
Optim Lett (2014) 8:1225–1243
DOI 10.1007/s11590-013-0665-y

ORIGINAL PAPER

An edge-swap heuristic for generating spanning trees
with minimum number of branch vertices

Ricardo M. A. Silva · Diego M. Silva ·
Mauricio G. C. Resende · Geraldo R. Mateus ·
José F. Gonçalves · Paola Festa

Received: 12 October 2012 / Accepted: 7 June 2013 / Published online: 19 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract This paper presents a new edge-swap heuristic for generating spanning trees
with a minimum number of branch vertices, i.e. vertices of degree greater than two.
This problem was introduced in Gargano et al. (Lect Notes Comput Sci 2380:355–
365, 2002) and has been called the minimum branch vertices problem by Cerulli
et al. (Comput Optim Appl 42:353–370, 2009). The heuristic starts with a random
spanning tree and iteratively reduces the number of branch vertices by swapping tree
edges with edges not currently in the tree. It can be easily implemented as a multi-start
heuristic. We report on extensive computational experiments comparing single-start

R. M. A. Silva
Center of Informatics, Federal University of Pernambuco,
Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária,
CEP 50.740-560 Recife, PE, Brazil
e-mail: rmas@cin.ufpe.br

D. M. Silva
Department of Computer Science,
Federal University of Lavras,
CEP 37200-000 Lavras, MG, Brazil
e-mail: diego.silva@gmail.com

M. G. C. Resende (B)
Algorithms and Optimization Research Department,
AT&T Labs Research, 180 Park Avenue, Room C241,
Florham Park, NJ 07932, USA
e-mail: mgcr@research.att.com

G. R. Mateus
Department of Computer Science,
Federal University of Minas Gerais,
CEP 31270-010 Belo Horizonte, MG, Brazil
e-mail: mateus@dcc.ufmg.br

123

1226 R. M. A. Silva et al.

and multi-start variants on our heuristic with other heuristics previously proposed in
the literature.

Keywords Constrained spanning trees · Branch vertices ·Minimum branch vertices
problem · Heuristic ·Multi-start heuristic · Edge swapping

1 Introduction

Given an undirected unweighted graph G = (V, E), where V is the set of vertices and
E is the set of edges, a vertex v ∈ V is said to be a branch vertex if its degree δ(v) is
greater than 2. In this paper, we consider the minimum branch vertices (MBV) problem
whose goal is to find a spanning tree of G with minimum number of branch vertices.
This problem finds applications in optical multicast network design. In these networks
switches use light splitters to replicate the optical signal. Since switches need only be
installed at branch vertices of the network, reducing the number of branch vertices
will reduce the number of switches and consequently the cost to deploy the switches
in the network.

For all v ∈ V , let yv be a binary variable such that yv = 1 if and only if vertex v is
a branch vertex and for all e ∈ E , let xe be a binary variable such that xe = 1 if and
only if edge e is in the spanning tree. Furthermore, let E(S) be the set of edges having
both endpoints in S ⊆ V and let A(v) be the set of edges incident to vertex v ∈ V .
[2] formulated this problem as the following integer program:

min
∑

v∈V

yv (1)

s.t.
∑

e∈E

xe = |V | − 1, (2)

∑

e∈E(S)

xe ≤ |S| − 1, ∀ S ⊆ V, (3)

∑

e∈A(v)

xe − 2 ≤ (|A(v)| − 2)yv, ∀ v ∈ V, (4)

J. F. Gonçalves
LIAAD, Faculdade de Economia do Porto,
Universidade do Porto, Rua Dr. Roberto Frias, s/n,
4200-464 Porto, Portugal
e-mail: jfgoncal@fep.up.pt

P. Festa
Department of Mathematics and Applications
“R. Caccioppoli”, University of Napoli FEDERICO II,
Compl., MSA, Via Cintia, 80126 Naples, Italy
e-mail: paola.festa@unina.it

123

An edge-swap heuristic for the MBV problem 1227

yv ∈ {0, 1}, ∀ v ∈ V, (5)

xe ∈ {0, 1}, ∀ e ∈ E . (6)

The objective function (1) minimizes the total number of branch vertices. Constraint
(2) must be satisfied by any spanning tree of G and constraints (3) impose that the
solution is a forest. Constraints (4) require that if vertex v ∈ V has degree greater than
two, then it must be a branch vertex. Finally, constraints (5)–(6) restrict the decision
variables to be binary.

This problem was recently addressed in the literature by several authors. It was
introduced by [7] who showed that the problem is NP-hard and presented some nonap-
proximability results. They also showed conditions which imply strong upper bounds.
[4] developed a mixed integer linear formulation which, however, was only used to
solve small instances. For large instances the authors proposed three heuristics:Edge-
Weighting Strategy (EWS), Node-Coloring Heuristic (NCH), and Combined Approach
(CA) (which combines EWS and NCH). [2] introduce four new formulations and their
corresponding relaxations. With their algorithms, they computed lower and upper
bounds for 80 instances introduced by them.

The edge-swap heuristic (ESH) proposed in this paper starts by constructing a
spanning tree of G and iteratively attempts to reduce the number of branch vertices in
the tree by exchanging tree edges with edges of G that are not in the tree. We propose a
measure that quantifies the influence of removing/inserting edges from/to the current
spanning tree and use this measure to carry out the swaps. If removed, edges that
are incident to two branch vertices can potentially have more impact in reducing the
number of branch vertices than edges that are incident to a single or no branch vertex.
Likewise, if removed, an edge that is incident to a single branch vertex can potentially
have more impact in reducing the number of branch vertices than an edge that is not
incident to any branch vertex. Instead of using a strategy that seeks first to remove edges
incident to vertices of degree three, our strategy prioritizes for removal edges incident
to high-degree vertices. The removal of a tree edge disconnects the spanning tree with
a cut. An edge in this cut, other than the one just removed, will need to be added to
obtain a spanning tree. Instead of prioritizing edges incident to two branch vertices, as
in the removal phase, we now prioritize edges incident to no branch vertex over edges
incident to a single branch vertex and edges incident to a single branch vertex over
edges incident to two branch vertices. Similarly, edges incident to low-degree vertices
are preferable to edges incident to high-degree vertices.

The paper is organized as follows. In Sect. 2, we describe the new edge-swap
heuristic ESH. Computational results are described in Sect. 3 and concluding remarks
are made in Sect. 4.

2 Edge-swap heuristic for the minimum branch vertices problem

In this section, we describe the new edge-swap heuristic (ESH) for finding spanning
trees with a small number of branch vertices. Pseudo-code for the heuristic is shown
in Algorithm 1. The heuristic starts from a random spanning tree T of G. We choose to

123

1228 R. M. A. Silva et al.

build T by first generating random edge weights and then solving a minimum spanning
tree (MST) problem with Kruskal’s algorithm [9]. T is computed in lines 1 and 2 of the
pseudo-code. Then, a sequence of edge swaps is made until a stopping criterion is satis-
fied. Each swap consists of removing an edge from the current tree and replacing it with
an edge not in the tree whose insertion results in a new, possibly better, spanning tree.

Data : G = (V, E).
Result : Solution T ∗.
G′ ← RandomWeights(G);1
T ← MST(G′);2
T ∗ ← T ;3
repeat4

ExchangeDone← false;5
L ← MakeRemovalEdges(T);6
while ExchangeDone is false and L 	= ∅ do7

e∗ = (u∗, v∗)← SelectRemovalEdge(L);8
L ← L \ (u∗, v∗);9
T ← T \ (u∗, v∗);10
R← MakeInsertionEdges(T, G, (u∗, v∗));11
e′ = (u′, v′)← SelectInsertionEdge(R, T, (u∗, v∗));12
if (αe′ < αe∗) or (αe′ = αe∗ and σe′ < σe∗) then13

T ← T ∪ (u′, v′);14
ExchangeDone← true;15
if NumBV(T) < NumBV(T ∗) then16

T ∗ ← T ;17
end18

else19
T ← T ∪ (u∗, v∗);20

end21
end22

until ExchangeDone is false;23
return T ∗;24

Algorithm 1: Pseudo-code for edge-swap heuristic (ESH) for minimum branch
vertices

The swaps are carried out in lines 4 to 23 and are done until the current spanning
tree is locally optimal with respect to single edge swaps. In line 5 the edge swap
indicator ExchangeDone is set to be false. In line 6, a list L of candidate edges
for swapping out is created. This list consists of all edges in the current spanning
tree that are incident to at least one branch vertex. For each edge e = (u, v) ∈ L ,
MakeRemovalEdges computes two values, αe and σe. For a given spanning tree,
parameter αe is 1 if only one endpoint (vertex u or vertex v) is a branch vertex or 2 if
both u and v are branch vertices. Parameter σe is the sum of the degrees of the endpoints
of edge e in the spanning tree. These parameters are used to prioritize spanning tree
edges to be swapped out and non-spanning tree edges to be swapped in.

A swap is attempted in the loop in lines 7 to 22. The loop is run while there are
edges in L or until an edge swap is done. In line 8 an edge (u∗, v∗) is selected from list
L by procedure SelectRemovalEdge. Let L ′ ⊆ L be the set of edges in L with
maximum αe value. If |L ′| = 1, then edge (u∗, v∗) ∈ L ′ is selected as the candidate
for being swapped out. Otherwise, let L ′′ ⊆ L ′ be the set of edges in L ′ with maximum
σe value. If |L ′′| = 1, then edge (u∗, v∗) ∈ L ′′ is selected as the candidate for being

123

An edge-swap heuristic for the MBV problem 1229

swapped out. Otherwise, if |L ′′| > 1, then some edge (u∗, v∗) ∈ L ′′ is selected at
random as the candidate for being swapped out.

In lines 9 and 10, edge (u∗, v∗) is removed from list L and from the current spanning
tree creating two subtrees, T1 and T2. In line 11, the list R of candidate edges for swap-
ping in is created by procedure MakeInsertionEdges. These edges are elements
of E \(T1 ∪ T2 ∪ {(u∗, v∗)}) with one endpoint in T1 and the other in T2. As before,
parameters αe and σe are computed for all edges e ∈ R. Whereas before the parameters
were computed with respect to the current spanning tree T , here they are computed
with respect to the spanning tree T \{e∗}∪{e}. ProcedureSelectInsertionEdge
in line 12 selects the candidate edge (u′, v′) ∈ R to be swapped in. Let R′ ⊆ R be
the set of edges in R with minimum αe value. If |R′| = 1, then edge (u′, v′) ∈ R′
is selected as the candidate for being swapped in. Otherwise, let R′′ ⊆ R′ be the
set of edges in R′ with minimum σe value. If |R′′| = 1, then edge (u′, v′) ∈ R′′ is
selected as the candidate for being swapped in. Otherwise, if |R′′| > 1, then some
edge (u′, v′) ∈ R′′ is selected at random as the candidate for being swapped in.

The swap of edge e′ for edge e∗ is accepted in line 13 if αe′ < αe∗ , or if αe′ = αe∗
and σe′ < σe∗ . If αe′ < αe∗ then either αe′ = 0 and αe∗ = 1, or αe′ = 0 and αe∗ = 2,
or αe′ = 1 and αe∗ = 2. If αe′ = 0, then the insertion of edge e′ will not increase
the number of branch vertices and the deletion of edge e∗ will either decrease the
number of branch vertices by 1 or 2, or will decrease the degree of at least one of
its endpoint vertices (one or both of which may be branch vertices). On the other
hand, if αe′ = 1 and αe∗ = 2, then the insertion of edge e′ either creates a new
branch vertex or increases the degree of an existing branch vertex. To compensate
for this, the removal of edge e∗ either reduces the number of branch vertices by 1
or 2, or reduces the degrees of two branch vertices. If αe′ = αe∗ , then they must be
both equal to 1 or to 2 (but not 0). If σe′ < σe∗ , then the removal of edge e∗ and
insertion of edge e′ contributes to balancing the degree distribution in T of the branch
vertices, whereas if σe′ > σe∗ then the swap would contribute to unbalancing the degree
distribution.

If accepted, the swap is completed in line 14. In line 15 the edge swap indicator
ExchangeDone is set to be true, and if an improvement in the number of branch
vertices results, the incumbent solution T ∗ is updated in line 17. If the swap is not
acceptable, edge e∗ is reinserted into the current spanning tree T in line 20.

Note that the complexity of Algorithm 1 is O(|E | log |V | + |V |2) since computing
the MST (using union-find) takes O(|E | log |V |) time and the loop from line 7 to 22
can run for at most O(|V |) iterations because the initial cardinality of L in line 6
is at most |V | − 1. Since each run of the loop from line 7 to 22 either detects local
optimality of the current tree or reduces the number of branch vertices by at least a
unit, we can conclude that this loop can be run at most O(|V |) times.

Figure 1 shows an example of the application of ESH on a 50-vertex, 188-edge
graph. The figure shows intermediate spanning trees found during 12 iterations of the
loop from line 4 to line 23 in the pseudo-code of Algorithm 1. The last spanning tree
has no branch vertex and is, therefore, optimal.

Since ESH starts from a random spanning tree, it fits naturally within a multi-start
scheme. In such a scheme, the heuristic is repeated a number of times, each time with
a different seed for the random number generator, and the best spanning tree found

123

1230 R. M. A. Silva et al.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42 43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Fig. 1 No branch vertex solution of a 50-vertex, 188-edge instance found with ESH in 12 iterations of the
algorithm

123

An edge-swap heuristic for the MBV problem 1231

over all starts is returned as the solution. In the next section, we run experiments with
both single-start and multi-start variants of ESH.

3 Experimental results

In this section, we report on computational experiments with ESH, the new edge-swap
heuristic proposed in this paper as well as with our implementations of heuristics EWS
and NCH proposed in [4]. We did not implement the combined approach of [4] since
their paper does not offer sufficient detail on how this approach was implemented. A
more detailed description of the experiments presented in this section can be found
in [15].

The algorithms were implemented in C++ and compiled with gcc (Ubuntu version
4.3.2-1ubuntu11) and made use of STL, the C++ Standard Template Library [12].
We used the C++ implementation of the Mersenne Twister random number generator
[11]. All experiments were done on a computer with a 1.66 GHz dual-core T5500
processor with 2048 Kb of cache and 1 Gb of RAM running Linux Ubuntu 11.4.

We implemented Union-Find [6] using STL for use in the implementations of the
three heuristics. In EWS and NCH, Union-Find is used to determine if two vertices
are in different connected components of a graph and in ESH to find the MST with
Kruskal’s algorithm and to build the list R of candidate edges for insertion.

The computational experiment utilized six classes of benchmark instances:

(1) Klingman The 10 instances in this class correspond to the first 10 of the 40
networks proposed by [8]. These instances are p-1, p-2, . . ., and p-10. Their
sizes vary in the range of 200–300 vertices and 1,300–6,300 edges. They are
generated with Klingman’s random network generator Netgen. Netgen is available
at ftp://dimacs.rutgers.edu/pub/netflow/generators/network/netgen/.

(2) Netgen The 55 instances in this class are also generated with Netgen and vary in
size in the range of 30–500 vertices and 67–18,037 edges.

(3) TSPLIB The four instances in this class are alb1000, alb2000, alb3000a,
andalb4000, proposed in [14] and available through TSPLIB [13] at http://www
2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/hcp/. They vary in
size in the range 1,000–4,000 vertices and 1,998–7,997 edges.

(4) Goldberg The nine instances in this class were generated with the random network
generator crand which is distributed in the package SPC [5], available at http://
www.avglab.com/andrew/soft.html. These instances vary in size in the range 500–
1,000 vertices and 6,237–74,925 edges.

(5) Beasley Five instances are taken from OR-Library [1]. They are steind11,
steind12, steind13, steind14, and steind15. Each instance has
1,000 vertices and 5,000 edges. They are available at http://people.brunel.ac.uk/
~mastjjb/jeb/orlib/steininfo.html.

(6) Leighton These 12 instances were proposed in [10]. They are le450_5a,
le450_5b, le450_5c, le450_5d, le450_15a, le450_15b, le450_
15c, le450_15d, le450_25a, le450_25b, le450_25c, and le450_
25d. They all have 450 vertices and edges in the range 5,714–17,425 and are
available at ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/.

123

ftp://dimacs.rutgers.edu/pub/netflow/generators/network/netgen/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/hcp/
http://www2.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/hcp/
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

1232 R. M. A. Silva et al.

Table 1 Heuristic solutions and running times (in s) for Klingman instances

Benchmark Cerulli et al. (2009) Edge-Swap Heuristic

EWS NCH Branch vertices Time

Prob n m d (%) Value Time Value Time Min Mean Max Dev Min Mean Max

p-1 200 1,300 7 7 1.13 5 1.12 4 7.00 12 1.69 0.24 0.46 0.70

p-2 200 1,500 8 7 1.29 7 1.30 2 5.87 11 1.90 0.24 0.50 0.78

p-3 200 2,000 10 5 1.88 5 1.58 2 4.83 8 1.47 0.24 0.57 0.92

p-4 200 2,200 11 7 2.19 5 1.94 1 4.23 8 1.61 0.22 0.54 1.11

p-5 200 2,900 15 6 2.95 5 2.57 1 3.79 8 1.44 0.34 0.69 1.11

p-6 300 3,150 7 8 4.51 6 4.17 1 5.61 9 1.69 0.68 1.58 2.71

p-7 300 4,500 10 5 7.28 6 5.96 2 4.54 10 1.65 0.97 2.12 3.48

p-8 300 5,155 11 7 8.61 6 6.84 1 3.49 7 1.50 0.82 2.04 4.40

p-9 300 6,075 14 4 10.93 3 7.96 0 2.97 7 1.46 0.68 2.05 3.76

p-10 300 6,300 14 3 11.59 4 8.56 0 3.67 7 1.21 1.44 3.51 6.78

All of the instances used in the experiment are also available at http://www2.
research.att.com/~mgcr/data/mbv.

The experiment consisted in running the new (randomized) edge-swap heuristic
(ESH) 100 times, each using a different seed for the random number generator on each
of the 95 instances. For each instance, we record the minimum, mean, and maximum
number of branch vertices of the solutions produced by the heuristic, as well as its
standard deviation. We also record minimum, maximum, and average running times.
We ran our implementations of the (deterministic) heuristics EWS and NCH on each
instance, recording the number of branch vertices in the solutions produced by each
heuristic and the corresponding running times.

Tables 1, 2, 3, 4, 5, and 6 summarize the experimental results. We make the following
observations regarding the experiments:

We validated our implementations of the heuristics EWS and NCH of [4] by
running them on the 600 instances shared with us for this purpose by [3]. [3] also
shared with us average solution values obtained by their implementations of EWS
and NCH on 120 blocks of five instances each. [2] reported results for 80 of these
120 blocks. Our implementations of both heuristics were run on each instance and
average solution values were computed for each block so we could compare them
with the values shared with us by [3].
On the one hand, of the 120 blocks, the average values of the solutions found
by our implementation of NCH matched those of [3] in 119 blocks and found a
slightly better average value (of 0.1) for one block. On the other hand, the average
values of the solutions found by our implementation of EWS matched those of [3]
in only 4 of the 120 blocks. Our implementation had better average values in 13
blocks and worse in 103. On the blocks where our implementation found better
solutions, the average value difference was 1.23 (with a maximum difference of
4.40). On those where the values reported by [3] were better, the average value

123

http://www2.research.att.com/~mgcr/data/mbv
http://www2.research.att.com/~mgcr/data/mbv

An edge-swap heuristic for the MBV problem 1233

Ta
bl

e
2

H
eu

ri
st

ic
so

lu
tio

ns
an

d
ru

nn
in

g
tim

es
(i

n
s)

fo
r

N
et

ge
n

in
st

an
ce

s

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

se
ed

V
al

ue
T

im
e

V
al

ue
T

im
e

M
in

M
ea

n
M

ax
D

ev
M

in
M

ea
n

M
ax

n
-
0
1

30
67

1,
59

6
2

0.
00

8
2

0.
00

8
0

0.
85

3
0.

70
0.

00
0

0.
00

2
0.

01
2

n
-
0
2

30
67

2,
42

9
2

0.
00

8
2

0.
01

2
0

0.
68

3
0.

71
0.

00
0

0.
00

2
0.

00
8

n
-
0
3

30
66

7,
08

1
2

0.
01

2
2

0.
00

8
0

1.
11

3
0.

90
0.

00
0

0.
00

3
0.

00
8

n
-
0
4

30
66

7,
23

6
1

0.
00

8
1

0.
01

2
0

1.
37

3
0.

82
0.

00
0

0.
00

3
0.

00
8

n
-
0
5

30
66

7,
88

0
1

0.
00

8
1

0.
01

2
0

1.
37

3
0.

77
0.

00
0

0.
00

2
0.

00
8

n
-
0
6

30
12

4
1,

17
2

1
0.

00
8

1
0.

01
6

0
0.

84
2

0.
65

0.
00

0
0.

00
4

0.
01

6

n
-
0
7

30
12

2
2,

48
8

0
0.

01
6

0
0.

02
0

0
0.

40
2

0.
55

0.
00

0
0.

00
4

0.
01

2

n
-
0
8

30
12

2
4,

97
0

1
0.

01
6

1
0.

01
6

0
0.

45
2

0.
54

0.
00

0
0.

00
4

0.
01

2

n
-
0
9

30
12

8
5,

08
1

0
0.

01
6

0
0.

01
6

0
0.

24
2

0.
47

0.
00

0
0.

00
3

0.
01

2

n
-
1
0

30
12

5
8,

78
8

1
0.

01
6

1
0.

01
6

0
0.

28
1

0.
45

0.
00

0
0.

00
4

0.
01

6

n
-
1
1

50
18

2
1,

05
4

2
0.

04
0

2
0.

04
8

0
1.

55
5

1.
08

0.
00

0
0.

00
8

0.
02

0

n
-
1
2

50
17

9
3,

33
5

2
0.

04
0

2
0.

04
0

0
1.

16
4

0.
73

0.
00

0
0.

00
9

0.
02

4

n
-
1
3

50
18

0
4,

66
3

2
0.

03
6

3
0.

03
6

0
1.

12
4

0.
79

0.
00

0
0.

00
8

0.
02

4

n
-
1
4

50
18

2
4,

98
5

2
0.

04
0

2
0.

04
0

0
1.

50
4

0.
92

0.
00

0
0.

00
8

0.
02

0

n
-
1
5

50
18

6
7,

08
5

4
0.

04
0

4
0.

04
4

0
1.

39
3

0.
84

0.
00

0
0.

00
8

0.
01

6

n
-
1
6

50
34

1
1,

72
0

0
0.

08
0

0
0.

07
2

0
0.

56
2

0.
69

0.
00

4
0.

01
2

0.
02

4

n
-
1
7

50
34

5
6,

75
2

2
0.

08
4

2
0.

04
8

0
0.

36
3

0.
58

0.
00

4
0.

01
3

0.
02

4

n
-
1
8

50
34

9
7,

00
9

2
0.

05
2

2
0.

07
6

0
0.

42
2

0.
59

0.
00

4
0.

01
2

0.
02

0

n
-
1
9

50
34

3
7,

03
0

1
0.

07
2

1
0.

07
6

0
0.

32
2

0.
51

0.
00

0
0.

01
2

0.
02

0

n
-
2
0

50
34

4
9,

97
9

0
0.

07
6

0
0.

07
2

0
0.

40
2

0.
62

0.
00

4
0.

01
2

0.
02

0

n
-
2
1

10
0

72
3

2,
31

2
3

0.
27

6
3

0.
28

4
0

1.
28

3
0.

94
0.

02
4

0.
04

6
0.

08
0

123

1234 R. M. A. Silva et al.

Ta
bl

e
2

co
nt

in
ue

d

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

se
ed

V
al

ue
T

im
e

V
al

ue
T

im
e

M
in

M
ea

n
M

ax
D

ev
M

in
M

ea
n

M
ax

n
-
2
2

10
0

73
0

29
9

3
0.

26
8

3
0.

25
6

0
1.

09
4

0.
95

0.
02

8
0.

04
6

0.
07

2

n
-
2
3

10
0

72
2

4,
41

4
2

0.
23

6
2

0.
31

6
0

1.
41

4
0.

98
0.

02
4

0.
04

4
0.

06
8

n
-
2
4

10
0

72
4

5,
88

5
1

0.
21

2
1

0.
29

2
0

1.
50

4
0.

99
0.

02
4

0.
04

6
0.

08
4

n
-
2
5

10
0

71
9

6,
57

0
3

0.
29

6
3

0.
22

8
0

1.
69

5
1.

12
0.

02
8

0.
04

6
0.

08
4

n
-
2
6

10
0

1,
39

9
5,

30
9

1
0.

79
2

1
0.

38
4

0
0.

55
2

0.
66

0.
04

0
0.

08
2

0.
12

8

n
-
2
7

10
0

1,
38

3
6,

10
5

1
0.

76
4

1
0.

41
6

0
0.

43
2

0.
59

0.
04

0
0.

07
6

0.
12

8

n
-
2
8

10
0

1,
38

6
6,

25
9

1
0.

77
2

1
0.

46
4

0
0.

40
2

0.
57

0.
04

0
0.

07
7

0.
11

2

n
-
2
9

10
0

1,
38

9
7,

69
5

1
0.

62
8

1
0.

48
0

0
0.

34
2

0.
54

0.
03

6
0.

07
4

0.
11

2

n
-
3
0

10
0

1,
39

1
9,

41
4

0
0.

65
6

0
0.

61
2

0
0.

66
3

0.
71

0.
05

6
0.

08
3

0.
13

2

n
-
3
1

15
0

1,
62

4
19

9
3

1.
20

0
2

0.
99

6
0

2.
06

6
1.

25
0.

09
2

0.
14

6
0.

20
8

n
-
3
2

15
0

1,
61

9
3,

73
8

1
1.

11
2

1
1.

06
0

0
1.

69
4

1.
05

0.
09

6
0.

14
0

0.
26

4

n
-
3
3

15
0

1,
62

4
5,

01
1

4
1.

19
6

3
1.

02
8

0
1.

52
4

1.
03

0.
07

2
0.

13
5

0.
20

0

n
-
3
4

15
0

1,
62

7
7,

39
0

2
1.

08
4

2
1.

03
2

0
1.

62
5

1.
10

0.
06

8
0.

14
6

0.
24

4

n
-
3
5

15
0

1,
62

4
87

8
3

0.
98

8
2

1.
04

8
0

1.
82

5
1.

11
0.

07
6

0.
14

7
0.

27
2

n
-
3
6

15
0

3,
12

0
2,

05
1

1
2.

80
8

1
1.

80
0

0
0.

46
2

0.
58

0.
20

0
0.

30
0

0.
42

4

n
-
3
7

15
0

3,
12

0
2,

83
3

1
2.

75
6

1
1.

70
4

0
0.

50
2

0.
58

0.
20

4
0.

30
3

0.
43

2

n
-
3
8

15
0

3,
14

1
3,

06
4

1
3.

19
6

1
1.

98
4

0
0.

58
3

0.
68

0.
20

8
0.

33
0

0.
43

6

n
-
3
9

15
0

3,
11

6
5,

35
7

1
2.

64
8

1
1.

56
4

0
0.

29
2

0.
48

0.
19

2
0.

29
2

0.
41

6

n
-
4
0

15
0

3,
11

7
5,

68
7

2
2.

90
0

2
1.

81
6

0
0.

34
2

0.
54

0.
16

4
0.

29
2

0.
42

8

n
-
4
1

30
0

6,
50

2
1,

54
5

1
13

.3
77

1
8.

76
9

0
1.

62
4

1.
07

0.
72

4
1.

04
2

1.
33

2

n
-
4
2

30
0

6,
47

1
36

5
3

13
.4

29
3

8.
86

9
0

1.
81

5
1.

01
0.

88
4

1.
05

4
1.

44
4

123

An edge-swap heuristic for the MBV problem 1235

Ta
bl

e
2

co
nt

in
ue

d

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

se
ed

V
al

ue
T

im
e

V
al

ue
T

im
e

M
in

M
ea

n
M

ax
D

ev
M

in
M

ea
n

M
ax

n
-
4
3

30
0

6,
48

1
4,

07
1

5
13

.3
77

3
8.

54
5

0
1.

61
5

1.
13

0.
85

2
1.

07
1

1.
43

2

n
-
4
4

30
0

6,
51

3
4,

88
9

1
13

.2
77

1
8.

76
1

0
1.

27
4

0.
86

0.
85

2
1.

03
4

1.
32

4

n
-
4
5

30
0

6,
50

5
68

1
4

13
.2

49
4

8.
83

7
0

1.
88

5
0.

99
0.

86
8

1.
05

6
1.

44
4

n
-
4
6

30
0

12
,5

39
1,

35
8

2
37

.5
06

2
16

.6
61

0
0.

54
3

0.
64

2.
23

2
3.

00
4

3.
66

8

n
-
4
7

30
0

12
,5

08
2,

06
7

3
37

.4
78

2
17

.2
57

0
0.

34
3

0.
55

2.
46

0
3.

07
4

3.
74

8

n
-
4
8

30
0

12
,4

47
4,

37
2

1
36

.1
26

1
17

.2
01

0
0.

40
2

0.
60

2.
46

4
3.

25
0

3.
80

8

n
-
4
9

30
0

12
,4

80
96

0
1

37
.6

30
1

17
.0

73
0

0.
65

3
0.

67
2.

37
2

2.
99

6
3.

71
6

n
-
5
0

30
0

12
,4

74
9,

88
6

1
36

.9
94

1
16

.4
01

0
0.

49
3

0.
69

1.
74

0
2.

93
9

3.
77

2

n
-
5
1

50
0

18
,0

34
1,

45
6

2
82

.8
25

2
42

.1
39

0
1.

85
4

1.
12

4.
92

4
5.

66
5

8.
07

3

n
-
5
2

50
0

18
,0

55
1,

65
3

3
82

.9
13

3
42

.4
15

0
1.

40
4

1.
03

4.
86

0
6.

18
8

8.
12

9

n
-
5
3

50
0

18
,0

09
4,

44
4

2
82

.5
33

2
41

.9
47

0
1.

74
5

1.
05

4.
83

2
6.

67
8

8.
16

1

n
-
5
4

50
0

18
,0

48
6,

84
9

2
82

.9
25

2
42

.2
75

0
1.

81
5

1.
06

4.
91

2
6.

83
3

8.
18

1

n
-
5
5

50
0

18
,0

37
8,

82
4

4
82

.9
85

3
42

.3
79

0
1.

59
4

0.
99

4.
77

6
6.

59
6

7.
94

5

123

1236 R. M. A. Silva et al.

Ta
bl

e
3

H
eu

ri
st

ic
so

lu
tio

ns
an

d
ru

nn
in

g
tim

es
(i

n
s)

fo
r

T
SP

L
IB

in
st

an
ce

s

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

d
(%

)
V

al
ue

T
im

e
V

al
ue

T
im

e
M

in
M

ea
n

M
ax

D
ev

M
in

M
ea

n
M

ax

a
l
b
1
0
0
0

1k
1,

99
8

0.
4

73
6.

6
73

7.
9

54
69

.1
80

5.
2

12
.9

19
.6

27
.9

a
l
b
2
0
0
0

2k
3,

99
6

0.
2

12
9

30
.5

14
1

33
.2

12
1

13
5.

7
15

5
7.

5
12

7.
2

18
3.

5
24

4.
2

a
l
b
3
0
0
0
a

3k
5,

99
9

0.
1

22
6

69
.5

24
4

77
.0

19
1

20
8.

6
23

3
8.

1
53

6.
5

71
3.

3
92

7.
9

a
l
b
4
0
0
0

4k
7,

99
7

0.
1

27
7

12
6.

1
30

8
13

6.
5

24
7

27
1.

9
29

8
10

.0
1,

43
3.

6
1,

78
3.

4
2,

27
6.

1

123

An edge-swap heuristic for the MBV problem 1237

Ta
bl

e
4

H
eu

ri
st

ic
so

lu
tio

ns
an

d
ru

nn
in

g
tim

es
(i

n
s)

fo
r

G
ol

db
er

g
in

st
an

ce
s

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

d
(%

)
V

al
ue

T
im

e
V

al
ue

T
im

e
M

in
M

ea
n

M
ax

D
ev

M
in

M
ea

n
M

ax

g
-
1

50
0

6,
23

7
5

2
17

.3
2

13
.5

1
4.

7
10

1.
8

2.
7

4.
8

6.
5

g
-
2

50
0

12
,4

75
10

0
45

.4
0

26
.6

0
1.

8
5

1.
1

5.
7

8.
6

11
.9

g
-
3

50
0

18
,7

12
15

0
83

.6
0

40
.1

0
0.

9
3

0.
8

12
.5

15
.1

17
.6

g
-
4

80
0

15
,9

80
5

2
88

.1
2

57
.4

2
4.

5
8

1.
5

15
.1

22
.4

30
.6

g
-
5

80
0

31
,9

60
10

0
25

9.
1

0
11

4.
5

0
1.

8
4

1.
0

33
.5

47
.2

59
.6

g
-
6

80
0

47
,9

40
15

1
52

3.
0

1
17

2.
5

0
0.

9
2

0.
7

73
.0

89
.4

10
1.

8

g
-
7

1,
00

0
24

,9
75

5
0

19
1.

8
0

10
7.

2
2

4.
5

9
1.

5
33

.9
51

.7
64

.7

g
-
8

1,
00

0
49

,9
50

10
1

67
1.

0
1

23
4.

1
0

1.
8

4
0.

9
92

.6
11

6.
0

13
6.

4

g
-
9

1,
00

0
74

,9
25

15
0

1,
56

9.
1

0
36

6.
6

0
0.

8
3

0.
8

20
1.

2
21

7.
7

23
6.

2

123

1238 R. M. A. Silva et al.

Ta
bl

e
5

H
eu

ri
st

ic
so

lu
tio

ns
an

d
ru

nn
in

g
tim

es
(i

n
s)

fo
r

B
ea

sl
ey

in
st

an
ce

s

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

d
(%

)
V

al
ue

T
im

e
V

al
ue

T
im

e
M

in
M

ea
n

M
ax

D
ev

M
in

M
ea

n
M

ax

s
t
e
i
n
d
1
1

1k
5k

1
34

22
.4

35
22

.3
33

41
.4

50
3.

5
27

.5
46

.3
65

.5

s
t
e
i
n
d
1
2

1k
5k

1
40

22
.3

36
22

.4
26

35
.5

46
4.

5
25

.0
40

.4
63

.5

s
t
e
i
n
d
1
3

1k
5k

1
40

22
.2

35
22

.5
28

39
.8

54
4.

2
30

.1
44

.2
64

.7

s
t
e
i
n
d
1
4

1k
5k

1
34

22
.3

33
22

.4
28

38
.2

50
3.

9
20

.4
44

.5
71

.5

s
t
e
i
n
d
1
5

1k
5k

1
45

22
.4

40
22

.5
27

38
.9

48
3.

6
27

.8
45

.6
70

.3

123

An edge-swap heuristic for the MBV problem 1239

Ta
bl

e
6

H
eu

ri
st

ic
so

lu
tio

ns
an

d
ru

nn
in

g
tim

es
(i

n
s)

fo
r

L
ei

gh
to

n
in

st
an

ce
s

B
en

ch
m

ar
k

C
er

ul
li

et
al

.(
20

09
)

E
dg

e-
Sw

ap
H

eu
ri

st
ic

E
W

S
N

C
H

B
ra

nc
h

ve
rt

ic
es

T
im

e

Pr
ob

n
m

d
(%

)
V

al
ue

T
im

e
V

al
ue

T
im

e
M

in
M

ea
n

M
ax

D
ev

M
in

M
ea

n
M

ax

l
e
4
5
0
_
5
a

45
0

5,
71

4
6

3
13

.6
3

11
.5

1
4.

2
8

1.
5

2
3.

1
4.

8

l
e
4
5
0
_
5
b

45
0

5,
73

4
6

4
14

.1
5

11
.7

1
4.

2
7

1.
3

1.
8

3.
0

4.
5

l
e
4
5
0
_
5
c

45
0

9,
80

3
10

3
28

.9
3

20
.5

0
1.

9
4

1.
1

3.
0

3.
8

5.
1

l
e
4
5
0
_
5
d

45
0

9,
75

7
10

2
29

.0
3

20
.2

0
1.

9
5

1.
0

2.
9

3.
8

5.
9

l
e
4
5
0
_
1
5
a

45
0

8,
18

6
8

7
22

.1
6

16
.4

4
6.

6
10

1.
5

2.
6

4.
7

8.
3

l
e
4
5
0
_
1
5
b

45
0

8,
16

9
8

10
22

.1
9

16
.4

3
7.

6
12

1.
8

2.
9

5.
5

8.
4

l
e
4
5
0
_
1
5
c

45
0

16
,6

80
17

3
64

.7
3

35
.0

0
1.

1
3

0.
9

3.
4

5.
5

7.
8

l
e
4
5
0
_
1
5
d

45
0

16
,7

50
17

3
65

.6
3

35
.1

0
1.

1
3

0.
8

3.
6

5.
4

7.
3

l
e
4
5
0
_
2
5
a

45
0

8,
16

0
8

12
23

.0
11

17
.0

8
13

.7
19

2.
4

3.
8

8
15

.1

l
e
4
5
0
_
2
5
b

45
0

8,
26

3
8

10
23

.0
7

17
.2

4
8.

9
13

2.
1

3.
6

6.
1

10
.1

l
e
4
5
0
_
2
5
c

45
0

17
,3

43
17

4
69

.8
3

36
.4

0
2.

0
5

1.
2

5.
4

7.
2

10
.4

l
e
4
5
0
_
2
5
d

45
0

17
,4

25
17

1
69

.6
1

36
.4

0
1.

5
4

1.
0

5.
3

6.
8

9.
1

123

1240 R. M. A. Silva et al.

difference was 3.68 (with a maximum difference of 16.2). The average value of the
solutions reported by [3] was about 93.1% of that found by our implementation
of EWS. A possible explanation for this difference is line 8 of Algorithm 1 of [4]
where arc (u∗, v∗) is selected from list L . The pseudo-code makes reference to
a tie-breaking rule but, even though the paper states that the tie-breaking rule is
very important, it does not elaborate on this rule. We break ties by selecting the
arc with the smallest index. Perhaps this is a different tie-breaking criterion than
the one implemented in the code used by [3].
Since both [3] and [2] reported similar average solution values for NCH and EWS
and our implementation of NCH matches the solutions of [3], then our solution
values for NCH should be a good estimate for those of EWS.
For each instance, the tables list the name of the instance, its dimension, density
(with the exception of Netgen), the solution values and running times (in s) of the
heuristics EWS and NCH, as well as statistics for the 100 runs of ESH (minimum,
mean, maximum solutions, as well as the standard deviation), and running times
(in s) for ESH (minimum, mean, and maximum).
The minimum value for the solution obtained by ESH corresponds to the solution
found by the 100-iteration multi-start variant of ESH. On only a single instance in
the experiment, the 100-iteration multi-start variant of ESH failed to find a solution
that was better than or equal to the best solutions found by either EWS or NCH.
Running times for the 100-iteration multi-start variant of ESH are about 100 times
the mean running time shown in the tables for ESH (some time should be deducted
to account for the multiple inputs of the problem data). The running times for the
100-iteration multi-start variant were always greater than those of both EWS and
NCH.
On the Klingman instances, the average solution values found by EWS and NCH
were 5.9 and 5.2, respectively. The average solution values found by ESH were
better than the best solutions found by either EWS or NCH in 80 % of the instances.
The solutions found by the 100-iteration multi-start variant of ESH, however, were
strictly better than the best solutions found by either EWS or NCH on all instances.
The maximum running times for the single-start variant of ESH were smaller than
those of both EWS and NCH.
On the Netgen instances, the average solution values found by EWS and NCH were
1.78 and 1.67, respectively. The average solution values found by ESH were better
than the best solutions found by either EWS or NCH in 83 % of the instances. The
solution found by the 100-iteration multi-start variant of ESH was strictly better
than the best solution found by either EWS or NCH on 91% of the instances.
Furthermore, the 100-iteration multi-start variant of ESH was never worse than
either EWS or NCH. For all instances in this class, the 100-iteration multi-start
variant of ESH found solutions with no branch vertex. The maximum running
times for the single-start variant of ESH were smaller or equal than those of both
EWS and NCH for all instances but one.
On the TSPLIB instances, the average solution values found by EWS and
NCH were 176.25 and 191.50, respectively. The average solution values found
by ESH were better than the best solutions found by either EWS or NCH
in 75 % of the instances. The solution found by the 100-iteration multi-start

123

An edge-swap heuristic for the MBV problem 1241

variant of ESH was strictly better than the best solution found by either
EWS or NCH on all instances. However, the minimum running times for the
single-start variant of ESH were greater than those of both EWS and NCH for all
instances.
On the Goldberg instances, the average solution values found by EWS and NCH
were both equal to 0.67. The average solution values found by ESH were better
than the best solutions found by either EWS or NCH in 11 % of the instances.
However, the 100-iteration multi-start variant of ESH was better than or equal to
the best solution found by either EWS or NCH in 8 of the 9 instances in this class.
It was strictly better on 3 of the 9 instances. The maximum running times for the
single-start variant of ESH were smaller than those of both EWS and NCH for all
instances.
On the Beasley instances, the average solution values found by EWS and NCH were
38.6 and 35.8, respectively. The average solution values found by ESH were better
than the best solutions found by either EWS or NCH in 33 % of the instances. The
solution found by the 100-iteration multi-start variant of ESH was strictly better
than the best solution found by either EWS or NCH on all instances. However,
the minimum running times for the single-start variant of ESH were greater than
those of both EWS and NCH for all but one instance.
On the Leighton instances, the average solution values found by EWS and NCH
were 5.17 and 4.75, respectively. The average solution values found by ESH were
better than the best solutions found by either EWS or NCH in 50 % of the instances.
The solution found by the 100-iteration multi-start variant of ESH was strictly
better than the best solution found by either EWS or NCH on all instances. The
maximum running times for the single-start variant of ESH were smaller than those
of both EWS and NCH for all instances.

4 Concluding remarks

In this paper we introduced a new edge-swap heuristic (ESH) for finding a spanning
tree with a small number of branch vertices, i.e. vertices with degree greater than two.
This problem was called the minimum branch vertices (MBV) problem by [4]. It finds
applications in optical multicast network design. ESH starts from a random spanning
tree and by way of simple edge swaps generates a sequence of spanning trees with
the objective of ending up with a spanning tree with no or few branch vertices. ESH
comes in two flavors, a single-start variant which is applied a single time, starting
from a single spanning tree, and a multi-start variant which repeatedly applies the
single-start variant, each time starting from a different random spanning tree. Since
iterations of the multi-start algorithm are independent of each other, this heuristic can
be easily implemented in parallel. We implemented both variants of ESH in C++ and
tested them on a set of benchmark instances that we introduce in this paper for this
purpose.

We also present C++ implementations of the heuristics EWS and NCH of [4] and
use them to gauge the effectiveness and efficiency of the implementations of ESH. We
conducted an experiment with 600 instances provided to us by [3] with EWS and NCH

123

1242 R. M. A. Silva et al.

to see if we had reproduced the heuristics described in [4]. Whereas our implementation
of NCH matched closely the solutions provided to us by [3], our implementation of
EWS did not do as well. Nevertheless, in one of six testbed classes our implementation
of EWS did better than our implementation of NCH while in another they tied.

The six classes of testbed instances we introduce in this paper come from a variety of
sources and have diverse characteristics. They consist of 95 instances of sizes varying
from 30 to 4,000 vertices and 67 to 74,925 edges. For each instance, we ran EWS,
NCH, and the single-start and 100-iteration multi-start variants of ESH. For EWS and
NCH, we measure solution values and running times. For the single-start variant of
ESH, we compute minimum, average, and maximum solution values for each instance.
Likewise, we computed minimum, average, and maximum running times. For the 100-
iteration multi-start variant of ESH, we measure the values of solutions found as well
as their corresponding running times.

Of the 95 instances, the average solution value of the single-start variant of ESH
was strictly less than both values of EWS and NCH in 63 instances (66.3 %). The
solution of the multi-start variant of ESH was strictly less than both values of EWS
and NCH in 84 instances (88.4 %). Finally, the solution of the multi-start variant of
ESH was less than or equal to both values of EWS and NCH in 94 instances (98.9 %).
On only one instance (g-7 of Goldberg) was the solution found by either EWS or
NCH strictly better than the one found by the multi-start variant of ESH.

The average running time for the single-start variant of ESH was smaller than those
of EWS and NCH for four of the six problem classes. On the two where ESH was
slower, in one (Beasley) it was about a factor of two slower, while in the other (TSPLIB)
it was up to about a factor of 14 slower.

Acknowledgments The research of R.M.A Silva was partially done while he was a post-doc scholar at
AT&T Labs Research in Florham Park, New Jersey, and was partially supported by the Brazilian National
Council for Scientific and Technological Development (CNPq), the Foundation for Support of Research
of the State of Minas Gerais, Brazil (FAPEMIG), Coordination for the Improvement of Higher Education
Personnel, Brazil (CAPES), and Foundation for the Support of Development of the Federal University of
Pernambuco, Brazil (FADE). José F. Gonçalves was supported by funds granted by the ERDF through the
Programme COMPETE and by the Portuguese Government through FCT – Foundation for Science and
Technology, project PTDC/EGE-GES/117692/2010. Diego M. Silva was partially supported by CAPES-
MINTER Program between the Federal Universities of Minas Gerais and Lavras, Brazil.

References

1. Beasley, J.E.: An SST-based algorithm for the Steiner problem in graphs. Networks 19, 1–16 (1989)
2. Carrabs, F., Cerulli, R., Gaudioso, M., Gentili, M.: Lower and upper bounds for the spanning tree with

minimum branch vertices. Technical Report 3, Department of Mathematics and Computer Science,
University of Salerno. Salerno, Italy (2009)

3. Cerulli, R.: Personal, communication. January (2010)
4. Cerulli, R., Gentili, M., Iossa, A.: Bounded-degree spanning tree problems: models and new algorithms.

Comput. Optim. Appl. 42, 353–370 (2009)
5. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. Technical Report 96–029NEC

Research Institute, Inc., Princeton, NJ (1996)
6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT

Press, Cambridge (2001)

123

An edge-swap heuristic for the MBV problem 1243

7. Gargano, L., Hell, P., Stacho, L., Vaccaro, U.: Spanning trees with bounded number of branch vertices.
In 29th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes
in Computer Science, vol. 2380, pp. 355–365. Springer, Berlin (2002)

8. Klingman, D., Napier, A., Stutz, J.: NETGEN—a program for generating large scale (un)capacitated
assignment, transportation, and minimum cost flow network problems. Manage. Sci. 20, 814–821
(1974)

9. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc.
Am. Math. Soc. 7(1), 48–50 (1956)

10. Leighton, F.T.: A graph colouring algorithm for large scheduling problems. J. Res. Natl. Bureau
Standards. 84(6), 489–503 (1979)

11. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

12. Plauger, P.J., Lee, M., Musser, D., Stepanov, A.A.: C++ Standard Template Library. Prentice Hall PTR,
Englewood Cliffs (2000)

13. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
14. Reinelt, G.: TSPLIB 95 documentation. University of Heidelberg, Technical report (1995)
15. Silva, D.M.: Abordagem de refinamento iterativo para o problema da árvore geradora com número

mínimo de vértices branch. Master’s thesis, U. Federal de Minas Gerais, Belo Horizonte (MG). Brazil
(2011)

123

	An edge-swap heuristic for generating spanning trees with minimum number of branch vertices
	Abstract
	1 Introduction
	2 Edge-swap heuristic for the minimum branch vertices problem
	3 Experimental results
	4 Concluding remarks
	Acknowledgments
	References

