
LSFA 2014

A Framework for the Analysis of Access
Control Policies with Emergency Management

Sandra Alves1

Dept. of Computer Science, University of Porto, Porto, Portugal

Maribel Fernández2,3

Dept. of Informatics, King’s College London, London WC2R 2LS, UK

Abstract

We define a framework for the analysis of access control policies that aims at easing the specification and
verification tasks for security administrators. We consider policies in the category-based access control
model, which has been shown to subsume many of the most well known access control models (e.g., MAC,
DAC, RBAC). Using a graphical representation of category-based policies, we show how answers to usual
administrator queries can be automatically computed, and properties of access control policies can be
checked. We show applications in the context of emergency situations, where our framework can be used
to analyse the interaction between access control and emergency management.

Keywords: Security Policies, Access Control, Operational Semantics, Rewriting, Graph-based analysis.

1 Introduction

Access control systems are used to protect resources against unauthorised use. In

its most basic form, an access control policy specifies the actions that each user is

allowed to perform on each resource. A pair of a resource and an action is called a

permission.

A variety of access control models and languages for access control policy spec-

ification are currently in use. One of the most popular is the ANSI (hierarchical)

role-based access control (H-RBAC) model [2], where users are assigned to roles

and each role is assigned a set of permissions (extensions of RBAC, using time and

location constraints, are discussed in e.g., [19]). More flexible models, such as the

event-based access control (DEBAC) model [12] and the action-status access control

1 Email: sandra@dcc.fc.up.pt
2 Email: maribel.fernandez@kcl.ac.uk
3 Partially funded by the European Office of Aerospace Research and Development (EOARD-AFOSR).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:sandra@dcc.fc.up.pt
mailto:maribel.fernandez@kcl.ac.uk

Alves and Fernández

model [7], specify permissions that depend on dynamic conditions, defined in terms

of events that happen in the system.

A metamodel for access control, which can be specialised for domain-specific

applications, has been proposed in [5]. It identifies a core set of principles of access

control, abstracting away many of the complexities that are found in specific access

control models, in order to simplify the tasks of policy writing and policy analysis.

A key aspect of the metamodel is to focus attention on the notion of a category. A

category is a class of entities which share some property. Classic types of groupings

used in access control, like a role, a security clearance, a discrete measure of trust,

etc., are particular instances of the more general notion of category. In category-

based access control policies, permissions are assigned to categories of users (which

we refer to as principals), rather than to individual users. Categories can be defined

on the basis of e.g., user attributes, geographical constraints, resource attributes.

For example, users may be assigned to different categories according to their age, and

a policy can give a permission to perform an action (e.g., download) on a resource

(e.g., a film) to users in the category “older than 12” but not in the category “child”.

In this way, permissions change in a dynamic and autonomous way (e.g., when a

registered user has a birthday), unlike, e.g., role-based access control models, which

require the intervention of a security administrator.

Given the complexities and scope involved in the definition of access control

policies, formal methods to analyse and reason about access control policies are

essential. This is particularly important in the case of systems dealing with access

control in the context of emergency situations, where users’ rights may need to

change in order to cope with specific emergencies. Formal specifications of access

control models and policies (see, for instance, [16,30]) have used theorem provers,

purpose-built logics, and, more recently, functional and rewriting-based approaches

(see, for example, [29,12]). A rewrite-based operational semantics for the category-

based metamodel was described in [14], where the expressive power of the meta-

model is also demonstrated. Using standard rewriting tools, rewrite-based security

policies can be verified to ensure that each access request has a unique answer, as

shown in [15].

In this paper, we define a framework for the analysis of access control policies

that aims at easing the specification and verification tasks for security administra-

tors. We consider category-based policies, since the category-based model subsumes

the most well known access control models [14], thus allowing us to obtain a generic

framework. Using a graphical representation of policies, we show how answers to

usual administrator queries can be automatically computed, and properties of ac-

cess control policies (such as, every access request receives a unique answer) can be

checked. We show applications of the framework to the analysis of policies in dis-

tributed environments, and in particular policies that include management of rights

in emergency situations. For example, in a hospital environment, an access control

policy may specify that each doctor has access to the patient records of his/her own

patients. However, if a patient p has a cardiac arrest, then any doctor in the ward

should have access to p’s medical records. We will show that this kind of policies

can be easily specified in our framework, in a visual and formal way, and properties,

such as the fact that the policy ensures a “separation of duty” constraint (where

2

Alves and Fernández

no user should be allowed to perform two conflicting actions on the same resource),

can be easily proved using graph-based algorithms and rewriting techniques.

Overview of the paper.

The remainder of the paper is organised as follows. In Section 2, we recall

the category-based access control model. Section 3 discusses emergency policies.

Section 4 presents a graph-based framework to represent and analyse category-

based policies, and Section 5 describes its implementation (a Ruby application for

policy visualisation and analysis). In Section 6, we discuss related work, and in

Section 7, conclusions are drawn and further work is suggested.

2 Preliminaries: The Category-Based Metamodel

We assume familiarity with basic notions on first-order logic and term-rewriting

systems [3]. We briefly describe below the key concepts underlying the category-

based metamodel of access control; see [5] for a detailed description.

Informally, a category is any of several distinct classes or groups to which entities

may be assigned. Entities are denoted by constants in a many sorted domain of

discourse, including: a countable set C of categories, denoted c0, c1, . . . ; a countable

set P of principals, denoted p0, p1, . . . (we assume that principals that request access

to resources are pre-authenticated); a countable set A of named actions, denoted

a0, a1, . . . ; a countable set R of resource identifiers, denoted r0, r1, . . . ; a finite set

Auth of possible answers to access requests (e.g., {grant, deny, undetermined}) and

a countable set S of situational identifiers to denote environmental information.

More generally, entities are represented by terms (e.g., a principal is represented

by a data structure principal(pi, attributeList)), but constants will be sufficient for

most examples in this paper.

The metamodel includes the following relations:

• Principal-category assignment: PCA ⊆ P × C, such that (p, c) ∈ PCA iff a

principal p ∈ P is assigned to the category c ∈ C.
• Permission-category assignment: ARCA ⊆ A×R×C, such that (a, r, c) ∈ ARCA

iff the action a ∈ A on resource r ∈ R can be performed by principals assigned

to the category c ∈ C.
• Authorisations: PAR ⊆ P × A × R, such that (p, a, r) ∈ PAR iff a principal

p ∈ P can perform the action a ∈ A on the resource r ∈ R.

Definition 2.1 [Axioms] The relation PAR satisfies the following core axiom,

where we assume that there exists a relationship ⊆ between categories; this can

simply be equality, set inclusion (the set of principals assigned to c ∈ C is a subset

of the set of principals assigned to c′ ∈ C), or a specific relation may be used.

(a1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

∃c, c′ ∈ C, ((p, c) ∈ PCA ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCA)⇔ (p, a, r) ∈ PAR

Definition 2.2 [Category-based policy] A category based policy is a tuple

〈E ,PCA,ARCA,PAR〉, where E = (P, C,A,R,S), such that axiom (a1) is satisfied.

3

Alves and Fernández

Operationally, axiom (a1) can be realised through a set of functions, as shown

in [14]. We recall the definition of the function par(P,A,R) below; it relies on

functions pca, which returns the list of categories assigned to a principal, and arca,

which returns a list of permissions assigned to a category.

Definition 2.3 A rewrite-based specification of the axiom (a1) in Def. 2.1 is given

by the rewrite rule:

(a2) par(P,A,R) → if (A,R) ∈ arca∗(contain(pca(P))) then grant else deny

As the function name suggests, contain computes the set of categories that contain

any of the categories given in the list pca(P). The function ∈ is a membership

operator on lists, grant and deny are answers, and arca∗ generalises the function

arca to take into account lists of categories:

arca∗(nil)→ nil arca∗(cons(C,L))→ append(arca(C), arca∗(L))

An access request by a principal p to perform the action a on the resource r can

then be evaluated simply by rewriting the term par(p, a, r) to normal form.

The axiom (a1), and its algebraic version (a2), state that a request by a principal

p to perform the action a on a resource r is authorised only if p belongs to a category

c such that for some category below c (e.g., c itself) the action a is authorised on

r, otherwise the request is denied. There are other alternatives, e.g., considering

undeterminate as answer if there is not enough information to grant the request.

An axiomatisation of distributed category-based access control was proposed

in [11] to specify federative policies, obtained as a composition of individual ac-

cess control policies. In a federation, each member has its own access control policy,

and contributes to the definition of a global access control policy. We will use this

notion of distributed access control to define emergency policies in the next section.

We recall the main axioms below.

Assume the set S of situational identifiers includes identifiers for sites, i.e., s ∈ S
identifies one of the components of the federation. PCAs, ARCAs, and PARs
denote families of relations indexed by site identifiers. Intuitively, PARs denotes

the authorisations that are valid in the site s. The relation PAR defining the

global authorisation policy is obtained by composing the local policies defined by

the relations PARs as indicated below. The sets P, C,A,R include, respectively,

the principals, categories, actions and resources in any of the sites of the system,

which are assumed to be globally known in the federation (alternatively we can

define sets Ps, Cs, As, Rs for each site).

Definition 2.4 [Distributed Axioms] The distributed category-based metamodel is

defined by the following core axioms

(b1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R, ∀s ∈ S,

(∃c, c′ ∈ C, (p, c) ∈ PCAs ∧ c ⊆ c′ ∧ (a, r, c′) ∈ ARCAs)⇔ (p, a, r) ∈ PARs

(f1) ∀p ∈ P, ∀a ∈ A, ∀r ∈ R,

(p, a, r) ∈ OPpar({PARs | s ∈ S})⇔ (p, a, r) ∈ PAR

4

Alves and Fernández

The result of an access request may be different depending on the site where the

request is evaluated. The axiom (f1) describes the global authorisation relation,

which is obtained from the ones defined at each site by using the operator OPpar.
While most of the existing policy languages (e.g., XACML) have a fixed set of

operators to combine policies, the metamodel can accommodate a large range of

composition operators.

Definition 2.5 A distributed category-based policy is defined by the tuple

〈E , {PCAi}i∈S , {ARCAi}i∈S , {PARi}i∈S ,OPpar〉, such that axioms (b1) and (f1)

are satisfied.

The operational semantics of the distributed model is defined by extending

the functions presented in Definition 2.3, using distributed term rewrite systems

(DTRSs), which are term rewrite systems where rules are partitioned into modules,

each associated with a unique identifier, and function symbols are annotated with

such identifiers (for more details on DTRSs, we refer to [12]). In other words, spe-

cific functions defined in a particular site are indexed by the site identifier; functions

with no site annotations are assumed to be defined locally.

Definition 2.6 In a distributed environment, the rewrite-based specification of the

axiom (b1) in Def. 2.4 is given by the rewrite rule:

(b2) pars(P,A,R) → if (A,R) ∈ arca∗s(contain(pcas(P))) then grant else deny

where the function ∈ is a membership operator on lists, grant and deny are answers,

and arca∗s is the function defining the assignment of privileges to categories, as in

the previous section.

The axiom (f1) can be realised by the following rewrite rule, which implements

OPpar through the use of pars, where the function fauth combines the results into

a final answer according to the operator op:

(f2) authorised(p, a, r, s1, . . . , sn) → fauth(op, pars1(p, a, r), . . . , parsn(p, a, r)).

The axiom (f1) can be implemented in several ways. The version chosen in

the definition above corresponds to a very general rewrite rule that can be used for

evaluating an access request in a single central site (if n = 1 and the operator op
is the identity), as well as for evaluating combinations of answers (with a suitable

operator op) from n different local policies. Functions such as psite(p), which returns

the site where the principal p is registered, or rsite(r) which returns the site where

the resource r is located, may be used. In this way, access requests can be evaluated

in a predefined central site, or priority can be given to local evaluation, or more

elaborated combinations of access answers can be implemented. We refer to [13,10]

for examples.

3 Emergency policies

In this paper we consider a particular kind of policy composition, where an access

control policy is combined with an emergency policy that specifies how various

5

Alves and Fernández

emergency situations affect the rights of users to access resources. In this approach,

events are elementary or compound actions [22], which we represent using terms of

the form event(ei, p, a, o, t, l), following [14]. Here, event is a data constructor, ei is

an event identifier, p is a principal associated to the event, a is an action, o its object,

t is the time when the event happened, and l is a list of arguments (depending on

the event type, some arguments might not be required). Emergency policies will

be associated to specific events. To simplify, we consider only atomic events, and

assume that a history of all events that happened in the system is available (e.g.,

via a log). We follow the definition of emergency given in [18]:

An emergency takes place at time T if an event E happened at a time Ts which is

earlier than T , and resulted in the initiation of the emergency, and this emergency

has not been ended before T as a consequence either of (i) clipping, i.e., an event

E′ happening at a time T ′ between Ts and T that causes the emergency to be

terminated or (ii) expiring a timeout δ for this emergency.

For example, in a hospital environment, an access control policy may specify that

each doctor has access to the patient records of his/her own patients. However, if

a patient p has a cardiac arrest, then any doctor in the ward should have access to

p’s medical records during the cardiac emergency.

The distributed metamodel and the notion of event defined above can be used

to specify access control in emergency situations. We consider two sites π1 and π2

such that π1 contains a standard policy and π2 contains an emergency policy. In

the previous example, let patient be a category consisting of all patients (of a given

hospital), and doctor be a category consisting of all doctors (of the given hospital).

Let doctor(X) be a (parameterised) category consisting of all doctors of the patient

X, such that for all X, doctor(X) ⊆ doctor, i.e., the category doctor(X) inherits

all permissions from the category doctor. Assume the relations PCA and ARCA
satisfy the following axioms, where emerg(bcrd, P) is true if an event initiating a

cardiac emergency for P has been detected, and no event ending the emergency has

been recorded:

∀P, (P, patient) ∈ PCA ⇒ (read, record(P), doctor(P)) ∈ ARCAπ1
∀P, (P, patient) ∈ PCA ∧ emerg(bcrd, P)⇒ (read, record(P), doctor) ∈ ARCAπ2

Operationally, we specify rewrite rules for arca in the standard (π1) and emergency

(π2) sites, and combine the policies using a union operator with priority to grant.

arcaπ1(doctor(P)) → [(read, record(P))]

arcaπ2(doctor) → [(read, record(P)) | P ∈ patientList ∧ emerg(bcrd, P)])

where patientList returns the list of patients, that is, P such that patient ∈ pca(P).

We discuss in the following section techniques to prove properties of such policies,

e.g., to show that any doctor has access to the record of a patient suffering a cardiac

emergency.

6

Alves and Fernández

4 Analysis of Category-Based Policies

4.1 Graph Representation of Policies

We start by defining how policies can be represented by means of graphs. Graph-

ical or visual representations of data structures and algorithms have a number of

established and significant advantages over textual representations. In particular,

they tend to be easier to understand and analyse than the corresponding textual

representations. Furthermore, being a well-studied area, algorithms and properties

of graph theory can be used to analyse properties of policies.

Definition 4.1 [Policy graph] We define a policy graph, or graph for short, as a

tuple G = (V, E, lv, le), where V is a set of nodes, E is a set of undirected edges,

which is a subset of {{v1, v2} | v1, v2 ∈ V ∧ v1 6= v2}, lv is an injective labelling

function mapping nodes to entities in the category-based metamodel lv : V →
P ∪ C ∪ A ∪R, and le is a labelling function for edges.

We assume the usual notion of degree of a node, as the number of edges connected

to that node.

Definition 4.2 A path in G of length n, between two nodes v0, vn, is a sequence

v0, v1, . . . , vn, such that {vi−1, vi} ∈ E for all 1 ≤ i ≤ n.

Since we have different types of nodes, we define a function type : V →
{P,C,A,R}, which associates each node with the type of its label. More precisely,

type(v) = P if lv(v) = p ∈ P (that is, P is the type of the nodes representing

principals), and, similarly, C is the type of nodes representing categories, A actions,

and R resources. Furthermore, we consider the type of an edge to be determined

by the type of the nodes connected by that edge, that is, we consider a function

type : E → {P,C,A,R} × {P,C,A,R}. An edge-type will be a pair (T1, T2), which

for simplicity we will represent as T1T2. For example, AC is the type of an edge

connecting a node of type A with a node of type C. Note that, since our edges are

undirected, we do not distinguish between the types T1T2 and T2T1.

We will use types to restrict the edges of graphs representing policies, as follows.

Definition 4.3 [Well-typed policy graph] A policy graph is well typed if it contains

only the following kinds of edges

(a) {v1, v2} ∈ E such that type(v1) = P ∧ type(v2) = C, which connect principals

to categories. This corresponds to an edge of type PC.

(b) {v1, v2} ∈ E such that type(v1) = C ∧ type(v2) = A, which connect categories

to actions. This corresponds to an edge of type CA.

(c) {v1, v2} ∈ E such that type(v1) = A ∧ type(v2) = R, which connect actions to

resources. This corresponds to an edge of type AR.

Definition 4.4 [Relations associated with G] Let G be a well-typed policy graph

and let PC, CA andAR be the set of all edges of types PC, CA andAR, respectively.

Then we define the following relations associated with G:

• The relation PCAG is defined by the set {(lv(v1), lv(v2)) | type(v1) = P∧{v1, v2} ∈
PC}. It can also be defined by the set of paths of size 1, starting from nodes of

7

Alves and Fernández

type P .

• The relation ARCAG is given by the set {(lv(v1), lv(v2), lv(v3)) | type(v1) =

A ∧ {v1, v2} ∈ AR ∧ {v3, v2} ∈ CR}. It can also be defined by the set of paths

of size 2, starting from nodes of type C and ending on nodes of type R (or

vice-versa).

• The relation PARG is given by the set {(lv(v1), lv(v3), lv(v4)) | ∃v2 s.t. {v1, v2} ∈
PC ∧ {v2, v3} ∈ CA ∧ {v3, v4} ∈ AR}. It can also be defined by the set of paths

of size 3, starting from nodes of type P and ending on nodes of type R (or

vice-versa).

Proposition 4.5 Any path of size 3 in a policy graph, starting in a node of type P

and ending in a node of type R, must have the following shape:

P C A R

Proof. Direct consequence of the restriction imposed on edge types. Note that all

the paths of length 1 starting in a node of type P end on a node of type C. The

paths of length 1 starting from a node of type C end on a node of type A or a node

of type P and the paths of length 1 starting from a node of type A end on a node

of type C or a node of type R. Hence, the only paths of size 3 starting in a node of

type P and ending in a node of type R are the ones that traverse a node of type C

and a node of type A. 2

Therefore, from all the paths of size 3 starting in a node of type P and ending

in a node of type R, one can effectively compute the PAR relation (for the moment

we are not taking into account the ⊆ relation between categories). Furthermore, it

is easy to see that any well-typed policy graph represents an access control policy.

Proposition 4.6 Each well-typed policy graph G defines a unique category-based

access control policy 〈E ,PCAG ,ARCAG ,PARG〉.

Proof. According to Def. 2.2, we need to prove that PCAG , ARCAG and PARG
satisfy axiom (a1), which follows by Def. 4.4 (for now we are considering that the

relation ⊆ between categories is the equality relation, but we will deal with the

general case later). 2

However, for a given policy, there may be more than one graph that generates

the policy; for example, take any graph that differs on the unassigned permissions

(that is, differing on edges between actions and resources such that there is no edge

connecting the action to any category). There is, however, a unique minimal graph

corresponding to the policy.

Definition 4.7 [Types for paths] Let v0, v1, . . . , vn be a path of length n, such that

type(vi) = Ti for 0 ≤ i ≤ n. The type of the path is the sequence given by the types

of the edges along the path, that is T0T1, T1T2, . . . , Tn−1Tn.

The relations PCAG , ARCAG and PARG can now be defined in terms of typed-

paths of a certain type. For example:

PARG = {(lv(v1), lv(v3), lv(v4)) | v1, v2, v3, v4 is a path of type PC,CA,AR}.

8

Alves and Fernández

Note also that one can define the minimum unique graph as the set of paths of type

CA and the set of paths of type CA,AR.

This formalisation of the category-based metamodel as graphs does not take into

account distributed policies. This can be obtained by considering that for each site

there is a special additional node in the graph, with type S, labelled with the site

identifier, and to which all the principals of that site are connected.

Definition 4.8 [Distributed policy graph] Let G = (V, E, lv, le) be a well-typed

policy graph representing a policy and let s ∈ S be a location identifier in the

distributed system. Then Gs, the policy graph of site s, is defined by (V ∪{vs}, E ∪
{{vs, v} | v ∈ V ∧ type(v) = P}, lv′, le′), where lv′ and le′ extend lv and le in the

natural way, that is, by mapping vs to s.

A distributed policy graph is a tuple of graphs (Gs1 , . . . ,Gsn) where Gsi =

(Vi, Ei, lv′i, le′i) is the policy graph for si, 1 ≤ i ≤ n. For each location s ∈ S,

the relations PCAs, ARCAs and PARs are defined (as paths on Gs) as in the

non-distributed scenario.

Using graphs to formalise the global authorisation policy PAR is not so straight-

forward. One possibility to define PAR is simply by the union, but there are much

more sophisticated ways to combine the policies. For now we will take the union of

the different policies.

Definition 4.9 [Union graph] Let (Gs1 , . . . ,Gsn) be a distributed policy graph with

n sites s1, . . . , sn, where each Gsi = (Vi, Ei, lvi, lei). Their associated union-graph

is defined by G = (V, E, lv, le), where V is a set of nodes such that for each vi ∈ Vi
where lvi(vi) = x there exists a unique node ν ∈ V such that lv(ν) = x, E is a

multiset of edges such that if {v1, v2} ∈ Ei, then there is an edge {ν1, ν2} ∈ E

where lvi(v1) = lv(ν1) and lvi(v2) = lv(ν2) and lei({v1, v2}) = le({ν1, ν2}).

Since multiple edges can connect the same pair of nodes, this corresponds to a

multigraph. Note that the entities of the metamodel (principals, categories, actions

and resources) can be known by different sites. This means that in the graph

representation of the global policy one has to be able to distinguish whether a

node/edge belongs to a particular site or not. To that end, we define two functions

visibleV : V → 2S and visibleE : E → S, such that, for each node v, visibleV(v) will

return the set of sites that have a node with the same label as v, that is, the set of

sites where v is known, and similarly for each edge e visibleE(e) will return e’s site.

Definition 4.10 A path of length n in the union-graph G, between two nodes v0, vn,

is a sequence v0, v1, . . . , vn, such that {vi−1, vi} ∈ E for all 1 ≤ i ≤ n, and all the

edges e1, . . . , en in the path are visible in the same site.

Proposition 4.11 A union graph G, defines a distributed category-based policy

where OPpar is a union operator with priority to grant.

Proof. According to Def. 2.5, we need to prove that axioms (b1) and (f1) are

satisfied. Axiom (b1) follows from each Gsi , and for axiom (f1) if there exists a

path of type PC,CA,AR (visibleE is always the same for all the edges in the path),

then this path also exists in some Gsj , which means that par(p, a, r) ∈ PARsj ,

9

Alves and Fernández

therefore it will belong to OPpar{PARs | s ∈ S} if OPpar is a union operator with

priority to grant. 2

One could consider copies of the same entity as different nodes, which could be

linked, and then collapsed into a single node when visually displaying the graph.

We will discuss later, different options for effectively displaying a policy. The

visibleV , visibleE functions defined above will be useful in the definition of visual-

isation algorithms. In terms of graph representation, other more sophisticated com-

binations of policies could be defined taking into account, for example, conflicting

information, but we will deal with that in the future.

Up to this point we have not taken into account in our graph formalisation of

the metamodel the ⊆ relation between categories. As mentioned before, this could

be achieved by defining a function contain on nodes of type C. However, this would

no longer allow us to define certain properties based solely on paths.

Alternatively we formalise the ⊆ relation in terms of edges of type CC. That is,

we allow the set of edges to contain edges of the form {c1, c2}, such that type(c1) =

type(c2) = C. Note that edges are undirected, however, in ⊆ one might have

c1 ⊆ c2 but not c2 ⊆ c1. Therefore, when defining paths involving edges of type

CC one needs to know in which direction these edges can be transversed. We

define a function target on edges such that, if vi ∈ target({v1, v2}) then vi can be a

destination node of that edge (note that both v1, v2 can be destination nodes of an

edge, if it can be transversed in both directions). We need a more constrained notion

of path taking into account the target function, so we will refine Definition 4.10:

Definition 4.12 A constrained path of length n in G = (V, E, lv, le), is a sequence

v0, v1, . . . , vn, such that, for all 1 ≤ i ≤ n, {vi−1, vi} ∈ E ∧ vi ∈ target({vi−1, vi}).

Definition 4.13 Let c1, c2 be two categories in C, then c1 ⊆ c2 if there is a con-

strained path of type (CC)∗ 4 between the nodes labelled by c1 and c2.

In this paper we are only considering a relation ⊆ between categories, but the

same could be considered for other entities (for example resources or actions).

Definition 4.14 [Dynamic policy graph] A dynamic policy graph is a well-typed

graph G = (V, E, lv, le) together with a function ld on V such that ld(v) = R, for

some convergent rewrite system R satisfying the following conditions:

• if type(v) = P , then ld(v) defines a function pca, which returns (for each p) a list

of categories;

• if type(v) = C, then ld(v) defines a function arca, which (for each c) returns a list

of permissions (pairs of the form (action,resource)).

Relations between the entities in our model can change in an autonomous way

(e.g. due to events that happen in the system), with principals/permissions being

added or removed from certain categories. In this sense a policy graph can be seen

as a photo-shot of the system at a particular time. From the graph one can extract

4 We consider the usual notation of a∗ to refer to a sequence of the form a, a, . . . , a︸ ︷︷ ︸
n

, with n ≥ 0.

10

Alves and Fernández

the relations PCA, ARCA and PAR at a particular instant, but not how to get

the next photo. This is the purpose of the ld function.

Definition 4.15 A dynamic policy graph is said to be correct (at a particular

instant) iff:

• for every node v of type P , ld(v) = [c1, . . . , cn] iff there exists an edge {v, vi} in

E for i = 1, . . . , n, such that lv(vi) = ci;

• for every node v of type C, ld(v) = [(a1, r1), . . . , (an, rn)] iff there exists in E

edges {vai, vri} and {v, vai} for i = 1, . . . , n such that lv(vai) = ai, lv(vri) = ri
and lv(v) = c;

A dynamic policy graph represents a dynamic category-based policy. Each re-

quest has a unique answer if the associated dynamic graph is correct.

4.2 Analysis of static properties based on graphs

For a given policy, we are interested in checking certain properties in terms of prin-

cipals, categories, resources, and permissions. We first consider a non-distributed

system. As examples of static properties one can be interested in checking, we con-

sider the following: (i) Are all the principals associated with at least one category?

(ii) Are there permissions associated to all categories? (iii) Are all the resources in

effective use (in terms of principals and permissions)? (iv) For a given category, who

are the associated principals? (v) To which categories belongs a given principal?

(vi) For a given category, what are the associated permissions? (vii) For a given

principal, what are the associated permissions?

For a given policy represented by a well-typed graph G = (V, E, lv, le), the

properties above can be formalised in the following way:

(i) All the principals are associated with at least one category if the degree of every

node of type P is positive (in a distributed scenario where all the principals are

connected to the site(s) node(s), then this property is guaranteed by ensuring

that all the principals are connected to a node of type C);

(ii) For each node of type C there is a path of type (CC)∗, CA,AR.

(iii) For each node of type R there is a path of type PC, (CC)∗, CA,AR.

(iv) For a given node of type C, find all the neighbours of type P .

(v) For a given node of type P , find all the neighbours of type C.

(vi) For a given node of type C, find all the paths of type (CC)∗, CA,AR. The last

two nodes of each path will define a permission associated to that category.

(vii) For a given node of type P , find all the paths of type PC, (CC)∗, CA,AR. The

last two nodes will define the permissions associated to that principal.

Proposition 4.16 All the checks above can be computed in polynomial time with

respect to |V |+ |E|.

Note that the properties mentioned above are still valid in a distributed scenario,

either by considering paths in the individual graphs Gs1 , . . . ,Gsn , or the notion of

paths in the union-graph defined above.

11

Alves and Fernández

Other static properties can be checked using properties on the underlying graph

of the policy, specifically for the distributed scenario. For example, detecting

whether there are permissions that are in conflict. If an action a1 in a resource

r is in conflict with an action a2 in r, then for every principal p there should only

be one path of type PC, (CC)∗, CA,AR linking p and r in the union graph.

One can also ask, for a given union graph, what is the minimum unique graph

that corresponds to a policy. This can be computed by starting in nodes of type S

and considering the edges that are in the spanning tree considering only branches

that end in nodes of type P , C and R. This way one eliminates edges between

nodes of type A and R that are not associated to any category, and edges between

nodes of type C and R that are not associated to any resource.

There are more complex and relevant questions that can be dealt with using this

formalism. For example:

• For a given policy-graph G, and given sets of principals {p1, . . . , pn} and permis-

sions {(a1, r1), . . . , (an, rn)}, what is a minimum number of changes (in term of

adding/deleting elements in the PCA and ARCA relations) necessary to ensure

that, collectively, the given set of principals has the given permissions?

Although this is a generally complex problem, by fixing either the number of

principals or permissions we can obtain manageable instances of the problem.

• For a given policy-graph G, and given sets of principals {p1, . . . , pn} and permis-

sions {(a1, r1), . . . , (an, rn)}, what is the minimal number of edges necessary to

guarantee that those, and those alone, permissions are available to those users?

One might be interested in guaranteeing a particular set of permission assign-

ment, but in a controlled manner, particularly in a emergency scenario. For a

single pair (p, (a, r)), this corresponds to finding the shortest path in the graph,

connecting the principal to the permission.

4.3 Application: Emergency Management

Our main motivation is to provide an analysis framework to deal with policy up-

dates, allowing security administrators to detect changes introduced into a policy in

a scenario involving emergency situations. As mentioned in Section 3, an emergency

policy can be modelled using an additional emergency site. The graph representa-

tion of a policy in an emergency scenario will be given by combining the graphs of

the normal policy with the emergency policy (taking an appropriate composition

operator). For example, when combining the two policies using a union operator

with priority to grant, then the union-graph defined above will suffice.

The analysis described in the last section can then be used to specify properties

when dealing with the emergency. For example, one guarantees that in the case of

a patient i suffering a cardiac emergency any doctor has access to his/her medical

record, by showing that, for every principal p in the category doctor, there exists

a path of type PC, (CC)∗, CA,AR of the form p, c+, access, recordi in the graph

associated to the emergency policy.

The graphs of the normal and emergency policies can be used to analyse other

properties. For example, one might wish to determine what are the permissions

revoked by the emergency; the permissions created by the emergency; whether or

12

Alves and Fernández

not every principal has a certain permission during the emergency; whether or

not a certain action is forbidden during the emergency, etc. All these properties

can easily be established using our graph formalisation. “Separation of duties”

constraints also correspond to path constraints. For example, the constraint “no

user has permission to both activate an alarm (triggering an emergency and possibly

acquiring more permissions) and delete the emergency log (which records which users

have activated alarms)” holds if the set of paths of type PC, (CC)∗, CA,AR in the

policy graph does not include a path ending in activate, alarm and a path ending

in delete, log, and starting in the same node of type P .

5 A tool to analyse policies

In this section we describe a tool to analyse policies using the graph formalisation.

5.1 Visual representation of policies

As we mentioned before, using graphs to formally represent policies in the category

based metamodel has numerous advantages in terms of algorithms and well estab-

lished properties from graph-theory that can be used to analyse properties of these

policies, as well as tools for displaying graphs in an effective way.

Recall that we defined a distributed system as a tuple (G1, . . . ,Gn), and the

union-graph G as the multigraph combining all the information from the individual

policies Gi. Also recall that, each Gi contains a special node of type S, to which every

principal is connected. Since entities in P ∪ C ∪A∪R can be global to all the sites

an appropriate visual display of the system should clearly show in which sites each

entity is. Ideally one would like to represent the system in a 3-dimensional space,

where each site would be at a different horizontal plane, where the identities common

to several sites would be vertically aligned. Different horizontal planes could be

selected and merged to combine the policies. Given the degree of complexity in

manipulating/displaying this type of graphics, we consider alternative options:

• All the different Gi are represented in the same plane, but different colours are

used to identify the different sites (if a node is known in several sites then it is

surrounded by a different colour ring for each site it belongs to).

• By selecting a node site (a node of type S), then all the colours of the other sites

turn to grey, therefore highlighting the selected site.

• Since we are representing a multigraph, there can be several edges between the

same nodes. They should be represented using the colour associated to their site.

• To further highlight a selection, the size of the involved nodes can be augmented

(or the nodes not involved can be diminished).

Note that, unconnected entities cannot be associated to any site, in which case

the function visibleV can be used to determine the colour(s) of the nodes. When

representing the union-graph, the function visibleE is also used to determine the

colour of the edges. Other possibilities could be considered such as representing

different copies of the same entity corresponding to the different sites where it

occurs, and using especial edges to connect the different copies. Each policy could

13

Alves and Fernández

then be displayed separately, with the connection to other policies being given by the

additional edges. This alternative would give a clear visualisation of each individual

policy (particularly if the additional edges could be omitted), but would not provide

a proper overview of the general policy.

5.2 A Ruby prototype

An application called Policy Manager [28] was implemented to provide an easy

to use graphical tool for security administrators, allowing the construction and

management of multiple policies. The application was implemented in Ruby [21]:

an interpreted, object-oriented, multi-paradigm programming language.

In terms of graphical display of policy data, the Policy Manager provides user-

friendly visual representations that facilitate the task of identifying policy flaws. The

application provides the user with a complete view of a policy as a tree, allowing

users to zoom in on overcrowded sections of the tree. It also allows the selection

of particular entities, highlighting the nodes and edges associated to that entity.

For example, by clicking on a principal name, the tree will centre on the selected

object, allowing a clearer view of the categories and permissions associated to that

principal. Furthermore, the user is able to reposition the elements by dragging, as

well as remove irrelevant elements from the view. The application also comprises a

textual view, allowing for simple queries concerning the policy.

One key aspect of the project was the implementation of the dynamic behaviour

of categories. Unlike roles in RBAC, categories can change dynamically based on

events or changes in the state of the system (emergencies can be seen as specific kinds

of events). To represent dynamic graphs (see Def. 4.14), the tool allows the user to

save Ruby code describing events in the database. This, however, requires the users

to have knowledge of the Ruby language, as well as raising security issues. A more

desirable solution, would be to define a user-friendly Domain Specific Language, to

allow users to specify categories and permissions, for example, using rewrite rules.

This language could then be compiled into code to be inserted in the policy database

(as is currently done with the Ruby code used to specify categories).

6 Related Work

Several formal languages have been used in the literature to model and analyse

access control problems. Koch et al. [26] use graphs to formalise RBAC, in particular

by modelling role management operations by graph transformation rules. More

recently, [6,29,12] use term rewrite rules to model particular access control models

and to express access control policies. Our approach combines the use of a graph

formalism to represent a concrete state of the system, and the use of rewrite rules

to model the dynamics of the system. The Generalised TRBAC model [25] and

ASL [23] aim at providing a general framework for the definition of policies, however

they focus essentially on the notion of users, groups and roles (interpreted as being

synonymous with the notion of job function). Li et al.’s RT family of role-trust

models [27] provides a general framework specialised for defining specific policy

requirements (in terms of credentials).

14

Alves and Fernández

The specification of policies by means of rewriting systems allows, not only to

take advantage of the extensive theory of rewriting to establish security properties,

as shown in [29,17,10] amongst other works, but also to make use of rewriting-based

frameworks (such as CiME, MAUDE or TOM) to reason about policy properties.

Our work addresses similar issues, but is based on a notion of category-based access

control for distributed environments, which we interpret using labelled graphs, and

which can be instantiated to include concepts like times, events, and histories that

are not included as elements of RT or RBAC. In [15], CiME is integrated in a tool

designed to automatically check consistency and totality of RBAC access control

policies. A similar technique could be used to analyse the rewrite system in a

dynamic policy graph.

The framework that we have described is more expressive than any of the

Datalog-based languages that have been proposed for distributed access control

(see [4,24,20,8]); these languages, being based on a monotonic semantics, are not

especially well suited for representing dynamically changing distributed policies.

Another work dealing with decentralised systems is reported in [9], where the au-

thors propose the constraint logic programming language SecPal for specifying a

wide range of authorisation policies and credentials, using predicates defined by

clauses. In our approach, we focus on graph interpretations of a general metamodel

suitable for distributed systems rather than on the design of a specification lan-

guage, but the operational semantics of the metamodel could serve as a basis for a

policy definition language.

7 Conclusions and Further Work

This paper describes a framework that aims at aiding the specification and analysis

of access control policies, by using a graph-based formalism to represent policies

and relying on graph properties to extract policy properties. In Section 4 we focus

on properties that are mostly static, but we are also interested in other (dynamic)

properties (such as verifying that at any point in time, each access request to a

resource by a principal will always receive a unique answer), which are related to

the operational semantics (defined using term rewriting). In future work, to analyse

dynamic properties of policies and help administrators develop and manage policy

updates, we plan to develop a version of Policy Manager within PORGY [1], a tool

that allows users to visualise and simulate systems via port-graph rewriting.

Additionally, in the context of an analysis application such as Policy Manager,

one would be interested in being able to describe dynamic behaviour using a user-

friendly Domain Specific Language, suitable for policy administrators. We believe

that a rewriting-based language could be an appropriate solution to that problem.

This would provide an implementation of the operational semantics of the category-

based metamodel in Policy Manager, could be integrated with tools such as CiME

to verify desirable properties, and translated into other programming languages for

integration in policy analysis tools.

15

Alves and Fernández

Acknowledgements:

We thank Anatoli Degtyarev for many valuable discussions on the topics of this

paper, and Hossein Mirzapour-Aghdaghi for implementing the Policy Manager tool.

References

[1] Oana Andrei, Maribel Fernández, Hélène Kirchner, Guy Melançon, Olivier Namet, and Bruno Pinaud.
Porgy: Strategy-driven interactive transformation of graphs. In TERMGRAPH, volume 48 of EPTCS,
pages 54–68, 2011.

[2] ANSI. RBAC, 2004. INCITS 359-2004.

[3] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, Great Britain,
1998.

[4] J. Bacon, K. Moody, and W. Yao. A model of OASIS RBAC and its support for active security.
TISSEC, 5(4):492–540, 2002.

[5] S. Barker. The next 700 access control models or a unifying meta-model? In Proceedings of the ACM
Int. Conf. SACMAT 2009, pages 187–196. ACM Press, 2009.

[6] S. Barker and M. Fernández. Term rewriting for access control. In Data and Applications Security.
Proceedings of DBSec’2006, Lecture Notes in Computer Science. Springer-Verlag, 2006.

[7] Steve Barker. Action-status access control. In Volkmar Lotz and Bhavani M. Thuraisingham, editors,
SACMAT, pages 195–204. ACM, 2007.

[8] M. Becker and P. Sewell. Cassandra: Distributed access control policies with tunable expressiveness.
In POLICY 2004, pages 159–168, 2004.

[9] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of a decentralized authorization
language. In Proc. of CSF 2007, pages 3–15. IEEE Computer Society, 2007.

[10] C. Bertolissi and M. Fernández. A rewriting framework for the composition of access control policies.
In Proceedings of PPDP’08. ACM Press, 2008.

[11] C. Bertolissi and M. Fernández. Rewrite specifications of access control policies in distributed
environments. In Proc. of STM 2010, number 6710 in LNCS. Springer, 2011.

[12] C. Bertolissi, M. Fernández, and S. Barker. Dynamic event-based access control as term rewriting. In
Data and Applications Security XXI. Proc. of DBSEC 2007, volume 4602 of LNCS. Springer, 2007.

[13] C. Bertolissi and Maribel Fernández. Distributed event-based access control. International Journal of
Information and Computer Security, Special Issue: selected papers from Crisis 2008, 3(3–4), 2009.

[14] C. Bertolissi and Maribel Fernández. Category-based authorisation models: operational semantics and
expressive power. In Proceedings of ESSOS’10, LNCS. Springer, 2010.

[15] Clara Bertolissi and Worachet Uttha. Automated analysis of rule-based access control policies. In Proc.
of PLPV, pages 47–56. ACM, 2013.

[16] P. A. Bonatti and P. Samarati. Logics for authorization and security. In Logics for Emerging
Applications of Databases, pages 277–323. Springer, 2003.

[17] Tony Bourdier, Horatiu Cirstea, Mathieu Jaume, and Hélène Kirchner. Formal specification and
validation of security policies. In FPS, pages 148–163, 2011.

[18] Barbara Carminati, Elena Ferrari, and Michele Guglielmi. A system for timely and controlled
information sharing in emergency situations. IEEE Trans. Dep. Sec. Comput., 10(3):129–142, 2013.

[19] S. M. Chandran and J. B. D. Joshi. Lot-rbac: A location and time-based rbac model. In Proc. of
WISE’05, volume 3806 of Lecture Notes in Computer Science, pages 361–375. Springer, 2005.

[20] J. DeTreville. Binder, a logic-based security language. In Proc. IEEE Symposium on Security and
Privacy, pages 105–113, 2002.

[21] D. Flanagan and Y. Matsumoto. The Ruby programming language - everything you need to know:
covers Ruby 1.8 and 1.9. O’Reilly, 2008.

[22] Michael Gelfond and Jorge Lobo. Authorization and obligation policies in dynamic systems. In ICLP,
pages 22–36, 2008.

[23] S. Jajodia, P. Samarati, M. Sapino, and V.S. Subrahmaninan. Flexible support for multiple access
control policies. ACM TODS, 26(2):214–260, 2001.

16

Alves and Fernández

[24] T. Jim. SD3: A trust management system with certified evaluation. In IEEE Symp. Security and
Privacy, pages 106–115, 2001.

[25] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access control model.
IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

[26] M. Koch, L. Mancini, and F. Parisi-Presicce. A graph based formalism for RBAC. In SACMAT, pages
129–187, 2004.

[27] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management framework.
In IEEE Symposium on Security and Privacy, pages 114–130, 2002.

[28] H. Mirzapour-Aghdaghi and M. Fernández. Policy Manager: a tool to analyse category-based access
control policies, 2014. Final Year Project, King’s College London, UK. http://policymanager.
herokuapp.com

[29] A. Santana de Oliveira. Rcriture et Modularit pour les Politiques de Scurit. PhD thesis, Université
Henri Poincare, Nancy, France, 2008.

[30] Karsten Sohr, Michael Drouineaud, Gail-Joon Ahn, and Martin Gogolla. Analyzing and managing
role-based access control policies. IEEE Trans. Knowl. Data Eng., 20(7):924–939, 2008.

17

http://policymanager.herokuapp.com
http://policymanager.herokuapp.com

	Introduction
	Preliminaries: The Category-Based Metamodel
	Emergency policies
	Analysis of Category-Based Policies
	Graph Representation of Policies
	Analysis of static properties based on graphs
	Application: Emergency Management

	A tool to analyse policies
	Visual representation of policies
	A Ruby prototype

	Related Work
	Conclusions and Further Work
	References

