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Abstract
Despite the growing popularity of 802.11 wireless networks, users often suffer from connectivity problems and perfor-
mance issues due to unstable radio conditions and dynamic user behavior, among other reasons. Anomaly detection and
distinction are in the thick of major challenges that network managers encounter. The difficulty of monitoring broad and
complex Wireless Local Area Networks, that often requires heavy instrumentation of the user devices, makes anomaly
detection analysis even harder. In this paper we exploit 802.11 access point usage data and propose an anomaly detec-
tion technique based on Hidden Markov Model (HMM) and Universal Background Model (UBM) on data that is inexpen-
sive to obtain. We then generate a number of network anomalous scenarios in OMNeT++ /INET network simulator
and compare the detection outcomes with those in baseline approaches—RawData and Principal Component Analysis.
The experimental results show the superiority of HMM and HMM-UBM models in detection precision and sensitivity.
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1. Introduction

In recent years, IEEE 802.11 wireless networks have

emerged as a promising technology for wireless access by

mobile devices in many public places, from enterprises

and universities to urban areas. The flourishing popularity

and ease of access to these networks has led to their heavy

utilization and congestion. In addition, interference caused

by the broadcast nature of wireless links along with other

radio waves in the same frequency normally result in poor

performance. In such conditions the packet transmission

fails or requires several re-transmission attempts, causing

performance issues. Furthermore, dynamic traffic loads,

the evolving nature of user movement, and association to

different access points (APs) often induce connectivity

problems in large-scale 802.11 deployments. Generally

speaking, at any given moment 802.11 APs or users are

likely to come across problems threatening the connection

quality. Thus the question of performance becomes

increasingly important as new applications demand suffi-

cient bandwidth and reliable medium access.

Across the infrastructure, there are various types of

anomalous situations caused by users or APs, and auto-

matic detection of these anomalies is of great importance

for future mitigation plans. Highly utilized medium,

overloaded APs, failed or crashed APs, persistent interfer-

ence between adjacent APs, radio frequency (RF) effects,

and authentication failure are examples of such anomalies.

However, due to the time and cost limitations of constantly

monitoring the entire wireless territory by sensors and snif-

fers,1,2 obtaining reliable ground truth becomes more and

more challenging.

In such circumstances, when acquiring ground truth is

too expensive and time-consuming, network simulations

seem to be effective solutions to achieve a close-to-reality

setup that is computationally tractable. In the research

community, many wireless networks are evaluated using

discrete event simulators like OMNeT++ .3–5 Although

having worked with other simulation frameworks such as

NS3 and OPNET, we found OMNeT++ /INET the most

appropriate wireless network simulators for our research

purposes. Besides the well-structured framework and user-

friendly integrated development environment that facilitate
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analysis and data gathering, OMNeT++ /INET provides

an adequate set of modules supporting physical and radio

models for 802.11 that perfectly meet our requirements for

this project.

In our previous papers6,7 we utilized RADIUS authenti-

cation log data collected at the hotspot of the Faculty of

Engineering of the University of Porto (FEUP). The trace

data consisted of the daily summary of the connections

between hundreds of APs and their corresponding wireless

stations (STAs). In Allahdadi and Morla8 we deployed a

real Testbed in small scale with one AP and six STAs

using FreeRADIUS server, and generated a number of

anomalies in a controlled environment for experimental

purposes. In the current work we simulate a more extended

Wireless Local Area Network (WLAN) with five APs and

30 STAs and set up several anomalous cases, including the

ones in the previous work8 and some new anomalies. We

further improve our Hidden Markov Model (HMM) for-

merly proposed elsewhere7,8 by integrating it with the con-

cept of the Universal Background Model (UBM). The

simulation data are then utilized to evaluate HMM and

HMM-UBM models and compare the anomaly detection

results with baseline approaches (RawData and Principal

Components Analysis (PCA)).

The key steps of the present work include: (a) conduct-

ing 802.11 wireless network simulation in OMNeT++ /

INET to resemble normal and anomalous scenarios; (b)

reiterating the simulations with different seeds to provide

miscellaneous replicates; (c) extracting the wireless users’

data, and converting it to AP usage data; (d) building

HMM and HMM-UBM models from the prepared dataset;

(e) applying the proposed anomaly detection algorithms;

and (f) calculating the detection rate and sensitivity for

evaluation purposes.

Regarding the anomaly detection techniques we ana-

lyze three main approaches: (a) detection of anomalous

time-series in a database of time-series; (b) distinction of

anomalous patterns; and (c) detection of anomalous points

within a given time-series.

Furthermore, this paper explores the following research

questions: (a) whether HMM and HMM-UBM models are

capable of anomaly detection and anomalous pattern rec-

ognition in AP usage data; (b) whether HMM and HMM-

UBM models are required for anomaly detection or the

baseline approaches are enough; and (c) whether HMM-

UBM have any advantages over HMM.

The rest of the paper proceeds as follows. In section 2,

the related work and the most recent research relevant to

the current work are presented. Section 3 briefly charac-

terizes the data features. In section 3, the anomaly detec-

tion methodology is elaborated. Section 4 deals with the

network simulation setup and focuses on the common key

properties of the accomplished simulations. In section 5

the simulated scenarios are described and the experimental

results are analyzed. In section 6, the main conclusions are

provided and the prominent direction of future work is

disclosed.

2. Related work
2.1. Anomaly detection in 802.11 wireless networks

In the most recent studies concerning 802.11 wireless net-

works, there exist several analyses on connectivity and

performance issues for facilitating the network manage-

ment tasks. In connection to this, a number of articles

investigated overloaded networks, faulty APs, impact of

interference in chaotic 802.11 deployments, and similar

anomalous cases.

Having explored the network under high–medium utili-

zation conditions, Raghavendra et al.9 showed that in the

overloaded networks, stations only maintain a short associ-

ation period with an AP, and repeated association and re-

association attempts are common phenomena even in the

absence of client mobility. Their analysis demonstrated

that stations’ throughput suffers drastically from the unne-

cessary hand-offs, leading to sub-optimal network

performance.

In another direction of work by Pan and Keshav,10 the

authors presented a number of algorithms that could detect

failed APs by analyzing AP usage logs. The main assump-

tion in their algorithm was that the longer the time an AP

does not register events, the greater the probability that

particular AP is faulty, crashed, or halted.

In relation to interference detection in WLANs,

Broustis et al.11 proposed methods including intelligent

frequency allocation across APs, load balancing of user

affiliations across APs, and AP adaptive power control for

interference mitigation in dense 802.11 deployments.

Furthermore, Gummadi et al.12 studied the impact of RF

interference on 802.11 networks from devices like Zigbee

and cordless phones that crowd the 2.4GHz ISM band to

devices like wireless camera jammers and non-compliant

802.11 devices that disrupt 802.11 operations. They

affirmed through practice that moving to a different chan-

nel is more effective in coping with interference than

changing 802.11 operational parameters such as Clear

Channel Assessment.

In Massa and Morla,13 a usage pattern called ‘‘abrupt

ending’’ is explored in a FEUP dataset6,7 that concerns the

disassociation of a large number of wireless sessions in

the same AP within a 1 second window. The authors intro-

duced some anomalous patterns that might be in correla-

tion with the occurrence of this phenomenon, for instance,

AP halt/crash, AP overload, persistence interference, and

intermittent connectivity. The analysis of the anomaly-

related patterns performed in the present research inspired

our work to re-generate similar anomalies in network

simulator in addition to the real Testbed that was already

done in our previous work.8 The principal goal of the
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simulation and the real Testbed experiments is to evaluate

the HMM anomaly detection methodologies proposed in

the current work as well as our former studies.7,8

2.2. Wireless network simulation

There are numerous efforts in the literature that tried to

exploit simulation as an effective tool to setup a computa-

tionally tractable network. Wireless network simulation is

used for various objectives from assessment and validation

of models to obtain synthesized data and parameterized

metrics.

Hernández-Campos et al.14 employed simulation to

generate synthetic traffic and validate their proposed

model of traffic workload in a campus WLAN. As another

example, Chen et al.15 proposed a framework to integrate

the infrastructure mode and ad hoc mode and implemented

the framework in NS2. They used simulation to show the

higher performance of their proposed model compared

with the traditional wireless LAN. In a work rather rele-

vant to ours, the performance of IEEE 802.11 wireless net-

works is evaluated using OPNET Modeler.16 The authors

investigated the performance of a pure 802.11g network

over a network that uses both 802.11g and 802.11b clients

by simulating network in infrastructure mode for one AP

and 12 STAs. In another simulation study conducted using

OPNET Modeler, IEEE 802.11b wireless LAN in a class-

room network scenario is investigated.17 The authors

designed a simulation study to estimate the number of cli-

ents that can be supported in the WLAN, as well as the

user-perceived web response time as a function of network

load.

In relation to OMNeT++ and its simulation models, a

number of researchers worked on validating the reliability

and accuracy of OMNeT++ . For example, Bredel and

Bergner18 performed a measurement study of wireless net-

works in a highly controlled environment to validate the

IEEE 802.11g model of OMNeT++ . They used metrics

like throughput, delay, and packet inter-transmission to

compare the measurement results with identical simula-

tions. They showed that the simulation results match the

measurements well in most cases. Furthermore, in

Malekzadeh et al.19 the reliability of OMNeT++ is

assessed for wireless Denial of Service (DoS) attacks by

comparing the simulation results with the real 802.11

Testbed. In this case throughput, end-to-end delay, and

packet loss ratio are considered as performance measures.

The authors confirm the accuracy of the simulation results

in wireless DoS domain. In an important related work by

Kuntz et al.20 the extension of the OMNeT++ Mobility

Framework is presented to support probabilistic propaga-

tion models. The authors provided an implementation for

the Log-Normal-Shadowing, Nakagami, Rayleigh, and

Rice wave propagation models and set up a framework that

allows easy integration of additional models in future.

Their approach is validated performing a detailed cross-

check with the network simulator NS-2.

However, there exist few efforts in the literature that

conducted simulation of WLANs in OMNeT++ regard-

ing the performance issues and quality of service (QoS). In

Qashi et al.4 the performance of the TCP protocol for audio

and video transmission is evaluated using OMNeT++
simulation. In another direction of work in Woon et al.5 an

overview of the IEEE 802.11b model is simulated in

OMNeT++ and an example network consisting of a

mobile station moving through a series of APs is used to

analyze the handover behavior of the model.

In a salient line of work in Ling et al.21 a hand-off

mechanism is introduced, namely SPCC, which captures

the next potential APs for context transfer in order to

reduce the re-association delay. In this approach, the AP–

STA link quality information is exchanged to determine

the list of next potential APs. The performance of the

SPCC mechanism is implemented and evaluated using the

OMNeT++ simulator equipped with the INET

Framework. In another study by Le et al.22 an efficient

medium access algorithm is proposed that aims at achiev-

ing time fairness and throughput enhancement in a fully

distributed manner. The authors evaluated the performance

of their proposed algorithm through an extensive simula-

tion study in OMNeT++ , and the evaluation results

demonstrate that the proposed algorithm leads to nearly

perfect time fairness, high throughput, and low collision

overhead.

To the best of our knowledge the simulation of afore-

mentioned anomalous patterns in WLAN infrastructure

mode has never been done before.

2.3. HMM applications in network analysis

In wireless networking, HMMs are employed to address

various aspects of network measurement and analysis. For

example, Hierarchical and Hidden Markov based tech-

niques are analyzed in Khayam and Radha23 to model

802.11b MAC-to-MAC channel behavior in terms of bit

error and packet loss. In Kamthe et al.24 a multilevel

approach involving HMMs and Mixtures of Multivariate

Bernoullis is proposed to model the long and short time-

scale behavior of wireless sensor network links, that is, the

binary sequence of packet receptions (1s) and losses (0s)

in the link. Ghosh et al.25 applied HMMs for spectrum

sensing in cognitive radios, as the true states (occupancy

by primary users) of a sub-band (idle frequency) are never

known (hidden) to the cognitive radio. They employed an

HMM to model the evolution of occupancy/non-occu-

pancy of a sub-band by its primary user over time using

the measurements obtained by the cognitive radio.

In another related work, HMMs are applied for model-

ing and prediction of user movement in wireless networks

to address QoS issues.26 User movement from an AP to an
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adjacent AP is modeled using a second-order HMM.

Although the authors demonstrated the necessity of using

HMM instead of Markov chain model, the proposed model

is only practical for small wireless networks with a few

numbers of APs, not widespread WLANs. Cheikh et al.27

proposed a new approach for optimizing the hand-off deci-

sion in Femtocell networks using HMM. They applied

HMM to predict the target Femtocell Access Point by

observing the geographic positions of the mobile user.

Kashyap et al.28 and Paul et al.29 attempted to estimate

the interference between nodes and links in a live wireless

network by deploying several sniffers across the network

to capture wireless traffic traces in a passive mode. They

modeled the 802.11 MAC as a HMM, and learned the state

transition probabilities in this model using the observed

traces. The HMM approach is used for modeling interac-

tions between a pair of senders in an 802.11 network and

inferring sender-side interference relations (deferral

behavior).

As the above literature indicates, HMM-related studies in

wireless network management are rarely used specifically in

performance anomaly detection of wireless networks.

3. Data features

In our previous papers we utilized RADIUS authentication

log data, which contain session records of wireless stations

connecting to APs. A preliminary analysis on the raw data

yields a sequential dataset summarizing APs association

history.8 In the current simulation we create a similar data-

set with the exact same features to be synchronized with

the previous HMM modeling. The definition of the main

features along with a brief explanation on the feature selec-

tion process is presented in the following paragraphs.

3.1. Data attributes

Data features are categorized in two main classes: Density

Attributes and Usage Attributes. Density Attributes demon-

strate how crowded is the place in terms of active atten-

dant users, and the Usage Attributes disclose the volume

of the sent and received traffics by the present users. The

former attributes mainly characterize the association popu-

lation and durability, while the latter attributes reveal the

total bandwidth throughput regardless of how populous is

the place, and is more relevant to the applications utilized

by the current mobile users.

3.1.1. Density attributes
User count. This is the number of unique users

observed in a specific location (indicated by an AP) in a

time-slot.

Session count. This is the total population of active ses-

sions during a time-slot regardless of the owner user. This

attribute reveals the number of attempts made by the con-

gregation of the present users to associate to the current

AP.

Connection duration. This is the total duration of associ-

ation time of all the current users. This attribute is an indi-

cator of the overall connection persistence. The utmost

amount of this feature is achieved when there is no evi-

dence of disassociation in the ongoing active session dur-

ing a time-slot.

3.1.2. Usage attributes
Input data in octets. This is the number of octets trans-

mitted from the client. This attributes briefly refers to the

number of bytes uploaded by the wireless user.

Output data in octets. This is the number of octets

received by the client. This attribute shortly refers to the

number of bytes downloaded by the wireless user.

Input data in packets. This is the number of packets

transmitted from the client. This attribute is similar to the

above Input-Octet, just to be measured in packets.

Output data in packets. This is the number of packets

received by the client. This attribute is similar to the above

Output-Octet, just to be measured in packets.

3.2. Feature selection

For subsequent analysis, we favor using fewer features

than the entire set of attributes introduced earlier. For this

purpose, we applied the PCA technique to find the combi-

nation of the variables which best explain the phenomena

and contain the greatest part of the entire information. In

the current experiment the first three principal components

bring the cumulative proportion of variance to over 99%.

More detailed explanations on the correlation of data fea-

tures with themselves and with the principal components

are provided in our previous work.8

4. Anomaly detection in AP usage data

We use HMMs adapted from a UBM for (a) detection of

anomalous time-series, (b) distinction of anomalous pat-

terns, and (c) detection of anomalies within a given time-

series.

4.1. Preliminaries
4.1.1. HMM. The HMM symbolizes a doubly stochastic

process with a set of observable states and a series of hid-

den states which can only be observed through the obser-

vable set of stochastic process. HMMs are generally used

for the stochastic modeling of non-stationary time-series.
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An HMM l models the joint distribution P(O,H jl) of
a sequence of hidden states H =(h0, h1, h2, :::, hT ) and a

sequence of observations O=(o1, o2, :::, oT ) as:

P(O,H jl)=P(h0)
YT

l= 1

P(hljhl�1)P(oljhl), ð1Þ

where, on the right-hand side, we omit the dependency on

l to simplify notation. Furthermore, it is often assumed

that both distributions P(otjht) and P(htjht�1) are station-

ary, that is:

P(otjht)=P(ot0 jht0), ð2Þ

P(htjht�1)=P(ht0 jht0�1), for all t0 ð3Þ

Thus, an HMM is completely defined by the following

parameters:

� The number of hidden states, N .
� The discrete set of hidden states, S = fsig,

14 i4N .
� If observations are discrete, the number of possible

observations, M , and the discrete set of such obser-

vations, V = fvkg, 14 k 4M .
� If observations are continuous, the corresponding

dimensionality of the observation space, d.
� The state transition probability distribution,

P(htjht�1), represented by a matrix A= ½ai, j�,
14 i, j4N , where ai, j =P(ht = sjjht�1 = si).

� The emission probability distribution, P(otjht). For
discrete observations, this is represented by a

matrix B= ½bi(vk)�, 14 i4N , 14 k 4M , where

bi(vk)=P(ot = vk jht = si). For continuous

Gaussian observations, the emission probability

density is defined by the set of d-dimensional

means, m= fmig, and the set of d 3 d covariance

matrices, S= fSig, 14 i4N .
� The initial state probability distribution, P(h0), rep-

resented by a vector p= ½pi�, 14 i4N , where

pi =P(h0 = si).

The compact notation l=(A,B,p) defines an HMM

with discrete emission, and l=(A,m,S,p) represents an
HMM with continuous Gaussian emission.

4.1.2. UBM. A UBM is a model used in a biometric verifi-

cation system to represent general, person-independent

feature characteristics to be compared against a model of

person-specific feature characteristics when making an

accept or reject decision. For example, in a speaker verifi-

cation system, the UBM is a speaker-independent

Gaussian mixture model (GMM) trained with speech sam-

ples from a large set of speakers to represent general

speech characteristics. Using a speaker-specific GMM

trained with speech samples from a particular enrolled

speaker, a likelihood-ratio test for an unknown speech

sample can be formed between the match score of the

speaker-specific model and the UBM. The UBM may also

be used while training the speaker-specific model by act-

ing as the prior model in maximum a posteriori (MAP)

parameter estimation.30

We applied UBM to initialize the HMM models using

the data available from all AP experiments regardless of

whether they contained anomalies or not. This is advanta-

geous, as in the unsupervised learning approach the anom-

alous events are not known beforehand. Assuming that the

HMM models adapted from a UBM produce as promising

results as HMM models trained with normal data, achiev-

ing a qualified model even in the absence of the labeled

data is more feasible. This in turn facilitates the process of

unsupervised modeling. We later compare the detection

results of the HMMs initialized with and without UBM in

Section 6.

Given the data to train a UBM, there are many

approaches that can be used to obtain the final model. The

simplest is to merely pool all the data to train the UBM

via the EM algorithm (Figure 1(a)). One should be careful

that the pooled data are balanced over the sub-populations

within the data, otherwise the final model will be biased

toward the dominant sub-population.31 Another approach

Figure 1. Data and model pooling approaches for creating a
UBM. (a) Data from sub-populations pooled prior to training the
final UBM. (b) Individual sub-population models trained then
combined to create final UBM.
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is to train individual UBMs over the sub-populations in

the data, and then pool the sub-population models together

(Figure 1(b)). The latter approach has the advantages that

one can effectively use unbalanced data and can carefully

control the composition of the final UBM.31 In our model

we used the first approach, and to avoid a biased model

we included the same amount of normal and anomalous

data sequences. Half of the dataset contains normal sam-

ples and the rest consist of anomalous events (equal por-

tion for each anomaly).

4.2. Anomaly detection
4.2.1. Detection of anomalous time-series. The goal of this

type of anomaly detection is to find all anomalous time-

series in a database of time-series, and to distinguish nor-

mal days from those which contain a number of anomalous

events. Similar to traditional outlier detection methods (we

use ‘‘outlier’’ and ‘‘anomaly’’ interchangeably in this con-

text), the usual approach is to train a model based on all

the time-series in the database, and then compute an out-

lier score for each sequence with respect to the model.31 In

our case, we build an HMM model with UBM initializa-

tion using the training data of all the experiments. Then

we calculate the log-likelihood values of each time-series

in the test dataset. Those experiments that contain one or

more anomalous events are expected to gain lower log-

likelihood values.

The likelihood value of HMM is the probability of an

observation sequence given the model parameters.

Equation 4 shows how the likelihood value of HMM

model l is calculated.

P(Ojl)=
X

all S

P(OjS, l)P(Sjl)

=
X

s1, s2, :::sT

ps1bs1(O1)as1, s2bs2 (O2):::asT�1, sT
bsT

(OT )

ð4Þ

Due to the vanishingly small likelihood probabilities

produced in long time-series, normally the logarithmic

value is utilized.

Figure 2 shows the range of the log-likelihood values

belonging to the normal and anomalous experiments. The

anomalous cases consist of AP Shutdown/Halt, AP

Overload, Noise, and Flash Crowd scenarios. As this fig-

ure displays, there is a distinction between the log-

likelihood values of the normal cases and the rest of the

anomalies. However, the anomalous cases are not com-

pletely separated and there is an overlap between them.

The log-likelihood values of the AP Overload, Noise, and

AP Shutdown/Halt scenarios are approximately in a simi-

lar range. However, those of the Flash Crowd scenario are

slightly lower than the rest and take a widespread range,

whereas the values of the AP Shutdown/Halt scenario are

condensed in a limited range.

As a conclusion, all the anomalous cases obtain log-

likelihood values less than the normal range and thus it is

feasible to distinguish the anomalous time-series from the

normal ones. However, due to the overlapping log-

likelihood values of the anomalies, it is not that simple to

make a distinction between the anomalous scenarios just

by inspecting their log-likelihood values. In the next sec-

tion we consider modeling the anomalous cases indepen-

dently to facilitate the distinction process.

4.2.2. Distinction of anomalous patterns. To capture distinc-

tive characteristics of the anomalous scenarios we build

separate HMM models for each one and also one model

for the normal scenario. Then we compute the probability

of each observation sequence getting generated by each of

these models. The HMM model that produces the highest

log-likelihood value is considered to be the generative

model of the given time-series.

Choosing the best l model among the competing mod-

els is termed as the scoring problem and is a function of

log-likelihood values. At the end of this process we obtain

a 2D matrix whose rows and columns consist of HMM

models and observation sequences, respectively.

Figure 3 presents the detection results of the HMM

models given the normal and anomalous observation

sequences from the test set. The x-axis contain the trained

HMM models and the bottom part of the bars (in blue)

demonstrate the percentage of time-series correctly

detected by their corresponding models. The top piece of

the bars (in pink) shows the mis-detection ratio that occurs

in AP Overload and Flash Crowd scenarios. Some 25% of

AP Overload time-series are detected to be generated by

Flash Crowd model. Moreover, 12.5% of Flash Crowd

sequences are detected to be created by AP Overload

model and 12.5% of them by Noise model. Besides these

small mis-detection errors, the distinction process yields

promising results in recognition of different anomalous

patterns.

Each anomalous time-series in our work contains a sin-

gle anomaly, whereas in reality each time-series can con-

tain no anomaly (in normal cases) or various anomalies (in

anomalous cases). A methodology to detect anomalous

periods and distinguish between different anomalous pat-

terns in unlabeled data is required to be performed in an

unsupervised mode. Here we propose the basic scheme of

an algorithm which is based on the general model training

in Zhang et al.,32 and is adapted to our specific modeling

approach and requisites:

1. A general HMM model is estimated with a large

number of training samples (HMM-UBM).
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2. Slice the first test sequence into fixed length seg-

ments. The segment(s) with the lowest log-

likelihood given the general model in 1 is identi-

fied as anomaly.

3. A new anomalous model is adapted from the gen-

eral model using the detected anomaly. A normal

model is adapted from the general model using the

other segments.

4. Slice the next test sequence into fixed length seg-

ments. Estimate the log-likelihood values of all

segments given the previous adapted models (nor-

mal and anomalous models of step 3).

5. Update the adapted models using those segments

that achieve closer log-likelihood to each model.

Adapt a new anomalous model from the general

model using any segment that achieves extremely

low log-likelihood given the existing models (a

new anomaly that hardly belongs to any previous

model).

6. Repeat step 4 and 5 until there are no more test

sequences.

There are a number of parameters in this algorithm that

are to be learned and determined, for example the length

of the fixed-size segments, and the proper threshold for

anomaly detection. However, by the end of this algorithm

we expect to have one normal model and several anoma-

lous models each presenting a specific anomalous pattern.

Further post-processes are also applicable to merge the

very similar models (by measuring models’ distance) and

yield the most optimized set of final models. More accu-

rate explanation and implementation of this algorithm is

out of the scope of the current paper and is left for the

future work.

4.2.3. Detection of anomalous points within a given time-
series. In this approach the anomaly score (log-likelihood)

is computed for each data point given the trained HMM

model. The unexpected low log-likelihood values show

the divergence from the normal model and are typically

indicative of anomalies. This method localizes the anoma-

lous points or sub-sequences more precisely in the test

sequence.

To detect the anomalous points in the log-likelihood

series automatically, we propose a technique called thresh-

old detection to define a boundary where the lower values

belong to the anomalous set. As many anomaly detection

algorithms presume, outliers are the minority group not

following the common pattern of the majorities.

Accordingly we look for the extreme data points (outliers)

with the lowest log-likelihood values. To this end a uni-

variate histogram is constructed and the relative frequency

(height of the histogram) is computed. The frequency of

samples falling into each bin is used as an estimate of the

density. We assume the samples with the highest density

(mode) are the normal data points, and accordingly the

bins containing the lowest frequencies and farther from

the mode are the outliers. As a rule of thumb we mark bins

with frequencies lower than a quarter of mode as outliers.

Like any other change-detection algorithm, ours also pro-

duces false positives; however, in all the performed

experiments of this work the false positive ratio is

insignificant.

We use the same algorithm to detect the outliers or

anomalies in RawData and PCA for the purpose of com-

parison. However, as RawData contains seven features, we

conduct the algorithm on each single feature and aggregate

the detected points as the final outcome. For example, for

the likelihood series of s1s2:::s40, the algorithm detects s2

Figure 2. Log-likelihood values of normal and anomalous
experiments.

Figure 3. Detection results of the observations data by the
trained HMM models.
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and s4 as outlier points for the first feature and s4 and s15
for the third feature, and for the rest of the features no

anomaly is detected. In this case the final anomalous set

contains fs2, s4, s15g. The same method is applied to the

PCA components to detect the anomalous points for three

principal components.

Figure 4 demonstrates the log-likelihood values of an

example anomalous case (AP Overload) generated by

simulation. The red points are the anomalies detected by

the threshold detection algorithm and the black diamond

markers show the real anomalous period.

We further explore this type of anomaly detection in

Section 6 and analyze each anomalous case specifically in

more detail.

5. Experimental setup

To evaluate the proposed strategy, we perform an exten-

sive set of simulations using OMNeT++ 33 simulator

and INET framework.34 OMNeT++ is a C++ -based

discrete event simulator (DES) for modeling communica-

tion networks, multiprocessors, and other distributed or

parallel systems. It has a generic architecture and is used

in various problem domains including the modeling of

wired and wireless communication networks.

One of the major network simulation model frameworks

for OMNeT++ is the INET Framework that provides

detailed protocol models for TCP, IPv4, IPv6, Ethernet,

Ieee802.11b/g, MPLS, OSPFv4, and several other proto-

cols. We used OMNeT++ along with INET Framework

to simulate the IEEE 802.11 WLANg (2.4 GHz band) in

infrastructure mode.

In a DES, as well as the OMNeT++ , events take

place at discrete instances in time, and they take zero time

to happen. It is assumed that nothing important happens

between two consecutive events. Thus the simulation time

is relevant to the order of events in the events’ queue, and

it could take more than the real CPU time or less than it

based on the number of nodes, amount of traffic trans-

ferred, and other details of the network. In our example,

with the current number of nodes (five APs and 30 STAs)

and traffic plan, 10 minutes of simulation time takes

around 17 minutes of CPU time. Our HMM approach

operates on 40 consecutive time-slots of 15 s simulation

time each.

5.1. Normal scenario

Figure 5(a) shows the initial picture of a normal scenario,

the location of the APs, STAs, and the servers. Figure 5(b)

displays the location of the STAs after passing 30 s (simu-

lation time) from the beginning of the simulation.

In the normal scenario, there are five APs and 30 STAs.

Each STA is initially associated to one of the available

APs depending on its location. During the simulation

STAs, based on their mobility models, are handed over to

other APs when moving around the simulation ground.

Furthermore, according to the defined traffic plans in sec-

tion 5.3, each node sends and receives packets to the exist-

ing servers.

5.2. Mobility models of the wireless stations

The APs are stationary and the wireless nodes follow dif-

ferent mobility patterns. In the current experiment, the

mobility models of the nodes are selected in a way to emu-

late the usage behavior of three typical places in a campus.

The mobile nodes initially connected to the first AP (AP1)

follow the Linear Mobility pattern which is configured

with speed, angle, and acceleration parameters. The mobile

nodes move to random destinations with the specified

parameters, and when they hit a wall they reflect off the

wall at the same defined angle. These nodes connect to the

other AP (AP2) besides their own AP (AP1), and some-

times lose the connection when they move to blind spots.

This pattern is selected to symbolize the nodes with some

degree of freedom but within a limited space like adminis-

trative offices.

The nodes connected to the second AP (AP2) follow

the Mass Mobility model, and accordingly move within

the room. This pattern of mobility is intended to represent

places like a classroom or library in which users do not

leave the place frequently, but still have some motions in

the place.

The rest of the wireless nodes follow the Random

Waypoint Mobility and move to a random destination (dis-

tributed uniformly over the playground) with a random

speed. When the node reaches the target position, it waits

for a specified waitTime and selects a new random posi-

tion afterward. This type of movement resembles the

Figure 4. Log-likelihood of the normal model together with an
example anomaly related to AP Overload experiment.
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random mobile users around the wireless ground mostly

connected with their mobile devices.

A summary of wireless nodes’ specifications in terms

of mobility models is provided in Table 1.

5.3. Traffic generation

As shown in Figure 5(a) and 5(b), there are three main ser-

vers wire-connected to the Ethernet switch: srvHostVideo,

srvHostFTP, and srvHostEcho. The traffic transferred

between wireless stations and the servers (through APs) is

considered to be User Datagram Protocol (UDP). The

video server (srvHostVideo) sends UDP packets with the

message length of N (600B, 150B) to the clients of AP2,

resembling the video downloading by those users. The

FTP server (srvHostFTP) is to receive the FTP uploads by

the clients of AP1 with message length of N (500B, 100B).
In addition to exclusively downloading or uploading, the

other server (srvHostEcho) is in charge of sending and

receiving traffic to all the users. This traffic pattern

represents the common act of email checking and web

browsing by the wireless nodes. The echo packets length

are configured to be smaller than the previous ones,

N (200B, 50B), indicating a lighter traffic transmission. In

the AP Overload anomalous scenario one more server is

added to take care of heavy channel utilization

(srvHostBurst), and more detail about that can be found in

section 6.2.

5.4. Path loss models

As the signal propagates through space its power density

decreases. Path loss might be due to the combination of

many effects, such as free-space loss, refraction, diffrac-

tion, reflection, and absorption. The path loss model com-

putes the power loss factor based on the traveled distance,

the signal frequency, and the propagation speed. In our

experiments we utilized the following four path loss mod-

els to increase the complexity of the simulation and make

it more realistic:

� Free Space Path Loss: is the loss in signal strength

resulting from a line-of-sight path through free

space, with no obstacles nearby to cause reflection

or diffraction.
� Log Normal Shadowing: is a stochastic path loss

model, where power levels follow a lognormal dis-

tribution. It is useful for modeling shadowing

caused by objects such as trees.
� Rician Fading: is a stochastic path loss model which

assumes a dominant line-of-sight signal and multi-

ple reflected signals between the transmitter and the

Figure 5. (a) The initial picture of the wireless network simulated in OMNeT++ /INET. (b) Location of the wireless stations after
30 s of simulation.

Table 1. Wireless nodes’ specifications in terms of mobility
models.

Mobility Model # Nodes Mobility Parameters

Linear Mobility 6 speed: truncnormal
(20mps, 10mps)

Mass Mobility 10 speed: truncnormal
(70mps, 50mps)

Random
Waypoint
Mobility

14 speed: uniform
(50mps,50mps)
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receiver. It is useful for modeling radio propagation

in an urban environment.
� Rayleigh Fading: is the loss in signal magnitude

according to a Rayleigh distribution—the radial

component of the sum of two uncorrelated

Gaussian random variables. It is useful for model-

ing the effect of heavily built-up urban environ-

ments on radio signals.

6. Experimental results and evaluation

In this section we explore a set of anomalous scenarios

and describe different cases of each one. Then we present

the HMM and HMM-UBM results in anomaly detection

and compare them with baseline approaches (RawData

and PCA) for evaluation purposes.

In terms of HMMs, we consider fully connected models

(ergodic), continuous observations with Gaussian distribu-

tions, and three hidden states. We believe that HMMs with

two states are too simple to capture the diverse characteris-

tics of the locations (APs), while there is not enough vari-

ety in day-long sequential data for four or a higher number

of states. Each experiment is repeated at least 20 times

with different seeds in order to examine the models on

miscellaneous samples providing slightly different data.

Eighty percent of the data sequences is used for training

the model and 20% is kept for testing.

6.1. AP shutdown/halt

When there is no session recorded for a given AP in

RADIUS accounting table in a period of time, it is likely

that the AP has stopped working, possibly due to a techni-

cal problem or power failure. In our simulation, we

reproduced this anomaly by turning off the AP power

deliberately during the halt-period for some time-slots.

Figure 6 demonstrates the HMM likelihood series and

the anomalies detected for the test dataset of this scenario.

The valley shapes in this image shows the sudden drops of

the likelihood values during the anomalous periods, and

the marked points are the anomalies detected by the afore-

mentioned Threshold Detection algorithm. The black dia-

monds show the actual anomalous points generated during

the simulation.

Both HMM and HMM-UBM detect even short shut-

down periods that only last for one time-slot. However,

Figure 6(a) shows that the HMM model built with only

normal data gives a clearer model rather than the HMM-

UBM model built with the entire dataset including the

anomalous experiments (Figure 6(b)). Despite this, HMM-

UBM obtains adequate values for precision and recall, and

even higher precision results in some cases.

Figure 7 shows the boxplot diagram of the anomaly

detection’s precision and recall computed for RawData,

PCA, HMM, and HMM-UBM models. In these experi-

ments both HMM and HMM-UBM achieve a higher preci-

sion value and smaller false positive ratio compared with

the baseline approaches (RawData and PCA). Note that

this type of anomaly is not very difficult to be detected

just by looking at RawData, as there is a visible change in

dataset features when the power is gone and no session is

recorded. That is the reason RawData attains 100% recall.

However, it produces a relatively high false positive result

that yields low precision.

6.2. AP overload

In this anomalous case, excessive channel utilization

occurs that could be the consequence of excessive

Figure 6. The log-likelihood series and detected anomalies of AP shutdown/halt scenario in HMM and HMM-UBM models.
(a) HMM; (b) HMM-UBM.
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download or upload by a number of wireless users. In such

circumstances, the clients could get disconnected from the

current AP frequently even with the presence of high sig-

nal strength. In this experiment we simulated AP heavy

usage caused by all of the users of the second AP. Burst

server (srvHostBurst) sends UDP packets to the given IP

addresses in bursts during the burst-duration which resem-

bles the heavy downloads of the wireless users. In the time

of sleep-duration the burst flow stops and the channel uti-

lization gets back to normal. This experiment contains

three different cases as follows:

� burst-duration \ sleep-duration.
� burst-duration = sleep-duration.
� burst-duration . sleep-duration.

Figure 8 and 9 display the log-likelihood series of three

types of burst-duration and sleep-duration obtained for AP

overload scenario applying HMM and HMM-UBM meth-

odologies, respectively. As shown in these figures, during

the burst period the log-likelihood value drops drastically

and in the sleep period it raises again to the normal level.

The longer the burst period the wider is the valley shape

in the log-likelihood series, and both HMM and HMM-

UBM effectively detect heavy utilization periods in all

these cases.

Figure 10 displays the boxplot diagram of the precision

and recall results of RawData, PCA, HMM, and HMM-

UBM models. The low precision ratios of RawData and

PCA show that this type of anomaly is not that straightfor-

ward to detect directly from the raw data and needs some

advanced techniques. The HMM and HMM-UBM results,

both in precision and recall, outperform the baseline

approaches.

6.3. Noise

Thermal noise, cosmic background noise, and other ran-

dom fluctuations of the electromagnetic field affect the

quality of the communication channel. This kind of noise

does not come from a particular source, nor propagate

through space. If the noise level is too high, the signal

strength will degrade and the performance will decrease.

In the current experiment we change the level of noise

power by adjusting the value of the IsotropicBackground

Noise parameter in the simulator. The default value of this

parameter is set to –110 dBm which is the minimum noise

level in Wi-Fi networks 802.11 variants. We gradually

increase the noise power to –90 dBm and record the simu-

lation results repeated 10 times for each experiment.

According to Fu et al.,35 the average noise level in a busy

university campus had a stable value at around –94 dBm.

Figures 11 and 12 demonstrate the log-likelihood series

of this anomalous scenario, and like previous cases the

Figure 7. Precision and recall boxplot of RawData, PCA,
HMM, and HMM-UBM belong to AP shutdown/halt scenario.

Figure 8. The log-likelihood series and detected anomalies of AP overload scenario (HMM).
(a) burst-duration < sleep-duration; (b) burst-duration = sleep-duration; (c) burst-duration > sleep-duration.
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valley shapes represent the anomalies. The simulated

anomalous period is during the first 10 time-slots, and is

marked with black diamond points. In the first experiment

all the anomalous points are detected and the ratio of false

positive is quite low. In the next two experiments the

detection precision and sensitivity decline. The reason

behind this downturn is that as the noise power decreases

(higher negative value), it gets more difficult to detect the

anomalous periods because the data become closer to the

normal case (noise power of –110 dBm).

As the noise power increases, the packets are less likely

to be received at the STAs. Therefore two data features

are affected directly by the alteration of noise level:

OutputOctets and OutputPackets. Hence the RawData

detector is expected to produce satisfactory detection

results. However, as Figure 13 shows, HMM and HMM-

UBM models in all the experiments present higher preci-

sion values than RawData and PCA.

6.4. Flash crowd

In wireless networks an unexpected surge of traffic can

occur at the beginning or ending of an event, when the

majority of the wireless users abruptly enter or leave a

place and consequently associate to or disassociate from

an AP. Such incidents are not necessarily an anomaly in

terms of performance or connectivity issues, but could be

considered more as a sudden change to a routine network.

To see whether the HMM and HMM-UBM model is able

to detect such alterations in the normal usage pattern, we

simulate this example in two experiments:

Figure 9. The log-likelihood series and detected anomalies of AP overload scenario (HMM-UBM).
(a) burst-duration < sleep-duration; (b) burst-duration = sleep-duration; (c) burst-duration > sleep-duration.

Figure 10. Precision and recall boxplot of RawData, PCA and HMM belong to AP overload scenario. Left: burst-duration < sleep-
duration; middle: burst-duration = sleep-duration; right: burst-duration > sleep-duration.
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� Arrival: simultaneous association of seven new

nodes to the current AP.
� Departure: simultaneous disassociation of seven

existing nodes from the current AP.

Figures 14 and 15 present the log-likelihood series of Flash

Crowd scenario, and detected anomalous points as colored

circles and simulated anomalies as black diamonds. In only

one test case in the departure scenario, which is related to

Figure 11. The log-likelihood series and detected anomalies of Noise scenario (HMM). –90 dBm; (b) –95 dBm; (c) –100 dBm.

Figure 12. The log-likelihood series and detected anomalies of Noise scenario (HMM-UBM). –90 dBm; (b) –95 dBm; (c) –100 dBm.

Figure 13. Precision and recall boxplot of RawData, PCA, HMM, and HMM-UBM belonging to the noise scenario. Left: –90 dBm;
middle: –95 dBm; right: –100dBm.
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Rician Fading path loss, is the anomalous period not

detected, either in HMM or in HMM-UBM. In the rest of

the experiments the anomaly detection technique performs

accurately both in arrival and departure scenarios.

As illustrated in the boxplot diagram of Figure 16,

HMM and HMM-UBM easily outperform the RawData

and PCA results in both Arrival and Departure scenarios.

However, due to the aforementioned exception in the

departure scenario, the arrival experiments achieve higher

precision and recall.

7. Simulation validation

The main objective of the simulation, conducted in

OMNeT++ -5.4.1 and INET-4.0.0, is to achieve

synthesized data for evaluation of the proposed methodol-

ogies. Having used the existing library of components

from the INET framework, we were able to put together

the required submodules to set up our IEEE 802.11

Wireless network. The design was made using the GNED

tool of the OMNeT++ . Four anomalous scenarios are

simulated along with a normal scenario. We determined

the main structure of the simulation model in one NED

file while each anomalous scenario contains a separate

NED file that inherits from the main NED. In each anoma-

lous scenario the normal process of the simulation is inter-

rupted by changing hyper parameters of the model (e.g., in

omnetpp.ini) or by running scripts (via ScenarioManager)

to provoke the desired anomalous effects in specified

times. Table 2 shows the list of principal INET

Figure 14. The log-likelihood series and detected anomalies of Flash Crowd scenario (HMM). (a) Flash Crowd Arrival Scenario;
(b) Flash Crowd Departure Scenario.

Figure 15. The log-likelihood series and detected anomalies of Flash Crowd scenario (HMM-UBM). (a) Flash Crowd Arrival
Scenario; (b) Flash Crowd Departure Scenario.
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submodules used for the simulation of the normal and

anomalous experiments. A number of these components

are displayed in Figure 5.

For the implementation of the aforementioned scenarios

we made use of several projects from INET examples as

starting points; for instance shutdownrestart, udpburst,

udpclientserver, handover, hiddennode, lan80211, qos, and

wiredandwirelesshostwithap, among others. The entire list

of INET examples can be found in the INET framework

documentation.36 Upon the accomplishment of each set of

experiments, we accurately inspected the final results

using the output vectors extracted from anf files. The anf

files provide the graphical analysis of output data and

facilitate data gathering from all the wireless nodes (APs,

STAs, Servers). Succeeding each set of experiment, the

wireless users’ information was extracted and stored sepa-

rately in a systematic approach for further analysis. This

information contains hand-off data of the STAs moving

Figure 16. Precision and recall boxplot of RawData, PCA, and HMM belong to flash crowd scenario. Left: arrival scenario; right:
departure scenario.

Table 2. INET submodules used for the simulation of all experiments.

INET submodule Description

inet.node.inet.AccessPoint AP[1..5].
inet.node.inet.WirelessHost STA[1..30].
inet.node.inet.StandardHost Servers[1..4].
inet.node.inet.Eth10G connecting AP[1..5].ethg++ to EtherSwitch.ethg++ .
inet.node.ethernet.EtherSwitch as a connection between APs and servers.
inet.physicallayer.ieee80211.packetlevel.
Ieee80211ScalarRadioMedium

the shared physical medium in charge of radios, noise sources,
and ongoing transmission.

inet.networklayer.configurator.ipv4.
Ipv4NetworkConfigurator

for assigning IP addresses to network nodes and setting
up their routing tables.

inet.common.scenario.ScenarioManager to schedule certain events to take place at specified times,
used in AP Shutdown/ Halt, Noise, and Flash Crowd scenarios.

inet.examples.httptools.socket.
tenserversocket.ethernetline

connecting Servers[1..4].ethg++ to EtherSwitch.ethg++ .

inet.visualizer.integrated.IntegratedCanvasVisualizer support the visualization of the nodes in runtime.
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around the wireless ground associating to nearby APs, the

amount of traffic transferred between STAs and APs, and

the association time of STAs to the available APs. In a

posterior analysis implemented in R,37 the STA usage data

were converted to AP usage data. To do so, we aggregated

the aforementioned information from all the connected

STAs to a given AP and computed the density and usage

attributes of that AP as described in Section 3.1. For

instance, the number of STAs connected to an AP, or the

total connection time to an AP, or the amount of traffic

transferred to/from an AP in a given time-slot determine

the AP usage characteristics in a timely manner.

Having analyzed the AP usage dataset, we cross-

checked the validity of anomalous scenarios as follows:

� AP Shutdown/ Halt: This anomaly is reproduced

by turning off the AP power during the halt-period

for a number of time-slots. As a result, in AP usage

data there must not be any record of STAs connect-

ing to that AP during the halt-period.
� AP Overload: In this case AP heavy usage is simu-

lated through a burst server sending UDP packets

to the given IP addresses in bursts during the burst-

duration. In the time of sleep-duration the burst

flow stops and the channel utilization gets back to

normal. These fluctuations between burst and nor-

mal utilization are reflected in the usage attributes

of the anomalous AP in AP usage data.
� Noise: This scenario is simulated by changing the

level of noise power gradually via adjusting the

value of IsotropicBackgroundNoise parameter.

OutputOctets and OutputPackets features from the

usage attributes demonstrate the amount of modifi-

cation in noise power.
� Flash Crowd: This scenario focuses on simulta-

neous association/disassociation of a number of

wireless users to/from an AP. In arrival and depar-

ture scenarios both density and usage attributes

encounter a sudden increase and decrease,

respectively.

8. Simulation application in real network

The network we simulated in this work is a reproduction

of the Eduroam European wireless academic network on a

much smaller scale. Our initial intention was to propose

HMM-related methodologies to characterize the usage pat-

tern of APs in university hotspots to provide models for

anomaly detection. For this purpose, we utilized the log

data of RADIUS authentication collected from FEUP.

This large dataset, however, does not contain any ground

truth of anomalous events. To evaluate our proposed

anomaly detection techniques, we deployed a small

Testbed and generated a few numbers of anomalous cases

in a controlled environment in our previous paper.8 The

deployed Testbed include one AP and six wireless sta-

tions, and the provoked anomalies addressed issues regard-

ing AP Shutdown/ Halt, Heavy Usage, and Interference.

We decided to conduct wireless simulation to extend the

set of deployed anomalies and to enlarge the wireless net-

work including the users’ mobility between neighboring

APs. The structure of the wireless network and the schema

of the data collected from the real network at FEUP,

Testbed, and simulation are identical and related to the

RADIUS authentication data collected at APs. Analysis of

a large dataset obtained from a real network in a university

campus has numerous advantages; however, in anomaly

detection domain acquisition of ground truth is extremely

essential. The Testbed deployment and wireless simulation

provided us with a labeled dataset similar to the original

RADIUS data though on a smaller scale. In the current

paper, as well as our previous one,8 we showed how the

modeling and anomaly detection techniques operate in the

presence of the ground truth.

9. Conclusions and future work

Intelligent detection of anomalies in 802.11 networks from

the analysis of the collected AP usage data is of great sig-

nificance to network managers. It facilitates their everyday

administration workload, and assists them in network

maintenance, providing future mitigation plans.

The key contributions of this work consist of: (a) HMM

modeling and threshold detection technique for anomaly

detection; (b) proposing HMM-UBM technique for a

robust initialization of the hidden states and unsupervised

learning; and (c) simulation of a small WLAN and a num-

ber of anomalous scenarios to evaluate the anomaly detec-

tion results.

The precision and recall outcomes of the anomalous

cases are computed and compared with the baseline

approaches (RawData and PCA). The experimental results

show that HMM and HMM-UBM models are both capable

of detecting a great portion of anomalies while producing

only a small false positive ratio. This is promising, for in

the HMM-UBM model all the data, regardless of being

normal or containing anomalous events, is utilized to initi-

alize the HMM model. Thus, in unsupervised learning,

when the normal data is not known beforehand, HMM-

UBM yields a robust model as reliable as HMM for anom-

aly detection purposes.

In future work we intend to propose a hybrid HMM

model that considers the spatial proximity of APs in addi-

tion to the temporal relativity of data sequences.

Furthermore, we intend to propose an unsupervised learn-

ing algorithm for modeling and characterizing various

anomaly-related patterns.
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