Flexible Services and Manufacturing Journal (2020) 32:487-522
https://doi.org/10.1007/510696-019-09363-6

™

Check for
updates

Efficient procedures for the weighted squared tardiness
permutation flowshop scheduling problem

Maria Raquel C. Costa' - Jorge M. S. Valente?® . Jeffrey E. Schaller?

Published online: 2 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

This paper addresses a permutation flowshop scheduling problem, with the objec-
tive of minimizing total weighted squared tardiness. The focus is on providing effi-
cient procedures that can quickly solve medium or even large instances. Within
this context, we first present multiple dispatching heuristics. These include general
rules suited to various due date-related environments, heuristics developed for the
problem with a linear objective function, and procedures that are suitably adapted
to take the squared objective into account. Then, we describe several improvement
procedures, which use one or more of three techniques. These procedures are used
to improve the solution obtained by the best dispatching rule. Computational results
show that the quadratic rules greatly outperform the linear counterparts, and that
one of the quadratic rules is the overall best performing dispatching heuristic. The
computational tests also show that all procedures significantly improve upon the ini-
tial solution. The non-dominated procedures, when considering both solution quality
and runtime, are identified. The best dispatching rule, and two of the non-dominated
improvement procedures, are quite efficient, and can be applied to even very large-
sized problems. The remaining non-dominated improvement method can provide
somewhat higher quality solutions, but it may need excessive time for extremely
large instances.

Keywords Scheduling - Permutation flowshop - Weighted squared tardiness -
Dispatching rules - Improvement procedures

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s1069
6-019-09363-6) contains supplementary material, which is available to authorized users.

P4 Jorge M. S. Valente
jvalente @fep.up.pt

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0001-5917-8880
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-019-09363-6&domain=pdf
https://doi.org/10.1007/s10696-019-09363-6
https://doi.org/10.1007/s10696-019-09363-6

488 M.R. C. Costa et al.

1 Introduction

In this paper, we consider a permutation flowshop scheduling problem. In a
flowshop production environment, jobs are processed on a set of machines, and
all jobs follow the same route through the machines. A permutation flowshop
is considered, meaning that the processing order of the jobs is the same for all
machines.

Each job has a weight, which reflects the importance of the job, or of the associ-
ated customer. The date by which the job should be completed is called the due date.
A job is considered tardy if completed after its due date, and its tardiness is simply
the amount of time by which it is completed late. The objective is to find a sequence
of the jobs that minimizes the sum of the weighted squared tardiness values.

The flowshop production environment is quite common in practice, and has been
often studied. The permutation assumption is usually made, since it not only reduces
the computational effort, but is also realistic, since in practice it is often difficult, or
even impossible, to change the order of the jobs between machines. When dealing
with customer due dates, the tardiness measure is also widely used, since delays can
lead to contractual penalties and/or loss of customers or goodwill.

In this paper, we consider a squared tardiness objective function. A large num-
ber of studies, however, have considered a linear tardiness performance measure.
Additionally, the minimization of the maximum tardiness among all jobs is also a
common tardiness-related objective. All of these tardiness measures are relevant,
and none is inherently superior to the others. The choice of which one to use in
a practical setting depends on how tardiness affects customers, as well as on the
preferences or priorities of the decision maker.

When maximum tardiness is used, the focus is on the largest amount of tardi-
ness that may result for a customer. However, any costs incurred by other tardy
jobs are not considered. If linear tardiness is chosen, all jobs are taken into
account. However, the distribution of the tardiness among jobs is not considered,
so having two jobs that are both four time units tardy is equivalent to having one
job seven time units tardy and another job one time unit tardy. With squared tar-
diness, large values of tardiness are more harshly penalized. Therefore, schedules
in which one or only a few jobs contribute the majority of the cost are avoided, as
described in more detail in Sun et al. (1999).

Also, while in linear tardiness the incremental penalty of a job remains con-
stant as tardiness increases, in squared tardiness the incremental penalty increases
with tardiness, as pointed out by Hoitomt et al. (1990) and Thomalla (2001).
This is in agreement with the loss function proposed by Taguchi (1986), in which
the dissatisfaction of a customer grows quadratically with tardiness. Therefore,
an objective based on squared tardiness is appropriate for real settings. Indeed,
scheduling methodologies developed by Hoitomt et al. (1990) and Luh and Hoi-
tomt (1993) considered a squared tardiness objective, and were actually put in
practice at a Pratt and Whitney plant.

In this paper, we focus on efficient procedures, capable of quickly solving
even medium or large instances. In this context, several dispatching heuristics

@ Springer

Efficient procedures for the weighted squared tardiness... 489

are first presented. Dispatching rules are widely used in practice, and most
real scheduling systems are either based on them, or at least use them to some
degree. They are also quite fast, and are often the only approach capable of pro-
viding solutions for large instances in reasonable time. Furthermore, dispatching
rules are frequently used by other procedures; for instance, they are often used
in metaheuristics, to generate an initial solution.

We include three types of dispatching rules. First, we consider general dis-
patching rules, that is, rules that have been used for multiple problems with
due dates, in various production settings. Second, we also consider rules that
were developed for the linear tardiness problem. Finally, we additionally include
quadratic rules, that essentially modify the linear rules in order to take into
account the squared tardiness objective.

Most of the dispatching rules were previously used in single machine or par-
allel machines settings. Thus, they are suitably adapted in order to be applied to
a flowshop environment. Also, some procedures require a user-defined parame-
ter. Experiments were performed to determine an adequate value for that param-
eter, under the permutation flowshop setting.

Then, we present several improvement procedures, which are applied to the
best of the dispatching rules. These improvement methods use one or more of
three techniques, namely: multiple sequence dispatching, the well-known NEH
procedure (Nawaz et al. 1983), and local search with an insertions neighborhood.
To the best of our knowledge, multiple sequence dispatching was previously
used only in the context of the EDD (earliest due date) rule. In this paper, we
describe its application to a different, and more complex, dispatching heuristic.

The various improvement procedures are analyzed, in order to determine the
ones which are non-dominated, when taking into account both solution quality
and computation time. Therefore, the computational results in this paper provide
a guide to decision makers on the method of choice (dispatching rule and/or dif-
ferent improvement procedures), given the time available to generate a solution.

The remainder of the paper is organized as follows. In Sect. 2, the problem
is formally described, and the relevant literature is reviewed. The dispatching
rules are presented in Sect. 3. First, some notation is introduced. Then, the gen-
eral, linear and quadratic rules are presented. A lower bound on the makespan,
required by some of the heuristics, is also described.

The improvement procedures are addressed in Sect. 4. The multiple sequence
version of the best dispatching rules is presented first. Then, the NEH and inser-
tions local search procedures are described. Additional methods, which combine
two or more of the multiple sequence, NEH and insertions procedures, are then
presented.

Section 5 contains the computational results. First, we describe the problem
set, performance measures and preliminary parameter adjustment tests. The dis-
patching rules are then compared, followed by an analysis of the improvement
procedures. The non-dominated procedures are also compared with optimal
solutions for small instances. Finally, Sect. 6 concludes the paper.

@ Springer

490 M.R. C. Costa et al.

2 Problem formulation and literature review

Formally, the problem considered in this paper can be stated as follows.
A set N={1,2,...,n} of n independent jobs have to be processed on a set
M ={1,2,...,m} of m machines. All jobs follow the same route through the
machines, and it is assumed that the processing order of the jobs is the same for
all machines (permutation flowshop). The machines are continuously available
from time zero onwards, and preemptions are not allowed.

Job j,j € N, requires a processing time p;j on machine i,i € M, and has a
weight w; and a due date d;. Let C;; denote the completion time of job j,j € N
on machine i,i € M. Furthermore, let the job sequenced in position j be
denoted by [/] and recall that Cyy =0, since all machines are available at
time zero. Then, Cip1 = Cip-1] TPy and G = max{ Cerfj) Gifj1] } + i)
for k = {2,3,...,m}. Finally, for convenience, let the completion time of job
Jj, that is, the time at which job j finishes processing on the last machine,
also be denoted by C,-, SO C]- = ij.

Given a schedule, the tardiness of job j is defined as 7; = max{Ci - dj;O}. The
objective is then to ﬁndna schedule that minimizes the sum of the weighted
squared tardiness values), ijjz.

=1

The squared tardinessjobjective function has been previously studied in vari-
ous production settings. Several papers addressed the single machine problem.
Approaches include: dominance rules and branch-and-bound procedures incor-
porating these rules (Schaller and Valente 2012), efficient dispatching heuristics
(Valente and Schaller 2012), and metaheuristics (Gongalves et al. 2016). Vari-
ous heuristics have also been proposed for the single machine problem, but with
release dates and sequence-dependent setups (Sun et al. 1999).

A parallel machines environment has also been addressed. In this context, a
Lagrangian relaxation procedure was developed and applied to some examples
from a Pratt and Whitney plant (Hoitomt et al. 1990; Luh and Hoitomt 1993).
Furthermore, several efficient heuristics and an improvement procedure were pro-
posed by Schaller and Valente (2018).

Multiple stage problems were addressed by Luh and Hoitomt (1993), Thomalla
(2001) and Dalfard et al. (2011). In both Luh and Hoitomt (1993) and Thomalla
(2001), a Lagrangian relaxation procedure is developed for a job shop environ-
ment. Dalfard et al. (2011) consider a three-stage problem, with parallel machines
with sequence-dependent setup times at the first stage, transportation times in a
second stage, and assembly of components into a final product in the third stage.
A hybrid genetic algorithm is proposed to minimize the weighted sum of four
objectives, one of which is weighted squared tardiness.

Therefore, the literature on multiple stage problems with a squared tardiness
objective is limited and, to the best of our knowledge, has never addressed the
specific problem we consider. Furthermore, the literature on multiple stage envi-
ronments considers job shops, and multi-stage scenarios with an assembly stage,

@ Springer

Efficient procedures for the weighted squared tardiness... 491

which are quite different in nature from a permutation flowshop. Thus, this paper
addresses a gap in the existing literature.

The flowshop is a common manufacturing environment, and as such has been
studied in a quite large number of papers, as illustrated by the multiple reviews
that have been conducted (Framinan et al. 2004; Neufeld et al. 2016; Reza Hejazi
and Saghafian 2005; Ruiz and Maroto 2005; Sun et al. 2011). The minimization
of the makespan is likely the most addressed objective function. A comprehen-
sive review and evaluation of both constructive procedures and metaheuristics
for the makespan objective is provided by Fernandez-Viagas et al. (2017). The
total completion time objective has also been considered in many papers. In
what regards this objective, an overview and comparison of multiple algorithms
is given in Fernandez-Viagas and Framinan (2015b), while Fernandez-Viagas
et al. (2016) perform a computational evaluation of constructive and improve-
ment procedures for a flowshop with the blocking constraint.

Multiple papers have considered the permutation flowshop with a total lin-
ear unweighted tardiness objective. A review and evaluation of heuristics and
metaheuristics is given in Vallada et al. (2008). Genetic algorithms with path
relinking are proposed by Vallada and Ruiz (2010), and compared with state-
of-the-art methods. A comparison of procedures based on the NEH heuristic
(Nawaz et al. 1983) is conducted in Fernandez-Viagas and Framinan (2015a).
A hybrid iterated greedy procedure is proposed in Karabulut (2016). Iterated-
greedy-based algorithms with a beam search initialization were developed by
Fernandez-Viagas et al. (2018), and a comprehensive computational comparison
was performed against existing procedures.

3 Dispatching rules
3.1 Notation

In the following, let S be the current partial schedule, that is, the sequence of
jobs that are scheduled so far. The completion time of job j & S, if j is scheduled
at the end of sequence S, is denoted by C;(S). Also, let 5;(S) be the slack of job
J & S if j is scheduled at the end of S, where 5;(S) = d; — C;(S).

The current availability time of machine i under schedule S will be repre-
sented by #,(S). For convenience, the current availability time on the first
machine will also be denoted by ¢, so t = #,(S).

Let Pi(S) = C,(S) — t be the total time (total processing time plus any eventual
forced idle time) between the start and finish of job j & S if j is scheduled at the
end of sequence S. The average, over all jobs j & S of the P;(S) values will be
denoted by P(S). Finally, let T)(S) = max{C(S) O} be the tardiness of job
j & S if jis scheduled at the end of sequence S.

@ Springer

492 M.R. C. Costa et al.

3.2 General rules

Several general rules are considered because they have been previously used for
multiple problems with due date related criteria, under multiple production set-
tings. We do not expect these rules to match the performance of the other, more
sophisticated, dispatching procedures. Nevertheless, their inclusion is still war-
ranted, since they are widely used in a variety of environments, and usually con-
sidered for comparison purposes.

The earliest due date (EDD) (Jackson 1955) is one of the first and most well-
known sequencing rules, and has been extensively applied to scheduling models
with due dates. This rule schedules the jobs in non-decreasing order of their due
dates d;. Equivalently, the EDD rule selects, at each iteration, the job with the
largest value of the priority index EDD/(S) =

The earliest weighted due date (EWDD) rule (Ruiz and Stiitzle 2008) sched-
ules the jobs in non-decreasing order of their weighted due dates d;/w;, thereby
expanding the EDD heuristic to take into account job-specific weights. Equiva-
lently, the EWDD rule selects, at each iteration, the job with the largest value of
the priority index EWDD(S) = w;/d,.

In the modified due date (MDD) heuristic (Baker and Ber-
trand 1982; Vepsalainen and Morton 1987), at each iteration we
select the job with the minimum value of the modified due date
max{ ,C; (S)} max{ ,t+ P, (S)} max{d t,P; (S)} Alternatively, this
rule selects at each 1terat10n the job with the largest value of the priority index
MDD;(S):

1/P(S) if 5;(8) <0

MDDy(S) = { 1/<dj - t) otherwise *

The minimum slack (SLK) rule (Panwalkar and Iskander 1977; Vepsalainen and
Morton 1987) chooses, at each iteration, the job with the minimum slack sj(S) or,
equivalently, the job with the largest value of the priority index SLK;(S) = —s,(S).
The minimum slack per required time (SLK/P) (Panwalkar and Iskander 1977;
Vepsalainen and Morton 1987), on the other hand, selects, at each iteration, the job
with the minimum value of the ratio between the slack and the total required time
5;(S)/P;(S). Alternatively, it chooses the job with the largest value of the priority
index SLK/P;(S) = —(;(S)/P(S)).

3.3 Rules for the linear objective function

We consider a simple but commonly used procedure, as well as more sophisti-
cated rules, including those shown to have performed best in the single machine
linear weighted tardiness problem. Again, it is expected that these rules will be
outperformed by the quadratic procedures, which specifically take the squared
objective function into account. However, the inclusion of the linear rules makes
it possible to evaluate how much of an improvement is made possible by taking

@ Springer

Efficient procedures for the weighted squared tardiness... 493

the quadratic nature of the problem into consideration, instead of simply using
procedures developed for the linear setting.

Most of these procedures were originally developed for a single machine envi-
ronment. Some of them, however, have also been applied to other production set-
tings. In this subsection, we explicitly show how the priority indexes of these
procedures are adjusted in order to take the flowshop environment into account.

The weighted shortest processing time (WSPT) rule (Smith 1956) schedules
the jobs in non-increasing order of the ratio wj/P_,-(S) or, equivalently, chooses, at
each iteration, the job with the highest priority index WSPT;(S) = w;/P(S). This
rule provides an optimal sequence for the single machine linear problem if all
jobs are necessarily tardy.

The weighted minimum slack/shortest processing time (WSLK_SPT) rule
(Osman et al. 2009) selects, at each iteration, the job with the minimum value of
the weighted slack or weighted processing time, as appropriate, that is, it selects
the job with the minimum ratio max{s_l-(S),P_-(S)} /w;. Equivalently, the WSLK_
SPT rule selects, at each iteration, the job with the largest value of the priority
index WSLK_SPT(S):

w;[Pi(S) if 5,(S) < P«S) .

WSLK_SPT/(S) = { w;/s;(S) otherwise

The weighted modified due date (WMDD) (Kanet and Li 2004), Alidaee—Ram-
akrishnan (AR) (Alidaece and Ramakrishnan 1996) and Apparent Tardiness Cost
(ATC) (Vepsalainen and Morton 1987) heuristics were developed for the single
machine linear problem, and several computational studies show that they pro-
vide the best performance among the efficient dispatching rules available for that
problem (Alidace and Ramakrishnan 1996; Kanet and Li 2004; Volgenant and
Teerhuis 1999). These heuristics select, at each iteration, the job with the largest
value of the following priority indexes:

_f wi/P(S) if s(S)<0
WMDD/(S) = { Wj/J(djj_ t) ot};erwise ’

w,;/P(S) if 51(8) <0
AR\(S) = (w,/PAS)) * [kI_J(S)/ (kF(S) + sj(S)>] otherwise

Wj/Pj(S) if Sj(S) <0
ATG(S) = (wj/Pj(S)) * exp(—sj(S)/kI_’(S)> otherwise

The parameter k provides the ATC and AR heuristics with a look ahead capa-
bility. Indeed, and as described by Vepsalainen and Morton (1987), the parameter
k is related with the number of competing critical jobs. i.e. jobs which are close
to becoming tardy. In this paper, we consider a job to be critical if its slack is

@ Springer

494 M.R. C. Costa et al.

positive, but less than or equal to a value slk_thr, which stands for “slack thresh-
old”. Thus, a job is considered critical if 0 < s,(S) < slk_thr.

At each iteration, k is then set equal to the number of critical jobs. If, at a given itera-
tion, no job is critical according to our criterion, & is then set equal to 0.5, since this is
the lowest value that has been usually considered for this parameter (Alidaee and Ram-
akrishnan 1996; Holsenback et al. 1999).

The slack threshold is meant to represent a value such that slacks which are greater
are considered large, so the job is not close to becoming tardy, and is therefore not criti-
cal. As such, we calculate the slk_thr parameter as follows. At each iteration, the slack
threshold is set equal to stk_thr = v X (CLE (S) — 1), where CL2 (S) is a lower bound
on the completion time of the last job on the final machine (makespan), given the cur-
rent schedule S, and 0 < v < 11is a user—defined parameter. The calculation of the lower
bound on the makespan will be described at the end of this section.

3.4 Rules for the quadratic objective function

The linear rules presented in the previous subsection have been adapted to a weighted
quadratic tardiness objective, and tested under a single machine environment. We will
show how their priority indexes are adjusted in order to take the flowshop setting into
account. Since the quadratic rules specifically consider the squared nature of the objec-
tive function, it is expected that they will outperform the previous procedures.

The quadratic weighted shortest processing time (QWSPT) rule (Valente and Alves
2008) is an adaptation of the WSPT heuristic to a quadratic setting. At each iteration,
the QWSPT rule selects the job with the largest value of the priority index
QWSPT(S) = (w,/P/(S)) * (P(S) + 2Tj(5)>.

The WSLK_SPT rule can be adapted to a quadratic setting by essentially replac-
ing, in its priority index, the WSPT component by a QWSPT expression. The result-
ing quadratic weighted minimum slack/shortest processing time (QWSLK_SPT)

rule chooses, at each iteration, the job with the largest value of the priority index
QWSLK_SPT(S):

(w,/PS)) * (TD(S) + 2Tj(S)) if 58 < PS)

QWSLK_SPT;(S) = A
(wj/sj(S)) * P(S) otherwise

The WMDD, AR and ATC rules have been adapted to a quadratic setting (Valente
and Schaller 2012) by, once more, replacing WSPT by QWSPT in their priority
indexes. The resulting QWMDD, QAR and QATC heuristics select, at each iteration,
the job with the largest value of the priority indexes:

(w,/P/(S)) (TD(S) + 2TJ-(S)) if 5,(8) <0

QWMDD,(S) = h
(w;/(d;—1)) * P(S) otherwise

@ Springer

Efficient procedures for the weighted squared tardiness... 495

onrs < | (i/PO) * (PO +215) o0

o P D 5 an

j (Wf/Pi(S)) * P(S) * [kP(S)/<kP(S) + sj(S))] otherwise
QATC,(S) = (w/B(S)) * (P +27(9)) if 5(5) <0

g - .

(w,/P/S)) * P(S) % exp(—sj(S) /kTD(S)) otherwise

A list of all the considered procedures (general, linear and quadratic), along
with their corresponding priority index and references, is provided in Table 1.

3.5 Lower bound on the makespan

The AR, ATC, QAR and QATC heuristics use the look ahead parameter k in their
priority indexes. In order to set the value of k at each iteration we require Cﬁ’;x(S),
a lower bound on the completion time of the last job on the final machine, given
the current schedule S.

This lower bound on the makespan is calculated using an adaptation of the
procedure proposed by Taillard (1993). Indeed, the lower bound given in Tail-
lard (1993) assumes that all machines are available at time zero. Since a lower
bound must here be calculated at each iteration, the procedure was adapted to
deal with non-zero machine availability times, which will necessarily occur as
jobs are scheduled.

The lower bound C%8(S) is then calculated as follows. Let

i-1
Bef_M,(S) = minj¢s<t + kz pkj>. Then, Bef_M,(S) is a lower bound on the time
=1

needed before reaching machine i, since it considers the availability time on the first

machine, plus the minimum, over all unscheduled jobs, of the sum of the processing

times on the machines that precede i. Also let TPT_M,(S) =), Py thus, TPT_M(S)
=

Furthermore, let Aft_M,(S) = minjes D Py | Then, Aft_M,(S) is a lower bound

k=i+1

on the time required after machine i, since it considers the minimum, over all

unscheduled jobs, of the sum of the processing times on the machines that follow i.
For each machine i, a lower bound on the makespan can then be calculated

as CEB _M(S) = max(Bef_M(S),1;) + TPT_M(S) + Afi_MS). In the origi-

nal lower bound presented in Taillard (1993), all the machine availability times

were assumed to be zero, since the lower bound was being calculated for all jobs.

J
is simply the total processing time re@uired bB all unscheduled jobs on machine i.
m

@ Springer

M.R. C. Costa et al.

as11a1Yj0 A@mz\ @.\Tv%o * ((5)'d/'m)

496

05 (s fi (©)d/n v (L861 uoO pur udureesdap) oLV
81210 :6» + @msv\ @m& * ((5)'d/'m) v
05 (s fi (©)d/m (9661 UBUYSLIYEWEY PUE 3LPITY) qv
asiiayio (1= "p)/'m V
05 @i (9)d/'n (#00T 1T pue 10UEY) Aanm
Loyl
uonouUN 9AN3[QO SSAUIPIR) PAIYSIoM Tedur| sHLI0 s V\n\ e v . _
© yim swojqoad oy pordde U0oq oARY SA[NI SSIYL, S)d > (9)'s fi @.m\. " (600T T2 UBWSQ) 1dS ITSM
sapns avaury (©)d/'n (9561 yws) LdSM
, . , (L8671 uoMoN
((§)'d/(§)'s)— pue uoureresdop ¢/ /6] JOPUBNS] PUE IeN[emUR]) dRIIS
(L861 uooN
(§)'s— pue usureresdop ¢/ /61 IOPURYS] PUR IeY[RMURJ) YIS
s3umyes uononpoxd oo T N .\3} (L861 uoLOW
. w Honp 0> ©)'s S P /1 pue uaurefesdop (786 pueniog pue Ioyeq) Adin
SNOLIBA JOPUN ‘BLISILIO PIIR[I SJBP ONP I L
swapqoid s[dn[nu 10j pasn us3q ARY SI[NI ISAY L, ‘p/'m (800 2[AAMS pue ZIny) aamd
SN [DAGUID) p— (Ss61 uosye[) aagdg
SyTewoy xopur KjLoLg (8) QouaIayY onsLNoy

soxapur Ajonid onsuUNoy | 9|qel

pringer

As

497

Efficient procedures for the weighted squared tardiness...

asIMIYI0 A@m:\ @.\TV&@ * (9)d * ((8)d/'m)

05 (§)s fi

(9)12+) * (/)

V (T10T 9[[BYDS PuE AUI[EA) OLVO
asuiopo [((s)'s + 1) /)] * () * (5)'a/'n)
05 (§)s i A@gm + @mv ((©)'q/)
- (T10T 1o11eYdS puE AUSEA) VO
2S1M42Y10 ©)d * ((1- v
= (e [r
0> (s A AG VLTt @mv AQ d \ “ (Z10T RIPWPS PUe udEA) AANMD
251142110 (§)d * ((5)'s/'n)
uonouny 9Anafqo ssaurpie) onexpenb pajgSrom (§)'d S (5)'s fi A@ma + @mv (()'q/) LASSISMD
© 0] S9N Ieaul] oy} Jo suoneidepe o1e 9oy, ;
sapnL QUPAPIND A@)ae+ @mv (/') (800 SPATY pue Aud[eA) LASMO
SYIRWY xopur Aot (s) QouaIayay oNSLINOY

(ponunuoo) | s|qey

pringer

As

498 M.R. C. Costa et al.

Given a partial schedule, and/or machine availability times which differ from
zero, two adaptations were then required.

The first is to include the availability time of the first machine in Bef_M;(S). The
second is in using the maximum between the lower bound on the time needed before
reaching machine i and the availability time of this machine: max(Bef_M(S), ;).
The lower bound on the makespan CZB;X(S) is then simply equal to the maximum of

all machine lower bounds, that is, CE (S) = max;g,, (CEE _M,(S)).

max—

4 Improvement procedures
4.1 Multiple sequence dispatching rule

The first improvement procedure is a method that modifies a dispatching heuris-
tic so that it generates multiple sequences, instead of a single one. This method, as
well as those described in the next subsections, was only applied to the QATC rule,
since this was the best performing of the heuristic procedures. We will denote this
method by MS, standing for multiple sequences. The multiple sequence version of
the QATC rule builds m sequences, one for each machine and using data related to
that machine, and selects the best of those sequences.

The MS version is inspired by the earliest apportioned due date (EADD) heu-
ristic developed by Hasija and Rajendran (2004). Indeed, this heuristic first calcu-
lates a due date for each job on each machine. Then, a sequence is obtained for each
machine i by scheduling the jobs in non-decreasing order of their due dates on that
machine. Finally, the best of those m sequences is then selected.

The multiple sequence version of the QATC heuristic also uses the apportioned
due dates of the EADD procedure. Additional modifications of the QATC rule
are, however, required in order to develop a multiple sequence version. Indeed, the
EADD heuristic is a multiple sequence version of the EDD rule, which relies solely
on a job’s due date. The QATC priority index, on other hand, uses additional infor-
mation. Thus, more extensive changes are needed in order to achieve a procedure
that adequately generates multiple sequences, one for each machine and using data
related to that machine.

The apportioned due date of job j on machine i, denoted by d;;, is obtained pre-
cisely by apportioning the original due date according to the accumulated sum of the
processing times on the various machines. That is, d;; is calculated by multiplying
d; by the ratio between the sum of the processing times of job j up to and including
machine i and the sum of the processing times of job j on all machines. Thus, on the
final machine the apportioned due date will be equal to the original due date, that is
d,; = d;. Formally, the due dates d;; are then calculated as:

m
dyy = (d;xpy)/ Y py
i=1

and

@ Springer

Efficient procedures for the weighted squared tardiness... 499

dy=d;_;+(d Xpii)/];pkj’i =23,...,m

In order to present the MS version of QATC, some notation must first be
defined. Let C,-j(S) be the completion time of job j & S, on machine i, if j is
scheduled at the end of sequence S. Also, let 5;(S) = d;; — C;;(S) be the slack of
job j & S, on machine i, if j is scheduled at the end of sequence S. Therefore, the
slack of a certain job on a given machine is obtained by using the correspond-
ing apportioned due date and completion time. In the multiple sequence version
of QATC, the general slack s,(S) is then replaced, in the priority index, by the
machine—dependent slack s;(S).

Similarly, let T;(S) = max{C;(S) — d;:0} be the tardiness of job j ¢S, on
machine i, if j is scheduled at the end of sequence S. Again, the machine—depend-
ent tardiness 7;(S) is used in the priority index of the multiple sequence QATC,
instead of the general tardiness 7(S).

Let Cfgax— (S) be a lower bound on the completion time of the last job on
machine i (that is, a lower bound on the makespan of machine i), given the cur-

rent schedule S. The machine makespan lower bound CrLrlfax— :(S) is calculated as

previously described for the final machine lower bound Cﬁf;x (S), with the differ-
ence that, naturally, only the processing times on the machines up to and includ-
ing machine i are considered. Therefore, the lower bound is calculated as if only
the first i machines existed. The slack threshold parameter is calculated as before,
with the difference that the machine lower bound CILgax_M[(S) replaces the final
machine lower bound C% (S), that is slk_thr = v x (CrLrlfax _M(S) —1).

Let P;(S) = C;;(S) — 1 be the total time (total processing time plus any eventual
forced idle time) between the start of job j & S and its finish on machine i, if j is
scheduled at the end of sequence S. In the multiple sequence version of QATC,
the total time between the start and finish of a job P;(S) is then replaced, in the
priority index, by the total time up to and including the current machine P(S).
In the same way, let P, :(S) be the average, over all jobs j & S, of the P;(S) values.
Again, P, ;(S) takes the place of P(S) in the multiple sequence version.

In short, and when considering machine i, the priority index of the multiple
sequence procedure is then obtained by replacmg 5;(8), T(S), P;(S) and P(S) by
their machine-specific counterparts s;(S), 7;(S), P ;(S) and P, (S) respectively.
The priority index of the multiple sequence version of QATC is then equal to:

(w,/Py(S)) * (ﬁ(S) + 2TN(S)> if 5,(8) <0
QATC,(S) = .
(w;/Py(S)) * Py(S) * exp(—s (S)/ kP, (S)> otherwise

We remark that procedure MS will generate a sequence that is at least as
good as the one obtained by the original (single sequence) QATC heuristic.
This is due to the fact that the solution obtained for the last machine is the

@ Springer

500 M.R. C. Costa et al.

same as the one generated by the original QATC rule. Indeed, and for the last
machine m, we have s,,.(S) = 5;(S), T,,;(S) = Ti(S), P,;(S) = PiS), P,(S) = P(S)

and CE8. M, (S) = CEB. (S).

4.2 NEH insertion procedure

The well-known NEH method, developed by Nawaz et al. (1983), is an insertion
procedure that requires an initial sequence or list of the jobs. If the NEH method
is applied alone, or when it comes first in a combined improvement procedure,
this initial sequence or list is simply the solution provided by the QATC rule.
When NEH is applied after another method in a combined procedure, the initial
sequence is the one generated by the previous improvement method.

Given the initial sequence, an insertion procedure is then used to create another
sequence. During the insertion phase, the jobs are considered in the order in which
they appear in the initial sequence or list. At each step, the currently considered job
is tentatively inserted in each possible position of the current partial sequence. The
job is then inserted in the position which provides the best objective function value.

The importance of using a tie—breaking method in the NEH procedure in the con-
text of the total tardiness objective has been analyzed by Fernandez-Viagas and Frami-
nan (2015a). This work showed that an appropriate tie-breaking method could lead to
substantially better results. Indeed, and particularly in the first iterations and/or when
the tardiness factor of a problem is low, multiple insertions positions may lead to the
same lowest objective function value of 0. When this is the case, a good tie-breaking
method is essential in enhancing the performance of the NEH procedure.

The tie—breaking methods proposed in Fernandez-Viagas and Framinan (2015a),
though developed for the total tardiness problem, are still applicable to our weighted
squared problem, in which the issue of adequately dealing with multiple objective
function values of O is even more pressing, given our objective function includes
squared tardiness. Therefore, our implementation of the NEH procedure uses the
tie—breaking method which performed best among those proposed in Fernandez-
Viagas and Framinan (2015a), and which was denoted by Total Idle Time IT1.

In short, when multiple insertion positions lead to the same lowest objective func-
tion value, the tie is broken by selecting the position with the minimum value of the
total idle time over all machines. In the Total Idle Time IT1 method, the definition
of idle time includes front delays (idle time before the first job starts on a machine)
but excludes back delays (the time between the finish time on a machine and the
overall finish time). For further details concerning IT1, please see Fernandez-Viagas
and Framinan (2015a).

Also, in our implementation the sequence resulting from the NEH procedure
is kept if it is not worse than the initial sequence. Otherwise, the (better) initial
sequence is retained. This choice was motivated by some preliminary tests which
showed that the NEH method could lead to a final schedule that was worse than the
initial sequence. Though this behavior was infrequent, it was nevertheless decided to
keep the best of the two sequences.

@ Springer

Efficient procedures for the weighted squared tardiness... 501

4.3 Insertions local search

A third improvement method consists in a local search procedure, using the inser-
tions neighborhood, and a first-improve strategy. Given that an insertions neighbor-
hood is used, this procedure will be denoted by INS.

In the insertions neighborhood, a move consists in removing one job from its cur-
rent position, and inserting it in another position. In the INS procedure, all possi-
ble insertions are considered. An improving insertion is performed whenever it is
detected (first-improve). This is repeated until no improving insertion is found.

4.4 Combined improvement procedures

We have considered not only the standalone application of each of the MS, NEH
and INS methods, but also several other procedures which combine two of more
of them, in order to see if a better performance could be obtained. In total, we con-
sidered four combined improvement procedures, denoted by MS+NEH, MS+INS,
NEH+INS and MS+NEH+INS. In these four combined procedures, the improve-
ment methods are applied in succession. So, and for instance, NEH+INS consists in
applying NEH, followed by INS.

The four proposed combined procedures essentially correspond to the various
combinations of the three standalone methods, when they are used in increasing
order of their search space. Indeed, INS can be more disruptive, and generate more
alternatives, than NEH, which is itself more general than MS.

5 Computational results
5.1 Problem set

The computational tests were performed on a set of randomly generated problems,
with various sizes in terms of both the number of jobs and the number of machines,
and for multiple combinations of due date tightness and range. The method chosen
to generate the test problems is quite common, and in line with both initial tardiness
papers (Ow and Morton 1988; Potts and van Wassenhove 1991), and recent works
on permutation flowshop with a tardiness criterion (Vallada and Ruiz 2010; Vallada
et al. 2008). More specifically, the problems were generated as follows.

In what regards the number of jobs, the following sizes were considered: 25, 50,
75, 100, 300 and 500. For the machines, we considered problems with 5, 10 and
20 machines. For each job j, the processing times on the various machines p;; were
generated from a uniform distribution over the integers 1 to 100, and the weight w;
was obtained using a uniform distribution [1, 10].

Finally, for each job j, the due date d; was obtained using a uniform distribution
[MS(I —T—-R/2),MS(1 - T+ R/Z)], where MS is an estimate of the makespan cal-
culated using the lower bound proposed in Taillard (1993), T is the tardiness factor

@ Springer

502 M.R. C. Costa et al.

and R is the range of due dates. Both the tardiness factor and the range of due dates
parameters were set at 0.2, 0.4, 0.6, 0.8 and 1.0.

For each combination of n, m, T and R, 50 instances were randomly generated.
Therefore, a total of 1250 instances were generated for each problem size, where the
size is given by both the number of jobs and the number of machines. The dataset
is available from the corresponding author, on reasonable request. The procedures
were coded in C++, compiled for 64-bit Windows, and executed on a personal
computer with a Windows 7 64—bit operating system, an Intel Core i7 4770 3.4G
processor and 16 GB RAM.

5.2 Performance measures

The analysis and comparison of the dispatching rules will mostly rely on a measure
of performance denoted by relative improvement versus the worst result (ivw). This
measure was previously used by Valente and Schaller (2012) for the single machine
scheduling problem with a weighted squared tardiness objective.

The relative improvement versus the worst result (ivw), for heuristic H;, when
evaluated with heuristics H,, H,,...,H_, on a given instance, is calculated as follows.
Let ofv,,,, be the worst objective function value obtained by all the z heuristic pro-
cedures. If ofv,,,., = 0, then the ivw for each heuristic H, is set to 0; otherwise, ivw
is calculated as (v, = 0fvy) /0fV,yors * 100, Where ofv, is the objective function
value of heuristic H;.

This measurement quantifies the improvement provided by a certain heuristic
over the worst result provided by all of the considered procedures. As such, higher
ivw values are indicative of a better performance.

The particular nature of the squared weighted tardiness problem motivated
the use of the relative improvement versus the worst result performance measure,
instead of more usual measures, such as the relative improvement over another heu-
ristic, or the deviation from the best heuristic result. Indeed, as and also described in
Valente and Schaller (2012), when due dates are relatively loose, or there is a wide
range of due dates, a schedule with no tardy jobs is easy to find, with a resulting
objective function value of 0.

When one or more heuristics find an optimal solution with an objective function
value of 0, measures such as the deviation from the best heuristic result cannot be
used, since they would lead to a division by 0. The relative improvement versus the
worst result avoids this problem. Indeed, the only situation in which the denomina-
tor would be O is if all dispatching rules find an optimal solution with an objective
function value equal to 0. In this case, all procedures were optimal and we have
ofv,orse = 0. As mentioned above, when this occurs the relative improvement versus
the worst is set at O for all heuristics, and division by 0 does not occur.

The number of times a dispatching rule provides a result that is better (btr), equal
(eql) or worse (wrs) than another procedure will also be used as a performance
measure. The computational time (in seconds) required by the dispatching rules is
also considered.

@ Springer

Efficient procedures for the weighted squared tardiness... 503

The comparison of the improvement procedures will rely on three performance
measures. The first is the relative improvement a procedure provides over the QATC
dispatching rule, denoted by imp.

The relative improvement over the QATC rule (imp), for improvement procedure
IP, on a given instance, is calculated as follows. Let ofvy,7c and ofv;p be the objec-
tive function values of the schedules generated by the QATC rule and the improve-
ment procedure, respectively. If ofvy,rc = 0, then the relative improvement imp is

set to 0; otherwise, imp is calculated as (ovaATC - ovaP) /0fVgarc * 100.

The number of times an improvement procedure provides a result that is better
(btr) than that of the QATC rule is also used as a performance measure. The compu-
tational time (in seconds) required to run the improvement procedures, including the
initial application of the QATC rule when appropriate, is also considered.

The comparison with the optimal results will involve two performance meas-
ures. One is simply the number of times a procedure provides the optimal solution,
denoted by n_opt. The other measure is the relative improvement provided by the
optimum objective function value over a heuristic procedure, previously used in
Valente and Schaller (2012) for the single machine problem, denoted by ivh. This
measure was chosen over the relative deviation from the optimum due to the same
reason that motivated the use of the ivw measure.

The relative improvement provided by the optimum objective function value over
heuristic procedure H, on a given instance, is calculated as follows. Let ofvpy be the
optimum objective function value, while ofv is the objective function value of the
schedule generated by heuristic procedure H, respectively. When ofv,, = 0, the rela-
tive improvement versus the heuristic procedure is set at 0. Otherwise, the relative
improvement provided by the optimum is calculated as (ova —ofvy PT) Jofvy * 100.

5.3 Parameter adjustment tests

The AR, ATC, QAR and QATC heuristics require a value for the parameter v,
0 < v < 1. Preliminary tests were then performed in order to find a good value for v.
In order to avoid possible overfitting, these tests were performed on a separate, and
smaller, test set. This test set was generated in the same way as described for the full
problem set. However, only five instances were generated for each combination of 7,
m, T and R.

The values {0.00,0.05,0.10,0.15,0.20,...,0.90,0.95,1.00} were considered
for the parameter v. The AR, ATC, QAR and QATC dispatching rules were then
applied to the instances on the test set, and the objective function value was calcu-
lated for each considered value. These results were then analyzed, and we selected a
value that provided good performance across all instance types. The value of v was
then set at 0.00 for all four dispatching rules.

Setting v equal to 0.00 means that the slack threshold slk_thr will also
be equal to 0, since at each iteration the slack threshold is set equal to
slk_thr = v X (Cﬁf(;x(S) — t). Therefore, no job will ever be considered critical, since
our criterion states that a job is critical if 0 < 5;(S) < slk_thr, and we will always
have slk_thr equal to 0. As previously described, if no job is critical according to

@ Springer

504 M.R. C. Costa et al.

our criterion, the parameter k in the AR, ATC, QAR and QATC rules is set at 0.5.
Therefore, a value of 0.00 for v means that the parameter k will always be equal to
0.5.

This result is quite different from those obtained in previous experiments in the
single machine environment. Indeed, Valente and Schaller (2012) showed that, in
the single machine problem, the most adequate value of v was 0.1 and 0.3, for the
QAR and QATC rules, respectively. This highlights the importance of performing
parameter adjustment tests for each production environment, instead of relying on
values obtained for other settings. Indeed, if the single machine values for v were
used, the performance of the QAR and QATC rules would have suffered.

5.4 Comparison of the dispatching rules

We first compare the linear dispatching rules (i.e. the rules developed for the lin-
ear weighted tardiness problem) with their quadratic counterparts (that is, their
adaptations to the quadratic objective). Table 2 provides, for each pair of heuristics
(quadratic and its linear equivalent), the mean ivw of each heuristic. This measure is
denoted as ivw_q for the quadratic heuristic and ivw_l for the associated linear heu-
ristic. The table also provides the number of instances in which the quadratic rule
was better (btr), equal (eql) or worse (wrs) than its corresponding linear rule. The
overall average (average) across all instances is also given.

Since Table 2 aims at directly comparing each quadratic rule with its associated
linear rule, the values given in this table are calculated separately for each pair of
quadratic procedure and corresponding linear counterpart. Thus, and as an example,
in the comparison of QWSPT with WSPT, ofv is the worst result among these
two procedures.

The results in Table 2 clearly show that the quadratic dispatching rules signifi-
cantly outperform their linear counterparts. Indeed, for the larger instances the mean
ivw is between about 20 and 40% for the quadratic procedures, and close to O for
the linear heuristics. Also, the quadratic rules provide better results for a quite large
number of instances and, again for the larger problem sizes, are rarely worse.

We performed tests to determine if the differences between each quadratic rule
and its linear counterpart are statistically significant. Since the heuristics were
applied to the same instances, a paired-samples test can be conducted. The non-par-
ametric Wilcoxon signed-rank test was selected, since the assumptions of the paired-
samples 7 test were not all met.

The test was applied to each pair of heuristics, and for each combination of the
number of jobs n and the number of machines m, and the significance level was
set at 0.05. To take into account, and correct for, the multiple tests that were per-
formed, we applied Holm’s procedure (also known as Holm’s sequential Bonferroni)
to adjust the significance level.

These tests showed that the differences between the quadratic rules and their
linear counterparts are statistically significant. Indeed, the hypothesis that quad-
ratic and linear rules have similar performance was always rejected, for each pair of
procedures.

worst

@ Springer

505

Efficient procedures for the weighted squared tardiness...

ST 0 SELT 8¥°0 89'8¢ ST 0 SeElT LY'0 00°0¢ o3e10AY
L1 0 €eCl 00 8L°CE 81 0 [4x4! 00 69°LE 00S
[43 0 81CI 00 96'1¢ 1€ 0 61CI €00 9Tee 00¢
Ict 0 6CI1 9¢'0 ¥8'CC 1€l 0 6111 6£°0 96'CC 001
LET 0 2881 6€°0 £00¢ 14} 0 6011 wo 1£°0C SL
Ice 0 6201 LLO L691 gece 0 §eol1 LLO 10°LT 0s
LEE 0 €16 LS'T 1L 823 0 606 LS'T 11 4 0¢
6 0 el 000 1oy 6 0 [84! 100 6Ly 00¢
YT 0 97l 0°0 wLe e 0 9IcI 900 (443 00¢
16 0 6STI1 670 Se'6T 86 0 431! 1€°0 geoe 001
LOT 0 evil LEO 99T LOT 0 evil LEO SI'Le SL
(4! 0 1011 9°0 wee 991 0 S601 09°0 09'¢€C 0S
VLT 0 9L6 Sl 0T’LT ¥9¢C 0 986 6¢'l LELI 4 0l
9t [4 [444! S0°0 Socy 6 0 874! 100 sor 00§
8¢ 0 (444! L00 06°0% %4 0 geel 00 14344 00€
L9 0 €811 LT0 So've L 0 8LIT 90 68'9¢ 00T
78 0 9911 6C0 coee SL 0 SLIT 8C0 89'7¢ SL
(14! 0 8CII 19°0 SE'6C 0cl 0 0cttT S¢S0 S¢S0 0S
91¢ 0 €01 Syl SI'eT SIc 0 3301 Se'l 8L°¢T 54 S
SIm bo nq [MAT b~ mar SIm ba nq [MAL b~ mar
IdSTSM sns1oa 1S ITSMO LdSM sns1dA LISMO u w

so[na Suryojedsip reaur| pue oneipenb jo uostredwo) g d|qel

pringer

As

M.R. C. Costa et al.

506

anu reaur] Surpuodsariod si1 uey) ‘A[oAnoadsar ‘asiom Jo [enba ‘1eyeq pewioyiad o[ni onerpenb oY) YOIYM UT SIOUBISUT JO Joquinu :sim ‘[be ‘nq

K[9A1100dsa1 ‘UOISIOA JeQUI] 9y} pue dnjerpenb oy} JoJ ‘NSl JSIOM Y} SNSIOA JUSWACIdWIT UBSW ([~ MAT pue b~ mar

9S1 0¢ 7901 09°0 6v'61 8¢l 9 9011 €50 Y6 611 0 T€11 LY'0 LS'LT aBerony
6 0¢ 1811 L00 st SC 0 geel €00 wree T 0 97cl 200 P8¢ 008
0L I 6LTT 1o 99T 19 0 6811 600 9%'8C 9¢ 0 141! 00 10°1¢€ 00¢
6¢l1 0 288! 0r°0 S6'LT Iel 0 6111 8¢°0 €661 (44! 0 8CI1 €€0 YL'1T 001
8v1 0 [{unt wo (A4 44! 0 9011 6€°0 09°LT €Cl 0 LTI Se0 €061 SL
9¢C 0 Y101 6L°0 8¢l 9I¢ 0 €01 LLO 0971 I1cc 0 6201 LLO €661 0s
¥9¢ 0 988 €9°1 65°6 86¢ 0 68 Sl 76°6 (U3 0 ore6 SS'l 901 4 0¢
08 L8 €801 10 LT'€T w C 90¢C1 L00 6'SE 81 0 [4x4! €00 0c6¢ 008
€8 9S TT1T LT'0 ¥9°€C IS 0 6611 01°0 86°¢E 8¢ 0 (444! SO0 8C9¢ 00¢
eel 4 STTT S0 ¥9'CC 28! 0 LETT €0 0T'9¢ S6 0 998! LT0 61°8C 001
6¢l 0 ITTT 8¥'0 06'61 4! 0 ceIt 90 S0'eT 801 0 (441! 8¢°0 8T'ST SL
G81 0 S901 SLO Y6'L1 P91 0 9801 L9°0 0¥°0¢ 0s1 0 0011 19°0 88'IC 0s
S6¢ 0 §S6 0s'1 Syel 6¢ 0 856 1 [44! 98¢ 0 796 vl 8¢l 4 0l
88 8¢l it 810 0¢'1e 8L €L 6601 00 €ele 1S [4 L6l1 cro 89°0% 00s
L8 011 €501 LT0 LETT 8L 8¢C 124! 00 1L¢e LE 0 gIct Iro 8L°6¢E 00¢
0¢l ¥S 9901 6v'0 16°1T 96 0 PSIT 620 (3 1L 0 6LT1 0’0 0Tve 001
oyl w 8901 8¥'0 LT'TT 96 0 291! 9¢'0 L9'6T LL 0 ELTT 0€’0 S0ce SL
VLI 81 80T €L0 L1T'0T €91 0 L80T 0L'0 686t LTT 0 €CIl 0 8¢'8C 0s
SLT Cl €96 SOl G891 0S¢ 0 0001 LS'T 1°0C 1394 0 L101 8¢l 69'1¢C Y4 S
SIm ba nq [MAT b~ mar SIm ba nq [MAT b~ mar SIm ba nq [MAT b~ mar
DLV Sns1A DIVO YV SnS10A YVO AANM Sns1oA AANMO u w

(ponunuoo) zs|qey

pringer

As

507

Efficient procedures for the weighted squared tardiness...

pringer

w
||

89'8S 0L'LS 19 €L'TS ¥8'8% 89°L¢E 0L's€ L¥'ST €8°7¢ 9T'LE a3eIoAy

1L89 SL'LY 66'S9 ¥8'19 L6'LS ST6v €9°8% IL6T SY'6¢€ 96'8% 00S

8819 8%'€9 eL'19 60°LS LY'¥S eLYY 01+t el £5°6¢ 19t 00€

¥6°€S 91°¢S 9L'1S SLLY 897 LEEE €E'TE 61°L S6'LE €eee 001

€5°0S 7861 0S8t 6871 IS+ ¥1'6T 718t TT9 €7'9¢ ¥1'6T SL

619t 18°St (4844 T 8€'TH 10'%C €8'CC L8€E 0€'6¢ 96'+T 0

S1'8¢ S0°8¢ ILLE L¥'9€ 9t'9¢ €L9T 9Tl 7’9 99°0¢ SS'LT ST 0T

86'IL 6S'1L 89°0L 10°89 08'19 LE'TS 1916 v1'ce 96'LE 98'IS 00S

66'89 9089 LL99 S6'79 ot'LS £6'8Y ¥0'8% 98°61 18°9¢ ch'8y 00€

8L'6S 09'8S 8596 0€'IS sy 9L'8¢ yI°LE 901 99°6¢ 6£'8¢€ 001

Y798 89S L8'TS 09'LYy 'St 0€'6¢ €ree SI'ET 09't€ ELYE SL

1T 01'1S 9 6% SO'SH 9°¢y $0'0€ 00'82 8911 e €€0¢€ 0S

S6' SS ceey 9¢°0% 0S'6€ 8L°CT L9°61 LTl 84°¢E €T€T ST o1

81°CL ¥SIL 08°1L 6S°0L 8419 LS'TS oIS £9°6T £8'%¢ IL18 008

9%°0L 08'69 L8'69 8089 818G ¥1'0S 18°8% €6'7C S6€E 8T'6¥ 00€

579 €1'¢€9 16'19 98'LS LS'6V 6Ty $9°6¢€ 69'1C ¥8'I¢€ €8°0F 001

€79 05°09 $0'6S A% TLov 6L°0% 9¢'LE 61'1C ¥8°0¢ 1L8¢ SL

¥6'8S 8696 94 rE'6v €TEY $59¢ LS'TE LO0T S8°0¢ 86'7€ 0S

€S'IS oS 16°8% 90° ¢y ssov 0£°0¢ IL4C 861 8€'CE 9L'6T ST S
J1VO avo Aanmo IdSTITISMO 1dSMO d1S IS aan aami aada u w

(JInsa1 3S10M 9} SNSIAA JuawdAoIdwr ueour) uostredwrod sopni Sunyoyedsiq € ajqeL

M.R. C. Costa et al.

508

161 9¢ [871 9¢ 9L01 [41! 9¢ ITTI 611 0 I€T1 P61 9C 0L01 oBetoAy
Y61 81 801 061 81 (444! el 81 8601 Y4 0 geel 961 81 9¢01 00s
061 I 6501 061 I 6501 8¢l I ITTT (44 0 80¢1 s6l I 7501 00¢
9¢l 0 1481! 43! 0 8ITT 8L 0 CLIT 1€l 0 6111 el 0 9111 00T
1! 0 9CI1 LTl 0 eIl 19 0 6811 891 0 801 Scl 0 gelt SL
98 0 Y911 98 0 Y911 6¢ 0 1Tl soc 0 94001 L6 0 €ST1 0S
09 0 0611 15Y 0 6611 €C 0 LTt LOE I (4 L 0 8LIT Y4 0T
6¥1 68 9101 wl S8 €201 oIl S8 6v01 ¥C 0 9TCI 671 S8 9101 00S
081 €S L101 81 €S S101 8¢l 39 6501 6¢ 0 1ecel 9Ll €S 1201 00¢
861 [4 0501 161 [4 LSOT 34! [4 SOTT 901 0 441! €6l [4 Ssor1 001
LLI 0 €L01 781 0 9901 8¢€1 0 491! 801 0 (444! €81 0 L901 SL
34! 0 LOTIT 6Vl 0 1011 LO1 0 evll ILT 0 6L01 Eid! 0 Y011 0s
611 0 I€ll SOl 0 SvIl 08 0 OLTT L9C 0 €86 Izt 0 6Cl1 4 o1
ST 9¢l 666 SoI1 9¢l 6001 88 9¢l 9201 Sy 0 S0zl Y01 9¢l 0101 00§
84! €01 9001 8¢l €01 6001 1t €01 9201 6% 0 1oct 8¢l €01 6001 00¢
IL1 w LEOT L91 [44 1701 Lyl w 1901 L 0 8LIT IL1 (474 LEOT 001
61 8¢ 0€01 S8l 8¢ LEOT 091 8¢ 2901 1L 0 6LIT 881 8¢ €01 SL
41! S €901 SLI S 0L01 S91 S 0801 9Tl 0 11! S8l S 0901 0S
L91 4 1801 6S1 4 6801 €61 (4 S601 661 0 1501 Sol 4 €501 94 S
SIm ba nq SIm ba nq SIm ba nq SIm ba nq SIm ba nq
d/AIS IS dan aamd aad u w

son Suryojedsip 1oyjo oy pue DIV Ueamidq uostredwo) ¢ ajqel

-
)
50
R
-t
(=9
7
&l

509

Efficient procedures for the weighted squared tardiness...

pringer

n
Sl
sampadoid 1910 Ay Jo Yoea uey) ‘A[PANoadsar ‘asiom Jo [enba ‘1e19q pauriojiad o[ni DLV Y sown Jo Ioquinu :sim ‘7ba ‘nq
¥1¢ 199 9LE €61 9 9ty 8yl €8¢ 61¢ 801 L9S SLS a3eroAy
LTC 0ss ELY 691 [USY 1§39 06 0ss 019 £y 0ss LS9 00s
€1c 339 8y 891 14Y PeS 96 Bi%Y 809 €L Bi%Y 1€9 00¢
LET L9 Ive ILT 159 8¢y LOT 9¢9 LOS 96 879 9¢s 001
0lI¢ SeEL S0 16l 089 6L¢E 9¢l 9%9 89v orl w9 89v SL
€91 98 1874 091 69L Ice Pel 00L o1y 4! 969 1887 0S
L8 6501 01l 8II 156 181 9Tl LY8 LLT LTl S8 8LC 44 0T
€5¢ 6vS 8y €0¢ LYS 00S SSl1 Ivs 143 Sy 339 0L9 00S
(44 6vS 69v S61 149 LOS LET ws ILS 6S £es 869 00€
(44 209 96¢ 1€C 6SS 09¥ So1 49 09¢ 6¢l (443 686 001
61¢ w9 68¢ LLT 019 13914 44 Ei%Y €9¢ vel LES 6LS SL
10T 00L 6v¢ 6L1 659 ly 091 609 8% vl ¥8¢ 0Zs 0s
SS1 698 9TC 91 YLL 141 091 9L9 1484 (43! €99 Sov 4 01
8CC €19 60v (44 (U%Y 1194 144 LTS 66Y 0L 0Ly 01L 00$
9¢¢ S9¢ 6vy 192 1233 SSv ¥1¢ (443 1489 LS £8Y 0IL 00¢
0ye 129 w9y 01¢c 9¢s ¥0S 0S1 91¢ 8¢S Y01 68Y LS9 001
8¢€C 999 LSY 90¢ €es IS (44! €0S S09 L8 6LV ¥89 SL
LET 06S €y 0¢ 539 cov S91 S0s 08¢ ol €8y S¥9 0S
SIc 00L (323 11c 99 £6¢ 091 9¢¢ YES CLT 9Cs (433 Y4 S
SIm b2 nq SIM 1ba nq SIm 1ba nq SIm 1ba nq
qVO AaNmO LdS™MTISMO LdSMO u w

(ponunuoo) t 3|qey

510 M.R. C. Costa et al.

Thus, heuristics that specifically take into account the quadratic nature of the
objective function perform significantly better than their counterparts that were
designed for a linear problem. As such, the linear dispatching rules will not be con-
sidered again in the remainder of this paper.

As previously mentioned, it was to be expected that the quadratic rules, which
specifically take the squared nature of the objective function into account, would
perform better than the linear rules. The results in Table 2, and the statistical tests,
show that the difference in performance is quite large, and statistically significant.
This is most relevant from a managerial point of view. Indeed, the results clearly
show that, when dealing with a quadratic tardiness measure, managers should use a
rule that is suitably adapted to such a measure, instead of simply relying on proce-
dures developed for a linear problem.

We now compare the general dispatching heuristics and the quadratic rules.
Table 3 gives the mean ivw of each procedure; ofv,,,,, is now the worst result among
all the heuristics included in this table. In Table 4, we provide the number of times
the QATC rule performed better (btr), equal (eql) or worse (wrs) than each of the
other procedures. In both tables, the overall average (average) across all instances is
also given.

The results in Table 3 show that, among the general rules, EDD, SLK and SLK/P
perform better than EWDD and MDD. However, and as expected, the general rules
are considerably outperformed by the quadratic dispatching heuristics. Once more,
this result is useful for managers. Though simple and general rules may seem attrac-
tive, their performance is quite inferior to that of the specialized and more sophisti-
cated quadratic procedures.

The QWSPT is inferior to the remaining quadratic rules. Again, this is to be
expected, since the other quadratic procedures essentially use the QWSPT priority
when a job is late (or on time), but then adjust this priority value as the slack of the
job increases.

The overall best performance is provided by the QATC rule, closely followed by
the QAR procedure. Indeed, the QATC heuristic not only provides the largest mean
ivw, but also provides better results for a large number of instances.

A test was performed to determine if the differences between the QATC rule and
each of the other procedures are statistically significant. As before, the non-para-
metric Wilcoxon signed-rank test was selected, and the significance level was set
at 0.05. Again, this test was applied to each pair of heuristics tested (QATC versus
each of the other procedures), and for each combination of the number of jobs n
and the number of machines m. Holm’s procedure was once more used to take into
account the multiple comparisons.

The tests showed that the differences between the QATC heuristic and the general
rules (EDD, EWDD, MDD, SLK and SLK/P) were always statistically significant.
The identical performance hypothesis was also always rejected when comparing
with the QWSPT and QWSLK_SPT heuristics. In what regards the QWMDD and
QAR heuristics, the differences were not statistically significant in only about 11%
and 22% of the cases, respectively. More detailed information about the statistical
tests, and their results, are available in the electronic supplementary material.

@ Springer

Efficient procedures for the weighted squared tardiness. .. 511

The results in Tables 3 and 4, and the statistical tests, show that the QATC is the
best performing dispatching heuristic, with the QAR rule not too far behind. Indeed,
the results show that the QATC significantly outperforms all the other heuristics,
with the exception of QAR, for most or all of the instance sizes. The QAR rule is
not statistically different from QATC in about 22% of the problem sizes, but is still
significantly outperformed in the remaining instances.

The results concerning the relative performance of the QATC and QAR rules are
the opposite of those previously obtained for the single machine problem (Valente
and Schaller 2012). Indeed, in the single machine environment the QAR rule was
somewhat superior to QATC. This shows the importance of comparing procedures
for each production environment, instead of simply assuming that the heuristic that
performed best for another setting will also perform best in a different environment.

The heuristic procedures were all extremely efficient, and therefore a table with
computational times is omitted, since most would be quite small. For the largest
problem size (500 jobs and 20 machines), and on average, the general rules required
less than 0.01 s to solve a problem. The QWSPT, QWSLK_SPT and QWMDD rules
needed less than 0.02 s, while the QATC and QAR took about 0.04 s.

5.5 Comparison of the improvement procedures

Table 5 provides, for each improvement procedure, the mean relative improvement
over the QATC rule (imp), as well as the number of times a better result is achieved
(btr). The overall average (average) across all instances is also given.

The MS method is outperformed by the other improvement procedures. Indeed,
not only does it provide the lowest relative improvement, but it also finds a better
result a much lower number of times. The remaining procedures, on the other hand,
manage to improve the QATC result on nearly all, and in some cases actually all, of
the test instances.

In what regards the mean relative improvement imp, procedures with and without
MS are quite close. That is, NEH and MS+NEH provide quite similar imp values,
as do the pairs INS and MS+INS, and NEH+INS and MS+NEH+INS. The applica-
tion of both NEH and INS provides a slightly higher imp than just using INS. Also,
the mean relative improvement given by solely applying INS is slightly higher than
that given by NEH alone.

For the MS procedure, the performance decreases clearly as the number of jobs
increase. The effect of the number of machines is not as clear. The number of times
a better solution is reached increases with the number of machines. However, the
mean relative improvement decreases with the number of machines for the small-
est number of jobs (25), but increases with m for the two largest job sizes (300 and
400), and increases then decreases for the remaining values of the number of jobs.

In what regards the other improvement procedures, the number of times a bet-
ter solution is found increases with the number of machines. The mean relative
improvement is usually first increasing, then decreasing, with the number of jobs.
As the number of machines increases, the switching point seems to increase. That is,

@ Springer

M.R. C. Costa et al.

512

QNI DLV 2y} JO Jey) uey) 19)32q I[nsai & sapiaoid aipasoid juswosordwr ue sow Jo Ioquunu :1q

91 DLV 24} 1940 Juswasoidwr aane[ar ueowr :dwr

yeel 9981 yeel 6981 11! EL'LY 19! LL'LY yeel or'er ¥l SLey ISL SI'9 o3erony
[4¥4! 86'1S [4xq! €0'CS [4x4! 000§ [4X4! ¥1°0S [4x4! 90°LY [4x4! yoLY S99 Ly'c 00S
6¥Cl 86'¢S 6¥Cl €0'vS 6vcl 81°CS 6vCl 1e¢cs 6¥Cl £e'8y 6¥Cl 2414 9L e 00¢
0scI 05°0S 0S¢l 508 0S¢l seoy 0s¢I ey 0s¢I 10v¥ 0S¢l 0y 866 €9 001
0scI Sv'8¥ 0scl €78y 0scl Sv'Ly 0scl LY'LY 0scl 68’11 0scl 16°'1% 94001 0T’L SL
0S¢l STyy 0ScI ([44 0scI ey 0scl Sv'ey 0S¢l 96'LE 0scl 96°LE Y011 L¥'8 0S
0S¢l ov've 0scl yeve 0sCl e 0scl S6'ce 0scl ¥8'6C 0scl °6'6C L9T1 01 94 0C
So11 er'Sy S8 6¥' St So11 06°ct So11 00'v¥ So11 18°1% So11 ocey [i4 LS'T 00S
L6T1 80°0S L611 91°0S L61T L8y L611 98'8¥% L6l 69°Sy L611 [AR% 999 94 00€
8¢l LE'SS 8¥Cl1 18499 8¢l EIa4Y 8¥CI (A% 8¢l 9¢'61 8¢l 89'6% LO8 L9 001
0S¢l LL'YS 0ScI IL'¥S 0scl (4539 0scl 16'¢S 0S¢l 6781 0scI SL'8Y 868 L9’L SL
0S¢l 0s'cs 0scl S9Y4Y 0S¢l 00CS 0S¢l s 0scl 00'9% 0scl yeor €L6 LE6 0S
0scI 18494 0scl LY'S¥ 0scl 0°SY 0scl 90°St 0S¢l 6£°6¢ 0scl 1L6¢ 9801 elel 94 01
14081 6L°LE PITI 18°LE 1491! 659¢ 1481! LS9¢ PITI yese PITI LESE 001 LT°0 00S
LYT1 6S°CY LYT1 €9y 540! oS’ 1Y LYT1 8¢S 1 LYT1 £9°6¢ LYT1 6L'6¢ 60¢ 290 00¢
80¢1 86'0S 80CI 60°1S 80¢1 0¥°0S 80¢I 9%°08 80C1 LY'9¥ 80C1 ULy Ses 6L'¢ 001
[444! SN4Y el 1S (444! 1816 [444! 88'1¢ [444! ov'LY el y1'8% €09 1S SL
Svel Ivs 874! 0Tvs 9741 EL'ES S 741 oL'es Syl 19°8% 874! 1oy LTL 06°L 0S
8¥CI G8'0S 8YC1 0608 8YCl1 L9°0S 8¥Cl 508 8¥CI 00°Sy 8YC1 86°CY 606 yeel 94 S
nq dur nq dur nq dur nq duwr nq dur nq dur nq duwr
SNI+HAN+IWIA SNI+HAN SNI+INIA SNI HAN+AIN HAN WIN u w

uostredwods sampasold juowosordw] g ajqel

pringer

As

Efficient procedures for the weighted squared tardiness... 513

the number of jobs at which the mean relative improvement changes from increasing
to decreasing is higher when there are more machines.

The effect of the number of machines on the mean relative improvement
depends on the number of jobs. As n increases, the mean relative improvement
switches from decreasing, to increasing then decreasing, to finally increasing, as
the number of machines increases. It should be pointed out, however, that the
mean relative improvement is always quite high. For instance, it is usually higher
than 40% for the NEH and MS+NEH procedures, and quite often higher than
50% for the procedures that include INS.

A statistical test was performed to determine if the improvement provided by
each of the improvement procedures, when compared with the QATC rule, is sta-
tistically significant. The Wilcoxon signed-rank test was selected, with a signifi-
cance level of 0.05.

This test was applied to all pairs consisting of one improvement procedure and
the QATC rule (e.g., MS vs. QATC, NEH+INS vs. QATC), and for each combi-
nation of number of jobs n and the number of machines m. Holm’s procedure was
once more used to take into account the multiple comparisons. All these compari-
sons were statistically significant. Thus, all the improvement procedures provide
results that are significantly better than the QATC rule.

A second statistical test was performed in order to compare the improvement
procedures among themselves. As usual, we conducted a Wilcoxon signed-rank
test, with a significance level of 0.05. In this second test, we compared the fol-
lowing eight pairs of procedures: NEH versus MS; INS versus MS; INS versus
NEH; MS+NEH versus NEH; MS+INS versus INS; NEH+INS versus NEH,
NEH+INS versus INS and MS+NEH+INS versus NEH+INS. As before, the tests
are applied for each combination of number of jobs n and the number of machines
m, and Holm’s procedure is used to take into account the multiple comparisons.

The tests showed that the differences in pairs NEH versus MS, INS versus MS,
INS versus NEH and NEH+INS versus NEH are, with a single exception, statisti-
cally significant. Therefore, in what concerns the standalone methods, both NEH
and INS are superior to MS, and INS outperforms NEH. The superiority of INS
when compared with NEH is again stressed by the fact that NEH+INS is statisti-
cally better than NEH.

Procedure NEH+INS was also always statistically different from INS, so there
are benefits in applying NEH in addition to INS. On the contrary, there seem to
be little to no benefits in adding MS to the other methods. Indeed, MS+NEH was
not statistically different from NEH in about 40% of the cases. Also, only about
22% and 17% of the cases yielded significant differences in the pairs MS+INS
versus INS and MS+NEH+INS versus NEH+INS, respectively.

The results of the statistical tests therefore show that, in terms of solution
quality, the procedures essentially can be divided in the following four ranks (in
descending order of performance): (1) (MS+)NEH+INS; (2) (MS+)INS; (3)
(MS+)NEH; (4) MS. Detailed information about these statistical tests, and their
results, are available in the electronic supplementary material.

Table 6 provides the mean relative improvement over the QATC rule (imp), as
well as the number of times a better result is achieved (btr), for each combination

@ Springer

514

M.R. C. Costa et al.

Table 6 Improvement procedures comparison, for n=300 and m=10

T R MM NEH MM+NEH INS
imp btr imp btr imp btr imp btr
0.2 0.2 15.50 41 78.29 50 74.43 50 85.63 50
0.4 242 10 94.13 50 93.92 50 99.59 50
0.6 2.78 8 99.79 50 99.69 50 100.00 50
0.8 0.00 0 80.00 40 80.00 40 80.00 40
1.0 0.00 0 14.00 7 14.00 7 14.00 7
0.4 0.2 8.59 39 51.46 50 48.46 50 54.89 50
0.4 3.98 25 59.84 50 58.31 50 64.86 50
0.6 0.19 3 71.32 50 71.14 50 80.16 50
0.8 0.02 1 88.32 50 88.23 50 97.70 50
1.0 0.00 0 96.40 50 96.40 50 99.99 50
0.6 0.2 7.68 49 37.40 50 36.06 50 38.85 50
0.4 3.94 32 39.43 50 39.45 50 41.95 50
0.6 1.36 18 41.72 50 41.76 50 45.13 50
0.8 0.46 4 41.17 50 41.04 50 46.42 50
1.0 0.04 1 38.99 50 38.98 50 44.17 50
0.8 0.2 5.76 49 26.97 50 26.72 50 27.65 50
0.4 2.66 41 26.81 50 26.69 50 27.71 50
0.6 0.93 27 25.54 50 25.56 50 26.56 50
0.8 1.02 23 25.36 50 25.23 50 26.50 50
1.0 0.31 13 22.51 50 22.59 50 24.09 50
1.0 0.2 2.08 44 20.23 50 19.99 50 20.45 50
0.4 1.80 40 20.38 50 20.36 50 20.59 50
0.6 0.95 31 18.56 50 18.56 50 19.06 50
0.8 0.66 27 17.92 50 17.98 50 18.32 50
1.0 0.55 29 16.73 50 16.72 50 17.27 50
Average 2.55 22 46.13 48 45.69 48 48.86 48
T R MM+INS NEH+INS MM+NEH+INS
imp btr imp btr imp btr
0.2 0.2 85.69 50 85.85 50 85.69 50
0.4 99.59 50 99.58 50 99.58 50
0.6 100.00 50 100.00 50 100.00 50
0.8 80.00 40 80.00 40 80.00 40
1.0 14.00 7 14.00 7 14.00 7
0.4 0.2 54.57 50 56.20 50 55.62 50
0.4 64.62 50 66.37 50 65.98 50
0.6 80.20 50 80.91 50 80.82 50
0.8 97.70 50 97.68 50 97.68 50
1.0 99.99 50 99.99 50 99.99 50

@ Springer

Efficient procedures for the weighted squared tardiness... 515

Table 6 (continued)

T R MM-+INS NEH+INS MM+NEH+INS
imp btr imp btr imp btr
0.6 0.2 38.39 50 40.64 50 40.28 50
0.4 41.64 50 4422 50 44.04 50
0.6 44.83 50 48.20 50 48.07 50
0.8 46.31 50 49.18 50 49.14 50
1.0 44.18 50 46.28 50 46.28 50
0.8 0.2 27.49 50 29.34 50 29.35 50
0.4 27.26 50 29.64 50 29.62 50
0.6 26.17 50 28.63 50 28.68 50
0.8 26.33 50 28.62 50 28.64 50
1.0 24.01 50 26.03 50 25.94 50
1.0 0.2 20.26 50 21.82 50 21.71 50
0.4 20.33 50 22.03 50 22.12 50
0.6 19.04 50 20.40 50 20.40 50
0.8 18.21 50 19.76 50 19.75 50
1.0 17.23 50 18.69 50 18.69 50
Average 48.72 48 50.16 48 50.08 48

imp: mean relative improvement over the QATC rule

btr: number of times an improvement procedure provides a result better than that of the QATC rule

of the tardiness factor and the range of due dates parameters. The overall average
(average) across all instances is also given. This table refers to instances with 300
jobs and 10 machines; nonetheless, results are similar for other instance sizes.

The mean relative improvement is usually decreasing with the tardiness factor
T. We remark that the mean relative improvement can be quite large, and some-
times even equal to the maximum possible value of 100%, when the tardiness fac-
tor is low. These large relative improvements often correspond to relatively small
absolute improvements. Indeed, few jobs will be tardy when T is low, resulting
in relatively small objective function values. The improvement procedures can
greatly reduce even further these small values, and often they even generate an
optimal solution with no tardy jobs. The effect of the range of due dates R on the
mean relative improvement, however, is not so clear-cut. Indeed, the mean rela-
tive improvement is often increasing in R when the tardiness factor is equal to 0.4
or 0.6, but decreasing when T is 0.8 or 1.0.

Table 7 provides the computational time (in seconds) required to run the
improvement procedures, including the initial application of the QATC rule,
when appropriate (i.e. when the procedure does not include MS). The overall
average (average) across all instances is also given. Procedure MS is extremely
efficient, requiring only a little over half a second for the largest instances in the
problem set. The NEH and MS+NEH methods are also quite fast. In this regard,

@ Springer

516 M.R. C. Costa et al.

Table 7 Computational times (in seconds)

m n MM NEH MM+NEH INS MM+INS NEH+INS MM+NEH+INS
5 100 0.0017 0.0034 0.0046 0.1135 0.1216 0.0844 0.0879
300 0.0147 0.0650 0.0767 42868 4.2941 3.0392 3.1034
500 0.0399 0.2878 0.3293 23.6987 23.5554 16.3991 16.1620
10 100 0.0064 0.0062 0.0118 02312 0.2197 0.1821 0.1800
300 0.0500 0.1199 0.1734 7.6485 7.6100 5.9519 6.0529
500 0.1355 0.5217 0.6811 43.1620 42.9692 31.7147 33.1299
20 100 0.0269 0.0157 0.0343 0.4086 0.4271 0.3266 0.3577
300 0.2101 02538 0.4538 14.1708 14.3808 12.2796 12.3444
500 0.5664 1.0774 1.6752 85.0410 86.6824 74.7569 74.1412
Average 0.1168 0.2612 0.3822 19.8624 20.0289 16.0816 16.1733

NEH is more computationally efficient than MS+NEH, particularly for instances
with a larger number of machines.

The four improvement procedures that include the insertions local search
require a much higher computational time. In the context of these four proce-
dures, it should first be remarked that the presence of MS changes runtimes only
very slightly. Indeed, the times required by INS and MS+INS, or by NEH+INS and
MS+NEH+INS, are quite similar.

However, and secondly, the inclusion of NEH reduces the computational effort.
In fact, NEH+INS is faster than INS alone, and the same is true when comparing
MS+NEH+INS with MS+INS. Therefore, the time required by the initial applica-
tion of NEH is more than offset by the computational savings it allows when per-
forming the insertion local search.

The results regarding the mean relative improvement and the computation times
can be combined to derive the non-dominated methods. Indeed, MS emerges as the
fastest procedure, but also the one which provides the smallest improvement. Next,
NEH is the second fastest, and its improvement is superior to that of MS. Finally,
NEH+INS (and also MS+NEH+INS) provides the largest improvement, but is also
slower than NEH or MS. These results provide a guide to decision makers on the
method of choice. Indeed, as the time available to generate a solution increases, the
decision maker can switch from QATC, to MS, then NEH, and finally NEH+INS.

Improvement procedures MS+NEH (slower than NEH) and INS and MS+INS
(inferior to NEH+INS and MS+NEH+INS in both solution quality and runtime), on
the other hand, are dominated. As such, in the next subsection, we will only consider
the improvement procedures MS, NEH and NEH+INS, as well as the QATC rule
without any improvement.

5.6 Comparison with optimal results
The comparison with optimal results is conducted on another problem set, contain-

ing instances with only 8, 10 and 12 jobs. These instances were otherwise generated
as previously described in Subsection 4.1, and 50 problems were created for each

@ Springer

Efficient procedures for the weighted squared tardiness... 517

Table 8 Comparison with optimum results

m n ivh n_opt

QATC MM NEH NEH+INS QATC MM NEH NEH+INS

5 8 34.05 20.93 6.67 1.68 13 41 453 935
10 39.22 2749 1024 2.87 2 8 225 732
12 4238 3257 1333 454 1 1 124 552
10 8 25.82 14.68 3.69 075 11 41 473 967
10 30.37 19.24 562 148 2 252 762
12 33.62 23.30 8.17 220 0 0 115 533
20 8 19.89 10.84 201 0.0 4 38 501 950
10 21.96 13.31 3.03 0.80 1 4 255 750
12 25.35 16.29 4.15 1.26 0 0 143 529
Average 30.29 19.85 632 1.79 4 15 282 746

ivh: mean relative improvement provided by the optimum over a heuristic procedure

n_opt: number of times a heuristic finds the optimal solution

combination of n, m, T and R. The optimal solutions were calculated using com-
plete enumeration. As previously mentioned, only the QATC dispatching rule, as
well as the non-dominated improvement procedures MS, NEH and NEH+INS, are
compared with optimal solutions.

Table 8 gives the mean relative improvement provided by the optimum over each
heuristic approach (ivh), as well as the number of times each procedure finds an
optimal solution (n_opt). The overall average (average) across all instances is also
given.

The performance of the QATC rule is somewhat poor. Indeed, this rule rarely
finds the optimal solution, and its results are usually 20% to 30% above the optimum
for instances with 10 and 20 machines. For instances with 5 machines, this deviation
increases to close to 40%. The MS procedure provides better results, but it is still
around 10% to 30% above the optimum.

The performance of the NEH method is much better. Indeed, for instances with
20 and 10 machines, the mean relative improvement given by the optimum is under
about 4% and 8%, respectively. For instances with 5 machines, however, that mean
relative improvement can exceed 10%.

The NEH+INS procedure provides very good results. Indeed, it achieves an opti-
mal solution in about 40% to 75% of the instances. Also, the mean relative improve-
ment given by the optimum is below about 4.5%, and for some instance sizes below
1%.

The performance of the procedures, when compared with the optimal results,
somewhat degrades as the number of jobs increases. However, and particularly in
what regards the mean relative improvement provided by the optimum, the perfor-
mance greatly improves as the number of machines increases. Indeed, all the proce-
dures, including the QATC rule without any improvement method, are closer to the
optimal solution when the number of machines is higher.

@ Springer

518 M.R. C. Costa et al.

Table9 Comparison with optimum results, for n=10 and m=10

T R ivh n_opt
QATC MM NEH NEH+INS QATC MM NEH NEH+INS
0.2 02 57.69 3633 1587 5.07 0 0 5 22
04 5825 38.57 1381 295 0 0 31
0.6 58.80 4555 1428 549 0 0 12 29
0.8 56.67 49.53 1576 277 0 0 35
1.0 46.60 35.69 9.12 093 0 0 13 38
0.4 02 4001 22.18 6.84 1.85 0 0 9 30
04 40.53 23.00 587 2.09 0 0 9 28
0.6 3044 19.52 6.83 215 0 0 9 27
0.8 30.62 19.86 542 1.56 0 0 13 29
1.0 3049 21.52 472 093 0 0 12 35
0.6 02 31.39 14.85 355 1.07 0 0 11 31
04 30.16 14.73 392 123 0 1 6 29
0.6 2420 14.29 295 044 0 0 15 38
0.8 2254 13.53 430 1.27 0 0 8 27
1.0 19.93 13.08 332 0.90 0 0 7 24
0.8 02 2096 10.13 356 0.71 0 0 10 33
04 2084 10.78 257 0.67 0 0 8 29
0.6 19.54 11.77 296 0.63 0 0 10 34
0.8 1847 9.83 1.86 0.74 0 0 16 32
1.0 16.73 11.16 1.93 0.6l 0 0 12 31
1.0 0.2 18.06 8.62 2.80 0.69 0 1 15 33
04 1761 9.46 220 037 0 0 8 28
0.6 1742 9.40 2.17 044 2 2 10 33
0.8 16.30 8.50 191 0.80 0 0 11 28
1.0 1511 9.06 1.97 057 0 0 11 28
Average 30.37 19.24 562 148 0 0 10 30

ivh: mean relative improvement provided by the optimum over a heuristic procedure

n_opt: number of times a heuristic finds the optimal solution

The results obtained through the comparison with optimal solutions, and though
it must be remarked that the instance sizes are quite distinct, are somewhat in line
with those described when analyzing the improvement procedures. For instance, the
QATC rule is sometimes up to 40% above the optimum results, while the NEH+INS
improvement procedure is quite close to optimality. This is in line with the close to
50% relative improvement that the NEH+INS procedure provides for many of the
instance sizes on which the improvement methods were analyzed. Again, however,
we stress that the sizes of the instances used in the comparison with optimal results,
and in the analysis of the improvement procedures, are very different.

The NEH+INS method can provide very good results in relatively short compu-
tational times. For quite large instances, in which this procedure may take excessive

@ Springer

Efficient procedures for the weighted squared tardiness... 519

time, the NEH improvement method can still provide reasonable quality solutions in
an adequate computational time.

Table 9 provides the mean relative improvement provided by the optimum (ivh),
as well as the number of times an optimal solution is found (n_opt), for each com-
bination of the tardiness factor and the range of due dates parameters. The overall
average (average) across all instances is also given. This table refers to instances
with 10 jobs and 10 machines; however, results are similar for other instance sizes.

The performance of the procedures nearly always improves as the tardiness factor
T increases. The effect of the range of due dates R on the mean relative improvement
given by the optimum, however, is not so clear. The performance of the MS method
tends to improve as the range of due dates increases. For the other procedures, how-
ever, this effect is not always present.

6 Conclusion

In this paper, we considered the permutation flowshop scheduling problem with a
weighted squared tardiness objective function. Our focus was on identifying efficient
procedures, capable of quickly solving even medium or large instances.

In this context, we presented several dispatching heuristics. These included
general rules, heuristics developed for the linear problem, and heuristics suitably
adapted to take the squared objective into account. Most of these rules were pre-
viously used in other production settings, and they were suitably adapted to the
flowshop environment. Also, preliminary experiments were performed to determine
an adequate value for a parameter required by some of the heuristics.

Then, we presented several improvement procedures, which use one or more of
three techniques: multiple sequence dispatching (MS), the widely used NEH proce-
dure, and insertions-based local search (INS). These procedures were applied to the
best performing dispatching rule (QATC).

The results showed that the quadratic heuristics clearly outperform their linear
counterparts, as well as the general rules. Therefore, when dealing with a squared
tardiness environment, it is important to use rules that specifically address the quad-
ratic nature of the objective function, instead of relying on simple and general rules,
or on procedures developed for the linear problem.

The computational results additionally showed that all improvement procedures
significantly improve upon the QATC solution. The MS, NEH and NEH+INS pro-
cedures emerge as non-dominated, when taking both solution quality and runtime
into account. The QATC, MS and NEH procedures are quite efficient, and can be
applied to even quite large instances. The NEH+INS method can provide somewhat
higher quality solutions, but its computational requirements may be excessive for
very large instances. The results thereby provide a guide to decision makers on the
method of choice (dispatching rule and/different improvement procedures), given
the time available to obtain a solution.

Future research may involve the development of lower bounds and branch-and-
bound algorithms, able to provide optimum solutions more efficiently than complete

@ Springer

520 M.R. C. Costa et al.

enumeration. Another possibility is to consider metaheuristics, incorporating the
QATC rule and the NEH or NEH+INS improvement procedure, in order to try to
achieve higher quality solutions. Finally, the addition of features such as release
dates or setup times is yet another option for further work.

Acknowledgements The authors would like to thank the two anonymous referees, and the associate edi-
tor, for their helpful comments and suggestions, which have improved this paper.

References

Alidaee B, Ramakrishnan KR (1996) A computational experiment of COVERT-AU class of rules for
single machine tardiness scheduling problem. Comput Ind Eng 30:201-209

Baker KR, Bertrand JWM (1982) A dynamic priority rule for scheduling against due-dates. J] Op Manage
3:37-42

Dalfard VM, Ardakani A, Banihashemi TN (2011) Hybrid genetic algorithm for assembly flow-shop
scheduling problem with sequence-dependent setup and transportation times. Tehnicki Vjesnik
18:467-504

Fernandez-Viagas V, Framinan JM (2015a) NEH-based heuristics for the permutation flowshop schedul-
ing problem to minimise total tardiness. Comput Op Res 60:27-36

Fernandez-Viagas V, Framinan JM (2015b) A new set of high-performing heuristics to minimise flow-
time in permutation flowshops. Comput Op Res 53:68-80

Fernandez-Viagas V, Leisten R, Framinan JM (2016) A computational evaluation of constructive and
improvement heuristics for the blocking flow shop to minimise total flowtime. Expert Syst Appl
61:290-301

Fernandez-Viagas V, Ruiz R, Framinan JM (2017) A new vision of approximate methods for the permu-
tation flowshop to minimise makespan: state-of-the-art and computational evaluation. Eur J Op Res
257:707-721

Fernandez-Viagas V, Valente JMS, Framinan JM (2018) Iterated-greedy-based algorithms with beam
search initialization for the permutation flowshop to minimise total tardiness. Expert Syst Appl
94:58-69

Framinan JM, Gupta JND, Leisten R (2004) A review and classification of heuristics for permutation
flow-shop scheduling with makespan objective. J Op Res Soc 55:1243-1255

Gongalves TC, Valente JMS, Schaller JE (2016) Metaheuristics for the single machine weighted quad-
ratic tardiness scheduling problem. Comput Op Res 70:115-126

Hasija S, Rajendran C (2004) Scheduling in flowshops to minimize total tardiness of jobs. Int J Prod Res
42:2289-2301

Hoitomt DJ, Luh PB, Max E, Pattipati KR (1990) Scheduling jobs with simple precedence constraints on
parallel machines. IEEE Control Syst Mag 10:34—40

Holsenback JE, Russell RM, Markland RE, Philipoom PR (1999) An improved heuristic for the single-
machine, weighted-tardiness problem. Omega 27:485-495

Jackson JR (1955) Scheduling a production line to minimize maximum tardiness, Management Science
Research Project, Research Report 43. University of California, Los Angeles

Kanet JJ, Li XM (2004) A weighted modified due date rule for sequencing to minimize weighted tardi-
ness. J Sched 7:261-276

Karabulut K (2016) A hybrid iterated greedy algorithm for total tardiness minimization in permutation
flowshops. Comput Ind Eng 98:300-307

Luh PB, Hoitomt DJ (1993) Scheduling of manufacturing systems using the Lagrangian relaxation tech-
nique. IEEE Trans Autom Control 38:1066—-1079

Nawaz M, Enscore EE Jr, Ham I (1983) A heuristic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega 11:91-95

Neufeld JS, Gupta JND, Buscher U (2016) A comprehensive review of flowshop group scheduling litera-
ture. Comput Op Res 70:56-74

Osman IH, Belouadah H, Fleszar K, Saffar M (2009), Hybrid of the weighted minimum slack and short-
est processing time dispatching rules for the total weighted tardiness single machine scheduling

@ Springer

Efficient procedures for the weighted squared tardiness... 521

problem with availability constraints. In: Paper presented at the MISTA 2009—multidisciplinary
international conference on scheduling: theory and applications, Dublin, Ireland

Ow PS, Morton TE (1988) Filtered beam search in scheduling. Int J Prod Res 26:35-62

Panwalkar SS, Iskander W (1977) Survey of scheduling rules. Op Res 25:45-61

Potts CN, van Wassenhove LN (1991) Single-machine tardiness sequencing heuristics. IIE Trans
23:346-354

Reza Hejazi S, Saghafian S (2005) Flowshop-scheduling problems with makespan criterion: a review. Int
J Prod Res 43:2895-2929

Ruiz R, Maroto C (2005) A comprehensive review and evaluation of permutation flowshop heuristics.
Eur J Op Res 165:479-494

Ruiz R, Stiitzle T (2008) An Iterated Greedy heuristic for the sequence dependent setup times flowshop
problem with makespan and weighted tardiness objectives. Eur J Op Res 187:1143-1159

Schaller J, Valente JMS (2012) Minimizing the weighted sum of squared tardiness on a single machine.
Comput Op Res 39:919-928

Schaller J, Valente JMS (2018) Efficient heuristics for minimizing weighted sum of squared tardiness on
identical parallel machines. Comput Ind Eng 119:146-156

Smith WE (1956) Various optimizers for single-stage production. Naval Res Logist Q 3:59-66

Sun XQ, Noble JS, Klein CM (1999) Single-machine scheduling with sequence dependent setup to mini-
mize total weighted squared tardiness. IIE Trans 31:113-124

Sun Y, Zhang C, Gao L, Wang X (2011) Multi-objective optimization algorithms for flow shop schedul-
ing problem: a review and prospects. Int J Adv Manuf Technol 55:723-739

Taguchi G (1986) Introduction to quality engineering: designing quality into products and processes.
Asian Productivity Organization, Tokio

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Op Res 64:278-285

Thomalla CS (2001) Job shop scheduling with alternative process plans. Int J Prod Econ 74:125-134

Valente JMS, Alves RAFS (2008) Heuristics for the single machine scheduling problem with quadratic
earliness and tardiness penalties. Comput Op Res 35:3696-3713

Valente JMS, Schaller JE (2012) Dispatching heuristics for the single machine weighted quadratic tardi-
ness scheduling problem. Comput Op Res 39:2223-2231

Vallada E, Ruiz R (2010) Genetic algorithms with path relinking for the minimum tardiness permutation
flowshop problem. Omega 38:57-67

Vallada E, Ruiz R, Minella G (2008) Minimising total tardiness in the m-machine flowshop problem: a
review and evaluation of heuristics and metaheuristics. Comput Op Res 35:1350-1373

Vepsalainen APJ, Morton TE (1987) Priority rules for job shops with weighted tardiness costs. Manage
Sci 33:1035-1047

Volgenant A, Teerhuis E (1999) Improved heuristics for the n-job single-machine weighted tardiness
problem. Comput Op Res 26:35-44

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Maria Raquel C. Costa received her MS in data analytics from Faculdade de Economia, Universidade do
Porto, Portugal, in 2015. She currently works at the Information Systems Department of NORS.

Jorge M. S. Valente received his PhD in management science from the Faculdade de Economia, Univer-
sidade do Porto, Portugal, in 2005. He is an associate professor at Faculdade de Economia, Universidade
do Porto, Portugal. His main research interests consist in the application of exact and heuristic algorithms
to scheduling problems.

Jeffrey E. Schaller received his PhD in operations management from the College of Business Administra-
tion, University of Florida, USA, in 1996. He held various operations management positions in several
companies, and is currently a full professor at the Department of Business Administration, Eastern Con-
necticut State University, USA. His main research interests include scheduling, lean production and cel-
lular manufacturing.

@ Springer

522 M.R. C. Costa et al.

Affiliations

Maria Raquel C. Costa' - Jorge M. S. Valente?® . Jeffrey E. Schaller?

Maria Raquel C. Costa
mcosta@nors.com
Jeffrey E. Schaller
schallerj@easternct.edu

Information Systems Department, NORS, Rua Manuel Pinto de Azevedo 711, 1°,
4149-010 Porto, Portugal

2 LIAAD - INESC TEC, Faculdade de Economia da Universidade do Porto, Rua Dr. Roberto
Frias, s/n, 4200-464 Porto, Portugal

Department of Business Administration, Eastern Connecticut State University, 83 Windham St.,
Willimantic, CT 06226-2295, USA

@ Springer

http://orcid.org/0000-0001-5917-8880

	Efficient procedures for the weighted squared tardiness permutation flowshop scheduling problem
	Abstract
	1 Introduction
	2 Problem formulation and literature review
	3 Dispatching rules
	3.1 Notation
	3.2 General rules
	3.3 Rules for the linear objective function
	3.4 Rules for the quadratic objective function
	3.5 Lower bound on the makespan

	4 Improvement procedures
	4.1 Multiple sequence dispatching rule
	4.2 NEH insertion procedure
	4.3 Insertions local search
	4.4 Combined improvement procedures

	5 Computational results
	5.1 Problem set
	5.2 Performance measures
	5.3 Parameter adjustment tests
	5.4 Comparison of the dispatching rules
	5.5 Comparison of the improvement procedures
	5.6 Comparison with optimal results

	6 Conclusion
	Acknowledgements
	References

