
Validity Checking of Putback Transformations in

Bidirectional Programming

Zhenjiang Hu1, Hugo Pacheco2, Sebastian Fischer3

1 National Institute of Informatics, Japan
2 Cornell University, USA

3 Christian-Albrechts University of Kiel, Germany

Abstract. A bidirectional transformation consists of pairs of transfor-
mations —a forward transformation get produces a target view from a
source, while a putback transformation put puts back modifications on
the view to the source— satisfying sensible roundtrip properties. Ex-
isting bidirectional approaches are get-based in that one writes (an arti-
fact resembling) a forward transformation and a corresponding backward
transformation can be automatically derived. However, the unavoidable
ambiguity that stems from the underspecification of put often leads to
unpredictable bidirectional behavior, making it hard to solve nontriv-
ial practical synchronization problems with existing bidirectional trans-
formation approaches. Theoretically, this ambiguity problem could be
solved by writing put directly and deriving get , but di↵erently from pro-
gramming with get it is easy to write invalid put functions. An open
challenge is how to check whether the definition of a putback transfor-
mation is valid, while guaranteeing that the corresponding unique get

exists. In this paper, we propose, as far as we are aware, the first safe

language for supporting putback-based bidirectional programming. The
key to our approach is a simple but powerful language for describing
primitive putback transformations. We show that validity of putback
transformations in this language is decidable and can be automatically
checked. A particularly elegant and strong aspect of our design is that
we can simply reuse and apply standard results for treeless functions and
tree transducers in the specification of our checking algorithms.

1 Introduction

Bidirectional transformations (BXs for short) [6,10,16], originated from the view
updating mechanism in the database community [1,7,12], have been recently at-
tracting a lot of attention from researchers in the communities of programming
languages and software engineering since the pioneering work of Foster et al. on a
combinatorial language for bidirectional tree transformations [10]. Bidirectional
transformations provides a novel mechanism for synchronizing and maintaining
the consistency of information between input and output, and have seen many
interesting applications, including the synchronization of replicated data in dif-
ferent formats [10], presentation-oriented structured document development [17],
interactive user interface design [21] or coupled software transformation [19].

A bidirectional transformation basically consists of a pair of transformations:
the forward transformation get s is used to produce a target view v from a source
s, while the putback transformation put s v is used to reflect modifications on
the view v to the source s. These two transformations should be well-behaved in
the sense that they satisfy the following round-tripping laws.

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that not changing the view shall be reflected as
not changing the source, while the PutGet property requires all changes in the
view to be completely reflected to the source so that the changed view can be
computed again by applying the forward transformation to the changed source.

Example 1. As a simple example, consider a forward function getAs that selects
from a source list all the elements that are tagged with A:

getAs [] = []
getAs (A a : ss) = a : getAs ss

getAs (B b : ss) = getAs ss

and a corresponding putback function putAs that uses a view list to update A

elements in the original source list:

putAs [] [] = []
putAs [] (v : vs) = A v : putAs [] vs
putAs (A a : ss) [] = putAs ss []
putAs (A a : ss) (v : vs) = A v : putAs ss vs

putAs (B b : ss) vs = B b : putAs ss vs

where we use the view to replace A elements, impose no e↵ect on B elements,
and stop when both the source and view lists are empty. We also deal with the
cases when the view and the source lists do not have su�cient elements. ⇤

Bidirectional programming is to develop well-behaved BXs in order to solve
various synchronization problems. A straightforward approach to bidirectional
programming is to write two unidirectional transformations. Although this ad-
hoc solution provides full control over both get and putback transformations and
can be realized using standard programming languages, the programmer needs
to show that the two transformations satisfy the well-behavedness laws, and a
modification to one of the transformations requires a redefinition of the other
transformation as well as a new well-behavedness proof.

To ease and enable maintainable bidirectional programming, it is preferable
to write just a single program that can denote both transformations, which has
motivated two di↵erent methods. One is to allow users to write the forward
transformation in a familiar (unidirectional) programming language, and de-
rive a suitable putback transformation through bidirectionalization techniques

[13, 20, 26, 28]. The other is to instruct users to write a program in a particu-
lar bidirectional programming language [3, 4, 10, 14, 15, 22, 23], from which both
transformations can be derived. The latter languages tend to invite users to write
BXs as they would write get functions, but may provide eventually di↵erent put
strategies via a fixed set of combinators.

In general, a get function may not be injective, so there may exist many
possible put functions that can be combined with it to form a valid BX. Recall
the definition of putAs from Example 1; we could define another reasonable
putback function for getAs by changing the second and third equations to:

putAs [] (v : vs) = A v : B c : putAs [] vs
putAs (A a : ss) [] = putAs (B a : ss) []

such that an additional B -tagged constant value c is added after each view value
v and excessive A values are converted to B values.

This unavoidable ambiguity of put is what makes bidirectional programming
challenging and unpredictable in practice. In fact, there is neither a clear con-
sensus on the best requirements even for well-studied domains [5], nor a general
way to specify which put should be selected. The e↵ectiveness of existing bidirec-
tional programming methods comes from limiting the programmers’ knowledge
and control of the putback transformation, to keep bidirectional programming
manageable. Unfortunately, this makes it hard (or impossible) for programmers
to mold the bidirectional behavior, and severely hinders the applicability of ex-
isting BX tools in solving practical nontrivial synchronization problems.

One interesting fact is that while get usually loses information when mapping
from a source to a view, put must preserve information when putting back from
the view to the source, according to the PutGet property. So, a natural question
is: what if we replace the traditional get-based bidirectional programming style
by a putback-based bidirectional programming style? This is, writing put and
deriving get (or, in other words, specifying the intended putback transformation
that best suits particular purposes, and deriving the forward transformation.)

Theoretically, it has been shown in [8, 9] that, for a putback transformation

put, if there exists a forward transformation get then such forward transforma-

tion is unique. Practically, however, there is little work on put-based bidirectional
programming. This is not without reason: as argued in [9], it is far from being
straightforward to construct a framework that can directly support putback-
based bidirectional programming. One of the challenges is how to check whether
the definition of a put is in such a valid form that guarantees that the corre-
sponding unique get exists. In contrast to programming get , it is easy to write
invalid put functions. For instance, if we change the first equation for putAs to:

putAs (A a : ss) (v : vs) = A a : A v : putAs ss vs

then we will end up with an invalid put for which there is no get that forms a
well-behaved BX. This raises the question of how to statically check the validity
of put .

In this paper, we propose (as far as we are aware) the first safe language
for supporting putback-based bidirectional programming. We propose to adopt
a hybrid compositional approach, keeping the design of well-behaved primitive
putback transformations separated from the design of compositional methods
for gluing smaller BXs. In this approach, a set of primitive BXs is prepared, and
a new BX is defined by assembling the primitive transformations with a fixed set
of general combinators. This approach has two main advantages. First, a com-
prehensive set of useful generic combinators [3,4,10,14,15,22,23] already exists
and can be used without further development. Second, since these combinators
are rather limited in specifying sophisticated bidirectional behavior, it is practi-
cally useful to be able to write primitive BXs, that are often easily determined,
designed and implemented for particular domain-specific applications.

The key to our approach is a suitable language for describing primitive put-
back transformations. We choose a general first-order functional language and
require putback functions definable in the language to be a�ne (each view vari-
able is used at most once) and in the treeless form (no intermediate data struc-
tures are used in a definition). In fact, this class of functions has been considered
elsewhere in the context of deforestation [27], where treeless functions are used
to describe basic computation components, and has a close relationship with
theories of tree transducers [18]. As will be demonstrate later, this language
is su�ciently powerful to specify various putback functions over algebraic data
structures and, more importantly, validity of putback transformations in the
language can be automatically checked.

The rest of this paper is organized as follows. Section 2 begins by briefly re-
viewing the basic put-based bidirectional programming concepts and properties
that play an important role in our language design. Section 3 then introduces our
Pdl language for specifying primitive putback functions, and Section 4 propose
our checking algorithms for validating putback functions (and deriving forward
transformations as a side e↵ect). Section 5 discusses related work and Section 6
provides our conclusions together with possible directions for future work.

2 Putback-based Bidirectional Programming

Let us briefly review the basic concepts and results from [8, 9] that clarify the
essence of putback-based programming and play an important role in our validity
checking. Calculational proofs of all the results can be found in [8].

First of all, we define validity of a putback transformation put as follows.

Definition 1 (Validity of Putback Transformations). We say that a put

is valid if there exists a get such that both GetPut and PutGet are satisfied.

One interesting fact is that, for a valid put , there exists at most one get

that can form a BX with it. This is in sharp contrast to get-based bidirectional
programming, where many puts can be paired with a get to form a BX.

Lemma 1 (Uniqueness of get). Given a put function, there exists at most

one get function that forms a well-behaved BX.

To facilitate the validity checking of put without mentioning get , we introduce
two new properties on put whose combination is equivalent to GetPut and
PutGet.

– The first, that we call view determination, says that equivalence of updated
sources produced by a put implies equivalence of views that are put back.

8 s, s

0
, v, v

0
. put s v = put s

0
v

0) v = v

0
PutDetermination

Note that the view determination implies that put s is injective (with s = s

0).
– The second, that we call source stability, denotes a slightly stronger notion

of surjectivity for every source:

8 s. 9 v. put s v = s PutStability

Actually, these two laws together provide an equivalent characterization of the
validity of put . The following theorem will be the basis for our later presented
algorithms for checking of validity of put and deriving get .

Theorem 1 (Validity). A put function is valid if and only if it satisfies the

PutDetermination and PutStability properties.

For the context of this paper, we are assuming that all functions are total

—in the pure mathematical sense— between an input type and an output type.

3 Defining Putback Functions

In this section, we design a language for describing putback functions, such that
the validity of putback functions written in our language can be automatically
checked and the corresponding get functions can be automatically derived.

As explained in the introduction, we adopt a hybrid compositional approach,
keeping separate the design of well-behaved primitive putback transformations
and the design of compositional methods for gluing primitive bidirectional trans-
formations. We will focus on the former —designing the language for specifying
various primitive putback functions (with rich update strategies) over algebraic
data structures— while existing generic combinators [3, 4, 10, 14, 15, 22, 23] can
be reused to glue them together into larger transformations.

3.1 Pdl: A Putback Function Definition Language

We introduce Pdl, a treeless language for defining primitive put functions. By
treeless, we mean that no composition can be used in the definition of a put

function. It is a first-order functional programming language similar to both
Wadler’s language for defining basic functions for fusion transformation [27]
and the language for defining basic get functions of Matsuda et al. [20], with a
particularity that it also supports pattern expressions in source function calls.

The syntax of Pdl is given in Figure 1. A program in our language consists of
a set of putback function definitions, and each definition consists of a sequence

Rule Definition
r ::= f ps pv = e putback

Pattern
p ::= C p1 . . . pn constructor pattern

| x @ p look-ahead variable
| x variable

Expression
e ::= C e1 . . . en constructor application

| x variable
| f xs xv function call (no nested calls)

where C 2 C is of arity n, f 2 P and x 2 X .

Operational Semantics (Call-by-Value):

(Con)
e1 + r1 · · · en + rn

C e1 . . . en + C r1 . . . rn
(Fun)

f ps pv =̂ e 2 R
9✓, f ps✓ pv✓ = f rs rv e✓ + u

f rs rv + u

where “e✓” denotes the expression that is obtained by replacing any variable
x in e with the value ✓(x), and v1, . . . , vn denote values; values are expressions
that consist only of constructor symbols in C.

Fig. 1. Putback Definition Language (P denotes putback function symbols, C denotes
constructor symbols, X denotes variables)

of putback rules. A putback rule, as the name suggests, is used to put view
information back into the source, and has the form:

f ps pv =̂ e

It describes how f adapts the source ps to e, when the view is of the form pv.
We make the following additional considerations:

– For the patterns ps and pv, in addition to traditional variable and constructor
patterns, we introduce look-ahead variable patterns mainly for the purpose
of abstracting constant patterns using variables. For example, we can write
the constant pattern [] as xs@[], which allows us to syntactically distinguish
whether an empty string appearing in the right-hand side is newly created
or passed from the input.

– We require the body expression e to be in an extended structured treeless

form [27], i.e., a function call should have shape f xs xv, where xs is a
variable in the source pattern ps and xv is a variable in the view pattern pv.
This means that a recursive call of a putback function updates components
of the source with the components of the view, and it may appear inside a
constructor application, but never inside another function call.

– We assume that each rule is a�ne, i.e., every view variable in the left-hand
side of a rule occurs at most once in the corresponding right-hand side.

Definition 2 (Putback Transformation in Pdl). A putback transformation

is a total function defined by a set of putback rules.

We can see that putAs in Example 1 is almost a putback transformation in
Pdl, except that some arguments of recursive calls are an empty list instead of
a variable. This can be easily resolved by using a look-ahead variable.

Example 2. The following putAs is defined in Pdl.

putAs [] [] = []
putAs (ss@[]) (v : vs) = A v : putAs ss vs

putAs (A a : ss) (vs@[]) = putAs ss vs

putAs (A a : ss) (v : vs) = A v : putAs ss vs

putAs (B b : ss) vs = B b : putAs ss vs ⇤

Let us demonstrate with more examples that Pdl is powerful enough to
describe various putback transformations (functions).

Example 3 (Fully Updating). The simplest putback function uses the view to
fully update the original source, or in other words, to fully embed the view to
the source. This can be defined in Pdl as follows.

updAll s v = v ⇤

Example 4 (Updating Component). We may use the view to update the first or
second component of a source pair, or say, to embed the view to first or second
component of a source pair:

updFst (Pair x y) v = Pair v y

updSnd (Pair x y) v = Pair x v ⇤

Example 5 (Updating Data Structure). We may use the view to update the last
element of a non-empty source list4:

updLast [s] v = [v]
updLast (s : ss) v = s : updLast ss v

For this particular example, we consider the type of non-empty lists because
otherwise updLast would not be total, since there is no rule for putting a view
element back into an empty source list. ⇤
4 A non-empty list type can be defined as A

+ = Wrap A | NeCons A A

+, but for
simplicity we abuse the notation and write our example using regular lists.

Two remarks are worth making. First, all putback rules in Pdl should meet
the syntactic constraints as discussed before; those that do not satisfy these
constraints are not considered to be a putback rule. For instance, the following
rule is not a putback rule, because s appears twice in thr right hand side.

putSyntacBad s v = putSyntacBad s s

Second, a putback transformation defined in Pdl may not be valid. For instance,
the putback transformation defined by

putInvalid s v = s

which completely ignores the view v . The function putInvalid is invalid in the
sense there is no actual get function that can be paired with it to form a valid
BX. In this paper we will show that the validity of any putback transformation
in Pdl can be automatically checked.

3.2 Properties of Putback Transformations in Pdl

Putback transformation in Pdl enjoy two features, which will play an important
role in our later validity checking.

First, some equational properties on Pdl putback transformations can be
automatically proved inductively. This is because putback transformations are
structured in a way such that any recursive call is applied to sub-components of
the input. In fact, such structural and total recursive functions fall in the category
where inductive validity is decidable [11]. More specifically, the following lemma
holds.

Lemma 2 (Decidability of Inductivity of Putback Transformation). Let

put be a putback transformation. An equational property in the following form

put e1 e2 = p

can be automatically proved by induction, where e1 and e2 are two expressions

and p is a pattern.

Note that the equational property that can be dealt with by the above lemma
requires its right hand side to be a simple pattern, this is, a constructor term
without (recursive) function calls.

Second, Pdl putback transformations are closed under composition. This
follows from the known fact that compositions of functions in treeless form are
again functions in treeless form [27] and these function can be automatically
derived. Usually, treeless functions are defined in a more general form:

f p1 . . . pn = e

where a function can have an arbitrary number of inputs. So, a putback trans-
formation in Pdl is a special case which has two predefined (source and view)
inputs. The following lemma can be easily obtained, and will be used later.

Lemma 3 (Putback Transformation Fusion). Let put be a putback trans-

formation and f be a one-input treeless function. Then a new putback transfor-

mation put

0
can be automatically derived from the following definition.

put

0
s v = put s (f v)

4 Validity Checking

Given a put function in Pdl, we will now give an algorithm to check whether
it is valid. According to Theorem 1, we need to check two conditions: view
determination of put and source stability of put . Additionally, we need to check
that put is a total function, what in Pdl can be easily done by checking the
exhaustiveness of the patterns for all the rules. To simplify our presentation, we
will consider putback transformations that are single recursive functions.

4.1 View Determination Checking

First, let us see how to check injectivity of put s. Notice that FV(pv) ✓ FV(e) is
a necessary condition, where FV(e) denotes a set of free variables in expression
e. This is because if there is a view pattern variable v that does not appear in e,
then we can construct two di↵erent views, say v1 and v2, such that they match
pv but di↵er in the part of the code matching v and satisfy put s v1 = put s v2

for any s matching ps. For instance, the following view embedding rule

putNoInj (A s) v = A s

will make putNoInj non-injective because, for any two views v1 and v2, we have
putNoInj (A s) v1 = putNoInj (A s) v2 = A s

In fact, the above necessary condition is also a su�cient condition. Following
[20], we can prove the following stronger lemma.

Lemma 4 (Injectivity Checking). Let put be a putback transformation in

Pdl. Then put s is injective, for any s, if and only if FV(pv) ✓ FV(e) holds

for any putback rule put ps pv =̂ e.

However, proving that put s is injective, for any s, is not su�cient to guar-
antee that put satisfies view determination. For example, consider a putback
function that sums two natural numbers:

bad Z v = v

bad (S s) v = S (bad s v)

Even though bad s is injective, we can easily find a counter-example showing
that bad is not view deterministic:

bad Z (S Z) = S Z

bad (S Z) Z = S Z

where di↵erent views S Z and Z lead to the same source S Z . In fact, there is
no (functional) left inverse get such that get (bad s v) = v .

This requires finding a more general method to check the view determination
property. Let us first take a closer look at the view determination property:

8 s, s

0
, v, v

0
. put s v = put s

0
v

0) v = v

0

Since put must map di↵erent views to di↵erent sources, this property is equiva-
lent to stating that the inverse mapping from the result of putback to the input
view is be functional (or single-valued), i.e., a relation that returns at most one
view for each source. This hints us to divide the checking problem into two steps
for a given putback transformation put : (1) deriving such an inverse mapping,
say Rput , and (2) checking that Rput is single-valued.

Deriving Inverse Mapping from put

Consider a putback transformation put defined by a set of putback rules, ignoring
rules in the form:

put ps pv = put p

0
s pv

for which view determination trivially holds. Now the inverse mapping R from
the result of put to its input view can be defined by inverting the remaining
putback rules put ps pv = e, i.e.,

Rput e = pv i↵ put ps pv = e

Example 6. As a concrete example, recall the putAs function from Example 2.
We can automatically derive the following “relation” RPutAs .

RputAs [] = []
RputAs (A v : putAs ss vs) = v : vs
RputAs (putAs ss vs) = v : vs
RputAs (B b : putAs ss vs) = vs

It covers all the putback rules except for the rule putAs (A a : ss) (vs as []) =
putAs ss vs. ⇤

The above derived Rput would be a bit unusual, in that put could appear on
the left-hand side. In fact, each equation can be normalized into the form:

Rput p = e

where p is a pattern and e is an expression as in Pdl. The idea is to eliminate
recursive calls put xs xv by introducing a new pattern variable x

0
s = put xs xv

(and thus Rput x
0
s = xv), and replacing put xs xv by x

0
s in the left-hand side and

xv by Rput x
0
s in the right-hand side of the equation.

Example 7. After normalization, we can transform the RputAs from Example 6
into the following.

RputAs [] = []
RputAs (A v : ss 0) = v : RputAs ss

0

RputAs (A v : ss 0) = v : RputAs ss

0

RputAs (B b : ss 0) = RputAs ss

0

After removing duplicated rules, we get the following final RputAs .

RputAs [] = []
RputAs (A v : ss 0) = v : RputAs ss

0

RputAs (B b : ss 0) = RputAs ss

0 ⇤

Checking Single-valuedness of the Mapping

First, it is easy to show that the derived R can always be translated into a (finite
state) top-down tree transducer [25] where each rule has the form Rput p = e

and all free variables in e are those in p and appear exactly once. This conclusion
relies on the assumption that view variables are used exactly once in the right
side of putback rules, as implied by the a�nity syntactic constraint and the
necessary injectivity of put s.

Note that, in general, Rput may not be a function, by containing overlapping
patterns that may return di↵erent view values for the same source. For instance,
our inversion algorithm will produce the following non-deterministic relation for
the putback definition of bad :

Rbad n = n

Rbad (S n) = Rbad n

where Rbad (S 0) = S 0 from the first equation, and Rbad (S n) = 0 from the
second equation (followed by the first equation).

If the derived Rput returns at most one view value for every source value,
then it corresponds directly (modulo removal of possibly overlapping but similar
patterns) to a get in a treeless function similar to Pdl. This is equivalent to
stating that the corresponding tree transducers is single-valued, a problem that
is fortunately known to be decidable in polynomial time [25].

Lemma 5 (Single-valuedness of get). It is decidable if the relation Rput de-

rived from a putback function put in Pdl is a functional.

4.2 Source Stability Checking

With the Rput relation derived in the previous section in hand, checking source
stability of a putback function put amounts to proving that, for any source s,
the GetPut property holds:

put s (Rput s) = s

Algorithm: Validity Checking of Putback Transformation

Input: A program P = (R,F , C,X) for putback definitions in Pdl.

Procedure:

check the syntactic constraints for each rule r in R;
{* check totality *}

check pattern exhaustiveness for each putback definition in R;

for each f ps pv =̂ e 2 R do

begin

{* check view determination *}
check injectivity: FV(pv) ✓ FV(e);
derive and normalize Rf ;
check view determination: Rf is single-valued;
{* check source stability *}
define pr s v =̂ f s (Rf v);
fusion pr s v =̂ f s (Rf v) to be a new putback transformation;
check property pr s s = s inductively;

end;
return True if all the checks are passed, and False otherwise.

Fig. 2. Validity Checking Algorithm

Note that GetPut implies in particular PutStability. Above that, at this
point we only know that Rput is functional, but not that it constitutes a valid
get function, i.e., that it is totally defined for all sources. This single proof also
gives us that result.

The proof can be conducted as follows. First, we introduce a new (partial)
function pr defined as:

pr x y = put x (Rput y)

Since Rput is in the treeless form, it follows from Lemma 3 that pr is a putback
transformation in Pdl. Now by Lemma 2, we know that pr s s = s is inductively
provable. That is, put s (Rput s) = s is inductively provable, which is what we
want.

Lemma 6 (Source Stability Checking). Let put be a putback function in

Pdl and Rput be a treeless function. Then it is decidable if put is source stable.

4.3 Checking Algorithm

Figure 2 summarizes our checking algorithm. The input is a program defining a
set of putback definitions F using a set of rules R with a set of data constructors
C and a set of variables C. The checking algorithm will return True if all the
putback definitions are valid, and return False otherwise.

Theorem 2 (Soundness and Completeness). The putback checking algo-

rithm is sound, in that if all putback functions pass the check then they are

valid, and complete, in that there are no putback functions defined in Pdl that

are valid but do not pass the check.

Proof. It directly follows from Lemmas 4 and 6. ⇤

5 Related Work

The pioneering work of Foster et al. [10] proposes one of the first bidirectional
programming languages for defining views of tree-structured data. They recast
many of the ideas for database view-updating [1,7] into the design of a language
of lenses, consisting of a get and a put function that satisfy well-behavedness
laws. The novelty of their work is by putting emphasis on types and totality
of lens transformations, and by proposing a series of combinators that allow
reasoning about totality and well-behavedness of lenses in a compositional way.
The kinds of BXs studied in our paper are precisely total well-behaved lenses.

After that, many bidirectional languages have been proposed. Bohannon et
al. [4] propose a language of lenses for relational data built using standard SPJ
relational algebra combinators and composition. Bohannon et al. [3] design a
language for the BX of string data, built using a set of regular operations and a
type system of regular expressions. Matching lenses [2] generalize the string lens
language by lifting the update strategy from a key-based matching to support
a set of di↵erent alignment heuristics that can be chosen by users. Pacheco and
Cunha [22] propose a point-free functional language of total well-behaved lenses,
using a simple positional update strategy, and later [23] they extend the match-
ing lenses approach to infer and propagate insertion and deletion updates over
arbitrary views defined in such point-free language. Hidaka et al. [13] propose
the first linguistic approach for bidirectional graph transformations, by giving a
bidirectional semantics to the UnCal graph algebra. All the above existing bidi-
rectional programing approaches based on lenses focus on writing bidirectional
programs that resemble the get function, and possibly take some additional pa-
rameters that provide limited control over the put function.

Since these get-based languages are often state-based, they must align the
updated view and the original source structures to identify the modifications on
the view and translate them to the source accordingly. Although for unordered
data (relations, graphs) such alignment can be done rather straightforwardly,
for ordered data (strings, trees) it is more problematic to find a reasonable
alignment strategy, and thus to provide a reasonable view update translation
strategy. Our results open the way towards put programming languages, that
in theory could give the programmer the possibility to express all well-behaved
update translation strategies (for a given class of get functions).

In his PhD thesis, Foster [9] discusses a characterization of lenses in terms
of put functions. However, he does so only to plead for a forward programming
style and does not pursue a putback programming style. In [8], we independently

review classes of lenses solely in terms of their putback functions, rephrasing ex-
isting laws in terms of simple mathematical concepts. We use the built-in search
facilities of the functional-logic programming language Curry to obtain the get

function corresponding to a user-defined put function. Furthermore, in [24], a
monadic combinator library for supporting putback style bidirectional program-
ming is proposed. None of them considers mechanisms to ensure the validity of
user-defined put functions and especially totality of the transformations. In the
current paper, we explore the putback style to demonstrate that it can be ad-
vantageous and viable in practice, and illustrate a possible way to specify valid
(total) put functions and correctly derive (total) get functions.

6 Conclusions and Future Work

In this paper, we have proposed a novel linguistic framework for supporting a
putback-based approach to bidirectional programming: a new language has been
designed for specifying primitive putback transformations, an automatic algo-
rithm has been given to statically check whether a put is valid, and a derivation
algorithm has been provided to construct an e�cient get from a valid put . Our
new framework retains the advantages of writing a single program to specify a
BX but, in sharp contrast to get-based bidirectional programming, allows pro-
grammers to describe their intended put update strategies in a direct, predictable
and, most importantly, unambiguous way.

The natural direction for future work is to consider extensions to Pdl to
support a larger class of BXs, while retaining the soundness and completeness
of the validity checking algorithms. It remains open to prove results about the
completeness of (pratical) putback-based programming, i.e., identifying classes
of get functions for which concrete putback definition languages can specify all
valid put functions.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Transac-
tions on Database Systems 6(4), 557–575 (1981)

2. Barbosa, D.M.J., Cretin, J., Foster, J.N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: ICFP 2010. pp. 193–204. ACM (2010)

3. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: POPL 2008. pp. 407–419. ACM (2008)

4. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for up-
datable views. In: PODS 2006. pp. 338–347. ACM (2006)

5. Buneman, P., Cheney, J., Vansummeren, S.: On the expressiveness of implicit
provenance in query and update languages. ACM Transactions on Database Sys-
tems 33(4) (2008)

6. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidi-
rectional transformations: A cross-discipline perspective. In: ICMT 2009. LNCS,
vol. 5563, pp. 260–283. Springer-Verlag (2009)

7. Dayal, U., Bernstein, P.: On the correct translation of update operations on rela-
tional views. ACM Transactions on Database Systems 7, 381–416 (1982)

8. Fischer, S., Hu, Z., Pacheco, H.: ”Putback” is the Essence of Bidirectional Program-
ming (2012), GRACE Technical Report 2012-08, National Institute of Informatics,
36pp

9. Foster, J.: Bidirectional Programming Languages. Ph.D. thesis, University of Penn-
sylvania (December 2009)

10. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

11. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Proc. IJCAR ’01,
LNAI 2083. pp. 469–484 (2001)

12. Gottlob, G., Paolini, P., Zicari, R.: Properties and update semantics of consistent
views. ACM Transactions on Database Systems 13(4), 486–524 (1988)

13. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: ICFP 2010. pp. 205–216. ACM (2010)

14. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: POPL 2011. pp.
371–384. ACM (2011)

15. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: POPL 2012. pp. 495–508.
ACM (2012)

16. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Dagstuhl Seminar on Bidirectional
Transformations (BX). SIGMOD Record 40(1), 35–39 (2011)

17. Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation 21(1-2), 89–118 (2008)

18. Kühnemann, A.: Comparison of deforestation techniques for functional programs
and for tree transducers. In: FLOPS 99. pp. 114–130. Springer-Verlag (1999)

19. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: SETS
2004 (2004)

20. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP 2007. pp. 47–58. ACM (2007)

21. Meertens, L.: Designing constraint maintainers for user interaction (1998),
manuscript available at http://www. kestrel. edu/home/people/meertens

22. Pacheco, H., Cunha, A.: Generic point-free lenses. In: MPC 2010. LNCS, vol. 6120,
pp. 331–352. Springer-Verlag (2010)

23. Pacheco, H., Cunha, A., Hu, Z.: Delta lenses over inductive types. In: BX 2012.
Electronic Communications of the EASST, vol. 49 (2012)

24. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for ”putback” style bidirec-
tional programming. In: PEPM ’14. pp. 39–50. ACM (2014)

25. Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time.
Theor. Comput. Sci. 106(1), 135–181 (Jan 1992)

26. Voigtländer, J.: Bidirectionalization for free! (pearl). In: POPL 2009. pp. 165–176.
ACM (2009)

27. Wadler, P.: Deforestation: Transforming programs to eliminate trees. In: ESOP 88.
pp. 344–358. Springer-Verlag (1988)

28. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE 2007. pp. 164–173.
ACM (2007)

