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Abstract—This paper addresses the issue of learning time series
forecasting models in changing environments by leveraging the
predictive power of ensemble methods. Concept drift adaptation
is performed in an active manner, by dynamically combining base
learners according to their recent performance using a non-linear
function. Diversity in the ensembles is encouraged with several
strategies that include heterogeneity among learners, sampling
techniques and computation of summary statistics as extra
predictors. Heterogeneity is used with the goal of better coping
with different dynamic regimes of the time series. The driving
hypotheses of this work are that (i) heterogeneous ensembles
should better fit different dynamic regimes and (ii) dynamic
aggregation should allow for fast detection and adaptation to
regime changes. We extend some strategies typically used in
classification tasks to time series forecasting. The proposed
methods are validated using Monte Carlo simulations on 16 real-
world univariate time series with numerical outcome as well as
an artificial series with clear regime shifts. The results provide
strong empirical evidence for our hypotheses. To encourage
reproducibility the proposed method is publicly available as a
software package.
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I. INTRODUCTION

This paper addresses the task of time series forecasting,
which is an important topic with vast applicability across
several domains. The focus is on univariate series where
the observable is numerical. The problem is approached by
ensemble learning methods, which have been proved to surpass
single model learning on a variety of tasks. As was explained
by Brown [1], the superior predictive performance of ensem-
bles is in great part due to the diversity among the individual
learners comprising them.

Dynamic ensembles for classification tasks is a well studied
topic, for example [2], [3]. However, while there is a vast
research in ensemble methods for regression tasks (e.g. [4]),
the literature regarding the application of these methods to
changing environments, such as univariate time series, is
limited. In this context, this paper presents a new dynamic
ensemble for time series series forecasting tasks.

The ensemble method we present settles on individually pre-
trained models which are dynamically combined at run-time to
make a prediction. The combination rule is reactive to changes
in the environment, rendering an online combined model.

This paper explores new techniques for encouraging ensem-
ble diversity in time series forecasting tasks. Moreover, we use
model weighting schemes to adapt the learning device to the
presence of concept drift [5]. Essentially, concept drift occurs
when the underlying distribution of the data changes over time,
disturbing the learning process. The main properties of our
proposal are:

• heterogeneity: Heterogeneous ensembles are those com-
prised of different types of base learners. By employ-
ing models that follow different learning strategies, use
different features and/or data observations we expect
that individual learners will disagree with each other,
introducing a natural diversity into the ensemble that
helps in handling different dynamic regimes in a time
series forecasting setting;

• responsiveness: We promote greater responsiveness of
heterogeneous ensembles in time series tasks by mak-
ing the aggregation of their members’ predictions time-
dependent. By tracking the loss of each learner over time,
we weigh the predictions of individual learners according
to their recent performance using a non-linear function.
This strategy may be advantageous for better detecting
regime changes and also to quickly adapt the ensemble
to new regimes.

Our main contribution is combining these two properties to
tackle numerical time series prediction tasks. We expect that,
due to the heterogeneity of the ensemble, some individual
models will perform better than others in particular data-
spaces. We hypothesise that the combination of such an ensem-
ble with a time-dependent aggregation function that rewards
the best recent models will improve time series forecasting
results. The prediction made at each new observation is
produced by a committee, which is a subset of the best recent
performing models.

The methods proposed in this paper were evaluated on
16 real world univariate time series with numerical outcome.
Numerical experiments reveal that our approach is competitive
with different forms of ensemble learning methods as well
as other state-of-art methods for the adaptive combinination
of forecasting models. To further improve our argument we
also evaluate the proposed method in an artificial environment



with marked regimes. In this setting the adaptability of our
model becomes clear. In order to encourage reproducibility
our methods are publicly available as an R package.

We start by addressing the related work in Section II; the
proposed methodology for dynamic and heterogeneous ensem-
bles is presented in Section III, along with a formal explanation
of our contributions; the experiments and respective results are
presented in Section IV, followed by a discussion in Section V;
the final remarks are drawn in Section VI.

II. RELATED WORK

The related work to this paper originates from two research
branches: (i) dynamic ensembles (or Dynamic Combiners) and
(ii) combination of forecasters. In this section we briefly revise
typical dynamic combination methods used in classification
and regression tasks. Then, we examine the state-of-art ap-
proaches for combination of forecasting models, pointing out
their drawbacks as well as the main contributions of our work.

A. Dynamic Combiners

In this paper we focus our study on dynamic ensembles
for numerical time series forecasting tasks. Building adaptable
models is important in dynamic real-world environments in
which data is constantly changing over time due to several
factors, for example seasonality.

Heterogeneity among base learners of an ensemble has been
reported to increase the predictive ability of such models in
many settings (e.g., stacking [6]). Moreover, the stream mining
community has put an effort towards creating models that are
able to cope with changing environments. One common ap-
proach to this problem is the use of what Kuncheva [2] denom-
inates Dynamic Combiners – this strategy involves training
the ensemble’s base models in advance and then somehow
dynamically combining them to make a prediction. Several
examples of Dynamic Combiners geared toward classification
tasks can be found in the literature (e.g. [7], [3], [8], [9]).
In [7], an ensemble of classifiers is trained and dynamically
weighted to adapt to concept drift in a data stream. In [3], an
homogeneous ensemble of incremental learners is trained and
weighted, with experts added or removed as needed. In [8],
an heterogeneous ensemble of incremental learners (each using
its own feature subset) are trained and combined, adding new
experts when necessary. In [9], the authors use classifier chains
to dynamically select a subset of models. One of the most
popular strategies for weighting expert advice used in online
learning is regret minimization [10, Chapter 2]. Regret is the
average loss incurred w.r.t. the best prediction we could have
obtained.

We differentiate our approach in two ways:
1. We focus on numerical time series forecasting tasks,

while the related work is mostly built towards classi-
fication or regression tasks. We aim at adapting work
developed in these scenarios to improve the adaptive
combination of forecasting models;

2. We introduce a novel combination formula for aggre-
gating base learners. This formula computes the weight

of a learner applying the complementary Gaussian error
function to its recent loss which is quantified by the
moving average of its squared error. In this strategy, the
weight of a given model decays exponentially as its error
increases.

On top of these two differentiating factors, we represent the
dynamics of a series using only the sequence of measurements
of the same collected variable. The typical approach involves
using different predictors of the target variable.

B. Combining Individual Forecasters

Combining forecasters has been proved successful before.
In [11] the authors use an ensemble of bagged trees, spe-
cially designed for time series forecasting tasks. Moreover,
they encourage diversity across trees by exploring different
representations of the recent dynamics of the time series.

Timmermann has proved in his seminal work [12] that com-
bining forecasters using the simple average is a robust method.
In [13], the authors use a similar approach, but trim the 20%
worst performing models in all past data. Another method is
introduced in [14], where the linear weights of forecasters
are determined using recent performance. A variance-based
combination scheme was proposed in [15]. The authors cluster
forecasters by past performance and the predictions of the
best performing group are averaged for prediction. In [16],
the authors use a combination strategy that uses the number
of times a method performed best in the past.

AEC is a method for adaptively combining forecasters
presented in [17]. It uses an exponential re-weighting strategy
to combine forecasters according to their past performance. It
includes a forgetting factor to give more importance to recent
values. In [18] it is argued that for the prediction of stock
returns models have only short-lived periods of predictability.
An adaptive combination is proposed based on the recent R2

(coefficient of determination) of forecasters. If all models have
poor explained variance (low R2) in the recent observations
then the forecast is set to the mean value of those observations.
Otherwise, the base-learners are combined by averaging their
predictions with the arithmetic mean.

The originality of this work with respect to these approaches
is two-fold:

1. These approaches are based on typical time series anal-
ysis models such as ARIMA [19]. On the other hand we
focus on heterogeneous machine learning models. Our
hypothesis is that these should better fit the different
dynamic regimes of the time series given their distinct
inductive biases;

2. We use a non-linear function based on the complementary
Gaussian error function to combine subsets of best recent
performing models, yielding a more reactive combined
model.

III. DYNAMIC ENSEMBLE FOR TIME SERIES
FORECASTING

A univariate time series is a time-ordered sequence of values
y1, y2, . . . , yn from an observable Y measured at regular time



intervals, where yi is the value of Y at time i. At this stage
it is important to remark that we use the term time series
throughout the paper assuming Y is a numeric variable (i.e.
yi ∈ R,∀yi ∈ Y ).

To tackle the problem of time series forecasting the pro-
posed methodology follows the ideas from [20] regarding
time-delay embedding. In this context, a time series is re-
constructed into a higher dimensional space with embedding
dimension K. Effectively, we generate the following matrix:

Y[N,K] =


y1 y2 . . . yK−1 yK
...

...
...

...
...

yi−K+1 yi−K+2 . . . yi−1 yi
...

...
...

...
...

yn−K+1 yn−K+2 . . . yn−1 yn

 (1)

Each row denotes an embedding vector vr,∀ r ∈ {1, . . . , t−
K + 1}. The assumption is that there are no long term time
dependencies in the series and thus the embedding vectors are
deemed as essentially uncorrelated.

This representation of the time series allows the use of any
regression technique available in the literature. Therefore, in
the proposed methodology a set of heterogeneous regression
models is individually pre-trained in the available data. At
run-time we combine the models according to their recent
performance to predict unseen observations.

A. Dynamic Heterogeneous Ensemble
In [11], diversity in an ensemble of bagged trees is en-

couraged by exploring different representations of the recent
observations of a time series. This is achieved by the use
of different embedding dimensions along with data summary
statistics. However, learning models of the same type are prone
to behave similarly across similar data-spaces. For example,
tree-based models are bound to learn the data space in the
form of hyper-rectangles. Combining learning algorithms with
different inductive bias encourages a natural diversity in the
ensemble, given their different assumptions on the unknown
regression function. In this context, heterogeneity among base
learners leads to an improvement of the overall predictive
ability of the ensemble (e.g. [6], [1], [21]).

We propose a dynamic ensemble geared towards time series
forecasting where base learners are weighted according to
their recent performance. As opposed to related work in
combination of forecasters that weight models according to
their past performance (e.g. [14]) we evaluate the performance
of each model in recent observations instead of the whole past
data. This achieves a reactive combined model self-adaptable
to concept drift.

We weight each base learner in the proposed model by
tracking its residuals. Specifically, we introduce a metric called
EMASE (for Erfc Moving Average Squared Error) to quantify
the recent performance of a model. This heuristic is formalized
in Equation 2:

EMASEs =
erfc(MASEs)∑
s∈S erfc(MASEs)

,∀s ∈ S (2)

where MASE is the moving average squared error (normal-
ized to a 0–1 scale with a max-min normalization) computed
over a window of P periods. S is the set of heterogeneous
base learners and erfc is the Gaussian complementary error
function formalized as follows:

Erfc(x) =
4√
π

∫ ∞
x

e−t
2

dt (3)
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Fig. 1: Dynamics of the function Erfc. As the loss of a given
model increases its weight decreases exponentially.

Figure 1 provides an intuition for the Erfc function. The
weight of a given model decays exponentially as its loss
increases. The original formulation of the Erfc function uses
a 2 scalar instead of a 4 in the fraction of Equation 3.
This change is motivated by the interest of smoothing the
exponential decay of the weights with respect to the loss.

The dynamics of the moving average yield a flexibility to
the combined model, in the sense that it is self-adaptable
when concept drift occurs. Moreover, the number of periods
P to average over, when calculating the EMASE, controls
the reactiveness of the learning system to such events. A
smaller value of P leads to greater reactiveness, but also
makes the ensemble susceptible to be deceived by outliers.
Conversely, higher values of P lead to greater stability, while
losing some responsiveness. This trade-off is known as the
stability-plasticity dilemma [22].

In this setting, models are pre-trained on the available data
and their predictions aggregated according to the models’
EMASE. This strategy culminates into a committee of models,
dynamically extracted from the pool of learners. The com-
mittee is a subset of the base learners formed by the top
λth percentile of models w.r.t. EMASE. In other words, at
prediction time and after weighting forecasters with respect to
EMASE we trim the worst models and combine the top λth
percentile to make a prediction.

For a new observation d in the series the predictions of
the models in the committee are combined by an Aggregate
function:

ŷd =
∑
s′∈S′

ŷs′ × ωs′ (4)

where ŷd is the ensembles’ prediction for d; ŷs′ is the
prediction of learner s′ in the committee S′; S′ is the subset of
the learners whose EMASE score is on the top λth percentile



of the scores of all models in S; and ωs′ is the weight for
model s′ which is determined by EMASE and is formalized
in the following equation:

ωs′ =
EMASEs′∑

s′∈S′ EMASEs′
(5)

Essentially, after selecting the best recent performing models
(according to EMASE and the cut-point λ) the Aggregate
function combines these models according to their EMASE
score.

Although the individual learners are trained in a batch (and
hence static) fashion, their aggregation changes over time,
making the ensemble dynamic and online as a whole. Learners
with poor predictive performance in recent observations have
their importance in the aggregation decreased or are even
temporarily discarded from the committee S′. On the other
hand, well-fitting models in recent observations are given more
relevance and may become part of the committee S′.

We hypothesize that this strategy renders an effective mech-
anism against concept drift which is a common issue in
dynamic environments.

B. Further Encouragements for Diversity

Besides base learner heterogeneity and dynamic aggregation
of models we also encourage diversity in the ensemble by
exploring different representations of the recent dynamics of
a time series. We use different parameter settings of the base
learners, embedding dimensions and training windows for each
base learner.

Following the ideas presented by [11], groups of learners are
trained using different predictors according to the embedding
dimension and also using different training window sizes.
• embedding size diversity: Each base learner is trained

using embedding dimensions K, K/2 and K/4, where
K is the maximum embed size of the original data;

• training window diversity: We split the training set
window in a similar fashion. Suppose that the time series
has N observations. We train each learner in the last N ,
N/2 and N/4 observations.

Overall, this leads to 9 different data combinations available
for training. On top of these diversity measures each learner
may comprise different parameter settings. Moreover, each
learner includes two extra predictors ∆, mean and standard
deviation of the embedded values, in order to augment the
information about the recent dynamics of the series.

In summary, we build an ensemble composed by S different
models, varying both in parameter settings and in the data used
for learning. Algorithm 1 summarises the proposed Dynamic
Heterogeneous Ensemble.

IV. EMPIRICAL EXPERIMENTS

This section describes the experiments carried out to val-
idate the proposed methodology of dynamic and heteroge-
neous ensembles for time series forecasting tasks. These were
especially designed to answer the following three research
questions:

Q1: Is it beneficial to use heterogeneous base learners? That
is, we want to see if using models with different assump-
tions about the underlying process causing the series is
helpful to make better predictions in the future.

Q2: Is it beneficial to dynamically combine heterogeneous
base learners? More specifically, can we use information
on the recent performance of the base models in order to
improve future predictions?

Q3: How does the performance of the proposed dynamic het-
erogeneous ensemble relate to the state-of-the-art meth-
ods for time series forecasting tasks and state-of-the-art
methods for the adaptive combination of forecasters?

First we use 16 real world time series and several baseline
models to prove our hypotheses. Then, to further improve
our point we also include a more in-depth analysis where
we employ our model in an artificial time series. All these
experiments are reproducible. The datasets and code for this
work are available1 as a R package.

A. Experimental Setup

The above-mentioned hypotheses were tested using 16 real
world time series briefly described in Table I. Only time series
with variance above 1 (normalized by their respective range)
were considered. The rationale behind this choice is that highly
volatile time series are more prone to comprise non-linear
dynamics with different regimes. From Table I, time series
with ID 1–8 are related to a residential power load [23]; 9–
11 are associated with water demand levels from different
delivery points2 in a city; 12–13 are related to ozone level
detection [24]. Finally, time series 14–16 were collected from
a solar radiation monitoring system [25].

1repository: https://github.com/vcerqueira/tsensembler
2Downloaded from Águas do Douro e Paiva: http://addp.pt

Algorithm 1: Dynamic and Heterogeneous Ensemble
Input: Time series YN of size N ; Set of heterogeneous

base learners S; Embedding Dimension K
– Embed YN into Y[N,K]

– Compute extra predictors ∆ onto Y[N,K] → Y[N,{K,∆}]
foreach base learner s in S do

foreach n ⊆ N, k ≤ K do
train s using Y[n,{k,∆}]

end
end
Compute EMASEs, ∀s ∈ S
Initialize Λ← Percentile1−λ(EMASE)
Initialize Committee S′ ← {s ∈ S : EMASEs ≥ Λ}
foreach upcoming new data point d do

Get predictions ŷs′ from models s′ ∈ S′
Compute weights ωs′ ,∀s′ ∈ S′
Compute prediction ŷd = Aggregate(ŷs′ , ωs′)
Compute loss L(ŷs, yd), ∀s ∈ S
Update EMASEs ∀s ∈ S; Λ; S′

end

https://github.com/vcerqueira/tsensembler
http://addp.pt


TABLE I: Datasets and respective summary

ID Time series Data source Data characteristics

1 Wholehouse Power

Residential Loads [23] Every 30 secs. – May 5, 2016 – from 8h34min to
12h58min (649 values)

2 Wholehouse Reactive Power
3 Condenser Power
4 Dryer Power
5 Range Power
6 Washer Power
7 Dishwasher Power
8 Lights Power

9 Preciosa Mar Oporto Water Consumption from
different locations

Half-hourly values from Nov. 11, 2015 to Jan. 11,
2016 (2929 values)10 Ameal

11 Montes Burgos

12 Sea Level Pressure Ozone Level Detection [24] Daily values from Jan. 2, 1998 to Dec. 31, 2004
(2533 values)13 K Index

14 Global Horiz. Radiation
Solar Radiation Monitoring [25] Hourly values from Apr. 25, 2016 to Aug. 25, 2016

(2950 values)15 Direct Normal Radiation
16 Diffuse Horiz. Radiation

The experiments were performed using the framework pro-
vided by the performanceEstimation [26] R package.

The methods were evaluated using the Mean Squared Error
(MSE) on ten Monte Carlo repetitions. For each repetition, a
random point in time is chosen from the full time window
available for each series, and the previous window N con-
sisting of 60% of the data set size is used for training the
ensemble while the following window of size 25% is used
for testing. Moreover, we follow the guidelines provided by
Demšar in [27] for the statistical comparison of the different
methods.

B. Ensemble Methods Setup
Finding the appropriate embed size is dependent on the data

itself. In order to test for robustness, we tried two different
values of maximum embed: 20 and 40. We tested 3 different
levels of responsiveness to changes. This is accomplished by
having P, the number of periods used to calculate EMASE,
take the values 10, 25 and 50.

The base models comprising each ensemble are the fol-
lowing: SVM [28], Neural Networks [29], Gaussian Pro-
cesses [28], MARS [30], Generalized Linear Models [31],
Generalized Boosted Models [32], Random Forests [33], Rule-
based Regression [34] and PPR [35]. The heterogeneous
ensembles include several parameter variants of each of these
base models, in a total of 324 models for each ensemble.

The percentile λ is set to 10, which means that at each
prediction time the best 10% base models are combined to
make the final prediction.

1) Baselines: We considered the following six different
models as baselines:
• ARIMA: An ARIMA model, estimated using the func-

tion auto.arima from [19], which automatically tunes the
model for an optimal parameter setting;

• BAGT: A static homogeneous ensemble. We include the
best performing variant of the ensemble of bagged trees

proposed in [11] (BaggingDE±S). This model extends
standard bagging by using summary statistics as predic-
tors as well as exploring different embedding dimensions
and is specially designed for time series forecasting tasks;

• S-S: A static heterogeneous ensemble. This is a variant of
our method where the predictions of all base learners are
simply averaged using the arithmetic mean. This strategy
goes back to [12] where the author proves its robustness
for time series forecasting tasks;

• S-W: Another static heterogeneous ensemble. In this
variant the base models are weighted according to past
performance such as in [13], where the weights are linear
and determined using all past information;

• NG-W50: A dynamic ensemble in which all available
models are weighed according to their past performance
in the past 50 observations [14]. We tested different
values for the window size and 50 provided the best
results;

• R-W: A dynamic variant of Algorithm 1 where EMASE
is replaced by an exponentially weighted average function
with theoretical bounds [10, Chapter 2], which minimizes
a regret loss function;

• AEC [17]: a method for the adaptive combination of
forecasting models – check Section II for a description;

• ERP [18]: a method for the adaptive combination of
forecasting models – check Section II for a description;

Our proposed method is denoted as E-WP.

C. Results

Figures 3 to 6 summarise the paired comparisons results
from the Wilcoxon Signed Rank test for two different base-
lines, BAGT and S-W. Paired comparisons are depicted by
back-to-back barplots. Outer bars are wins – left for the
respective variant, right for the baseline. Inner bars are sta-
tistically significant wins. We picked these two models as



TABLE II: Mean and deviation of rank of the workflows across
the 16 experiments. A method with rank position 1 in a given
experiment means it is the best performing model in such
experiment.

K 20 40

ARIMA 8.1± 3.7 7.3± 3.9
BAGT 4.6± 3.7 4.9± 3.6
S-S 7.7± 1.9 8.0± 2.3
S-W 7.1± 4.0 7.0± 3.9
NG-W50 5.3± 2.8 4.9± 2.8
E-W10 6.4± 1.6 5.8± 2.4
E-W25 4.9± 1.7 5.3± 2.1
E-W50 4.0 ± 2.2 4.3 ± 2.2
R-W 7.1± 3.4 7.5± 2.9
AEC 5.8± 3.8 6.3± 3.9
ERP 5.0± 2.4 4.5± 2.1

baselines for the paired comparisons results to verify two of
our hypothesis Q1 and Q2. Table II shows the mean rank
position and respective deviation of all the methods across
all 16 experiments. A critical difference diagram is presented
in Figure 2 using the Bonferroni-Dunn post-hoc test. In the
graphic, methods that are not connected with the horizontal
line show significantly differences with respect to E-W50, the
proposed method. K was set to 40. Similar conclusions were
drawn using K equal to 20.

By using BAGT as baseline we can evaluate hypothesis
Q1. From the inspection of Figures 3 and 4, the static het-
erogeneous ensembles (i.e. S-S and S-W) show a competitive
performance relative to BAGT. This is more evident if we use
the information about the performance of the base models in
the training data (S-W). Although S-W presents the best mean
rank position (among static ensembles) these are comparable
with each other if we take into account the variability in the
rank position. In summary, the results of our experiments show
empirical evidence of heterogeneous methods being able to
overcome the performance of homogeneous ensembles.

From the perspective of the method S-W as baseline – a
static heterogeneous method – we can test the validity of
hypothesis Q2. This analysis is supported by Figures 5 and 6,
which provide a sense of the impact of using a dynamic
aggregation function. The proposed dynamic approaches show
a clearly superior performance relative to the static meth-
ods. Further, the dynamic variants with greater stability (i.e.
P = 50) perform better than similar but more reactive versions
(P = 10). The mean rank positions also corroborate the idea
that it is in fact worthwhile to dynamically combine hetero-
geneous base learners. Particularly, the dynamic ensemble E-
W50 achieves a remarkable mean rank.

According to the diagram in Figure 2, the proposed method
shows a consistent superior average rank with respect to the
remaining methods, including other state-of-art approaches for
adaptive combination of forecasting models. Moreover, the

difference to the methods ARIMA, S-S and R-W is statistically
significant. These results answer the research question Q3
about the comparison of the proposed method to other state-
of-art approaches used in time series forecasting tasks.

In order to emphasise our point we tested the methodology
in a synthetic environment, whose underlying dynamics are
made to change.

D. Synthetic Analysis

In order to ensure the presence of regime shifts we resort
to artificial data. We created an artificial time series with a
large structural change (c.f. Figure 7) based on those presented
in [36]. The time series includes six marked regimes each
of which originated from a different process and comprising
250 observations. Our working hypothesis in this scenario
is that the dynamic ensemble should better adapt to new
regimes relative to a static ensemble due to its responsiveness
component. As we mentioned before, we expect this property
to improve the combined model by giving more importance
to the best recent models. Log transformations were produced
using the following equation: sign(x) · log(|x|+ 1).

For simplicity we focus this analysis on the variants BAGT,
S-W and E-W50, which represent a Static Homogeneous
Ensemble, the best ranked Static Heterogeneous Ensemble and
the best ranked Dynamic Heterogeneous Ensemble according
to Table II, respectively. Moreover, we set K to 40. Similar
conclusions were drawn with K equal to 20.

We compared the dynamic ensemble over time to the static
ensembles by measuring the percentual difference in squared
error, which is depicted in Figure 8. The figure supports the
idea that the dynamic ensemble fits the data better than the
static ensembles (Q2). The dynamic ensemble shows not only
a lower error throughout the series, but also shows a better
response to regime changes.

E. Base Learner’s Analysis

We present an more in-depth analysis of the ensemble E-
W50 as well as its base learners. Particularly, we study the
impact of our diversity strategy described in Section III-B.
Moreover, through a bias-variance decomposition we analyse
the behavior of E-W50 with respect to some of its base
learners. For simplicity we focus on time series IDs 15 and 9
(c.f. Table I) for those tasks, respectively. We set K to 40 and
use an holdout strategy to perform the experiments. The first
70% of the time series is used to train the base learners and
the remaining 30% is used for testing.

1) Diversity Analysis: In Section III-B we described sam-
pling strategies used to encourage diversity in the ensemble.
Particularly we sample the data with two strategies related
to the embedding dimension K and the training window N .
For example, a combination of K −N/2 means that the data
comprises all the embeds up to K (columns in Matrix 1) and
the half most recent embedding vectors (rows in Matrix 1).
Other combinations have a similar intuition. This resulted in
9 different data combinations available for training each base
learner.
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Fig. 2: Bonferroni-Dunn post-hoc test comparing the performance of the methods in the datasets for K = 20.
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In order to understand the impact of this strategy we analyse
the performance of models grouped by each data combination.
To accomplish this we study the rank of each data combina-
tion in terms of squared error. This metric is produced by
computing the rank of the average rank of individual models
grouped by data combination. For example, a data combination
with rank 1 means that it comprises the base learners that on
average have the lowest squared error. We report this rank in
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Figure 11 for time series id 15, where the results are averaged
over periods of 20 consecutive observations. Overall the base
learners training in the full data (N-K) have a lower mean
rank (i.e. better performance) than other combinations which
are subsets of the N-K embedded series. However, there are
some peaks along the series in which base learners trained
in subsets of the full embedded series, particularly those with
lower embedding size (K/2 or K/4), have better performance.
For example, in the highlighted area in Figure 11 there is a
time interval in which the base models trained on subsets of K
are performing better. The same, although less clear and less
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Regime changes are marked by vertical dotted lines. The red
solid and green dashed lines represent the relative performance
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frequent happens for subsets of the training window N.
Effectively, this analysis shows that the strategy we em-

ployed for diversity by using different subsets of data is
worthwhile in some time intervals and helpful to cope with
different regimes. Even if the subsetting strategies typically un-
derperform (e.g. K/4 subsets) this is handled by the committee,
which only considers a fraction of the best recent performing
models.

2) Bias-Variance Analysis: We perform a bias-variance
decomposition to understand how the performance of E-W50
relates to the performance of its base learners. For illustration
purposes we focus on the top 3 base learners with lower mean
squared error on the time series.

The bias of a model is the difference between the expected
prediction and the actual value. Figure 9 shows the log-
scaled bias of each model, computed incrementally at each
test observation. The combined model has a better expected
performance than the base learners. Additionally, the figure
illustrates how the combined model mitigates fluctuations
in bias error with respect to its base learners, rendering a
stabler algorithm. Initially, the ensemble presents considerable
fluctuations because the EMASE score is only fully computed
after 50 observations due to the number of periods P to average
over the squared error. We also show the log-scaled variance

in Figure 10, which is lower for E-W50 and generally stable
throughout the series for all models.

In summary, this posterior analysis of the results further
strengthens our argument by studying how the proposed en-
semble is better able to cope with changing environments,
particularly univariate time series. Although this analysis is
presented here only for two particular time series, similar
conclusions were drawn in other ones.

V. DISCUSSION

Overall, the results from the experiments demonstrate the
competitiveness of the proposed method relative to other
approaches. These include state-of-the-art methods for dynam-
ically combining forecasting models.

Our starting hypothesis was that the dynamic aggregation
renders a combined model that is self-adaptable when a change
in regime occurs. This became more clear when we applied our
dynamic method in a synthetic environment against two static
ensembles (c.f. Figure 8). At each changing point (denoted by
vertical dotted lines) the advantage of the dynamic ensemble
is diminished, and sometimes lost, to its static competitors.
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However, E-W50 is able to quickly adapt itself to the new
regime and regain its previous advantage. The figure also
illustrates the limitation of traditional methods in the face of
concept drift. The static variants are not adaptable and then
consistently under-perform relative to E-W50.

Many time series comprise recurrent patterns due to for
example seasonality [37]. In this perspective, our model is
capable of adapting between different concepts. When the un-
derlying series generating process changes to a novel concept
we expect the heterogeneity and responsiveness of our method
to cope with such scenarios. Nonetheless, as future work we
plan to include a re-training parameter to the base learners.

Regarding our combination strategy we used a comple-
mentary Gaussian error function to weight the base models.
This function was picked instead of a linear transformation
to further favor well performing ones and hence penalize bad
performing ones. Figure 1 provides the intuition behind this
choice. The weight of a given base learner decays exponen-
tially as its loss increases.

In Section IV-E we studied the behavior of the base models
comprising the proposed dynamic ensemble. First, we showed
that training models in subsets of the original available series
(c.f. Section III-B) might be worthwhile and helpful to cope
with a changing environment. Second, we illustrated how the
combined model improves and stabilizes the bias with respect
to some of the individual models that comprise it.

VI. CONCLUSIONS

In this paper we presented new forms of ensemble methods
for time series forecasting tasks, an extensively researched
field in Machine Learning. Our main goal was to uncover

new techniques for adaptively combining diverse base learners.
In this context, we proposed a combination of the following
strategies: (i) base learner heterogeneity, meaning that distinct
modelling algorithms are used to create an ensemble, injecting
a natural diversity in the combined model; and (ii) responsive-
ness, achieved by dynamically picking and aggregating the
best recent base models. This dynamic ability is essential for
predictive models in changing environments, as is frequently
the case in time series forecasting tasks. Similar strategies
have already been used before in classification tasks, but
we extend them to numerical domains in univariate time
series. Besides heterogeneity and dynamic aggregation, we
also include varying embedding dimensions, different learner
parameters, summary statistics as predictors and a non-linear
combination function.

We conducted experimental comparisons of several varia-
tions of the proposed methods against other ensemble learning
approaches designed to deal with time series forecasting tasks
as well as classical auto-regressive methods used for time
series forecasting. Our experiments included 16 real-world
time series with unknown dynamics as well as an artificially
generated time series with clear regime shifts.

Results from Monte Carlo simulations on the real-world
series show the competitiveness of our methods and, in par-
ticular, the advantages of ensemble heterogeneity and respon-
siveness. This was validated using hypothesis testing with the
Wilcoxon Signed Rank test and by the computation of the
methods’ average ranks over all time series. Experiments with
the artificially generated time series further confirm our claims,
as our dynamic method is visibly more adaptable to concept



drift than ensembles using static prediction aggregation.
Future work includes: (i) implementing the ability to learn

additional base models (or re-train existing ones) as the perfor-
mance of the current pool degrades beyond tolerance; and (ii)
introducing the ability to deal with multivariate dependencies.

To encourage reproducible research the methodology pro-
posed as well as the time series used in this paper are publicly
available as an R package.
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