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Abstract The von Mises-Fisher distribution is widely used for modelling direc-
tional data. In this paper we propose goodness-of-fit methods for a concentrated von
Mises-Fisher distribution and we analyse by simulation some questions concerning
the application of these tests. We analyse the empirical power of the Kolmogorov-
Smirnov test for several dimensions of the sphere, supposing as alternative hypothesis
a mixture of two von Mises-Fisher distributions with known parameters. We also com-
pare the empirical power of the Kolmogorov-Smirnov test with the Rao’s score test for
data on the sphere, supposing as alternative hypothesis, a mixture of two Fisher dis-
tributions with unknown parameters replaced by their maximum likelihood estimates
or a 5-parameter Fisher-Bingham distribution. Finally, we give an example with real
spherical data.

Keywords Directional data · Fisher-Bingham distribution · Goodness-of-fit test ·
Von Mises-Fisher distribution

Mathematics Subject Classification (2000) 62H11 · 62G10

1 Introduction

The von Mises-Fisher distribution is frequently used for modelling directional data
(see for instance, Watson 1983, Fisher et al. 1987, Fisher 1993 and Mardia and Jupp
2000). This distribution is called Fisher distribution for data on the sphere and is
called von Mises distribution for data on the circle. Some goodness-of-fit tests have
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70 A. M. S. Figueiredo

been proposed in the literature for this distribution in the case of circular data and
spherical data. For the particular case of data defined on the circle, Lockhart and
Stephens (1985) gave goodness-of-fit tests for the von Mises distribution and Lawson
(1988) considered the fit of the von Mises distribution using GLIM. For the particular
case of data defined on the sphere, Lewis and Fisher (1982) presented graphical meth-
ods for investigating the fit of a Fisher distribution to spherical data; Fisher and Best
(1984) considered goodness-of-fit tests based on the empirical distribution function
to investigate the adequacy of fit of Fisher’s distribution on the sphere and Rivest
(1986) proposed a goodness-of fit test for the Fisher distribution in small concentrated
samples. Mardia et al. (1984) derived a likelihood ratio test for the adequacy of a
von Mises-Fisher distribution against the alternative of a Fisher-Bingham distribution
and Boulerice and Ducharme (1997) proposed for directional and axial data, gen-
eral purposes smooth tests of goodness-of-fit for rotationally symmetric distributions,
including the von Mises-Fisher distribution against general families of embedding
alternatives constructed from complete orthonormal bases of functions. In Sect. 2 we
recall some distributions used for directional data, namely the von Mises-Fisher distri-
bution and the 5-parameter Fisher-Bingham distribution. In Sect. 3 we propose some
goodness-of-fit methods for a concentrated von Mises-Fisher distribution based on
an asymptotic chi-square distribution and we also recall a goodness-of-fit test based
on the Rao’s score statistic. In Sect. 4 we carry out a simulation study for analysing
some questions concerning the application of the methods suggested in this paper: the
adequacy of using the asymptotic chi-square distribution in the tests and the adequacy
of using the tabulated critical values of the Kolmogorov-Smirnov statistic when the
parameters of the von Mises-Fisher distribution are unknown and replaced by their
maximum likelihood estimates. We also determine by simulation the critical values
of the Rao’s score statistic in some cases and we compare them with the asymptotic
values. In Sect. 5 we analyse the empirical power of the Kolmogorov-Smirnov test for
several dimensions of the sphere, supposing as an alternative hypothesis a mixture of
two von Mises-Fisher distributions. We also compare the empirical power of this test
with the Rao’s score test for data on the sphere supposing as alternative hypothesis a
mixture of two Fisher distributions with unknown parameters replaced by their maxi-
mum likelihood estimates or a Kent distribution. In Sect. 6 we consider spherical data
given in the literature for illustrating the previous methods and finally, in Sect. 7, we
conclude the paper.

2 Some distributions for directional data

The von Mises-Fisher distribution on the unit sphere in R
p, Sp−1=

{
x ∈ R

p : x′x=1
}

is usually denoted by Mp (μ, κ) and it has probability density function given by

f (x|μ, κ) = cp (κ) exp
(
κx′μ

)
x ∈ Sp−1, μ ∈ Sp−1, κ ≥ 0 , (2.1)

where the normalising constant cp (κ) is defined by
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cp (κ) =
(κ

2

) p
2 −1 1

�
( p

2

)
I p

2 −1 (κ)

and Iν denotes the modified Bessel function of the first kind and order ν. For more
details about this function, see for instance, Mardia and Jupp (2000), p. 168.

The parameter μ is the mean direction and κ is the concentration parameter around
μ. The parameter μ is also the mode and −μ is the antimode (provided that κ > 0).
This distribution is rotationally symmetric about μ (Mardia and Jupp 2000, p. 179). If
x comes from Mp (μ, κ) distribution and U is an orthogonal matrix, then Ux comes
from Mp (Uμ, κ) distribution. If x comes from Mp (μ, κ) distribution then for large
κ (Mardia and Jupp 2000, p. 172):

2κ
(
1 − x′μ

) .∼ χ2
p−1. (2.2)

Let (x1, x2, . . . , xn) be a random sample of size n from the von Mises-Fisher dis-
tribution Mp (μ, κ) . Let Rn be the resultant length mean of the sample defined by

Rn = (
x′x

)1/2, where x is the sample vector mean of (x1, x2, . . . , xn) defined by
x = ∑n

i=1 xi �n. The maximum likelihood estimator of μ is the sample mean direc-
tion, that is μ̂ = x0 = x�Rn and the maximum likelihood estimator of κ is the
solution of the equation

Ap (κ) = Rn, (2.3)

where the function Ap (κ) is defined by Ap (κ)=−c
′
p (κ)�cp (κ)=I p

2
(κ)�I p

2 −1 (κ) .

(See Mardia and Jupp 2000, p. 198).
For p = 3, the von Mises-Fisher distribution is called Fisher distribution and denoted
by M3 (μ, κ) or by F (μ, κ). For p = 2 the von Mises-Fisher distribution is called
von Mises distribution and denoted by M2 (μ, κ) or by M (μ, κ).
The Fisher distribution is a particular case of the 5-parameter Fisher-Bingham dis-
tribution or Kent distribution proposed by Kent (1982). This distribution, denoted by
F B5 (κ, β, �) is defined by the density

f (x) = c (k, β)−1 exp

{
kγ ′

(1)x + β

[(
γ ′

(2)x
)2 −

(
γ ′

(3)x
)2

]}
x ∈ S2. (2.4)

The parameters are the concentration k ≥ 0, the ovalness β ≥ 0 and a (3 × 3)

ortogonal matrix � =
(
γ (1), γ (2), γ (3)

)
, where γ (1) is the mean direction or pole,

γ (2) is the major axis and γ (3) is the minor axis.
If β = 0, then (2.3) reduces to a Fisher density.
The F B5 distribution is a spherical analogue of the bivariate normal distribution.

More details about the F B5 distribution can be found in Kent (1982).
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72 A. M. S. Figueiredo

3 Goodness-of-fit methods

We wish to test the null hypothesis H0: The sample (x1, x2, . . . , xn) comes from a
von Mises-Fisher distribution Mp (μ, κ), with large κ .
Based on the result (2.2), we suggest to reduce the goodness-of-fit of a von Mises-
Fisher distribution to the goodness-of-fit of a chi-square distribution. For each xi ,

i = 1, . . . , n of the sample we calculate the value yi = 2κ
(
1 − x′

iμ
)

and we test the

null hypothesis H
′
0: The sample (y1, . . . , yn) comes from a χ2

(p−1) population. Then,

for a large concentration parameter κ , to test H
′
0 we may use a chi-square Q–Q plot

and the usual chi-square and Kolmogorov-Smirnov (K.-S.) goodness-of-fit tests.
If the parameters μ and κ are unknown, they are replaced by their maximum likelihood
estimates.

Mardia et al. (1984) derive a goodness-of-fit test for the von Mises-Fisher distribu-
tion. These authors consider the likelihood ratio test for the null hypothesis of a Fisher
distribution against the alternative of a Fisher-Bingham distribution and use the Rao’s
statistic, which is asymptotically equivalent to the likelihood ratio statistic, to test this
hypothesis. This test takes a simpler form for p = 3 with an alternative of a Kent
distribution (see Kent 1982; Mardia and Jupp 2000, pp. 272–273) and as we’ll use it
in this paper, next we’ll describe it briefly.

Let x1, . . . , xn be observations on the sphere S2. Let H
(
x0, (0, 0, 1)′

)
be the rota-

tion matrix, which transforms the sample mean direction x0 into the pole (0, 0, 1)′.
Denote by yi the 2-vector defined by the last two components of H

(
x0, (0, 0, 1)′

)
xi .

Let l̂1 and l̂2 be the eigenvalues of

1

n

n∑

i=1

yi y′
i .

Then the score statistic takes the form

T̂ = n
κ̂3

4
(
κ̂ − 3R

)
(̂
l1 − l̂2

)2
, (3.1)

where κ̂ is the maximum likelihood estimate of κ under the Fisher distribution.
The null hypothesis of a Fisher distribution is rejected for large values of T̂ . Under

the null hypothesis, the large-sample asymptotic distribution of T̂ is

T̂
.∼ χ2

(2).

4 Simulation study

In this study we have analysed some questions concerning the application of the tests
of the previous section. The first question is to determine, for several dimensions of the
sphere p, the values of κ for which the approximation (2.2) is valid. For investigating
this, we compare, for each dimension of the sphere p, the empirical distribution of
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Fig. 1 Kernel estimate and χ2
(p−1)

distribution for p = 2, 3, 4, 10

Y = 2κ
(
1 − x′μ

)
, obtained from 1,000 generated values of Y with the χ2

p−1 distribu-
tion for several values of κ . We note that for each generated value of Y a vector x was
simulated from the von Mises-Fisher distribution using the method proposed in Wood
(1994) and we also note that we have supposed without loss of generality that the mean
direction in the von Mises-Fisher distribution is equal to μ = ep = (0, 0, . . . , 0, 1)′.
Should we use another mean direction instead of ep, we would obtain the same results.
More precisely, we have compared for several values of κ , the kernel estimate of the
density function with the χ2

p−1 density function for p = 2, 3, 4, 10, respectively. We

have observed that for each p, the χ2
p−1 distribution seems to be very adequate even

for a small value of κ , that is, for κ ≥ 3, when p = 2 and p = 3, for κ ≥ 7 when
p = 4 and for κ ≥ 50 when p = 10. See Fig. 1 We note that the densities in this figure
were obtained in R and we have used a gaussian smoothing for the kernel estimate.

The second question is to analyse by simulation the critical values of Kolmogorov-
Smirnov statistic under the chi-square distribution we are testing. When the parameters
of the distribution we are testing are known, the critical values of the Kolmogorov-
Smirnov statistic are tabulated. In our case, we are testing a chi-square distribution with
known parameter and if the parameters of the von Mises-Fisher distribution are also
known, we may use the critical values, which are tabulated. But if the parameters of
the von Mises-Fisher distribution are unknown, the distribution of the Kolmogorov-
Smirnov statistic does not depend on the parameters of the underlying von Mises-
Fisher distribution, but depends on the fact that the yi are approximately chi-square,
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74 A. M. S. Figueiredo

since the parameters had been estimated. Then, it is important to verify the adequacy
of using the tabulated critical values in this case.

We have generated 100,000 samples of size n from the von Mises-Fisher distribution
for p = 2, 3, 4, 10 and for various values of κ for both cases: known parameters of the
von Mises-Fisher distribution and unknown parameters of this distribution replaced
by their maximum likelihood estimates. We have determined the upper 1, 5 and 10%
percentiles of the Kolmogorov-Smirnov statistic, which are indicated for several val-
ues of n and κ in Tables 6 and 7 of Appendix for known parameters and unknown
parameters, respectively.

Obviously, the critical values obtained by simulation in the case of known parame-
ters are closer to the tabulated critical values than in the case of unknown parameters.

Finally, as we’ll use in the next section the test based on the Rao’s score statis-
tic defined by (3.1), we have determined by simulation the critical values for this
statistic and we have compared them with the asymptotic critical values. We have
generated 100,000 samples of size n = 20, 30, 50 from the Fisher distribution for
κ = 5, 7, 10(10)50. Then we have obtained 100,000 replicates of the statistic defined
by (3.1) and we have determined the upper 1, 5 and 10% percentiles of the statistic,
which are indicated in Table 8 of Appendix.

5 Empirical size and power of the tests

First, we have determined the empirical size and power of the Kolmogorov-Smirnov
test for a null hypothesis of a von Mises-Fisher distribution against an alternative
with equal proportions of a mixture of two von Mises-Fisher distributions, for various
dimensions of the sphere. We consider the null hypothesis:

H0 : The sample (x1, . . . , xn) comes from the von Mises-Fisher distribution
Mp(e1, κ),

where e1 = (1, . . . , 0, 0)′ and κ is large.
Should we use another mean direction instead of e1, we would obtain the same results.
Then this hypothesis is reduced to

H ′
0 : The values yi = 2κ

(
1 − x′

i e1
)
, i = 1, . . . , n are χ2

(p−1) distributed, for κ

large. We consider as alternative hypothesis:
H1 : The sample (x1, . . . , xn) comes from the mixture with equal proportions of
two von Mises-Fisher distributions Mp(e1, κ) and Mp(ep, κ),

where ep = (0, . . . , 0, 1)′ and the mean directions of the components of the mixture
form an angle θ of 90◦. We suppose that the parameters e1, ep and κ are known.

Since the parameter of the chi-square distribution is known and the parameters of
the von Mises-Fisher distributions are known in the Kolmogorov-Smirnov statistic, we
use the tabulated critical values of this statistic to determine the size and the empirical
power of the test. The tabulated critical values of the Kolmogorov-Smirnov statistic
for a significance level of 5%, are equal to 0.409, 0.294, 0.242, 0.192, 0.136 for the
dimensions of the sample equal to 10, 20, 30, 50, 100, respectively.

Then, we have determined the size of the test based on 100,000 replicates of the
Kolmogorov-Smirnov statistic obtained generating 100,000 samples under the null
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Table 1 Size of the K.-S. test supposing known parameters

p n\κ 3 5 7 10 20 30

2 10 0.056 0.053 0.052 0.052 0.051 0.051
20 0.059 0.055 0.053 0.052 0.052 0.052
30 0.063 0.054 0.052 0.051 0.051 0.051

3 10 0.050 0.051 0.051 0.050 0.051 0.051
20 0.049 0.051 0.050 0.050 0.051 0.050
30 0.050 0.050 0.050 0.049 0.050 0.051

n\κ 5 7 10 20 30 50

4 10 0.052 0.050 0.050 0.050 0.050 0.050
20 0.057 0.052 0.052 0.050 0.049 0.050
30 0.060 0.053 0.051 0.050 0.049 0.049

n\κ 50 60 70 80 90 100

10 10 0.056 0.053 0.052 0.052 0.051 0.051
20 0.059 0.055 0.053 0.052 0.052 0.052
30 0.063 0.054 0.052 0.051 0.051 0.051

hypothesis, supposing that the parameters of the von Mises-Fisher distribution are
known. See Table 1. We note that for p = 10 we have considered larger values of κ

than for p = 2, 3, 4 because we had concluded in Sect. 4 that the approximation (2.2)
is valid only for κ ≥ 50. We have observed that for the analysed cases, the empirical
significance level is approximately equal to the nominal level of significance of 5%.
Since we do not know the distribution of the test statistic under H1, we have determined
the empirical power of the test based on 100,000 replicates of the Kolmogorov-Smirnov
statistic obtained under the alternative hypothesis, supposing that the parameters of the
components of the mixture are known. See Table 2. We have concluded the following:

• For fixed n, the empirical power of the Kolmogorov-Smirnov test increases or
remains constant when the concentration parameterκ increases. This is as expected
because as κ increases, more concentrated are the von Mises-Fisher distribution
around its mean direction and the components of the mixture around their respec-
tive mean directions. Consequently, it is easier to distinguish between the dis-
tributions given in H0 and H1, and then greater is the empirical power of the
test.

• For fixed κ , the empirical power of the Kolmogorov-Smirnov test increases when
the dimension of the sample n increases. This is also as expected, because as
smaller is the sample size, easier is the fit of any distribution and smaller is the
empirical power of the test.

• As expected for the same n and κ , the empirical power of the Kolmogorov-Smirnov
test decreases when the dimension of the sphere p increases.

Second, we determine the size and the empirical power of the Kolmogorov-Smirnov
test in the case of the sphere (p = 3) for the hypothesis of a Fisher distribution, sup-
posing as alternatives a mixture with equal proportions of two Fisher distributions with
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76 A. M. S. Figueiredo

Table 2 Empirical power of the K.-S. test with an alternative of a mixture with known parameters

p n\κ 3 5 7 10 20 30

2 10 0.750 0.783 0.784 0.782 0.781 0.781
20 0.960 0.978 0.984 0.987 0.987 0.988
30 0.995 0.999 0.999 0.999 0.999 0.999

3 10 0.521 0.709 0.762 0.776 0.778 0.777
20 0.801 0.946 0.974 0.95 0.988 0.987
30 0.931 0.993 0.999 0.998 0.999 0.999

n\κ 5 7 10 20 30 50

4 10 0.622 0.727 0.763 0.772 0.774 0.775
20 0.892 0.959 0.979 0.987 0.987 0.987
30 0.975 0.995 0.998 0.999 0.999 0.999

n\κ 50 60 70 80 90 100

10 10 0.755 0.759 0.761 0.764 0.764 0.766
20 0.985 0.985 0.986 0.986 0.986 0.986
30 0.999 0.999 0.999 0.999 0.999 0.999

unknown parameters and a Kent distribution, and we have compared this test with the
Rao’s test based on the statistic defined by (3.1). The null hypothesis to test is:

H0 : The sample (x1, . . . , xn) comes from the Fisher distribution F(e1, κ),
where e1 = (1, 0, 0)′ and κ is large. Then this hypothesis is reduced to
H ′

0 : The values yi = 2κ
(
1 − x′

i e1
)
, i = 1, . . . , n are χ2

(2) distributed, for κ large.

We obtain the empirical size of the two tests based on 100,000 replicates of the test
statistics by generating 100,000 samples under H0 and supposing that the parameters
e1 and κ are unknown and replaced by their maximum likelihood estimates. Although
we have used the estimates of the parameters in the Kolmogorov-Smirnov statistic,
we have used the tabulated critical values for a level of significance of 5% of the
Kolmogorov-Smirnov statistic because we have previously observed that the critical
values obtained by simulation, indicated in Table 7 are relatively close to the tabulated
ones. As the asymptotic distribution of the Rao’s score statistic is known under the
null hypothesis of a Fisher distribution: χ2

(2), we have used the critical values for a
5% level of significance of this distribution. We note that if we had used the critical
values obtained by simulation indicated in Tables 7 and 8 for the K.-S. and Rao’s
test, respectively, we would obtain similar results in each case for the size of the tests
and also for the empirical power of the tests with the two alternative hypotheses. See
Table 3. We observe that for the analysed cases, the size of the tests is approximately
equal to the significance level of 5%. Next, we consider the alternative hypothesis:

H1 : The sample comes from the mixture with equal proportions of two Fisher
distributions F(e1, κ) and F(ep, κ),

where ep = (0, 0, 1)′. Since we do not know the distribution of the test statistics
under the alternative distribution, we have estimated the power of the tests by gen-
erating 100,000 samples from this distribution. The empirical power obtained for
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Table 3 Size of the tests supposing unknown parameters

n κ 2 3 4 5 7 10 20

20 K-S 0.040 0.050 0.041 0.036 0.042 0.044 0.059
Rao 0.053 0.064 0.061 0.069 0.074 0.077 0.083

30 K-S 0.035 0.050 0.045 0.033 0.041 0.041 0.048
Rao 0.049 0.058 0.064 0.065 0.069 0.070 0.074

50 K-S 0.050 0.043 0.043 0.030 0.039 0.037 0.039
Rao 0.047 0.055 0.060 0.060 0.064 0.064 0.065

100 K-S 0.032 0.039 0.044 0.035 0.040 0.035 0.031
Rao 0.047 0.052 0.056 0.058 0.060 0.059 0.058

Table 4 Empirical power of the tests with an alternative of a mixture supposing unknown parameters

n κ 2 3 4 5 7 10 20

20 K-S 0.689 0.863 0.935 0.960 0.980 0.988 0.992
Rao 0.171 0.451 0.737 0.896 0.988 0.999 1

30 K-S 0.772 0.939 0.982 0.993 0.998 0.999 0.999
Rao 0.205 0.570 0.860 0.969 0.999 1 1

50 K-S 0.877 0.987 0.999 1 1 1 1
Rao 0.284 0.753 0.967 0.998 1 1 1

100 K-S 0.976 1 1 1 1 1 1
Rao 0.486 0.953 0.999 1 1 1 1

the level significance of 5% using the tabulated critical values of the Kolmogorov-
Smirnov statistic and the asymptotic critical values of the Rao’s score statistic are
indicated in Table 4 for some values of n and κ .
When the angle between the mean directions of the components of the mixture is 0◦,
the hypothesis H1 reduces to the hypothesis H0, and then the empirical power of the
tests is equal to the size of the tests, which is indicated in Table 3. We have concluded
the following:

• For the analysed cases, the Kolmogorov-Smirnov test is superior to the Rao’s score
test for small values of the concentration parameter, that is for values of κ ≤ 5.

• For values of κ > 5, the two tests or have equal power or the Rao’s score test has
slightly greater power than the Kolmogorov-Smirnov test.

• As for the case of known parameters, we observed in this case that for fixed n, the
empirical power of the tests increases or remains constant when the concentration
parameter κ increases and for fixed κ , the empirical power of the tests increases
when the dimension of the sample n increases.

Next, we consider the following alternative hypothesis:

H1 : The sample comes from a Kent distribution F B5 (κ, β, I ), where I denotes the
identity matrix.

Since we do not know the distribution of the test statistics under the alternative distri-
bution, we have estimated the power of the tests by generating 100,000 samples from
this distribution.

123
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Table 5 Empirical power of the tests with an alternative of a Kent distribution

d 0.1 0.2

n 30 50 30 50

κ K-S Rao K-S Rao K-S Rao K-S Rao

3 0.143 0.548 0.147 0.652 0.162 0.864 0.182 0.959
5 0.207 0.424 0.193 0.526 0.247 0.806 0.249 0.933
10 0.225 0.335 0.214 0.414 0.321 0.742 0.343 0.890
20 0.209 0.286 0.188 0.354 0.299 0.692 0.306 0.857
30 0.204 0.276 0.189 0.346 0.295 0.683 0.312 0.853
50 0.198 0.256 0.173 0.318 0.280 0.663 0.279 0.833
d 0.3 0.4

n 30 50 30 50

κ K-S Rao K-S Rao K-S Rao K-S Rao

3 0.272 0.989 0.423 1 0.807 1 0.973 1
5 0.302 0.987 0.329 0.999 0.428 1 0.626 1
10 0.543 0.979 0.650 0.999 0.807 1 0.924 1
20 0.541 0.969 0.643 0.998 0.919 1 0.984 1
30 0.543 0.968 0.652 0.998 0.931 1 0.987 1
50 0.515 0.964 0.603 0.997 0.920 1 0.983 1

The empirical power of the tests obtained for a significance level of 5%, using
the tabulated critical values of the Kolmogorov-Smirnov statistic and the asymptotic
critical values of the Rao’s score statistic is indicated in Table 5 for the sample sizes
n = 30, 50 and some values of the parameters κ and d. When d = 0 or β = 0, the
Kent distribution reduces to Fisher distribution given in the null hypothesis, and so
in this case, the empirical power of the tests is equal to the size of the tests which is
indicated in Table 3. We have obtained the following conclusions:

• For each sample size n, and fixed κ , the empirical power of both tests increases as
the parameter β (or d) increases. This is as expected, because as β (or d) increases,
the alternative hypothesis moves away far the null hypothesis.

• For fixed κ and β (or d), the empirical power of the two tests increases when the
sample size n increases.

• For this type of alternative, the Rao’s score test has empirical power greater than
the Kolmogorov-Smirnov test. It is expected that the Rao’s test is more powerful
in this case as it is the likelihood ratio test of this H0 against the Kent distribution.

6 Example

We have considered data consisting in 26 measurements of magnetic remanence in
specimens of Palaeozoic red-beds from Argentina (Fisher et al. 1987, Appendix B2).
We want to test

H0 : The sample comes from a Fisher distribution F (μ, κ).
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Then we reduce this hypothesis to the following:

H ′
0 : The values yi = 2κ

(
1 − x′

iμ
)
, i = 1, . . . , 26 are χ2

(2) distributed for κ large.

Since the parameters μ and κ of the Fisher distribution are unknown, we replace them
by their maximum likelihood estimates, given by μ̂ = (−0.4394,−0.3169,−0.8406)′
and κ̂ = 109, for applying the goodness-of-fit techniques.

First we have obtained the chi-square Q–Q plot using R, which is indicated in
Fig. 2. The goodness-of-fit of the χ2

(2) distribution seems reasonable. Next we have
applied the Kolmogorov-Smirnov test and we have obtained for the observed value
of the Kolmogorov-Smirnov statistic: 0.111. Comparing this value with the tabulated
critical values of the statistic given in Miller (1956), which are 0.311, 0.259 and 0.233,
for the levels of significance of 1, 5 and 10%, respectively, we have concluded that
the hypothesis of a χ2

(2) distribution is not rejected for these levels.
We have also applied the the Rao’s test. The observed value of the test statistic is

0.772 and comparing this value with the critical values of the statistic for the usual
levels of significance of 1, 5 and 10% , equal to 9.21, 5.99 and 4.61, respectively, we
do not reject the hypothesis of data to come from a χ2

(2) population. Then, we can not
conclude that these data do not come from a Fisher distribution.

7 Conclusion

We have suggested some goodness-of-fit methods for a concentrated von Mises-Fisher
distribution, which had not yet been given in the literature. We have presented the
empirical power of the Kolmogorov-Smirnov test for investigating the goodness-of-fit
of a von Mises-Fisher distribution, for several dimensions of the sphere, suppos-
ing as alternative hypothesis a mixture of two von Mises-Fisher distributions with
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known parameters. We have also determined the empirical power of the Kolmogorov-
Smirnov test for the fit of a Fisher distribution, supposing as alternative hypothesis a
Kent distribution or a mixture of two Fisher distributions with parameters replaced by
their maximum likelihood estimates and we have compared the power of this test with
a goodness-of-fit test based on the Rao’s score statistic. The simulation results revealed
that the empirical power of these tests is good and increases rapidly as the sample size
increases. When the alternative hypothesis is a mixture of two Fisher distributions,
the Kolmogorov-Smirnov test is superior to the Rao’s score test for small values of
the concentration parameter (less or equal to 5), and for values of the concentration
parameter greater than 5, the two tests are identical or the Rao’s score test is slightly
greater. When the alternative is a Kent distribution, the Rao’s score test is superior to
the Kolmogorov-Smirnov test. Finally, we have used an example of the literature to
illustrate these methods.
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Appendix

See Tables 6, 7, 8.

Table 6 Critical values of the Kolmogorov-Smirnov statistic for known parameters

p n 10 20 30

κ\α 1% 5% 10% 1% 5% 10% 1% 5% 10%

2 3 0.495 0.416 0.375 0.360 0.302 0.271 0.299 0.250 0.224
5 0.494 0.413 0.371 0.355 0.296 0.267 0.294 0.244 0.220
10 0.491 0.410 0.369 0.356 0.295 0.266 0.291 0.241 0.218
20 0.489 0.409 0.368 0.352 0.295 0.265 0.290 0.241 0.217
30 0.490 0.409 0.369 0.354 0.294 0.265 0.288 0.241 0.217

3 3 0.487 0.409 0.368 0.353 0.294 0.264 0.291 0.241 0.218
5 0.488 0.409 0.369 0.353 0.294 0.265 0.290 0.242 0.218
10 0.488 0.409 0.369 0.353 0.294 0.264 0.290 0.242 0.218
20 0.488 0.409 0.368 0.352 0.293 0.264 0.290 0.242 0.217
30 0.488 0.409 0.368 0.353 0.295 0.265 0.289 0.242 0.218

4 3 0.499 0.419 0.378 0.374 0.313 0.282 0.316 0.266 0.239
5 0.490 0.411 0.370 0.357 0.299 0.269 0.298 0.248 0.222
10 0.486 0.407 0.367 0.351 0.295 0.265 0.291 0.242 0.218
20 0.489 0.408 0.368 0.352 0.294 0.264 0.289 0.242 0.218
30 0.489 0.410 0.368 0.351 0.294 0.265 0.289 0.242 0.217

10 30 0.502 0.422 0.383 0.368 0.312 0.282 0.317 0.265 0.238
40 0.503 0.417 0.378 0.367 0.306 0.273 0.307 0.255 0.230
50 0.492 0.412 0.370 0.360 0.301 0.270 0.299 0.250 0.225
70 0.492 0.414 0.372 0.356 0.297 0.268 0.295 0.247 0.221
100 0.490 0.411 0.370 0.352 0.295 0.266 0.292 0.244 0.219

Tabulated values 0.489 0.409 0.369 0.352 0.294 0.265 0.290 0.242 0.218
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Table 7 Critical values of the Kolmogorov-Smirnov statistic for unknown parameters

p n 20 30 50

κ\α 1% 5% 10% 1% 5% 10% 1% 5% 10%

2 3 0.385 0.341 0.318 0.345 0.310 0.291 0.308 0.280 0.265
5 0.369 0.328 0.305 0.332 0.298 0.279 0.295 0.268 0.254
10 0.361 0.321 0.299 0.324 0.290 0.272 0.288 0.261 0.247
20 0.357 0.317 0.296 0.321 0.286 0.269 0.285 0.258 0.244
30 0.357 0.315 0.294 0.319 0.286 0.268 0.284 0.257 0.243

3 3 0.376 0.284 0.246 0.309 0.234 0.202 0.238 0.180 0.156
5 0.373 0.285 0.246 0.309 0.235 0.203 0.236 0.180 0.156
10 0.381 0.290 0.250 0.312 0.238 0.206 0.243 0.185 0.159
20 0.398 0.303 0.259 0.324 0.248 0.212 0.248 0.189 0.162
30 0.387 0.294 0.253 0.313 0.241 0.208 0.241 0.188 0.163

4 3 0.385 0.341 0.318 0.345 0.310 0.291 0.216 0.180 0.164
5 0.369 0.328 0.305 0.332 0.298 0.279 0.215 0.185 0.171
10 0.344 0.265 0.234 0.273 0.218 0.197 0.212 0.177 0.161
20 0.330 0.266 0.241 0.272 0.226 0.207 0.216 0.167 0.148
30 0.348 0.262 0.229 0.282 0.215 0.190 0.218 0.169 0.149

10 20 0.325 0.254 0.226 0.269 0.215 0.193 0.218 0.188 0.175
30 0.325 0.254 0.226 0.269 0.215 0.193 0.212 0.174 0.159
40 0.350 0.255 0.223 0.265 0.209 0.187 0.203 0.164 0.148
50 0.374 0.275 0.233 0.298 0.216 0.197 0.212 0.160 0.143
70 0.311 0.255 0.229 0.261 0.213 0.192 0.206 0.169 0.153

Tabulated values 0.352 0.294 0.265 0.290 0.242 0.218 0.231 0.192 0.173

Table 8 Critical values of the Rao’s score statistic (p = 3)

n 20 30 50

κ\α 1% 5% 10% 1% 5% 10% 1% 5% 10%

5 8.791 6.030 4.771 8.960 6.077 4.751 9.114 6.073 4.673
7 8.483 5.913 4.705 8.803 5.998 4.690 8.943 6.015 4.651
10 8.269 5.850 4.664 8.595 5.908 4.646 8.898 5.963 4.632
20 8.121 5.758 4.604 8.566 5.871 4.614 8.800 5.893 4.611
30 8.104 5.712 4.566 8.435 5.821 4.596 8.816 5.902 4.597
40 8.021 5.731 4.561 8.498 5.838 4.584 8.838 5.911 4.599
50 8.046 5.734 4.592 8.467 5.828 4.580 8.695 5.879 4.598
χ2

(2)
9.210 5.992 4.605 9.210 5.992 4.605 9.210 5.992 4.605
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