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Abstract. The classification of retinal vessels into arteries and veins
in eye fundus images is a relevant task for the automatic assessment
of vascular changes. This paper presents a new approach to solve this
problem by means of a Fully-Connected Convolutional Neural Network
that is specifically adapted for artery/vein classification. For this, a loss
function that focuses only on pixels belonging to the retinal vessel tree
is built. The relevance of providing the model with different chromatic
components of the source images is also analyzed. The performance of
the proposed method is evaluated on the RITE dataset of retinal images,
achieving promising results, with an accuracy of 96% on large caliber
vessels, and an overall accuracy of 84%.

1 Introduction

The retina is routinely examined in medical settings as a means of diagnosis
for several different pathologies. In particular, several types of alterations in
the vasculature are known to be indicative of disease. For instance, decreased
arteriolar caliber may indicate coronary artery disease, while increased venular
caliber is associated with diabetic retinopathy and risk of stroke [11]. To assess
these alterations, a commonly employed biomarker is the ratio between arterio-
lar and venular diameters (AVR) [2]. Abnormal AVR has been correlated with
high cholesterol levels or high blood pressure [7]. In addition, a decreased AVR
is an early sign of Diabetic Retinopathy. This is caused by a pathological widen-
ing of the veins produced by retinal hypoxia, arising after retinal microvascular
degradation due to high blood sugar levels [5]. The early detection of such symp-
toms can increase the chance of disease detection and enable early adoption of
preventive treatments to avoid vision loss.

To examine the retinal vessels, ophthalmologists often rely on images of the
retina acquired by fundus cameras. However, objective visual analysis of the reti-
nal vasculature on these images is a time consuming task that requires expert
knowledge. For this reason, in recent years a large number of techniques have
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Fig. 1. Left: Retinal image. Right: Expert A/V annotations, encoded as: blue: veins;
red: arteries, white: crossings; yellow: uncertain labels. Center: Zoomed regions illus-
trating the main visual features and challenges related to the A/V problem. Top Row:
Arteries show brighter intensities. Center Row: Fine veins and arteries are hardly dis-
tinguishable. Bottom Row: Central reflex effect. Reflex size is slightly larger for arteries.
(Color figure online)

been proposed to automate several retinal image analysis tasks, e.g., vessel seg-
mentation [10], optic disk localization [3], or detection of markers for disease
[1]. The classification of retinal vessels into arteries or veins is another relevant
challenge, since this differentiation is necessary for measuring AVR. An auto-
mated approach to artery/vein (A/V) classification could lead to a systematic
approach for AVR estimation, which would be a very useful tool for ophthalmol-
ogists (Fig. 1).

Existing techniques can be grouped into graph-based and dense methods.
Graph-based methods reduce the segmented vasculature to a linear skeleton,
further divided into separate edges, considering junction and ending points as
nodes, and building an undirected graph on which geometry and connectivity
can be more easily analyzed [4,5,14]. Dense methods assign an artery or vein
label to each pixel in a pre-existing segmentation of the retinal vessel tree. This
classification is achieved by supplying to a machine learning model representa-
tions of artery and vein pixels in terms of visual descriptors that model differ-
ences between both classes. These descriptors attempt to capture relevant color,
size, or geometrical information [9,12,17,18]. A notable exception are recent
deep-learning based approaches, which automatically learn the most useful rep-
resentation [16].

In this work, we propose to solve the A/V classification task by means of
a Deep Convolutional Neural Network. This allows us to avoid generating an
initial skeletonized vessel map representation, and directly classify every pixel
in a vessel. We bypass the implementation of cumbersome tracking mechanisms
to propagate predictions along vessels, and other type of post-processing. We
also provide an experimental analysis of the influence of each particular color
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component on the resulting model, which allows us to discard non-relevant infor-
mation and leads to a more efficient training.

2 A/V Classification Method

The proposed method builds on a Convolutional Neural Network specifically
designed to deal with the classification of pixels lying on one-dimensional struc-
tures (vessels), which are embedded in a two-dimensional space (the background
of the retinal image). Below we detail the selected architecture and a suitable
modification of a standard pixel-wise loss function to take into account this
scenario.

2.1 Adapting CNNs for A/V Classification

Over the past few years Convolutional Neural Networks (CNNs) have achieved
remarkable success in medical image analysis tasks. When applied for the task
of image segmentation, we are interested in assigning a prediction to each pixel
on the image. CNNs can be reformulated to perform image segmentation based
on the notions of Fully-Convolutional Neural Networks (F-CNN) and skip con-
nections, which allow to link coarse and fine layers of a CNN.

A popular F-CNN architecture is U-net, introduced in [13] for the task of seg-
menting biological tissue images. In this architecture, the upsampling of the fea-
ture map is done symmetrically to the regular contracting CNN section. Specifi-
cally, the output feature map of the last layer of the contracting path is upsam-
pled so that it has the same dimension as the second last layer. The resulting
feature map is fused with the feature map from the corresponding layer in the
contracting section. This procedure is repeated until the output of the upsam-
pling operation has the same dimension as the input of the network. This results
in a U-shaped network, where the output feature maps of the layers in the con-
tracting section are fused with the output from the upsampling operations.

The problem of classifying retinal vessels can also be formulated as a pixel-
wise classification problem, suitable for the application of a U-net-like network.
Nevertheless, solving a three-class segmentation in the context of retinal images
is a complex challenge that remains unsolved [5]. As such, in this work we focus
on the simpler problem of classifying pixels belonging to retinal vessels, while
ignoring the task of separating the vasculature from the background.

In its common formulation the convolution operation is not suitable for the
task of vessel pixel classification, since the input of a CNN must be a rectangular
image region and all of its pixels must classified. Accordingly, a U-net-like model
returns a prediction for each pixel, and a third class accounting for background
pixels needs to be considered. The solution adopted in this paper for solving the
two class A/V problem consists on weighting the penalization of pixels belong-
ing to different classes. For that, we propose to modify the cross-entropy loss
function, typically used for classification problems, as follows:
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(1)

where ŷij is the prediction associated to a pixel i with ground-truth label given
by yij . In this case, j ∈ {1, 2, 3} models each of the possible classes occurring
in a retinal image, i.e. background (j = 1), artery (j = 2), and vein (j = 3),
and wn is the weight attributed to each class. In order to obtain classifications
only for the vessel tree, the background class is assigned a weight w = 0 at
training time. With this formulation, Eq. (1) returns a score penalizing only
incorrect classification of vessel pixels, and the error is backpropagated through
the network (Fig. 2).

Fig. 2. Proposed U-Net-like architecture adapted for A/V classification

Implementation and Training. In our implementation of the U-net architec-
ture, each convolution layer uses a stride of two, and is followed by Rectified
Linear Unit activations, batch normalization and Dropout. The feature maps
between the shallow contracting layers and the deep expanding layers are fused
by a concatenation operation. The final layer is a convolution followed by a soft-
max activation in order to map each feature vector onto the classes of interest.

The model is optimized by minimizing the pixel mis-classification error,
according to the cross-entropy function given by Eq. (1). The minimization fol-
lows stochastic mini-batch gradient descent, with the gradients computed by
standard backpropagation. The Adam algorithm [8] is used for optimization,
with learning rate 1 × 10−2. The loss was monitored on the validation set, and
training was stopped when it did not decrease anymore. Training took approxi-
mately 20 h on a NVIDIA GeForce GTX 1080 GPU. After training, the model
can generate a prediction for 90 64 × 64 pixels patches (the minimum number
of patches needed to create a reconstruction of the original image) in approxi-
mately 10.4 s.
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3 Experimental Evaluation

3.1 Data and Evaluation

The method was trained and evaluated on the RITE dataset [6], which con-
tains A/V ground-truth of the retinal images from the publicly available DRIVE
dataset [15]. DRIVE contains 40 images of size 565 × 584, divided into 20 train-
ing and 20 test images. Before training, 4 images were randomly selected for
validation.

Images in RITE contain labels for artery, vein, crossing and uncertain. Pixels
labeled as crossing or uncertain were ignored during training. The images were
divided into patches of 64 × 64 pixels centered on randomly selected pixels of
both classes. At test time predictions were performed patch-wise, and the vessel
tree was reconstructed by combining these predictions. For this, when dividing
the input image into patches the coordinates corresponding to the position of
the upper left corner of each patch in the original image were recorded. These
patches were fed to the model, and the output probability maps were combined
into a full-size image. Whenever patches overlapped, the pixel-wise probabilities
were simply averaged.

When evaluating the models only pixels corresponding to the vessel tree were
considered. Predictions from the same vessel segments were averaged to reach
a consistent result. ROC analysis was performed, and the optimal threshold
maximizing the Youden Index was selected. This threshold was used to compute
Accuracy, Sensitivity and Specificity.

3.2 Chromatic Component Analysis for the A/V Problem

When dealing with color images, RGB is the typical choice for most computer-
aided diagnosis tasks. However, it is well-known that, in the case of retinal images,
the blue channel contains large quantities of noise, whereas the green channel is
the component of choice for vessel segmentation methods due to its good contrast
between background and vessels. On the other hand, the red component seems
to be visually relevant for the discrimination of vessel types.

In order to analyze the contribution of each color channel for classifying ves-
sels, we take advantage of CNNs being agnostic feature extractors: the most
relevant information is extracted by the model driven only by the misclassifi-
cation loss, thus bypassing manual feature engineering. We conduct a simple
experiment: we train seven equal models, considering different inputs for each
of them. We provide to each model different combinations of chromatic com-
ponents, spanning from single channels to every possible pair, and finally to
the three color channels. All models are trained for 150 epochs with the same
hyperparameter configuration. The results of these experiments are shown in
Table 1.

As expected, when considering individual channels, the performance of the
model trained on the Red component only was higher than when trained on
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Table 1. Classification performance when considering different chromatic components.

R G B RG RB BG RGB

Accuracy 0.82 0.79 0.74 0.83 0.84 0.82 0.84

AUC 0.89 0.87 0.81 0.91 0.92 0.89 0.91

Green, and training with the Blue channel obtained the worst performance. How-
ever, when considering combinations of two different channels, we observed that
the Red channel was slightly better complemented by the Blue component than
by the Green channel, although the difference was marginal. The combination of
chromatic components that ignored the Red channel obtained the worst result,
indicating that Red is an essential component to consider when solving the A/V
classification problem. In addition, the combination of the three components did
not lead to any improvement in performance when compared to employing either
the Red and Green components or Red and Blue. Since considering less input
channels leads to removing redundant information and a more efficient memory
usage, we discarded the option of training on the entire RGB information for
the next section.

3.3 Quantitative Comparison with Previous Approaches

Since the difference in performance between using RG and RB chromatic compo-
nent combinations was not significant, we decided to select both input types and
train two models until full convergence. In order to test our approach against
other A/V classification techniques, we present in Table 2 a comparison of our
method and the methods introduced in [4,12] for the same dataset. Both meth-
ods originally reported performance when classifying only major vessels with
a caliber greater than 3 pixels. For a fair comparison, we also computed the
performance of the technique introduced in this paper on these vessels.

4 Discussion and Future Work

The proposed model achieves a competitive performance in terms of accuracy
when compared with other approaches. It is also interesting to note that the
model trained on Red-Blue components achieved similar AUC, but greater speci-
ficity than the one trained on Red-Green channels, indicating that the informa-
tion in each channel may be complementary. It must be stressed that this per-
formance was computed only for predictions on thick vessels. This is a useful

Table 2. Performance of the proposed models on thick vessels.

Sensitivity Specificity Accuracy AUC

Dashtbozorg et al. [4] 0.90 0.84 0.874 −
Niemejer et al. [12] 0.80 0.80 − 0.88

Proposed approach – RG 0.96 0.93 0.95 0.99

Proposed approach – RB 0.95 0.96 0.96 0.99
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scenario, since for AVR measurements only large arcades are typically consid-
ered. However, when predictions are computed on the entire vessel tree, the
performance drops significantly, as shown in Table 1. In Fig. 3 we show the pre-
dictions for all vessel pixels. The displayed predictions correspond to the best,
the average, and the worst results. We can observe how, while the classification
of the main arcades is mostly correct, thin vessels are wrongly predicted in a
substantial amount. The performance of other recent methods, when predicting
the entire vessel tree, is greater than the proposed model [5,16], indicating that
there is a wide margin for improvement. Accordingly, the next steps will con-
sist of designing domain-related regularizing mechanisms for the presented deep
CNN, mainly taking into account geometrical constraints on the distribution of
arteries and veins within the retina.

Fig. 3. Left: Best classification result (RB); Middle: Average classification result; Right:
Worse classification result. Color code: Red, correctly predicted arteries. Blue, correctly
predicted veins. Green, wrongly predicted veins. Yellow, wrongly predicted arteries.
(Color figure online)

5 Conclusions

We have introduced a novel approach for classification of retinal vessels into
arteries and veins. The method builds on a Deep Neural Network, and the loss
function that drives the model learning is suitably modified to account for ves-
sel pixels only, while ignoring the background. The method achieves promising
results in the task of artery/vein classification, with high performance on thick
vessels.
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