails); when the applicable branch is an

345 adaptive branch, the associated function is applied to the source and view to

346 compute an adapted source, and the whole Case is rerun on the adapted source and

347 the view; it must go into a normal branch this time, otherwise the execution fails.

348 Think of an adaptive branch as bringing a source that is too mismatched with the

349 view to a suitable shape—for example, when the source is a subtraction while the

350 view is an addition, which are by no means in correspondence, we must adapt the

351 source to an addition—so that a normal branch that deals with sources and views in

352 some sort of correspondence can take over. This adaptation mechanism is used by

353 BIYACC to print an AST when the source program text is too different from the AST

354 or even nonexistent at all.

355 The Basic BIYACC

356 In this section, we expound on a basic version of BIYACC that handles only

357 unambiguous grammars. (Section 5 will present extensions for dealing with

358 ambiguous grammars with disambiguation.) The architecture is illustrated in

359 Fig. 3, where a BIYACC program

‘#Abstract’ decls ‘#Concrete’ pgs ‘#Directives’ drctvs ‘#Actions’ ags , ð3Þ

361361 consisting of abstract syntax, concrete syntax, directives, and printing actions, as

362 formally defined in Fig. 4, is compiled into a few HASKELL source files and then into
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Fig. 3 Architecture of BIYACC

Fig. 4 Syntax of BIYACC programs. (Nonterminals with prefix Hs denote HASKELL entities and follow the

HASKELL syntax; the notation ntþfsepg denotes a nonempty sequence of the same nonterminal nt
separated by sep. Optional elements are enclosed in a pair of square brackets. The parts relating to
disambiguation and filters will be explained in Sect. 5)
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363 an executable (by a HASKELL compiler) for converting between program text and

364 ASTs. Specifically:

365 • The abstract syntax part (decls for HASKELL data type declarations) is already

366 valid HASKELL code and is (almost) directly used as the definitions of AST data

367 types.

368 • The concrete syntax part (pgs for production groups) is translated to definitions

369 of CST data types (whose elements are representations of how a string is

370 produced using the production rules), and also used to generate the pair of

371 concrete parser (including a lexer) and printer for the conversion between

372 program text and CSTs. This pair of concrete parser and printer can be shown to

373 form an (partial) isomorphism (which will be defined in Sect. 4.1). This part will

374 be explained in Sect. 4.2.

375 • The directives part (drctvs for directives) is used in the lexer for recognising

376 single line and multi-line comments.

377 • The printing actions part (ags for action groups) is translated to a BIGUL

378 program (which is a lens, see Definition 1) for handling (the semantic part of)

379 parsing and reflective printing between CSTs and ASTs. This part will be

380 explained in Sect. 4.3.

381 The whole executable is a well-behaved lens since it is the composition of an

382 isomorphism and a lens. We will start from a recap of this fact.

383 Composition of Isomorphisms and Lenses

384 First, we give the definition of (partial) isomorphisms.

385 Definition 3 (Isomorphism) A (partial) isomorphism between two types A and B is

386 a pair of functions:

to :: A! Maybe B

from :: B! Maybe A

388388 such that the inverse properties hold:

to a ¼ Just b , from b ¼ Just a .

389

390 Definition 4 (Composition of isomorphism and lenses) Given an isomorphism (to

391 and from) between A and B and a lens (get and put) between B and C, we can

392 compose them to form a new lens between A and C, whose components get0 and

393 put0 are defined by
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395395 where

397397398 This is specialised from the standard definition of lens composition [17]—an

399 isomorphism can be lifted to a lens (with get s ¼ to s and put s v ¼ from v), which

400 can then be composed with another lens to give rise to a new lens. We thus have the

401 following lemma.

402 Lemma 1 Any lens resulted from the composition in Definition 4 is well-behaved.

403 Therefore the whole BIYACC executable is a well-behaved lens, given that the

404 concrete parser and printer form an isomorphism (Theorem 1) and the BIGUL

405 program is a well-behaved lens (Theorem 2), which we will see next.

406 The Concrete Parsing and Printing Isomorphism

407 In this subsection, we describe the generation of CST data types and concrete

408 printers (Sect. 4.2.1), the generation of concrete parsers (Sect. 4.2.2), and finally the

409 inverse properties satisfied by the concrete parsers and printers (Sect. 4.2.3).

410 Generating CST Data Types and Concrete Printers

411 The production rules in a context-free grammar dictate how to produce strings from

412 nonterminals, and a CST can be regarded as encoding one particular way of

413 producing a string using the production rules. In BIYACC, we represent CSTs starting

414 from a nonterminal nt as an automatically generated HASKELL data type named nt,

415 whose constructors represent the production rules for nt. For each of these data

416 types, we also generate a printing function which takes a CST as input and produces

417 a string as dictated by the production rules in the CST.

418 For instance, in Fig. 2, the group of production rules from the nonterminal Factor

419 (lines 18–21) is translated to the following HASKELL data type and concrete printing

420 function:
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421 where Factor1 ... Factor4 are constructors corresponding to the four production rules,

422 and FactorNull represents an empty CST of type Factor and is used as the default

423 value whenever we want to create new program text depending on the view only. As

424 an example, Factor1 represents the production rule Factor�[ ‘�’ Factor, and its

425 String field stores the whitespaces appearing after a negation sign in the program text.

426 The Factor3 case makes a call to cprtExpr :: Expr�[ String, which is the printing

427 function generated for the nonterminal Expr.

428 Following this idea, we define the translation from production rule groups (pgs in

429 formula (3)) to datatype definitions by source-to-source compilation rules:

spgstProductionGroup ¼
�
spgtProductionGroup

�� pg 2 pgs
�

snt ‘�[’ bodiestProductionGroup ¼
‘data’ nt ‘¼’

�
conðnt; bodyÞ

�
fieldðsÞ

�� s 2 body
�

‘j’
�� body 2 bodies

�

nullConðntÞ .

431431 Compilation rules of this kind will also be used later, so we introduce the notation

432 here: compilation rules are denoted by semantic brackets (s � t), and refer to some

433 auxiliary functions, whose names are in SMALL CAPS. A nonterminal in subscript

434 gives the ‘type’ of the argument or metavariable before it. The angle bracket

435 notation
�
f e
�� e 2 es

�
denotes the generation of a list of entities of the form f e for

436 each element e in the list es, in the order of their appearance in es. The auxiliary

437 function conðnt; bodyÞ retrieves the constructor for a production rule. The fields of a

438 constructor are generated from the right-hand side of the corresponding production

439 rule in the way described by the auxiliary function field—nonterminals that are not

440 primitives are left unchanged (using their names for data types), primitives are

441 stored in the String type,3 terminal symbols are dropped, and an additional String

442 field is added for each terminal and primitive for storing layout information

443 (whitespaces and comments) appearing after the terminal or primitive in the pro-

444 gram text. The last step is to insert an additional empty constructor, whose name is

445 denoted by nullConðntÞ.

446 Generating Concrete Lexers and Parsers

447 The implementation of the concrete parser, which turns program text into CSTs, is

448 further divided into two phases: lexing and parsing. In both phases, the layout

449 information (whitespaces and comments) is automatically preserved, which makes

450 the CSTs isomorphic to the program text.

451 Lexer Apart from handling the terminal symbols appearing in a grammar, the

452 lexer automatically derived by BIYACC can also recognise several kinds of literals,

453 including integers, strings, and identifiers, respectively, produced by the nontermi-

3FL01 3 The reason for storing primitives in the String type is because String is the most precise representation

3FL02 that will not cause the loss of any information. For instance, this is useful for retaining the leading zeros of

3FL03 an integer such as 073. Storing 073 as Integer will cause the loss of the leading zero.

123

New Generation Computing

Journal : Small-ext 354 Dispatch : 13-2-2020 Pages : 55
Article No. : 82 * LE * TYPESET

MS Code : NGCO-D-19-00023R2 R CP R DISK



R
E

V
IS

E
D

P
R

O
O

F

456456456 nals Numeric, String, and Identifier. For now, the forms of these literals are

457 predefined, but we take this as a step towards a lexerless grammar, in which strings

458 produced by nonterminals can be specified in terms of regular expressions.

459 Furthermore, whitespaces and comments are carefully handled in the derived lexer,

460 so they can be completely stored in CSTs and correctly recovered to the program

461 text in printing. This feature of BIYACC, which we explain below, makes layout

462 preservation transparent to the programmer.

463 An assumption of BIYACC is that whitespaces are only regarded as separators

464 between other tokens. (Although there exist some languages such as HASKELL and

465 PYTHON where indentation does affect the meaning of a program, there are

466 workarounds, e.g. writing a preprocessing program to insert explicit separators.)

467 Usually, token separators are thrown away in the lexing phase, but since we want to

468 keep layout information in CSTs, which are built by the parser, the lexer should

469 leave the separators intact and pass them to the parser. The specific approach taken

470 by BIYACC is wrapping a lexeme and the whitespaces following it into a single

471 token. Beginning whitespaces are treated separately from lexing and parsing, and

472 are always preserved. And in this prototype implementation, comments are also

473 regarded as whitespaces.

474 Parser The concrete parser is used to generate a CST from a list of tokens

475 according to the production rules in the grammar. Our parser is built using the parser

476 generator HAPPY [33], which takes a BNF specification of a grammar with semantic

477 actions and produces a HASKELL module containing a parser function. The grammar

478 we feed into HAPPY is still essentially the one specified in a BIYACC program, but in

479 addition to parsing and constructing CSTs, the HAPPY actions also transfer the

480 whitespaces wrapped in tokens to corresponding places in the CSTs. For example,

481 the production rules for Factor in the expression example, as shown on the left

482 below, are translated to the HAPPY specification on the right:

484484 We use the first expansion (token1 Factor) to explain how whitespaces are

485 transferred: the generated HAPPY token token1 matches a ‘-’ token produced by the

486 lexer, and extracts the whitespaces wrapped in the ‘-’ token; these whitespaces are

487 bound to $1, which is placed into the first field of Factor1 by the associated HASKELL

488 action.

489 Inverse Properties

490 Now we give the types of the concrete printer and parser generated from a BIYACC

491 program and show that they form an isomorphism. Let the type CST be the set of all

492 the CSTs defined by the grammar of a BIYACC program; by default it is the source

493 type (nonterminal) of the first group of actions in the #Actions part. We have seen in

494 Sect. 4.2.1 how to generate its datatype definition and a concrete printing function
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cprint :: CST! String:

496496 On the other hand, from the grammar we directly use a parser generator to generate

497 a concrete parsing function

cparse :: String! Maybe CST,

499499 which is Maybe-valued since a piece of input text may be invalid. This cparse

500 function is one direction of the isomorphism in the executable, while the other

501 direction is

Just � cprint :: CST! Maybe String.

503503 Below we show that the inverse properties amount to the requirements that the

504 generated parser is ‘correct’ and the grammar is unambiguous.

505 Since our concrete parsers are generated by the parser generator HAPPY [33], we

506 need to assume that they satisfy some essential properties, for we cannot control the

507 generation process and verify those properties.

508 Definition 5 (Parser correctness) A parser cparse is correct with respect to a printer

509 cprint exactly when

cparse text ¼ Just cst ) cprint cst ¼ text ð4Þ

511511 cprint cst ¼ text ) 9 cst0: cparse text ¼ Just cst0 . ð5Þ

512

513 To see what (4) means, recall that our CSTs, as described in Sect. 4.2.1, encode

514 precisely the derivation trees, with the CST constructors representing the production

515 rules used, and cprint traverses the CSTs and follows the encoded production rules

516 to produce the derived program text. Now consider what cparse is supposed to do: it

517 should take a piece of program text and find a derivation tree for it, i.e. a CST which

518 cprints to that piece of program text. This statement is exactly (4). In other words,

519 (4) is the functional specification of parsing, which is satisfied if the parser generator

520 we use behaves correctly. Also it is reasonable to expect that a parser will be able to

521 successfully parse any valid program text, and this is exactly (5).

522 We also need to make an assumption about concrete printers: recall that in this

523 section we assume that the grammar is unambiguous, and this amounts to injectivity

524 of cprint—for any piece of program text there is at most one CST that prints to it.

525 With these assumptions, we can now establish the isomorphism (which is rather

526 straightforward).

527 Theorem 1 (Inverse Properties) If a parser cparse is correct with respect to an

528 injective printer cprint, then cparse and Just � cprint form an isomorphism, that is,

cparse text ¼ Just cst , ðJust � cprintÞ cst ¼ Just text .

529
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530 Proof The left-to-right direction is immediate since the right-hand side is

531 equivalent to cprint cst ¼ text, and the whole implication is precisely (4). For the

532 right-to-left direction, again the antecedent is equivalent to cprint cst ¼ text, and we

533 can invoke (5) to obtain cparse text ¼ Just cst0 for some cst0. This is already close

534 to our goal—what remains to be shown is that cst0 is exactly cst, which is indeed the

535 case because

537537 h

538 Generating the BIGUL Lens

539

540 The source-to-source compilation from the actions part of a BIYACC program to a

541 BIGUL program (i.e. lens) is shown in Fig. 5. Additional arguments to the semantic

542 bracket are typeset in superscript, and the notation
�
. . .
�� . . . 2 . . .

�
fsg means

543 inserting s between the elements of the list.

544 Action groups Each group of actions is translated into a small BIGUL program,

545 whose name is determined by the view type vt and source type st and denoted by

546 progðvt; stÞ. The BIGUL program has one single Case statement, and each action is

547 translated into two branches in this Case statement, one normal and the other

548 adaptive. All the adaptive branches are gathered in the second half of the Case

549 statement, so that the normal branches will be tried first. For example, the third

550 group of type Arithþ[ Factor is compiled to

552552 Normal branches We said in Sect. 2 that the semantics of an action is to perform

553 pattern matching on both the source and view, and then update parts of the source

554 with parts of the view. This semantics is implemented with a normal branch: the

555 source and view patterns are compiled to the main condition, and, together with the

556 updates overlaid on the source pattern, also to an update operation. For example, the

557 first action in the Arith–Factor group
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Sub ðNum 0Þ yþ[ ‘�’ ðyþ[ FactorÞ

559559 is compiled to

Fig. 5 Semantics of BIYACC programs (as BIGUL programs)
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561561 When the CST is a Factor1 and the AST matches Sub (Num 0) y, we enter this

562 branch, decompose the source and view by pattern matching, and use the view’s

563 right subtree y to update the second field of the source while skipping the first field

564 (which stores whitespaces); the name of the BIGUL program for performing the

565 update is determined by the type of the smaller source y (deduced by varType) and

566 that of the smaller view.

567 Adaptive branches When all actions in a group fail to match, we should adapt the

568 source into a proper shape to correspond to the view. This is done by generating

569 adaptive branches from the actions during compilation. For example, besides

570 a normal branch, the first action in the Arith–Factor group

571 Sub ðNum 0Þ yþ[ ‘�’ ðyþ[ FactorÞ is also compiled to

573573 Since the source pattern of the main condition (of the adaptive branch) is a wildcard,

574 the branch is always applicable if the view matches Sub ðNum 0Þ�. The body of the

575 adaptation function is generated by the auxiliary function defaultExpr, which

576 creates a skeletal value—here Factor1 ‘‘ ’’ FactorNull represents a negation skeleton -

577 whose value is not (recursively) created yet—that matches the source pattern. These

578 adaptive branches are placed at the end of an action group and tried only if no

579 normal branches are applicable so that unnecessary adaptation will never be

580 performed.

581 Entry point The entry point of the program is chosen to be the BIGUL program

582 compiled from the first group of actions. This corresponds to our assumption that the

583 initial input concrete and abstract syntax trees are of the types specified for the first

584 action group. (It is rather simple so the rules are not shown in the figure.) For the

585 expression example, we generate a definition

entrance ¼ bigulArithExpr

587587 which is invoked in the main program.

588 Well-behavedness Since BIGUL programs always denote well-behaved lenses, a

589 fact which has been formally verified [39], we get the following theorem for free.

590 Theorem 2 (Well-behavedness) The BIGUL program generated from a BIYACC

591 program is a lens, that is, it satisfies the well-behavedness laws in Definition 1 with

592 cst substituted for the source s and ast for the view v:

put cst ast ¼ Just cst0 ) get cst0 ¼ Just ast

get cst ¼ Just ast ) put cst ast ¼ Just cst .

593

594 Handling Grammatical Ambiguity

595 In Sect. 4, we have described the basic version of BIYACC, about which there is an

596 important assumption (stated in Theorem 1) that grammars have to be unambigu-

597 ous. Having this assumption can be rather inconvenient in practice, however, as
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598 ambiguous grammars (with disambiguation directives) are often preferred since

599 they are considered more natural and human friendly than their unambiguous

600 versions [2, 26]. Therefore, the purpose of this section is to revise the architecture of

601 basic BIYACC to allow the use of ambiguous grammars and disambiguation

602 directives. This is in fact a long-standing problem: tools designed for building parser

603 and printer pairs usually do not support such functionality (Sect. 7.1).

604 For example, consider the ambiguous grammar (with disambiguation directives)

605 and printing actions in Fig. 6, which we will refer to throughout this section. Note

606 that the parenthesis structure is dropped when converting a CST to its AST (as stated

607 by the last printing action of Arithþ[ Expr). The grammar is converted to CST data

608 types and constructors as in Sect. 4.2.1, but here we explicitly give names such as

609 Plus and Times to production rules, and these names (instead of automatically

610 generated ones) are used for constructors in CSTs. Compared with this grammar, the

611 unambiguous one shown in Fig. 2 is less intuitive as it uses different nonterminals to

612 resolve the ambiguity regarding operator precedence and associativity.

613 In this section, we explain the problem brought by ambiguous grammars (Sect. 5.1)

614 and address it (Sect. 5.2) using generalised parsing and bidirectionalised filters (bi-

615 filters for short). Then we extend BIYACC with bi-filters (Sect. 5.3) while still retaining

616 the well-behavedness. To program with bi-filters easily, we provide compositional

617 bi-filter directives (Sect. 5.4) which compile to priority and associativity bi-filters.

618 Power users can also define their own bi-filters (Sect. 5.5), and we illustrate this by

619 writing a bi-filter that solves the (in)famous dangling-else problem.

620 Problems with Ambiguous Grammars

621 Consider the original architecture of BIYACC in Fig. 3, which we want to (and

622 basically will) retain while adapting it to support ambiguous grammars. The first

Fig. 6 Arithmetic expressions defined by an ambiguous grammar and the corresponding printing actions.
(For simplicity, the variable and negation productions are omitted)
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623 component (of the executable) we should adapt is cparse :: String! Maybe CST,

624 the (concrete) parsing direction of the isomorphism: since there can be multiple

625 CSTs corresponding to the same program text, cparse needs to choose one of them

626 as the result. Disambiguation directives [23] were invented to describe how to make

627 this choice. For example, with respect to the grammar in Fig. 6, text 1 ? 2 * 3 will

628 have either of the two CSTs4:

630630 depending on the precedence of addition and multiplication. Conventionally, we can

631 use the YACC-style disambiguation directives %left ‘?’; %left ‘*’; to specify that

632 multiplication has higher precedence over addition, and instruct the parser to choose

633 cst1.

634 However, merely adapting cparse with disambiguation behaviour is not enough,

635 since the isomorphism (Theorem 1), in particular its right to left direction (which is

636 simplified as cparse ðcprint cstÞ ¼ Just cst) cannot be established when

637 an ambiguous grammar is used—in the example above, cparse (cprint cst 2) = Just

638 cst 1 6¼ Just cst 2. This is because the image of cparse is strictly smaller than the

639 domain of cprint: if we start from any CST not in the image of cparse, we will never

640 be able to get back to the same CST through cprint and then cparse. This tells us

641 that, to retain the isomorphism, the domain of cprint should not be the whole CST

642 but only the image of cparse, i.e. the set of valid CSTs (as defined by the

643 disambiguation directives), which we denote by CSTF (for reasons that will be made

644 clear in Sect. 5.3).

645 Now that the right-hand side domain of the isomorphism is restricted to CSTF , the

646 source of the lens should be restricted to this set as well. For get :: CST!
647 Maybe AST we need to restrict its domain, which is easy; for put :: CST! AST!
648 Maybe CST we should revise its type to CSTF ! AST! Maybe CSTF , meaning that

649 put should now guarantee that the CSTs it produces are valid, which is nontrivial.

650 For example, consider the result of put cst ast where ast = Mul (Add (Num 1) (Num 2))

651 (Num 3) and cst is some arbitrary tree. A natural choice is cst2, which, however, is

652 excluded from CSTF by disambiguation. A possible solution could be making put

653 refuse to produce a result from ast, but this is unsatisfactory since ast is perfectly

654 valid and should not be ignored by put. A more satisfactory way is creating a CST

655 with proper parentheses, like cst3¼ ] Times (Paren (Plus 1 2)) 3. But it is not clear in

656 what cases parentheses need to be added, in what cases they need not, and in what

657 cases they cannot.

658 We are now led to a fundamental problem: generally, put strategies for producing

659 valid CSTs should be inferred from the disambiguation directives, but the semantics

660 of YACC disambiguation directives are defined over the implementation of YACC’s

661 underlying LR parsing algorithm with a stack [3, 23], and therefore it is nontrivial to

662 invent a dual semantics in the put direction. To have a simple and clear semantics of

4FL01 4 For simplicity, we use ] to annotate type-incorrect CSTs in which fields for layouts (and comments) and

4FL02 unimportant constructors such as Lit are omitted.
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663 the disambiguation process, we turn away from YACC’s traditional approach and opt

664 for an alternative approach based on generalised parsing with disambiguation filters

665 [9, 26], whose semantics can be specified implementation independently. Based on

666 this simple and clear semantics, we will be able to devise ways to amend put to

667 produce only valid CSTs, and formally state the conditions under which the

668 executable generated by the revised BIYACC is well behaved.

669 Generalised Parsing and Bidirectionalised Filters

670 The idea of generalised parsing is for a parser to produce all possible CSTs

671 corresponding to its input program text instead of choosing only one CST (possibly

672 prematurely) [14, 47, 50, 54], and works naturally with ambiguous grammars. In

673 practice, a generalised parser can be generated using, e.g., HAPPY’s GLR mode [33],

674 and we will assume that given a grammar we can obtain a generalised parser:

cgparse :: String! ½CST� .

676676 The result of cgparse is a list of CSTs. We do not need to wrap the result type in

677 Maybe—if cgparse fails, an empty list is returned. And we should note that, while

678 the result is a list, what we really mean is a set (commonly represented as a list in

679 HASKELL) since we do not care about the order of the output CSTs and do not allow

680 duplicates.

681 With generalised parsing, program text is first parsed to all the possible CSTs;

682 disambiguation then becomes an extremely simple concept: removing CSTs that the

683 user does not want. One possible semantics of disambiguation may be a function

684 judge :: Tree! Bool; during disambiguation, this function is applied to all

685 candidate CSTs, and a candidate cst is removed if judge cst returns False, or

686 kept otherwise. We call these functions disambiguation filters (‘filters’ for short).5

687 For example, to state that top-level addition is left-associative, we can use the

688 following filter6 to reject right-sided trees:

689

691691 This simple and clean semantics of disambiguation is then amenable to

692 ‘bidirectionalisation’, which we do next.

693 Note that, unlike YACC’s disambiguation directives, which assign precedence and

694 associativity to individual tokens and implicitly exclude ‘some’ CSTs, in plusJudge

695 above we explicitly ban incorrect CSTs through pattern matching. Having described

696 which CSTs are incorrect, we can further specify what to do with incorrect CSTs in

5FL01 5 The general type for disambiguation filters is ½t� ! ½t�, which allows comparison among a list of CSTs.

5FL02 However, since in this paper we only consider property filters defined in terms of predicates (on a single

5FL03 tree), it is sufficient to use the simplified type t! Bool. See Sect. 7.2.

6FL01 6 This is not a very realistic filter, although it sufficiently demonstrates the use of filters and removes

6FL02 ambiguity in simplest cases like 1 ? 2 * 3. In general, the filter should be complete (Definition 9) so that

6FL03 ambiguity is fully removed from the grammar.
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697 the printing direction. Whenever a CST ‘in a bad shape’, i.e. rejected by a filter like

698 plusJudge, is produced, we can repair it so that it becomes ‘in a good shape’:

700700 The above function states that whenever a Plus is another Plus’s right child, there

701 must be a parenthesis structure Paren in between. Observant readers might have

702 found that the trees processed by plusJudge and plusRepair have the same pattern.

703 We can therefore pair the two functions and make a bidirectionalised filter (‘bi-

704 filters’ for short):

706706 But there is still some redundancy in the definition of plusLAssoc, for when the

707 input tree is correct we always return the same input tree; this can be further

708 optimised:

710710 Generalising the example above, we arrive at the definition of bi-filters.

711 Definition 6 (Bidirectionalised filters) A bidirectionalised filter F working on trees

712 of type t is a function of type BiFiltert defined by:

type BiFilter t ¼ t! Maybe t

714714 satisfying

repair F t ¼ t0 ) judge F t0 ¼ True ðRepairJudgeÞ

716716 where the two directions repair and judge are defined by:

repair :: BiFilter t! ðt! tÞ
repair F t ¼ case F t of

Nothing! t

Just t0 ! t0

judge :: BiFilter t! ðt! BoolÞ
judge F t ¼ case F t of

Nothing! True

Just ! False .

717
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718 The functions repair and judge accept a bi-filter and return, respectively, the

719 specialised repair and judge functions for that bi-filter. For clarity, we let repairF

720 denote repair F and let judgeF denote judge F. The bi-filter law RepairJudge

721 dictates that repairF should transform its input tree into a state accepted by judgeF .

722 The reader may wonder why there is not a dual JudgeRepair law saying that if a tree

723 is already of an allowed form justified by judgeF , then repairF should leave it

724 unchanged. In fact, this is always satisfied according to the definitions of judge and

725 repair, so we formulate it as a lemma.

726 Lemma 2 (JudgeRepair) Any bi-filter F satisfies the JudgeRepair property:

judgeF t ¼ True ) repairF t ¼ t.

727

728 Proof From judgeF t ¼ True we deduce F t ¼ Nothing , which implies repairF t ¼ t.

729 h

730 In the next section, we will describe how to fit generalised parsers and bi-filters

731 into the architecture of BIYACC. To let bi-filters work with the lens between CSTs

732 and ASTs, we require a further property characterising the interaction between the

733 repairing direction of a bi-filter and the get direction of a lens.

734 Definition 7 (PassThrough) A bi-filter F satisfies the PassThrough property with

735 respect to a function get exactly when

get � repairF ¼ get.

736

737 If we think of a get function as mapping CSTs to their semantics (in our case

738 ASTs), then the PassThrough property is a reasonable requirement since it

739 guarantees that the repaired CST will have the same semantics as before (since it is

740 converted to the same AST). This property will be essential for establishing the

741 well-behavedness of the executable generated by the revised BIYACC.

742 The New BIYACC System for Ambiguous Grammars

743 As depicted in Fig. 7, the executable generated by the new BIYACC system is still the

744 composition of an isomorphism and a lens, which is the structure we have tried to

745 retain. To precisely identify the changes in several generated components (in the

746 executable file) and demonstrate how parsing and printing work with a bi-filter, we

747 present Fig. 8 and will use this one instead. In the new system, we will still use the

748 get and put transformations generated from printing actions and the concrete printer

749 cprint from grammars, while the concrete parser cparse is replaced with a

750 generalised parser cgparse. Additionally, the #Directives and #OtherFilters parts will

751 be used to generate a bi-filter F, whose judgeF (used in the selectByF function in

752 Fig. 8) and repairF components are integrated into the isomorphism and lens parts
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753 respectively, so that the right-hand side domain of the isomorphism and the source

754 of the lens become CSTF , the set of valid CSTs:

CSTF ¼ f cst 2 CST j judgeF cst ¼ True g .

756756 Next, we introduce the (new) isomorphism and lens parts, and prove their inverse

757 properties and well-behavedness, respectively.

Fig. 7 New architecture of BIYACC (new components are in light grey)

selected
cst

selectByF get

putrepairFcprint

cgparse

repaired
cst

text

text

modify

ast

ast

possible
csts

cst

Isomorphism between text and cst

Fig. 8 A schematic diagram showing how parsing and printing work with a bi-filter
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758 The Revised Isomorphism between Program Text and CSTs

759 Let us first consider the isomorphism part between String and CSTF , which is

760 enclosed within the blue dotted lines in Fig. 8 and consists of cprint, cgparse, and

761 selectByF:

cprint :: CST! String

cgparse :: String! ½CST�
selectByF :: ½CST� ! Maybe CSTF

selectByF csts ¼ case selectBy judgeF csts of

½cst� ! Just cst

! Nothing

selectBy :: ða! BoolÞ ! ½a� ! ½a�
selectBy p½ � ¼ ½ �
selectBy pðx : xsÞjpx ¼ x : selectBy p xs

selectBy pðx : xsÞjotherwise ¼ selectBy p xs .

763763 In the parsing direction, first cgparse produces all the CSTs; then selectByF utilises

764 a function selectBy and a predicate judgeF to (try to) select the only correct cst; if

765 there is no correct CST or more than one correct CST, Nothing is returned. The

766 function selectBy, which selects from the input list exactly the elements satisfying

767 the given predicate, is named filter in HASKELL’s standard libraries but renamed here

768 to avoid confusion. In the printing direction, we still use cprint to flatten a (correct)

769 CST back to program text. Formally, constructed from cgparse and cprint, the two

770 directions of the isomorphism are:

cparseF :: String! Maybe CSTF

cparseF ¼ selectByF � cgparse

cprintF :: CSTF ! Maybe String

cprintF ¼ Just � cprint .

772772 We are eager to give the revised version of the inverse properties (Theorem 3) and

773 their proofs, which, however, depend on two assumptions about generalised parsers

774 and bi-filters. So let us present them in order.

775 Definition 8 (Generalised parser correctness) A generalised parser cgparse is

776 correct with respect to a printer cprint exactly when

cgparse text ¼ f cst 2 CST j cprint cst ¼ text g .

777

778 This is exactly Definition 3.7 of Klint and Visser [26]. We remind the reader

779 again that we use sets and lists interchangeably for the parsing results.
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780 Definition 9 (Bi-filter completeness) A bi-filter F is complete with respect to a

781 printer cprint exactly when

text 2 Img cprint )
��f cst 2 CSTF j cprint cst ¼ text g

�� ¼ 1 .

783783 (Img f ¼ f y j 9x: fx ¼ y g is the image of the function f.)

784 This is revised from Definition 4.3 of Klint and Visser [26], where they require

785 that filters select exactly one CST and reject all the others. Since it is undecidable to

786 judge whether a given context-free grammar is ambiguous [10], we cannot tell

787 whether a (bi-)filter (for the full CFG) is complete, either. But still, some checks can

788 be performed in simple cases, as stated in Sect. 7.

789 The following two lemmas connect our two assumptions, Definitions 8 and 9,

790 with the definitions of cparseF and cprintF .

791 Lemma 3 Given cparseF and cprintF where cgparse is correct and F is complete

792 with respect to cprint, we have

text 2 Img cprint ) 9 cst 2 CSTF: cparseF text ¼ Just cst ^ cprint cst ¼ text .

793794
795 Proof We reason:

selectByFðcgparse textÞ
¼ f Definition of SelectByF g

case selectBy judgeF ðcgparse textÞ of f ½cst� ! Just cst; ! Nothing g
¼ f Generalised Parser Correctness g

case selectBy judgeF f cst 2 CST j cprint cst ¼ text g of

f ½cst� ! Just cst; ! Nothing g
¼ fselectByjudgeF only selects correct CSTs regarding Fg

case f cst 2 CSTF j cprint cst ¼ text g of f ½cst� ! Just cst; ! Nothing g
¼ fBi-Filter Completeness; 9cst0 s.t. f cst 2 CSTF j cprint cst ¼ text g ¼ ½cst0�g

case ½cst0� of f ½cst� ! Just cst; ! Nothing g
¼ fDefinition of caseg

Just cst .

797797 Moreover, cst satisfies cprint cst ¼ text, since the latter is the comprehension con-

798 dition of the set from which cst is chosen, and therefore cprintF cst ¼ Just text. h

799 Lemma 4 (Printer injectivity) If F is a complete bi-filter, then cprintF is injective.

800 Proof Assume that cst; cst0 2 CSTF and cprint cst ¼ cprint cst0 ¼ text for some

801 text; that is, both cst and cst0 are in the set P ¼ f cst 2 CSTF j cprint cst ¼ text g.
802 Since text 2 Img cprint, by the completeness of F we have jPj ¼ 1, and hence

803 cst ¼ cst0. h
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804 We can now prove a generalised version of Theorem 1 for ambiguous grammars.

805 Theorem 3 (Inverse properties with bi-Filters) Given cparseF and cprintF where

806 cgparse is correct and F is complete, we have the following:

cparseF text ¼ Just cst ) cprintF cst ¼ Just text ð6Þ

808808 cprintF cst ¼ Just text ) cparseF text ¼ Just cst . ð7Þ

809

810 Proof For (6): let Just cst ¼ selectByF ðcgparse textÞ. According to the definition

811 of selectByF , we have cst 2 cgparse text. By Generalised Parser Correctness

812 cprint cst ¼ text, and therefore cprintF cst ¼ Just text.

813 For (7): the antecedent implies cprint cst ¼ text. By Lemma 3, we have

814 cparseF text ¼ Just cst0 for some cst0 2 CSTF such that

815 cprintF cst0 ¼ Just text ¼ cprintF cst. By Lemma 4 we know cst0 ¼ cst, and thus

816 cparseF text ¼ Just cst. h

817 The Revised Lens between CSTs and ASTs

818 Recall that the #Action part of a BIYACC program produces a lens (BIGUL program)

819 consisting of a pair of well-behaved get and put functions:

get :: CST! Maybe AST

put :: CST! AST! Maybe CST .

821821 To work with a bi-filter F, in particular its repairF component, they need to be

822 adapted to getF and putF , which accept only valid CSTs:

getF :: CSTF ! Maybe AST

getF ¼get

putF :: CSTF ! AST! Maybe CSTF

putF cst ast ¼ fmap repairF ðput cst astÞ

824824 where fmap is a standard HASKELL library function defined (for Maybe) by

fmap :: ða! bÞ ! Maybe a! Maybe b

fmapf Nothing ¼ Nothing

fmapf ðJustxÞ ¼ JustðfxÞ .

826826 We will need a lemma about fmap, which can be straightforwardly proved by a case

827 analysis.

828 Lemma 5 If fmap f mx ¼ Just y, then there exists x such that mx ¼ Just x and

829 f x ¼ y.

830 Now we prove that getF and putF are well-behaved, which is a generalisation of

831 Theorem 2 for ambiguous grammars.
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832 Theorem 4 (Well-behavedness with bi-filters) Given a complete bi-filter F and a

833 well-behaved lens consisting of get and put, if get and F additionally satisfy

834 PassThrough, then the getF and putF functions with respect to F are also well-

835 behaved:

putF cst ast ¼ Just cst0 ) getF cst0 ¼ Just ast ð8Þ

837837 getF cst ¼ Just ast ) putF cst ast ¼ Just cst . ð9Þ

838

839 Proof For (8): the antecedent expands to fmap repairF ðput cst astÞ ¼ Just cst0,
840 which, by Lemma 5, implies put cst ast ¼ Just cst00 for some cst00 such that

841 repairF cst00 ¼ cst0. Now we reason:

getF cst0

¼ f Definition of getF and cst 2 CSTFg
get cst0

¼ f Definition of cst0 g
get ðrepairF cst00Þ
¼ f PassThrough g

get cst00

¼ f PutGet g
Just ast .

843843 For (9):

putF cst ast

¼ f Definition of putF g
fmap repairF ðput cst astÞ
¼ f GetPut g

fmap repairF ðJust cstÞ
¼ f Definition of fmap g

Just ðrepairF cstÞ
¼ f Since cst 2 CSTF; judgeF cst ¼ True: By JudgeRepair g

Just cst .

845845 h

846 Bi-Filter Directives

847 Until now, we have only considered working with a single bi-filter, but this is

848 without loss of generality because we can provide a bi-filter composition operator

849 (Sect. 5.4.1) so that we can build large bi-filters from small ones. This is a
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850 suitable semantic foundation for introducing YACC-like directives for specifying

851 priority and associativity into BIYACC (Sect. 5.4.2), since we can give these

852 directives a bi-filter semantics and interpret a collection of directives as the

853 composition of their corresponding bi-filters. We will also discuss some properties

854 related to this composition (Sect. 5.4.3).

855 Bi-Filter Composition

856 We start by defining bi-filter composition, with the intention of making the net

857 effect of applying a sequence of bi-filters one by one the same as applying their

858 composite. Although the intention is better captured by Lemma 6, which describes

859 the repair and judge behaviour of a composite bi-filter in terms of the component bi-

860 filters, we give the definition of bi-filter composition first.

861 Definition 10 (Bi-filter composition) The composition of two bi-filters is defined by

ð / Þ::ðt! Maybe tÞ ! ðt! Maybe tÞ ! ðt! Maybe tÞ
ðj / iÞt ¼ case i t of

Nothing! jt

Just t0 ! case j t0 of

Nothing! Just t0

Just t00 ! Just t00 .

862

863 When applying a composite bi-filter j / i to a tree t, if t is correct with respect to i

864 (i.e. i t ¼ Nothing), we directly pass the original tree t to j; otherwise t is repaired

865 by i, yielding t0, and we continue to use j to repair t0. Note that if j t0 ¼ Nothing, we

866 return the tree t0 instead of Nothing.

867 Lemma 6 For a composite bi-filter j / i, the following two equations hold:

repair ðj / iÞ t ¼ ðrepairj � repairiÞ t
judgeðj / iÞ t ¼ judgej t ^ judgei t .

868869
870 Proof By the definition of bi-filter composition. h

871 Composition of bi-filters should still be a bi-filter and satisfy RepairJudge and

872 PassThrough. This is not always the case though—to achieve this, we need some

873 additional constraint on the component bi-filters, as formulated below.

874 Definition 11 Let i and j be bi-filters. We say that j respects i exactly when

judgei t ¼ True ) judgei ðrepairj tÞ ¼ True .

875
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876 If j respects i, then a later applied repairj will never break what may already be

877 repaired by a previous repairi. Thus in this case we can safely compose j after

878 i. This is proved as the following theorem.

879 Theorem 5 Let i and j be bi-filters (satisfying RepairJudge and PassThrough). If

880 j respects i, then j / i also satisfy RepairJudge and PassThrough.

881 Proof For RepairJudge, we reason:

judgeðj / iÞðrepair ðj / iÞ tÞ
¼ f Lemma 6 g

judgeðj / iÞðrepairjðrepairitÞÞ
¼ f Lemma 6 g

judgejðrepairjðrepairitÞÞ ^ judgeiðrepairjðrepairitÞÞ
¼ f RepairJudge of j g

True ^ judgeiðrepairjðrepairitÞÞ
¼ fjudgeiðrepairit

0Þ ¼ True; j respects i g
True ^ True

¼True .

883883 And for PassThrough:

getðrepairðj / iÞtÞ
¼ f Lemma 6 g

getðrepairj ðrepairitÞÞ
¼ fPassThrough of j g

getðrepairitÞ
¼ fPassThrough of i g

gett .

885885 h

886 Priority and Associativity Directives

887 To relieve the burden of writing bi-filters manually and guaranteeing respect among

888 bi-filters being composed, we provide some directives for constructing bi-filters

889 dealing with priority7 and associativity, which are generally comparable to YACC’s

890 conventional disambiguation directives. The bi-filter directives in a BIYACC program

891 can be thought of as specifying ‘production priority tables’, analogous to the

892 operator precedence tables of, for example, the C programming language [24]

7FL01 7 The YACC-style approach adopts the word precedence [23] while the filter-based approaches tend to use

7FL02 the word priority [9, 26]. We follow the traditions and use either word depending on the context.
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893 (chapter Expressions) and HASKELL [34] (page 51). The main differences (in terms of

894 the parsing direction) are as follows:

895 • For bi-filters, priority can be assigned independently of associativity and vice

896 versa, while the YACC-style approach does not permit so—by design, when the

897 YACC directives (%left, %right, and %nonassoc) are used on multiple tokens, they

898 necessarily specify both the precedence and associativity of those tokens.

899 • For bi-filters, priority and associativity directives may be used to specify more

900 than one production priority tables, making it possible to put unrelated operators

901 in different tables and avoid (unnecessarily) specifying the relationship between

902 them. It is impossible to do so with the YACC-style approach, for its concise

903 syntax only allows a single operator precedence table.

904 (The bi-filter semantics of) our bi-filter directives repair CSTs violating priority and

905 associativity constraints by adding parentheses—for example, if the production of

906 addition expressions in Fig. 6 is left-associative, then we can repair ] Plus 1 (Plus 2

907 3) by adding parentheses around the right subtree, yielding ] Plus 1 (Paren (Plus 2

908 3)), provided that the grammar has a production of parentheses annotated with the

909 bracket attribute [8, 53]:910

912912 It instructs our bi-filter directives to use this production when parentheses need to

913 be added. Internally, from the production and bracket attribute annotation, a type

914 class AddParen and corresponding instances for each data type generated from

915 concrete syntax (Expr for this example) are automatically created:

class AddParen t where

canAddPar :: t�[ Bool

addPar :: t�[ t

917917 where canAddPar tells whether a CST can be wrapped in a parenthesis structure and

918 addPar adds that structure if it is possible or behaves as an identity function

919 otherwise. This makes it possible to automatically generate bi-filters to repair

920 incorrect CSTs (and help the user to define their own bi-filters more easily—see

921 Sect. 5.5).

922 In order for bi-filter directives to work correctly, the user should notice the

923 following requirements: (1) directives shall not mention the parenthesis production

924 annotated with bracket attribute so that they respect each other and work properly

925 (as introduced in Definition 11). (2) Suppose that the parenthesis production is

926 NT ! aNTRb where a and b denote a sequence of terminals and NTR is a possibly

927 different nonterminal from NT (on the right-hand side of the production)—for

928 instance, Expr�[ ‘ð’Expr‘Þ’ above— there shall be exactly one printing action

929 defined for the parenthesis production in the form of v þ[ a½v þ[ NTR�b for the

930 PassThrough property to hold: for any CST, the (added) parenthesis structure will

931 all be dropped through the conversion to its AST.
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932 Next we introduce our priority and associativity directives and their bi-filter

933 semantics. From a directive, we first generate a bi-filter that checks and repairs only

934 the top of a tree; this bi-filter is then lifted to check and repair all the subtrees in a

935 tree. In the following, we will give the semantics of the directives in terms of the

936 generation of the top-level bi-filters, and then discuss the lifted bi-filters and other

937 important properties they satisfy in Sect. 5.4.3.

938 Priority Directives

939 A priority directive defines relative priority between two productions; it removes (in

940 the parsing direction) or repairs (in the printing direction) CSTs in which a node of

941 lower priority is a direct child of the node of higher priority. For instance, we can

942 define that (the production of) multiplication has higher priority than (the production

943 of) addition for the grammar in Fig. 6 by writing

Expr�[ Expr ‘�’ Expr [ Expr�[ Expr ‘þ’ Expr ;

or just Times [ Plus; .

945945 The directive first produces the following top-level bi-filter:8

947947 We first check whether any of the subtrees t1, t2, and t3 violates the priority

948 constraint, i.e. having Plus as its top-level constructor—this is checked by the match

949 function, which compares the top-level constructors of its two arguments. The

950 resulting boolean values are aggregated using the list version of logical disjunction

951 or :: ½Bool� ! Bool. If there is any incorrect part, we repair it by inserting a

952 parenthesis structure using addPar.

953 In general, the syntax of priority directives is

955955 where Constructor and Symbol are already defined in Fig. 4; for each priority

956 declaration, we can use either productions or their names (i.e. constructors).

8FL01 8 Although terminals such as ‘*’ and ‘?’ are uniquely determined by constructors and not explicitly

8FL02 included in the CSTs, there are fields in CSTs for holding whitespaces after them. Thus Times still has

8FL03 three subtrees. Also, for simplicity, the bi-filter fTimesPlusPrio attempts to repair the whitespace

8FL04 subtree t2 even though the repair can never happen since t2 cannot match p.
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957 If the user declares that a production NT1 ! RHS1 has higher priority than

958 another production NT2 ! RHS2, the following priority bi-filter will be generated:

960960 con looks up constructor names for input productions (divided into nonterminals

961 and right-hand sides); fillVarsðntÞ generates variable names for each terminal and

962 nonterminal in nt (here RHS1); fillUndefined is similar to fillVars but it produces

963 undefined values instead. If productions are referred to using their constructors, we

964 can simply look up the nonterminals and right-hand sides and use the same code

965 generation strategy.

966 Transitive closures In the same way as conventional YACC-style approaches, the

967 priority directives are considered transitive. For instance,

Expr �[ Expr ‘�’ Expr [Expr �[ Expr ‘þ’ Expr;

Expr�[ Expr ‘þ’ Expr [ Expr�[ Expr ‘&’ Expr;

969969 implies that Expr�[ Expr ‘�’ Expr [ Expr�[ Expr ‘&’ Expr;. The feature is important in

970 practice since it greatly reduces the amount of routine code the user needs to write

971 (for large grammars).

972 Associativity Directives

973 Associativity directives assign (left- or right-) associativity to productions. A left-

974 associativity directive bans (or repairs, in the printing direction) CSTs having the

975 pattern in which a parent and its right-most subtree are both left-associative, if the

976 (relative) priority between the parent and the subtree is not defined; a right-

977 associativity directive works symmetrically.

978 As an example, we can declare that both addition and subtraction are left-

979 associative (for the grammar in Fig. 6) by writing

Left:Expr�[ Expr ‘þ’ Expr; Expr�[ Expr ‘�’ Expr;

981981 or just Left: Plus, Minus;. Since the relative priority between Plus and Minus is not

982 defined, we generate top-level bi-filters for all the four possible pairs formed out of

983 Plus and Minus:

984
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986986 For instance, fPlusPlusLAssoc accepts but not

987 , which is repaired to .

988 Generally, the syntax of associativity directives is

Associativity ::¼ ‘Associativity:’ LeftAssoc RightAssoc

LeftAssoc ::¼ ‘Left:’ ProdOrConsþf‘;’g ‘;’

RightAssoc ::¼ ‘Right:’ProdOrConsþf‘;’g ‘;’ .

990990 Now we explain the generation of (top-level) bi-filters from associativity directives.

991 We will consider only left-associativity directives, as right-associativity directives

992 are symmetric. For every pair of left-associative productions whose relative priority

993 is not defined—including cases where the two productions are the same—we

994 generate a bi-filter to repair CSTs whose top uses the first production and whose

995 right-most child uses the second production. Let NT1 ! a1NT1R and NT2 !
996 a2NT2R be two such productions, where a1 (a2) matches a sequence of arbitrary

997 symbols of any length and NT1R (NT2R) is the right-most symbol and must be a

998 nonterminal. (If it is not a nonterminal, it is meaningless to discuss associativity.)

999 The generated bi-filter is

10011001
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1002 Functions con, fillUndefined, and fillVar have the same behaviour as before;

1003 fillVars�From (which is a variation of fillVars) generates variable names for each

1004 terminal and nonterminal in its argument with suffix integers counting from a given

1005 number to avoid name clashing.

1006 Handling injective productions Sometimes the grammar may contain injective

1007 productions (also called chain productions) [9], which have only a single

1008 nonterminal on their right-hand side, like InfE�[ ½FromE�Exp. When we use it

1009 to define a grammar

10111011 program text 1 ? 2 * 3 will be parsed to two CSTs, namely and

1012 and we want to spot

1013 and discard it using the priority directive Times [ Plus. If handled naively, the bi-

1014 filter generated from the directive would only remove CSTs having pattern

1015 (and two other similar ones), but would not match the pattern

1016 due to the presence of the FromE node between Times and Plus. We made some

1017 effort in the implementation to make the match function ignore the nodes

1018 corresponding to injective productions (FromE in this case).

1019 Properties of the Generated Bi-Filters

1020 We discuss some properties of the bi-filters generated from our priority and

1021 associativity directives, to justify that it is safe to use these bi-filters without

1022 disrupting the well-behavedness of the whole system. Specifically:

1023 • The generated top-level bi-filters satisfy RepairJudge, and it is easy to write

1024 actions to make them satisfy PassThrough.

1025 • The bi-filters lifted from the top-level bi-filters still satisfy RepairJudge and

1026 PassThrough.

1027 • The lifted bi-filters are commutative, which not only implies that all such bi-

1028 filters respect each other and can be composed in any order, but also guarantees

1029 that we do not have to worry about the order of composition since it does not

1030 affect the behaviour.

1031 We will give only high-level, even informal, arguments for these properties, since,

1032 due to the generic nature of the definitions of these bi-filters (in terms of Scrap Your

1033 Boilerplate [30]), to give formal proofs we would have to introduce rather complex

1034 machinery (e.g. datatype-generic induction), which would be tedious and

1035 distracting.

1036 Top-level bi-filters The fact that the generated top-level bi-filters satisfy

1037 RepairJudge can be derived from the requirement that the directives do not

1038 mention the parenthesis production. Because of the requirement, in the generated bi-

1039 filters, repairing is always triggered by matching a non-parenthesis production, and

1040 after that repairing will not be triggered again because a parenthesis production will

1041 have been added. For example, in the bi-filter fTimesPlusPrio (in Sect. 5.4.2), with
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1042 match t1 p, match t2 p, and match t3 p we check whether t1, t2, and t3 has Plus as the

1043 top-level production, which is different from the parenthesis production Paren; if

1044 any of the matching succeeds, say t1, then addPar t1 will add Paren at the top of t1,

1045 and match (addPar t1) p is guaranteed to be False, so the subsequent invocation of

1046 judge fTimesPlusPrio will return True. For PassThrough, since all the top-level bi-

1047 filters do is add parenthesis productions, we can simply make sure that appearances

1048 of the parenthesis production are ignored by get, i.e. get ðaddPar sÞ ¼ get s for

1049 all s; this, by well-behavedness, is the same as making put (printing actions) skip

1050 over parentheses. For example, for the grammar in Figure 6, we should write

1051 tþ[ ‘ð’ ½tþ[ Expr� ‘Þ’ as the only printing action mentioning parentheses, which

1052 means that put ðParen sÞ t ¼ fmap Paren ðput s tÞ for all s and t. Then the

1053 following reasoning implies that get ðParen sÞ ¼ get s for all s:

get ðParen sÞ ¼ Just t

, f) by GetPut and ( by PutGet g
put ðParen sÞ t ¼ Just ðParen sÞ

, f By the above statement: put ðParen sÞ t ¼ fmap Paren ðput s tÞ g
fmap Paren ðput s tÞ ¼ Just ðParen sÞ

, fLemma 5 and the definition of fmap g
put s t ¼ Just s

, f) by PutGet and( by GetPut g
get s ¼ Just t

10551055 for all s and t.

1056 Lifted bi-filters The lifted bi-filters apply the top-level bi-filters to all the subtrees

1057 in a CST in a bottom-up order. Formally, we can define, datatype-generically, a

1058 lifted bi-filter as a composition of top-level bi-filters, and use datatype-generic

1059 induction to prove that there is suitable respect among the top-level bi-filters being

1060 composed, and that the lifted bi-filter satisfies RepairJudge and PassThrough if the

1061 top-level ones do. But here we provide only an intuitive argument. What the lifted

1062 bi-filters do is find all prohibited pairs of adjoining productions and separate all the

1063 pairs by adding parenthesis productions. For RepairJudge, since all prohibited pairs

1064 are eliminated after repairing, there will be nothing left to be repaired in the

1065 resulting CST, which will therefore be deemed valid. For PassThrough, the intuition

1066 is the same as that for the top-level bi-filters.

1067 Commutativity Composite bi-filters i / j and j / i may have different behaviours,

1068 so in general we need to know the order of composition to figure out the exact

1069 behaviour of a composite bi-filter. This can be difficult when using our bi-filter

1070 directives, since a lot of bi-filters are implicitly generated from the directives, and it

1071 is not straightforward to specify the order in which all the explicitly and implicitly

1072 generated bi-filters are composed. Fortunately, we do not need to do so, for all the

1073 bi-filters generated from the directives are commutative, meaning that the order of

1074 composition does not affect the behaviour.
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1075 Definition 12 (Bi-filter commutativity) Two bi-filters i and j are commutative

1076 exactly when

repairi � repairj ¼ repairj � repairi .

10781078

1079
1080 By Lemma 6, this implies repair ði / jÞ ¼ repair ðj / iÞ. Note that

1081 judge ði / jÞ ¼ judge ðj / iÞ by definition, so we do not need to require this in

1082 the definition of commutativity.

1083 An important fact is that commutativity is stronger than respect, so it is always

1084 safe to compose commutative bi-filters.

1085 Lemma 7 Commutative bi-filters respect each other.

1086 Proof Given commutative bi-filters i and j, we show that j respects i. Suppose that

1087 judgei t ¼ True for a given tree t. Then

10891089 It follows by symmetry that i respects j as well. h

1090 Now let us consider why any two different lifted bi-filters are commutative.

1091 (Commutativity is immediate if the two bi-filters are the same.) There are two key

1092 facts that lead to commutativity: (1) repairing does not introduce more prohibited

1093 pairs of productions, and (2) the prohibited pairs of adjoining productions checked

1094 and repaired by the two bi-filters are necessarily different. Therefore the two bi-

1095 filters always repair different parts of a tree, and can repair the tree in any order

1096 without changing the final result. Fact (1) is, again, due to the requirement that the

1097 directives do not mention the parenthesis production, which is the only thing we add

1098 to a tree when repairing it. Fact (2) can be verified by a careful case analysis. For

1099 example, we might be worried about the situation where a left-associative directive

1100 looks for production Q used at the right-most position under production P, while a

1101 priority directive also similarly looks for Q used under P, but the two directives

1102 cannot coexist in the first place since the first directive implies P and Q have no

1103 relative priority whereas the second one implies Q has lower priority than P.

1104 Manually Written Bi-Filters

1105 There are some other ambiguities that our directives cannot eliminate. In these

1106 cases, the user can define their own bi-filters and put them in the #OtherFilters part in

1107 a BIYACC program as shown in Fig. 4. The syntax is

123

New Generation Computing

Journal : Small-ext 354 Dispatch : 13-2-2020 Pages : 55
Article No. : 82 * LE * TYPESET

MS Code : NGCO-D-19-00023R2 R CP R DISK



R
E

V
IS

E
D

P
R

O
O

F

11091109 That is, this part of the program begins with a list of declarations of the names and

1110 types of the user-defined bi-filters, whose HASKELL definitions are then given below.

1111 Now we demonstrate how to manually write a bi-filter by resolving the ambiguity

1112 brought by the dangling else problem. But before that, let us briefly review the

1113 problem, which arises, for example, in the following grammar:

1114

11161116 With respect to this grammar, the program text if a then if x then y else z can be

1117 recognised as either if a then (if x then y else z) or if a then (if x then y) else z. To

1118 resolve the ambiguity, usually we prefer the ‘nearest match’ strategy (which is

1119 adopted by Pascal, C, and Java): else should match its nearest then, so that if a then

1120 (if x then y else z) is the only correct interpretation.

1121 The user may think that the problem can be solved by a priority (bi-)filter

1122 ITE [ IT;, in the hope that the production ‘if-then-else’ binds tighter than the

1123 production ‘if-then’. Unfortunately, this is incorrect as pointed out by Klint and

1124 Visser [26], because the corresponding (bi-)filter incorrectly rules out the pattern

1125 , which prints to unambiguous text, e.g. if a then b else if x then y. In

1126 fact, the (dangling else) problem is tougher than one might think and cannot be

1127 solved by any (bi-)filter performing pattern matching with a fixed depth [26].

1128 Klint and Visser [26] proposed an idea to disambiguate the dangling-else

1129 grammar: let Greek letters a;b; . . . match a sequence of symbols of any length. Then

1130 the program text if a then b else c should be banned if the right spine of b contains

1131 any if w then x, as shown in the paper [26]. With the full power of (bi-)filters, which

1132 are fully fledged HASKELL functions, we can implement this solution in the following

1133 bi-filter:

11351135 This bi-filter is commutative with the bi-filters generated from our directives,

1136 since it (1) only searches for non-parenthesis productions that are not declared in

1137 any other directives, and (2) inserts only a parenthesis production when repairing
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1138 incorrect CSTs. The reader may find the code of checkRightSpine in more detail in

1139 Fig. 10.

1140 Case Studies

1141 The design of BIYACC may look simplistic and make the reader wonder how much it

1142 can describe. In fact, BIYACC can already handle real-world language features. For

1143 example, Kinoshita and Nakano [25] adopted BIYACC as part of their system for

1144 synchronising COQ functions and corresponding OCAML programs. In this section,

1145 we demonstrate BIYACC with a medium-size case study: we use BIYACC to build a

1146 pair of parser and reflective printer for the TIGER language [4] and demonstrate some

1147 of their uses.

1148 The TIGER Language

1149 TIGER is a statically typed imperative language first introduced in Appel’s textbook

1150 on compiler construction [4]. Since TIGER’s purpose of design is pedagogical, it is

1151 not too complex and yet covers many important language features including

1152 conditionals, loops, variable declarations and assignments, and function definitions

1153 and calls. TIGER is therefore a good case study with which we can test the potential

1154 of our BX-based approach to constructing parsers and reflective printers. Some of

1155 these features can be seen in this TIGER program:

11571157 To give a sense of TIGER’s complexity, it takes a grammar with 81 production

1158 rules to specify TIGER’s syntax, while for C89 and C99 it takes, respectively, 183

1159 and 237 rules without any disambiguation declarations (based on Kernighan and

1160 Ritchie [24] and the draft version of 1999 ISO C standard, excluding the

1161 preprocessing part). The difference is basically due to the fact that C has more

1162 primitive types and various kinds of assignment statements.

1163 Excerpts of the abstract and concrete syntax of TIGER are shown in Fig. 9. The

1164 abstract syntax is largely the same as the original one defined in Appel’s textbook

1165 (page 98); as for the concrete syntax, Appel does not specify the whole grammar in

1166 detail, so we use a version slightly adapted from Hirzel and Rose’s lecture notes

1167 [21]. Concretely, we add a parenthesis production to the grammar (and discard it

1168 when converting CSTs to ASTs, so that the PassThrough property could be

1169 satisfied), since TIGER’s original grammar has no parenthesis production and an

1170 expression within round parentheses is regarded as a singleton expression sequence.

1171 This modification also makes it necessary to change the enclosing brackets for

1172 expression sequences from round brackets () to curly brackets {}, which helps

1173 (LALR(1) parsers) to distinguish a singleton expression sequence from an

1174 expression within parentheses. There is also another slight change in the definition
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1175 of ASTs for handling a feature not supported by the current BIYACC: the AST

1176 constructors TFunctionDec and TTypeDec take a single function or type declaration

1177 instead of a list of adjacent declarations (for representing mutual recursion) as in

1178 Appel [4], since we cannot handle the synchronisation between a list of lists (in

1179 ASTs) and a list (in CSTs) with BIYACC’s current syntax.

1180 Following Hirzel and Rose’s specification [21], the disambiguation directives for

1181 TIGER are shown in Fig. 10; for instance, we define multiplication to be left-

1182 associative. The directives also include a concrete treatment for the dangling else

1183 problem, which is usually ‘not solved’ when using a YACC-like (LA)LR parser

1184 generator to implement parsers: rather than resolving the grammatical ambiguity,

1185 we often rely on the default behaviour of the parser generator—preferring shift.

Fig. 9 An excerpt of TIGER’s abstract and concrete syntax. (Here we define our own BBool type and
MMaybe type to avoid name clashing with HASKELL’s built-in ones)
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1186 We have successfully tested our BIYACC program for TIGER on all the sample

1187 programs provided on the homepage of Appel’s book,9 including a merge sort

1188 implementation and an eight-queen solver, and there is no problem parsing and

1189 printing them with well-behavedness guaranteed. In the following subsections, we

1190 will present some printing strategies described in the BIYACC program to

1191 demonstrate what BIYACC, in particular reflective printing, can achieve.

1192 Syntactic Sugar and Resugaring

1193 We start with a simple example about syntactic sugar, which is pervasive in

1194 programming languages and lets the programmer use some features in an alternative

1195 (usually conceptually higher-level) syntax. For instance, TIGER represents boolean

1196 values false and true, respectively, as zero and nonzero integers, and the logical

1197 operators & (‘and’) and j (‘or’) are converted to a conditional structure in the

1198 abstract syntax: e1 & e2 is desugared and parsed to TCond e1 e2 (TInt 0) and e1 j e2
1199 to TCond e1 (TInt 1) e2. The printing actions for them in BIYACC are:

Fig. 10 An excerpt of the disambiguation directives for TIGER. (A type class GetRSpineCons is

defined and implemented for collecting the constructors on the right spine of a given tree. Function
getRSpineCons is recursively invoked for CSTs whose right-most subtree is (parsed from) a
nonterminal)

9FL01 9 https://www.cs.princeton.edu/*appel/modern/testcases/.
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12011201 A conventional printer which takes only the AST as input cannot reliably

1202 determine whether an abstract expression should be printed to the basic form or the

1203 sugared form, whereas a reflective printer can make the correct decision by

1204 inspecting the CST.

1205 The idea of resugaring [42] is to print evaluation sequences in a core language in

1206 terms of a surface syntax. Here we show that, without any extension, BIYACC is already

1207 capable of propagating some AST changes that result from evaluation back to the

1208 concrete syntax, subsuming a part of Pombrio and Krishnamurthi’s work [42, 43].

1209 We borrow their example of resugaring evaluation sequences for the logical

1210 operators ‘or’ and ‘not’, but recast the example in TIGER. The ‘or’ operator has been

1211 defined as syntactic sugar in Section 6.2. For the ‘not’ operator, which TIGER lacks,

1212 we introduce ‘*’, represented by TNot in the abstract syntax. Now consider the

1213 source expression

12151215 which is parsed to

TCond ðTNot ðTInt 1ÞÞ ðTInt 1Þ ðJJ ðTNot ðTInt 0ÞÞÞ:

12171217 A typical evaluator will produce the following evaluation sequence given the above

1218 AST:

12201220

1221 If we perform reflective printing after every evaluation step using BIYACC, we

1222 will get the following evaluation sequence on the source:

12241224 Due to the PUTGET property, parsing these concrete terms will yield the

1225 corresponding abstract terms in the abstract evaluation sequence, and this is exactly

1226 Pombrio and Krishnamurthi’s ‘emulation’ property, which they have to prove for their

1227 system. For BIYACC, however, the emulation property holds by construction, since

1228 BIYACC programs are always well-behaved. Another difference is that we do not need

1229 to insert additional information (such as tags) into an AST for recording which surface

1230 syntax structure a node comes from. One advantage of our approach is that we keep the

1231 abstract syntax pure, so that other tools—the evaluator in particular—can process the

1232 abstract syntax without being modified, whereas in Pombrio and Krishnamurthi’s

1233 approach, the evaluator has to be adapted to work on an enriched abstract syntax.
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1234 Language Evolution

1235 When a language evolves, some new features of the language (e.g. the foreach loops

1236 introduced in Java 5 [20]) can be implemented by desugaring to some existing

1237 features (e.g. ordinary for loops), so that the compiler back-end and abstract syntax

1238 definition do not need to be extended to handle the new features. As a consequence,

1239 all the engineering work about optimising transformations or refactoring [18] that

1240 has been developed for the abstract syntax remains valid.

1241 Consider a kind of ‘generalised-if’ expression allowing more than two cases,

1242 resembling the alternative construct in Dijkstra’s guarded command language [12].

1243 We extend TIGER’s concrete syntax with the following production rules:1244

12461246 For simplicity, we restrict the predicate produced by CaseB to the form LValue ‘=’

1247 Numeric, but in general the Numeric part can be any expression computing an

1248 integer. The reflective printing actions for this new construct can still be written

1249 within BIYACC, but require much deeper pattern matching:

1250

12521252 Although being a little complex, these printing actions are in fact fairly

1253 straightforward: The first group of type Tigerþ[ Guard handles the enclosing

1254 guard–end pairs, distinguishes between single- and multi-branch cases, and delegates

1255 the latter case to the second group, which prints a list of branches recursively.

1256 This is all we have to do—the corresponding parser is automatically derived and

1257 guaranteed to be consistent. Now guard expressions are desugared to nested if

1258 expressions in parsing and preserved in printing, and we can also resugar evaluation

1259 sequences on the ASTs to program text. For instance, the following guard expression

guard choice ¼ 1�[ 4

choice ¼ 2�[ 8

choice ¼ 3�[ 16 end

12611261 is parsed to
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12631263 where TSimpleVar is shortened to TSV, and choice is shortened to c. Suppose that

1264 the value of the variable choice is 2. The evaluation sequence on the AST will then

1265 be:
1266

12681268

1269

1270 And the reflected evaluation sequence on the concrete expression will be:

1271

12731273 Reflective printing fails for the first and third steps (the program text becomes an

1274 if-then-else expression if we do printing at these steps), but this behaviour in fact

1275 conforms to Pombrio and Krishnamurthi’s ‘abstraction’ property, which demands

1276 that core evaluation steps that make sense only in the core language must not be

1277 propagated to the surface. In our example, the first and third steps in the TCond-

1278 sequence evaluate the condition to a constant, but conditions in guard expressions

1279 are restricted to a specific form and cannot be a constant; evaluation of guard

1280 expressions thus has to proceed in bigger steps, throwing away or going into a

1281 branch in each step, which corresponds to two steps for TCond.

1282 The reader may have noticed that, after the guard expression is reduced to two

1283 branches, the layout of the second branch is disrupted; this is because the second

1284 branch is in fact printed from scratch. In current BIYACC, the printing from an AST

1285 to a CST is accomplished by recursively performing pattern matching on both tree

1286 structures. This approach naturally comes with the disadvantage that the matching is

1287 mainly decided by the position of the nodes in the AST and CST. Consequently, a

1288 minor structural change on the AST may completely disrupt the matching between

1289 the AST and the CST.
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1290 Other Potential Applications

1291 We conclude this section by shortly discussing several other potential applications.

1292 In general, (current) BIYACC can easily and reliably propagate AST changes that

1293 have local effect such as replacing part of an AST with a simpler tree, without

1294 destroying the layouts and comments of unaffected code. Thus it would not be

1295 surprising that BIYACC can also propagate (1) simplification-like optimisations such

1296 as constant folding and constant propagation and (2) some code refactoring

1297 transformations such as variable renaming. All these functionalities are achieved for

1298 free by one ‘general-purpose’ BIYACC program, which does not need to be tailored

1299 for each application.

1300 Related Work

1301 Unifying Parsing and Printing

1302 Much research has been devoted to describing parsers and printers in a single

1303 program. For example, both Rendel and Ostermann [44] and Matsuda and Wang

1304 [36, 37] adopt a combinator-based approach10 (whereas we use a generator-based

1305 approach), where small components are glued together to yield more sophisticated

1306 behaviour, and can guarantee properties similar to Theorem 1 with cst replaced by

1307 ast in the equations. (Let us call the variant version Theorem 10, since it will be used

1308 quite often later.) In Rendel and Ostermann’s system (called ‘invertible syntax

1309 descriptions’, which we shorten to ISDs henceforth), both the parsing and printing

1310 semantics are predefined in the combinators and consistency is guaranteed by their

1311 partial isomorphisms, whereas in Matsuda and Wang’s system (called FLIPPR), the

1312 combinators describing pretty printing are translated by a semantic-preserving

1313 transformation to a core syntax, which is further processed by their grammar-based

1314 inversion system [38] to realise the parsing semantics. Brabrand et al. [7] present a

1315 tool XSugar that handles bijections between the XML syntax (representation) and

1316 any other syntax (representation) for the same language, guaranteeing that the

1317 syntax transformation is reversible. However, the essential factor that distinguishes

1318 our system from others is that the printer produced from a BIYACC program is

1319 reflective and can deal with synchronisation.

1320 Although the above-mentioned systems are tailored for unifying parsing and

1321 printing, there are design differences. An ISD is more like a parser, while FLIPPR lets

1322 the user describe a printer: To handle operator priorities, for example, the user of

1323 ISDs will assign priorities to different operators, consume parentheses, and use

1324 combinators such as chainl to handle left recursion in parsing, while the user of

1325 FLIPPR will produce necessary parentheses according to the operator priorities. For

1326 basic BIYACC (that deals with unambiguous grammars only), the user defines a

1327 concrete syntax that has a hierarchical structure (e.g. Expr, Term, and Factor) to

1328 express operator priority, and write printing strategies to produce (preserve)

10FL01 10 Although they use different implementation techniques, we will not dive into them in our related work.

10FL02 See Matsuda and Wang’s related work for a comparison [36].
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1329 necessary parentheses. The user of XSugar will also likely need to use such a

1330 hierarchical structure.

1331 It is interesting to note that the part producing parentheses in FLIPPR essentially

1332 corresponds to the hierarchical structure of grammars. For example, to handle

1333 arithmetic expressions in FLIPPR, we can write:1334

13361336 FLIPPR will automatically expand the definition and derive a group of ppri

1337 functions indexed by the priority integer i, corresponding to the hierarchical

1338 grammar structure. In other words, there is no need to specify the concrete grammar,

1339 which is already implicitly embedded in the printer program. This makes FLIPPR

1340 programs neat and concise. Following this idea, BIYACC programs can also be made

1341 more concise: in a BIYACC program, the user is allowed to omit the production rules

1342 in the concrete syntax part (or omit the whole concrete syntax part), and they will be

1343 automatically generated by extracting the terminals and nonterminals in the right-

1344 hand sides of all actions. However, if these production rules are supplied, BIYACC

1345 will perform some sanity checks: it will make sure that, in an action group, the user

1346 has covered all of the production rules of the nonterminal appearing in the ‘type

1347 declaration’, and never uses undefined production rules.

1348 Just like basic BIYACC, all of the systems described above (aim to) handle

1349 unambiguous grammars only. Theoretically, when the user-defined grammar (or the

1350 derived grammar) is ambiguous, ISDs’ partial isomorphism could guarantee

1351 Theorem 10 by returning Nothing on ambiguous input; FLIPPR’s (own) Theorem 1 is

1352 comparable to Theorem 10 by taking all the language constructs which may cause

1353 non-injective printing into account. However, according to the paper, FLIPPR’s

1354 Theorem 1 appears to only consider nondeterministic printing based on prettiness

1355 (layouts). Since the discussion on ambiguous grammars has not been presented in

1356 their papers, we tested their implementation and the behaviour is as follows: neither

1357 ISDs nor FLIPPR will notify the user that the (derived) grammar is ambiguous at

1358 compile time. For ISDs, the right-to-left direction of our Theorem 10 will fail, while

1359 for FLIPPR, both directions will fail. (They never promise to handle ambiguous

1360 grammars, though.) In contrast, Brabrand et al. [7] give a detailed discussion about

1361 ambiguity detection, and XSugar statically checks if the transformations are

1362 ‘reversible’. If any ambiguity in the program is detected, XSugar will notify the user

1363 of the precise location where ambiguity arises. In BIYACC, the ambiguity detection

1364 of the input grammar is performed by the employed parser generator (currently

1365 HAPPY), and the result is reported at compile time; if no warning is reported, the

1366 well-behavedness is always guaranteed. Note that the ambiguity detection can

1367 produce false positives: warnings only mean that the grammar is not LALR(1) but

1368 does not necessarily mean that the grammar is ambiguous—ambiguity detection is

1369 undecidable for the full CFG [10].

1370 Here we also briefly discuss ambiguity detection for the filter approaches: priority

1371 and associativity (bi-)filters can be applied to (LA)LR parse tables to resolve (shift/
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1372 reduce) conflicts [9, 26, 52, 53], and thus the completeness for simple (bi-)filters

1373 (see Definition 9) on LALR(1) grammars can be statically checked. However, our

1374 implementation does not support it, for bi-filter directives are more general, as

1375 stated in the beginning of Sect. 5.4.2, and therefore cannot be transformed to the

1376 underlying parser generator’s YACC-style directives. Finding a way to directly apply

1377 priority and associativity bi-filters to parse tables (generated by HAPPY) is left as

1378 future work.

1379 Finally, we compare BIYACC with an industrial tool, AUGEAS, which provides the

1380 user with a local configuration API that converts configuration data into a rose tree

1381 representation [31]. Similar to BIYACC, AUGEAS also uses the idea of state-based

1382 asymmetric lenses so that its parse and print functions satisfy well-behavedness and

1383 it tries to preserve comments and layouts when printing the tree representation back.

1384 However, since the purpose of AUGEAS and BIYACC is different, the differences

1385 between the tools are also noticeable: (1) AUGEAS works for regular grammars while

1386 BIYACC works for (unambiguous) context-free grammars. (2) AUGEAS uses a

1387 combinator-based approach while BIYACC adopts a generator-based approach.

1388 (3) AUGEAS works more like a simple parser that stops after constructing CSTs: in

1389 the parsing direction, AUGEAS unambiguously separates strings into sub-strings, turn

1390 sub-strings into tokens, and use tokens to build the corresponding tree; but since

1391 each lens combinator (of AUGEAS) has its predefined strategy to turn its

1392 acceptable strings into the tree representation, the corresponding tree will be

1393 determined once the input string and the lens combinators for parsing the string are

1394 given; AUGEAS does not provide a functionality to further transform a tree. On the

1395 other hand, BIYACC first turns a string into its isomorphic CST (fully determined the

1396 input string and the grammar description) and finally converts the CST to its AST in

1397 accordance with the algebraic data types defined by the user; that is, the relation

1398 between a string (CST) and its AST is not predetermined but can be adjusted by the

1399 user (through printing actions).

1400 Generalised Parsing, Disambiguation, and Filters

1401 The grammar of a programming language is usually designed to be unambiguous.

1402 Various parser-dependent disambiguation methods such as grammar transformation

1403 [29] and parse table conflicts elimination [23] have been developed to guide the

1404 parser to produce a single correct CST [26]. On the other hand, natural languages

1405 that are inherently ambiguous usually require their parsing algorithms to produce all

1406 the possible CSTs; this requirement gives rise to algorithms such as Earley [14] and

1407 generalised LR [50] (GLR for short). Although these parsing algorithms produce all

1408 the possible CSTs, both their time complexity and space complexity are reasonable.

1409 For instance, GLR runs in cubic time in the worst situation and in linear time if the

1410 grammar is ‘almost unambiguous’ [48].

1411 The idea to relate generalised parsing with parser-independent disambiguation

1412 for programming languages is proposed by Klint and Visser [26]. They proposed

1413 two classes of filters, property filters (defined in terms of predicates on a single tree)

1414 and comparison filters (defined in terms of relations among trees), but we only adapt

1415 and bidirectionalise predicate filters in this paper. One difficulty lies in the fact that
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1416 it is unclear how to define repair for comparison filters, as they generally select

1417 better trees rather than absolutely correct ones— in the printing direction, since put

1418 only produces a single CST, we do not know whether this CST needs repairing or

1419 not (for there is no other CST to compare). This is also one of the most important

1420 problems for our future work.

1421 Parser-independent disambiguation (for handling priority and associativity

1422 conflicts) can also be found in LaLonde and des Rivieres’s [29] and Aasa’s [1]

1423 work. At first glance, our repair function is quite similar to LaLonde and des

1424 Rivieres’s post-parse tree transformations that bring a CST into an expression tree,

1425 on whose nodes additional restrictions of priority and associativity are imposed. To

1426 be simple (but not completely precise), a CST’s corresponding expression tree is

1427 obtained by first dropping all the nodes constructed from injective productions11

1428 (note that parentheses nodes are still kept) and then use a precedence-introducing

1429 tree transformation to reshape the result. The transformation will do ‘repairing’ by

1430 rotating all the adjacent nodes of the tree where priority or associativity constraint is

1431 violated. By contrast, our repair function is simpler and only introduces parentheses

1432 in places where the judge function returns False. In short, their tree transformations

1433 are a kind of parser-independent disambiguation which does not require generalised

1434 parsing; however, those tree transformations are (almost) not applicable in the

1435 printing direction if well-behavedness is taken into consideration (due to the rotation

1436 of CSTs). Furthermore, it is not clear whether their approach can be generalised to

1437 handle other types of conflicts rather than the ones caused by priority and

1438 associativity.

1439 There is much research on how to handle ambiguity in the parsing direction as

1440 discussed above; conversely, little research is conducted for ‘handling ambiguity in

1441 the printing direction’ and we find only one paper [8] that describes how to produce

1442 correct program text regarding priority and associativity, which is also one of the bases

1443 of our work. We extend their work [8] by allowing the bracket attribute to work with

1444 injective productions such as E�[ T; T�[ F; F�[ ‘ð’ E ‘Þ’ # Bracket #;. (The previous

1445 work seems to only support the bracket attribute in the form of

1446 E�[ ‘ð’ E ‘Þ’ # Bracket #;; whether the nonterminal E on the left-hand side and right-

1447 hand side can be different is not made clear.)

1448 Finally, we compare our approach with the conventional ones in general. In

1449 history, a printer is believed to be much simpler than a parser and is usually

1450 developed independently (of its corresponding parser). While a few printers choose

1451 to produce parentheses at every occasion naively, most of them take disambiguation

1452 information (for example, from the language’s operator precedence table) into

1453 account and try to produce necessary parentheses only. However, as the YACC-style

1454 conventional disambiguation [23] is parser-dependent, this parentheses-adding

1455 technique is also printer-dependent. As the post-parse disambiguation increases the

1456 modularity of the (front-end of the) compiler [29], we believe that our post-print

1457 parentheses-adding increases the modularity once again. Additionally, the unifica-

1458 tion of disambiguation for both parsing and printing makes it possible for us to

11FL01 11 An injective production, or a chain production, is one whose right-hand side is a single nonterminal;

11FL02 for instance, E�[ N.
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1459 impose bi-filter laws, which further makes it possible to guarantee the well-

1460 behavedness of the whole system.

1461 Comparison with a Get-Based Approach

1462 Our work is theoretically based on asymmetric lenses [17] of bidirectional

1463 transformations [11, 19], particularly taking inspiration from the recent progress on

1464 putback-based bidirectional programming [15, 27, 28, 40, 41]. As explained in

1465 Sect. 3, the purpose of bidirectional programming is to relieve the burden of

1466 thinking bidirectionally—the programmer writes a program in only one direction,

1467 and a program in the other direction is derived automatically. We call a language

1468 get-based when programs written in the language denote get functions, and call a

1469 language putback-based when its programs denote put functions. In the context of

1470 parsing and reflecting printing, the get-based approach lets the programmer describe

1471 a parser, whereas the putback-based approach lets the programmer describe a

1472 printer. Below we discuss in more depth how the putback-based methodology

1473 affects BIYACC’s design by comparing BIYACC with a closely related, get-based

1474 system.

1475 Martins et al. [35] introduces an attribute grammar-based BX system for defining

1476 transformations between two representations of languages (two grammars). The

1477 utilisation is similar to BIYACC: The programmer defines both grammars and a set of

1478 rules specifying a forward transformation (i.e. get), with a backward transformation

1479 (i.e. put) being automatically generated. For example, the BIYACC actions in lines

1480 28–30 of Fig. 2 can be expressed in Martins et al.’s system as

get E
A ðplus ðx; ‘þ’; yÞÞ ! addðget E

A ðxÞ; get T
A ðyÞÞ

get E
A ðminusðx; ‘�’; yÞÞ ! sub ðget E

A ðxÞ; get T
A ðyÞÞ

get E
A ðetðeÞÞ ! get T

A ðeÞ

14821482 which describes how to convert certain forms of CSTs to corresponding ASTs. The

1483 similarity is evident, and raises the question as to how get-based and putback-based

1484 approaches differ in the context of parsing and reflective printing.

1485 The difference lies in the fact that, with a get-based system, certain decisions on

1486 the backward transformation are, by design, permanently encoded in the bidirec-

1487 tionalisation system and cannot be controlled by the user, whereas a putback-based

1488 system can give the user fuller control. For example, when no source is given and

1489 more than one rule can be applied, Martins et al.’s system chooses, by design, the

1490 one that creates the most specialised version. This might or might not be ideal for

1491 the user of the system. For example: suppose that we port to Martins et al.’s system

1492 the BIYACC action that relates TIGER’s concrete ‘&’ operator with a specialised

1493 abstract if expression in Sect. 6.2, coexisting with a more general rule that maps a

1494 concrete if expression to an abstract if expression. Then printing the AST TCond

1495 (TSV ‘‘a’’) (TSV ‘‘b’’) 0 from scratch will and can only produce a & b, as dictated by the

1496 system’s hard-wired printing logic. By contrast, the user of BIYACC can easily

1497 choose to print the AST from scratch as a & b or if a then b else 0 by suitably

1498 ordering the printing actions.
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1499 This difference is somewhat subtle, and one might argue that Martins et al.’s

1500 design simply went one step too far—if their system had been designed to respect

1501 the rule ordering as specified by the user, as opposed to always choosing the most

1502 specialised rule, the system would have given its user the same flexibility as

1503 BIYACC. Interestingly, whether to let user-specified rule/action ordering affect the

1504 system’s behaviour is, in this case, exactly the line between get-based and putback-

1505 based design. The user of Martins et al.’s system writes rules to specify a forward

1506 transformation, whose semantics is the same regardless of how the rules are ordered,

1507 and thus it would be unpleasantly surprising if the rule ordering turned out to affect

1508 the system’s behaviour. By contrast, the user of BIYACC only needs to think in one

1509 direction about the printing behaviour, for which it is natural to consider how the

1510 actions should be ordered when an AST has many corresponding CSTs; the parsing

1511 behaviour will then be automatically and uniquely determined. In short, relevance of

1512 action ordering is incompatible with get-based design, but is a natural consequence

1513 of putback-based thinking.

1514 Conclusion

1515 We conclude the paper by summarising our contributions:

1516 • We have presented the design and implementation of BIYACC, with which the

1517 programmer can describe both a parser and a reflective printer for a fully

1518 disambiguated context-free grammar in a single program. Our solution

1519 guarantees the partial version of the consistency properties (Definition 2) by

1520 construction.

1521 • We proposed the notion of bi-filters, which enables BIYACC to disambiguate

1522 ambiguous grammars while still respecting the consistency properties. This is

1523 the main new contribution compared to the previous SLE’16 version [55].

1524 • We have demonstrated that BIYACC can support various tasks of language

1525 engineering, from traditional constructions of basic machinery such as printers

1526 and parsers to more complex tasks such as resugaring, simple refactoring, and

1527 language evolution.
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