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Abstract. The need for efficient automation methods has prompted the
fast development in the field of Robotics. However, most robotic solutions
found in industrial environments lack in both flexibility and adaptabil-
ity to be applied to any generic task. A particular problem arises when
robots are integrated in work cells with extra degrees of freedom, such
as external axis or positioners. The specification/design of high redun-
dancy systems, including robot selection, tool and fixture design, is a
multi-variable problem with strong influence in the final performance of
the work cell. This work builds on top of optimisation techniques to deal
with the optimal poses reachability for high redundancy robotic systems.
In this paper, it will be proposed a poses optimisation approach to be ap-
plicable within high redundancy robotic systems. The proposed method-
ology was validated by using real environment existent infrastructures,
namely, the national CoopWeld project.
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1 Introduction

The robotic field’s expansion leads to the desire of developing highly autonomous
and efficient methodologies to address the prominent problems of not only re-
search and development but also the needs pointed by the industrial corpora-
tions.

One of those problems in robotic systems is task management, that involves
the integration of the motion planning in the work cell context, including tech-
nological process limitations, communication with external devices, automatic
work cell calibration among others. Currently, there is no optimal tool to create
an action sequence to complete a given task (currently handled by human expe-
rience). However, some studies point to the usage of optimisation functions to
attend this problem [3, 1].

Recently, a wide range of applications have been developed towards the
robotic implementation in harsh and / or repetitive tasks, such as welding, cut-
ting and transportation, commonly found in the construction industries. These
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tasks are fairly complex as they need to cope with several parameters. Robotic
systems have to be autonomously capable of performing any coded task in a
precise and efficient way. Thus, when developing systems that are going to be
included into dangerous situations, the architecture that embraces the robotic
system needs to consider robust elements. From the presented tasks, cutting and
transportation seem to have a clear idea on where to improve and define a bet-
ter and cleaner strategy while welding still needs to have some re-visitation on
sensing, planning and adequate optimisation to any required task.

The specification of optimal design methodology of high redundancy systems,
including robot selection, tools and fixtures design, is a multi-variable problem
with strong influence in the final performance of the work cell. An active example
of this problem is related to selection of flexible elements (such as the torching
cables for welding operations) and their constraints.

In 2015, Graetz and Michaels, in their work entitled “Robots at work”, anal-
ysed for the first time the economic impact of industrial robots pointing that
robots significantly added increased value to industries [9]. Thus, this optimi-
sation research topic applied to industrial work cells seems to be adequate to
current state of industrial development.

Throughout this project, a novel design methodology capable of defining the
correct work cell for a given operation in robotic applications is being developed
in order to achieve industrial requirements and potentiate production goals. Fur-
thermore some considerations on work cell motion and components reposition
will assure an efficient function of the system.

The current paper is structured in five main section. Section 2 aims to provide
an overview of the current state of optimisation technique appliance in research
or industrial processes. Following, section 3, System Architecture and Heuristic-
Based Approach, intends to present the defined optimisation structure, as well
as the detail model description of a generic work cell submitted to the selected
algorithms. Then, section 4, Optimisation Methodologies, will describe a set of
algorithms to be applied in order to accurately find an optimal solution. Sec-
tion 5, Validation, will provide preliminary results of the proposed optimisation
approach and a comparison between selected algorithms. Section 6, Discussion
and Future Perspectives, will summarise the contribution of this project to the
scientific community and intended iterative of it.

2 Related Work

Robotic applications have become key to ensure process efficiency in a wide range
of scientific fields. Several studies have suggested that there can be considerable
gains in terms of profitability and reduced operation times on fields ranging from
medical surgery to manufacturing proceedings [8, 12, 5].

Currently, optimisation methodologies have grown interest within research
and industrial communities due to their success in solving multi-variable prob-
lems. Several algorithms have been defined and implemented showing great
adaptability to complex tasks [17]. The main trend of such optimisation method-
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ologies is related to heuristic-based algorithms. By defining detailed goals and
constraints, such algorithm can iterative search for a ideal solution, and has been
applied to several applications [15, 7].

Another key topic connected to optimisation and focusing in robotics is re-
lated to the work cell design, that comprises, among others, robot selection and
fixture design. Cheng mentioned the simulation tool’s advantages in order to
develop a robotic work cell [4].

Furthermore, there have been authors claiming to find powerful enough method-
ologies to handle machining [2] and welding challenges [11, 10]. Still, despite its
importance, existent robotic systems are focused on solving separate necessities
while there is no optimal tool to properly design a generic robotic work cell.

The nearest solution to an optimal design methodology was presented by
Kamoun et. al, with an approach concerning the display of equipment over a
given area [13]. Recently, Pelleginelli et. al, proposed an extended formalisa-
tion of design and motion planning problems for spot-welding multi-robot cells
[16]. However, both solutions only considered previously selected equipment or
reduced features and did not include the optimal selection of such equipment.

Despite the tremendous utility that optimisation methodologies have shown
when applicable to other principals, the robotic industrial world still lacks a
flexible and autonomous solution regarding the complete optimisation of work
cell and its properties.

3 System Architecture and Heuristic-Based Approach

The optimisation approached presented is directly linked to an user interface soft-
ware. This software follows the paradigm of MVVM (Model-View-View Model),
a three layer software architecture. Each layer has its own importance. The
Model is the centralized database of all relevant content. Here we can detail
system components and their relations. The View Model is responsible for the
communication management between the raw data on the model and the user
interface that is referenced as View.

Thus, in order to use the proposed optimisation approach, each user has
to follow a script of inserting work cell components, defining relations between
them and then generating a robotic Kinematic Chain that will be storage as the
system Model.

The View Model of the proposed approach is related to the optimisation
methodology. The raw data inserted in the Model will be de-serialized and the
kinematic chain’s components will be classified as fix parts, conveyor, external
axis, robots or tools. Then an world map is created accordingly to the found
components and converted to a visual interface, View.

Once loaded the system, the optimise algorithm is fully defined. This algo-
rithm can then be described as a set of steps (see algorithm 1).
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Algorithm 1: Optimization Proceeding

Inputs: Model Data, Optimisation Algorithm;
Outputs: Optimized Pose;

Map = GenerateMap(Model Data);
Job = LoadJob();
Points = IdentifyPoints(Job);
OptimisedPoses = CreateStructure(Optimisation Algorithm);

RunOptimisationAlgorithm(Points,Optimisation Algorithm);

The terminal part of the optimisation proceeding differs accordingly to the
chosen algorithm. An insight on what algorithms have been selected and vali-
dated will follow in section 4.

However, all of the selected algorithms follow an ideology of heuristic-based
solutions and share a common goal, minimization of effort and maximization
of present and subsequent poses. In that regard, a cost function was developed
based on six features:

1. External Axis Motion: While performing a task, it is pretended to minimize
the external axis moves as they may insert instability within the robotic
system.

2. Singularities: Robots’ behaviour becomes unstable during singularities, thus,
they should be avoided.

3. Configuration Change: Robots should whenever possible keep an original
configuration to avoid sudden uncontrolled movements.

4. Joints’ Effort: Minimization of system effort smooths moves and protects
components.

5. Reachability: The distance between robot’s base and goal position should be
minimized to increase the reaching probability for future poses.

6. Joints’ Limits: Similar to the previous criteria, in order to increase the reach-
ing probability of future poses, an ideal pose should maximize the interval
between joint position and limits.

Thus, the cost function that untimely dictates the viability of a random pose
results in a weighed sum and can be described using equation 1.

∑
(w1 ∗ ExternalMove+ w2 ∗ Singularities

COST =+ w3 ∗ ConfigurationChange+ w4 ∗ JointsAmplitude

+ w5 ∗Reachability + w6 ∗ JointsLimits)

(1)
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Although not all variables stated in the equation are not continuous (Ex-
ternalMove and ConfigurationChange), the cost function value is well defined
in all its domain. That is accomplish by processing each feature separately as
described below.

External Axis Motion is consider a boolean state, on whether the generated
solution requires external axis moves. In that case, the value ExternalMove will
be set to 1, otherwise it will be 0. The associated weight w1 is fairly high due to
the fact that this is one of the feature that we desire to avoid the most.

Singularities are determined and analysed using the robot Jacobian where its
determinant is a indicator of singularities. When close to 0, the robot is approach
a singularity state. Thus, the inverse of that value (will be higher when closer to
that singularity state) is used as the Singularities parameter.

Each robot manufacture has a configuration definition for a given joint state.
Generically this is linked with the wrist-shoulder-elbow configurations. Ideally,
when finding a new solution for a specified position, robots should avoid chang-
ing configuration as it prevents uncontrolled movements. Once again, Configu-
rationChange is a binary value, 0 when configuration change is not require, 1
otherwise.

Regarding joints’ effort, the weight associated to each joint is not linear since
that some joints have higher implications than other. Considering as an example,
an anthropomorphic robot, the initial three joints’ amplitude is more relevant
than the wrist joints. Therefore the parameter JointsAmplitude is obtained from
a weighed sum with decreasing weight for each joint starting from base to end.

The Reachability value is calculated based on the robot full length and is
defined as the quotient between base to goal position distance and the full length
value.

Finally, the joints’ limits follow the same pattern as the previous parameter,
as it results from a quotient between estimated joint value and its limits. How-
ever, another layer is inserted here as for each joint the weight is different for
similar reasons presented for the joints’ effort parameter.

One final comment is related to the usage of the cost function when there
is no available solution. In that cases the testing hypothesis is discard without
even being weighed.

By combining all values it is possible to classify any given pose of the sys-
tem and, thus, finding the optimal solution following one of the methodologies
presented next.

4 Optimisation Methodologies

To face the proposed challenge there were selected four mains optimisation tech-
niques: Linear Scanning of available poses, Genetic Algorithms, Simulated An-
nealing and Potential Fields.

Each of the proposed methods returns a heap storing the best outcomes of
the cost function. Considering that each solution results in an array of joint
values throughout the kinematic chain, a dynamic structure is built upon the
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map generation. Every heap element will follow the parameters define within
that same structure.

The reason behind using a multi-solution heap is related to the continuous
path of the robotic system following the array of solutions. Even if a random
position is validated and optimised, along the path between poses, there might
be an extra constraint such as obstacles or speed effort. Thus, in those cases, the
initial best solution has to be discarded and new one will be searched within the
heap.

Each method also can be divided in two main phases: creation of hypothesis
and validation. Since the idea is to find the optimal robotic system pose for a
pre-defined position, the hypothesis initial focus the external axis values and
then using a path planner validates and determines the robot positioning for
those external axis values.

The implemented methods will be synthesise in the following subsections.

4.1 Linear Scanning

The standard and easier way to do a search for an optimal solution is linearly
go through all hypothesis while saving the best one. Since the final return is
expected to be a heap, the saving results need to be extended to its size.

The key step of this method is selecting the discretization step that balances
memory usage and time consumption. As expected this method raises prob-
lems for high redundancy systems as computational capacities are limited and
considerations on memory usage need to be consider. Thus, when creating the
hypothesis to test a linear discretization method for each element of interest was
implemented, bounding the number of hypothesis.

The ideal algorithm can be described as following (algorithm 2).

Algorithm 2: Linear Scanning Algorithm

Inputs: PointsToOptimise, Model Data;
Outputs: Optimised Poses;

Hypothesis = Create_Testing_Hyphotesis();
Optimised Poses = Create_Poses_Structure();

foreach PointsToOptimise do
foreach Hypothesis do

EvaluteHypothesisCost(Hypothesis.Current, PointToOptimise.Current);
Update_Optimised_Poses();

end
end

return Optimised Poses;
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4.2 Genetic Algorithms

This method can be defined as a search and optimisation tool able to solve multi-
constraint problems [6]. Genetic algorithms recur to genes (variable of interest)
to store a sequence or solution of interest. Most of common applications using
this method start with two set of solutions and iteratively swap (exchange of
genes between solutions) or mutate (random or methodical change of a given
gene), creating a population of solutions.

Within our proposed methodology we start with a higher number of ran-
domly generated genes. Each gene is defined as a vector resulting of the external
axis values. Then, each gene undergoes a reachability validation of the defined
position. Iteratively new genes are generated throughout a fixed number of it-
erations and the optimised heap is built. The generation of each gene is based
on the swap and mutation operations, that are randomly selected. In case of
swap procedure, the second gene is also randomly chosen from the multi-gene
population. The algorithm can be describe as following (algorithm 3).

Algorithm 3: Genetic Algorithm

Inputs: PointsToOptimise, Model Data;
Outputs: Optimised Poses;

Population = Generate_Genes();
Optimised Poses = Create_Poses_Structure();

foreach PointsToOptimize do
for NumberOfIterations do

foreach Gene in Population do
EvaluteHypothesisCost(Gene, PointToOptimize.Current);
Update_Optimised_Poses();

end
Population = Generate_NewGenes(Population, mutationRate,
swapRate);

end
end

return Optimised Poses;

4.3 Simulated Annealing

Another optimisation technique is the simulated annealing method, which is a
probabilistic to find the global optima of a given function [14]. This method starts
from a random solution and iteratively searches its neighbourhood to define new
possible solutions. Then, probabilistically decides to which solution it should
iterate until untimely finds the global optimum.
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However, when dealing with high redundancy system this method entails a
high time and computation effort. Thus, a minor adjustment to the method was
implemented in order to reduce the execution time of the method. A threshold
was defined in order that the method runs iteratively until reaching a fixed num-
ber of solutions that verify such constraint, stopping without fully completing
the algorithm, giving a secure and acceptable list of solutions while minimizing
time consumption.

Another add-in was related to the initial point. Since that this is neighbour-
based, if the initial point and its neighbours do not produce a valid solution,
the method would stop and a erroneous value would be found. As such, the
initial point is randomly fixed within half robot’s length to the goal point. The
algorithm is shown next.

Algorithm 4: Simulated Annealing

Inputs: PointsToOptimise, Model Data;
Outputs: Optimised Poses;

Solution = Generate_Initial_AcceptablePosition();
Optimised Poses = Create_Poses_Structure();

foreach PointsToOptimise do
while SolutionNumber < IntendedSolutionNumber do

EvaluateSolution(Solution);
Update_Optimised_Poses();
Neighbours = Get_Solution_Neighbours();
Solution = Select_Next_Solution(Neighbours);

end
end

return Optimised Poses;

4.4 Potential Gradient

Similar to Simulated Annealing, Potential Gradient is an algorithm based on
surrounding solutions of the current iteration. However, this algorithm stops at
local optimums.

The iteration direction is defined by the sum of directional derivatives framed
with the optimisation function. Once determined what is the best directional
vector a new solution is generated until reaching a local optimum.

Despite being computational light, this algorithm does not guarantee optimal
solutions for any given problem.
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5 Validation

Attempting to ensuring a multi disciplinary validation process, two work cells
with different properties were modelled and inserted in a custom simulator.
Those work cells are displayed below in figure 1.

Fig. 1. At the left - a work cell with a cartesian external axis, a fanuc ic30 and a
cutting torch; at the left - a work cell with two kinematic chain, one composed by a
rotative external axis (Ring) and a Motoman MH5 robot and the second by a external
positioner.

A third cell was used, although it is not presented above. That is due to
the fact of this cell is currently being physically implemented according to the
national project CoopWeld. Thus, the third cell was only test and validated in
a simulated environment.

The work cells here presented are focused in these redundancy systems com-
posed by external axis, robot and operation tool. However the proposed approach
is also applicable to simpler robotic cells.

In order to validate the methodology a set of Cutting and Welding Jobs
were generated using a CAM (Computer Aided Manufacturing) software for
the production of beams, MetroID and CLARiSSA, proprietary of SARKKIS
robotics. This software generates a set of vectors containing poses that describe
the given operation (see figure 2)

Fig. 2. MetroID user interface.
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Using these software it was then created several test beams. Examples are
presented next in figure 3. The idea behind the creation of those beams was to
define different jobs that required external axis/positioners movement.

Fig. 3. Beams Examples.

In order to evaluate each of the implemented algorithms there were consider
three parameters: reachability percentage, time consumption and cost of reached
solution. The results are summarized in table 1. These are according to a vali-
dation test of 15 beams, each with 5 to 130 operations, which resulted in a total
of 563 points to be optimised. The results provide in the table are means per
operation of the correct achieved solutions.

Table 1. Results summary of the validation test

Optimisation Methodology
Solution

Reachability
(%)

Time
consumption

(s)
Cost Value

Linear Scanning 100% 18.031 0.103

Genetic Algorithms 100% 1.022 0.098

Simulated Annealing 96.4% 0.740 0.147

Potential Fields 81.4% 0.412 0.134

These results were achieved once established the proper parameters for each
algorithm. Those were determined by considering the best testing performance
for random positions for each algorithm when concerning memory management,
time consumption and solution reachability.

Concerning Linear Scanning was implemented a discretization in 50 equally
spaced hypothesis of each external axis/positioners based on their interval range.
The Genetic Algorithm methodology was implemented using a cross rate of 50%
and a mutation rate of 10%, for a random generated population of 1000, through-
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out 25 iterations. This was the set of parameters that produced the best results
in a exhaustive study done with different parametrizations. We also limited Sim-
ulated Annealing reaching goal to a maximum cost of 0.15 in order to reach a
higher number of solutions. Moreover, Simulated Annealing was implemented
using a multi dimensional neighbour radius of 8 increments. Each increment is
considered to be the interval value of each external part when discretized into
1000 equally spaced hypothesis.

6 Discussion and Future Perspectives

In this article we presented a solution with enough flexibility to be applied to
all robotic installations. This solution allows one to avoid the common pitfalls
associated with robotic poses configuration.

Once defined the cost function containing key elements for poses description,
a set of algorithms can be applied to identify the correct configuration for a
pre-defined pose.

Here, the optimisation algorithms prove to be the best methodology. Through-
out the project, four were implemented. Tests shows that each can be valuable
within the scientific community.

Directional algorithms, such as Potential Gradient, proved to be faster to
achieve a solution. However, they fail to reach a reasonable solution to all cases.
Energy gradient based, such as Simulated Annealing, reach all solutions, however
the time consumption to reach the optimal one sometimes is too high. Thus,
fixing a limit may help reducing time efforts but compromises efficiency.

Linear Scanning is set to find the optimal solution within a discretization step.
However, the time consumption is too high and the mentioned discretization
in order to avoid memory issues might have to be enlarge reducing efficiency
to find the optimal position. A recursive Linear Scanning algorithm could be
implemented however it would forfeit at each iteration a set of solution (not
ensuring that the optimal one is not discarded) and still remains with the time
consumption problem.

Thus, Genetic Algorithms, seem to be the best methodology as they reach a
viable solution for all cases with a reduce time and computation effort.

Future work concerning optimisation in robotic work cells is related to com-
ponents positioning and choosing, thus, providing a complete software solution
to optimal design a high redundancy robotic work cell.

In conclusion, the work presented here formalizes a flexible approach for poses
optimisation methodology, ensuring optimal configuration for robotic elements
to perform a given task in a faster and efficient way.
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