Available online at www.sciencedirect.com

o o Electronic Notes in
S(“enceD"'eCt Theoretical Computer

Science

scitoe ¥
ELSEVIER Electronic Notes in Theoretical Computer Science 344 (2019) 151-167
www.elsevier.com/locate/entcs

Some Applications of the Formalization of the
Pumping Lemma for Context-Free Languages

Marcus V. M. Ramos'

Colegiado de Engenharia de Computagdo
UNIVASF
Juazeiro, Bahia, Brazil

José Carlos Bacelar Almeida?

HASLab - INESC TEC
Universidade do Minho
Braga, Portugal

Nelma Moreira®

Departamento de Ciéncia de Computadores
Faculdade de Ciéncias
Porto, Portugal

Ruy J. G. B. de Queiroz*

Centro de Informdtica
UFPE
Recife, Pernambuco, Brazil

Abstract

Context-free languages are highly important in computer language processing technology as well as in formal
language theory. The Pumping Lemma for Context-Free Languages states a property that is valid for all
context-free languages, which makes it a tool for showing the existence of non-context-free languages. This
paper presents a formalization, extending the previously formalized Lemma, of the fact that several well-
known languages are not context-free. Moreover, we build on those results to construct a formal proof of
the well-known property that context-free languages are not closed under intersection. All the formalization
has been mechanized in the Coq proof assistant.

Keywords: non-context-free languages, closure, intersection, pumping lemma, formalization, Coq

Email:marcus.ramos@univasf.edu.br
Email: jba@di.uminho.pt
Email:nam@dcc.fc.up.pt

=W N =

Email:ruy@cin.ufpe.br

https://doi.org/10.1016/j.entcs.2019.07.010
1571-0661/© 2019 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http:/creativecommons.org/licenses/by/4.0/).

mailto:marcus.ramos@univasf.edu.br
mailto:jba@di.uminho.pt
mailto:nam@dcc.fc.up.pt
mailto:ruy@cin.ufpe.br
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2019.07.010
https://doi.org/10.1016/j.entcs.2019.07.010
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

152 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

1 Introduction

A context-free grammar G is a four-tuple (V, X, P, S) where V is the vocabulary (a
finite set consisting of terminal and non-terminal symbols), ¥ is the set of terminal
symbols or alphabet (thus N = V\X is the set of non-terminal symbols), P is the
(finite) set of rules of the form X — 3, where X € N and § € V*, and S is the start
symbol of the grammar, S € N. A language is a set of words (also called “sentences”)
defined over an alphabet. The language L generated by a context-free grammar G
is the (finite or infinite) set of words that can be obtained from the start symbol of
the grammar by repeated use of its rules: L(G) = {w|S =* wand w € ¥*}. A
language is context-free (CFL for short) if there exists a context-free grammar that
generates it. Otherwise, the language is not context-free.

To prove that a language is not context-free requires, thus, to prove that there
is no context-free grammar that generates it (a similar argument can be formulated
about the nonexistence of pushdown automata that accept the language, but this is
not in the scope of this work). This task can be simplified, however, by exploring
a property that is observed by all context-free languages. This is accomplished by
means of the Pumping Lemma for Context-Free Languages, which can be used to
prove that a given language is not context-free. Proving that an arbitrary language
is context-free is, however, an undecidable property |[3].

The Pumping Lemma for CFLs was stated and proved for the first time by Bar-
Hillel, Perles and Shamir in 1961 [1]. In what follows, it will be referred simply as
“Pumping Lemma”.

The main objectives of this paper are:

(i) Derive formal proofs that some well-known, classic languages, are not context-
free. For this, we use the formalization of the Pumping Lemma previously
obtained by the authors [7] in the Coq proof assistant |2]. For each of these
languages, we discuss the formalization of their non-context-freeness and make
hopefully useful considerations about the proof construction process and the
complexity of the corresponding formal and text proofs;

(ii) Develop a formal proof of the fact that the class of the context-free languages
is not closed under the intersection operation. For that, we follow the classical
proof that uses a counter-example, which in our case is one of the languages
proved not to be context-free in the previous objective.

The results presented here are important for various reasons. First, they are ap-
plications of the previous formalization of the Pumping Lemma. Second, they are the
first ever languages to be proved not to be context-free using a computerized theorem
prover. As far as the authors are aware of, all proofs of any language claimed to be
non-context-free published until now are text (pen and paper) ones, as can be found
in textbooks, papers and lectures on the subject. Thus, the present work brings
mathematical formalization into a new area of application. Third, they give rise to
interesting considerations about building formal proofs from text proofs. Fourth,
they can be very useful in teaching the theory of context-free languages within a
logic and formal background, with the help of interactive theorem provers and Coq

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 153

in particular. Besides this, we extend our previous results on the formalization of
closure properties for context-free languages (closure under union, concatenation
and Kleene star, [9]) with a new result with respect to language intersection.

The work presented here is part of a long-term project aimed at the formalization
of context-free languages and grammars. It started with the formalization of clo-
sure properties for context-free grammars 9], evolved later into the formalization of
context-free grammar simplification [10] and then into the Chomsky normalization
of context-free grammars. Formalization of simplification enabled Chomsky normal-
ization, which in turn enabled the formalization of the Pumping Lemma and then
the results presented here. The whole work is described in detail in [5], and more
information can be found in [8]. Previous results will not be discussed here and can
be retrieved from the references.

In order to follow this paper, the reader is required to have basic knowledge
of Coq and of context-free language theory. Background on context-free language
theory can be found in [12], [3] or [11], among others.

The statement and applications of the Pumping Lemma for CFLs are presented
in Section 2. The approach that we have adopted towards the formalization of
languages in general is discussed in Section 3. Then, in Sections 3.1, 3.2 and 3.3,
respectively, we present formalizations of three different and well-known languages
using the approach discussed before. Besides that, each of these sections contains
a text proof of the fact that the language is not context-free, a discussion about
the formalization of such a proof and considerations about the complexity of the
text and formal proofs. In Section 4 we describe our formalization of the non-
closure of context-free languages under intersection, a result that is built on top of
formalization described in 3.3. Final conclusions are presented in Section 5.

The definitions and proof scripts discussed in this paper were written in plain Coq
and are available for download at [6]. Statements about prime numbers, required
in Section 3.2, were written in SSReflect (a Coq plugin) and adapted from existing
proofs in the Mathematical Components library [4].

2 Pumping Lemma for Context-Free Languages

The Pumping Lemma states that, for every context-free language and for every
sentence of such a language that has a minimum length, it is possible to obtain
an infinite number of new sentences that must also belong to the language. This
minimum length depends on the definition of the language.

Let £ be a context-free language defined over alphabet >. Then there is a number
n, depending only on L, such that for every sentence o € L, if || > n, then all of
the following are true (Jw| denotes the length of the word w):

* Ju,v,w, z,y.(a = uwvwry);
* |vx| > 1,
o |vwzx| < n;

o Vi.(w'wz'ly € L)

154 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

A more concise, yet more difficult to read, representation of this statement is
(“cfl” is a predicate that asserts that a language is context-free, see Section 3):

VL.(cfl £) — InVa.

<<(a e L)A(la] > n)) o Hu,v,w,x,y.((a — wowzy) A (Joz] > 1)

AJvwz| < n) A (Viaw'wz'y € C)))

A typical use of the Pumping Lemma is to show that a given language is not
context-free by using the contrapositive of the statement of the lemma. The informal
proof proceeds by contraposition: the language is assumed to be context-free, and
this leads to a contradiction from which one concludes that the language in question
can not be context-free.

For details about our previous formalization of the Pumping Lemma, please refer
to [7].

The non-context-free languages formalized in this work are:

(i) square: {w € {a}*|3i,|w| = i%,i > 0},
(ii) prime: {w € {a}* ||w| is a prime number},
(iii) anbnen: {w € {a,b,c}*|Fi,w = a'b'ct,i > 0}.

For each of these, we will refer to the text proofs of their non-context-freeness
using the Pumping Lemma, as well as to the corresponding formalization in Sections
3.1, 3.2 and 3.3.

The Pumping Lemma does not characterize the CFLs, however, since it is also

verified by some non-CFLs [3|. Besides that, the authors are not aware of any
independent characterization of the class of languages that satisfy it.

3 Languages

In order to formally prove that a language is not context-free, we first need to have a
formal definition of such a language. The definitions of the languages square, prime
and anbncen introduced before are presented in the next three sections, however they
all share the same and more fundamental definitions discussed in this section.

A language is defined as a predicate that maps a sentence (a list of terminal
symbols) to a proposition (Prop):

Definition lang (terminal: Type):= list terminal — Prop.

Two languages are equal if they have the same sentences:
Definition lang_eq (1 k: lang) :=
Vw 1lw<<kuw
Finally, a language is context-free if it is generated by some context-free grammar

(for the definition of a context-free grammar in Coq, and other related definitions,
please refer to [8]). The following definition is a predicate that represents this

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 155

property:

Definition cfl (terminal: Type) (1: lang terminal): Prop:=
J non_terminal: Type,
J g: cfg non_terminal terminal,

lang_eq 1 (lang_of_g g).

where lang_of_g represents the language generated by grammar g:

Definition lang_of_g (g: cfg non_terminal terminal): lang :=
fun w: sentence = produces g w.

Thus, the definition of a new language comprises, essentially, the definition of a
new type terminal whose constructors are the elements of ¥ and of a membership
predicate that asserts whether an arbitrary list of terminal symbols is a word of the
language or not. This predicate, in our case, will carry the name of the language
being defined. Examples of this are presented in the next three sections.

3.1 Language square

Language square ({a’|i is the square of some number}) is defined over a single sym-
bol alphabet and contains words whose length corresponds to the square of some
natural number. Thus, it contains words such as ¢, a, aaaa, aaaaaaaaa etc.

Text proof

To prove that square is not context-free, suppose that it is context-free and
consider the word a™, where m = n? and n is the constant of the Pumping Lemma.
It is easy to observe that a™ € square and that |a™| > n. Thus, the Pumping
Lemma can be applied. Then, ™ = wvwxy for some u, v, w, r and y, with
luvwzy| = n?, 1 < Jvwzr| < n and wiwz'y € square,Vi > 0. But take i = 2.
Then, |uv?wz?y| = |uvwzy| + |vz|. Since [uvwzy| = n? and 1 < |Jvz| < n, we have
n? < Juv?wz?y| < n?+n, which is the same as n? < |[uv?wa?y| < (n+1)2. However,
there is no such a number that is the square of another number and lies between the
squares of two consecutive numbers. Thus, the hypothesis is false and square is not
context-free.

Formalization of the definition
The language square is defined in our formalization as follows:

Inductive terminal: Type:=
| a.

Definition square: lang terminal:=
fun (s: list terminal) =

di: nat,

length s — ixi.

The type terminal has a single constructor a, which corresponds to the single
element of the alphabet. Definition square is a predicate on lists of terminals,
expressing the property that the length of the list is a square of some number. It
embeds the property that all words of the language must satisfy, namely that the
length of the word must be the square of some number.

156 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

Formalization of the statement
The statement of this lemma simply says that the predicate square can not
represent a context-free language because it does not satisfy the predicate cf1:

Lemma not_cfl_square: ~ cfl square.

Formalization of the proof

The formal proof follows closely the argument and steps of the text proof. Two
simple auxiliary lemmas had to be proved, however. The first asserts the existence
of an infinite number of words in square:

Vn.3w.(|w| = n?) A (w € square)
while the second asserts the key property of natural numbers used in the proof? :

Vi g k(G > 1) A (< 0) = (2 4§ = k)

Comparison of the formal and text proofs

While the text proof is less than 10 lines long, the formal proof script is approx-
imately 200 lines long. Despite the expansion factor being significant, the proof is
simple and very readable. The size, in this case, can be justified by the style adopted
in the writing of the script (with only one tactic per line, for example) and the de-
tails that are inherent to the proof. The elegance of this formalization stimulated
the authors to pursue the formalization of the next section.

3.2 Language prime

Language prime ({a’|i is a prime number}) is defined over a single symbol alphabet
and contains words whose length is a prime number. Thus, it contains words such
as aa, aaa, aaaaa, aaaaaad etc.

Text proof

To prove that prime is not context-free, suppose that it is context-free and con-
sider the word a™, where m > n + 2 is a prime number and n is the constant of
the Pumping Lemma. It is easy to observe that o € prime and that |a™| > n.
Thus, the Pumping Lemma can be applied. Then, o™ = uvwzxy for some u, v, w, y
and y, with |uvwzy| = m, 1 < |vwz| < n and w'wz'y € prime,¥i > 0. But make
i = |uwy|. Then, [uv"¥hyzvwily| = Juwwy| + [uwy| * |vz| = |uwy| * (1 + |vz]). Since
luvwzy| > n+2 and n > |vz| > 1, we have that |uwy| > 2. Also, that 1+ |vx| > 2,
since |vz| > 1. Thus, the length of the new word is a composite number and not a
prime number. The hypothesis is false and prime is not context-free.

5 The scripts of this section can be found in file pumping_square.v.

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 157

Formalization of the definition
The language prime is defined in our formalization as follows:

Inductive terminal: Type:—
| a.

Definition prime_lang: lang terminal:—
fun (s: list terminal) =
Ji: nat,
is_prime i A
length s = 1.
The predicate is_prime is the primality predicate.
As in the previous case, the type terminal has a single constructor a. Definition
prime is a predicate on lists of terminals, expressing the property that the length of
the list is a prime number. It embeds the property that all words of the language

must satisfy, namely that the length of the word must be a prime number.

Formalization of the statement
As before, the statement of this lemma says that the predicate prime_lang can
not represent a context-free language because it does not satisfy the predicate cf1l:

Lemma not_cfl_prime: ~ cfl prime_lang.

Formalization of the proof

Similar to the previous case, the formal proof follows closely the argument and
steps of the text proof. Three auxiliary lemmas had to be proved, however. The
first asserts the existence of an infinite number of words in prime:

Vn.Jw.(Jw| > n) A (prime |w|)

while the second and third assert key properties of prime numbers used in the proof:
Vi.37.(j > i) A (prime j)
Vn,p,q.(n=pxq) A (p>2)A(q>2)— —(prime n)

The proof of the two lemmas on prime numbers was accomplished by means of
previously existing proofs in the Mathematical Components library [4]° .

Comparison of the formal and text proofs

Also in this case, the text proof is less than 10 lines long, while the formal proof
script is approximately 200 lines long, elegant, simple and readable. This and the
previous result led the authors to work on the formalization of the next section.

3.3 Language anbnen

Language anbncn ({a’bic'|i > 0}) is defined over a three symbol alphabet (a, b
and c¢) and contains words that start with some number of as, followed by the same

6 The scripts of this section can be found in file pumping_prime.v.

158 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

number of bs and then by the same number of ¢s. Thus, it contains words such as
€, abe, aabbee, aaabbbece etc.

Text proof

To prove that anbncn is not context-free, suppose that it is context-free and
consider the word a™b"c", where n is the constant of the Pumping Lemma. It is
easy to observe that a"b"c" € anbnen and that |a™b"c™| > n. Thus, the Pumping
Lemma can be applied. Then, a"b"c" = uvwzy for some u, v, w, z and y, with
luvwzy| = 3n, 1 < |vwz| < n and wlwz'y € anbnen,Vi > 0. It can be observed
that vwzx, due to its length limitation, contains only one or two different kind of
symbols. If it contains only one kind of symbol, then v and x are also built out
of a single symbol and the pumping of v and x will change the number of a single
symbol, while the number of the other two remain unchanged. Thus, the new word
can not belong to anbncn. If it contains two different kinds of symbols, then v and
x might contain one or two different kinds of symbols each. If both contain only
one kind of symbol, pumping will change the number of at most two symbols, while
the third will remain unchanged. If v or x contain two different kinds of symbols,
pumping will lead to a word where the order is not respected (first as, then bs then
¢s). In all cases, the new word does not belong to anbnen. Thus, the hypothesis is
false and anbncen is not context-free.

Formalization of the definition
The language anbncn is defined in our formalization as follows:

Inductive terminal: Type:=
| a
| b
| c.

Definition anbncn: lang terminal:—
fun (s: list terminal) =
Jdx y z: list terminal,
3 1i: nat,
S — X ++y ++z A

lengthx =i Anax=1iAlengthy =1iA

nby =i Alengthz =1iAncz=i.

The functions na, nb and nc evaluate, respectively, to the number of symbols a,
b and c in the argument (a list of terminal symbols).

The type terminal has three constructors a, b and c. Definition anbncn is a
predicate on lists of terminals, expressing the property that the list is built by the
same number of each of the symbols a, b and c, in this order. It embeds the property

that all words of the language must satisfy, as described above.

Formalization of the statement

Similar to previous cases, the statement of this lemma says that the predicate
anbncn can not represent a context-free language because it does not satisfy the
predicate cfl:

Lemma not_cfl_anbncn: ~ cfl anbncn.

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 159

Formalization of the proof

Differently from the two previous cases, the proof that anbncn is not context-
free is much longer and more complex. It is accomplished by means of extensive
case analysis on the components of the uvwzy word, which result in various cases
to be considered. To start with, we observe that, since vwzx is part of uvwzxy, and
since [vwzx| < n, then vwz must contain only symbols a followed by symbols b, or
only symbols b followed by symbols c¢. Observe also that, according to the Pumping
Lemma, vx # €, which means that v and x can not be empty simultaneously.
An extensive analysis of the possibilities for v and x under these circunstances is
presented below:

ola £0 A Joly =0 A [ole =0 A [zla =0 A Jalp =0 A lele =0 (1)

W#EIA@=0) [ola=0 A [0l £0 A [vle =0 A |zla =0 A |zl, =0 A lzle =0 (2)

ola #0 A [olp 0 A [ole =0 A Jzla =0 A fzly =0 A |ale =0 (3)

[ola =0 A [0l =0 A [ole =0 A Jola £0 A |zly =0 A |ale =0 (4)

(v=e)A(@x#€e)] [vla =0 A |v[p =0 A [v]c=0 A |z|]a =0 A |z|p #0 A |z|c =0 (5)

B [ola =0 A [0l =0 A [0l =0 A lala £0 A |zly £0 A lalc =0 (6)
(v:e)/\(:ﬂ:e){cannotoccur,since lvz] > 1 (7)

[ola £0 A ol =0 A Jole =0 A Jela £0 A ey =0 A |zle =0 (8)

[ola =0 A [oly £0 A [ule =0 A lzla =0 A |zly £0 A |zle =0 (9)

(w# AN (@ F# €S [vlaZ0 A |v[p =0 A [vlc =0 A |z|]a =0 A |z|p #0 A |z|c =0 (10)

[ola #0 A ol =0 A ole =0 A fela #0 A laly #£0 A Jele =0 (11)

ola #0 A [0l 0 A ol =0 A [zla =0 A |zly £0 A |ale =0 (12)

[vla =0 A Julp #0 A |vle =0 A |z]a =0 A |z[p =0 A |z|]c =0 (13)

(w#eAN(@x =€) |vlg =0 A |v]p =0 A |v]c #0 A |z|a =0 A |z|p =0 A |z|c =0 (14)

[ola =0 A foly #0 A fole £0 A ola =0 A lalp =0 A |ale =0 (15)

ola =0 A Joly =0 A [ole =0 A [zla =0 A laly £0 A |alc =0 (16)

(wv=e)A(@x#€) [vla =0 A |v]p =0 A [v]lc =0 A |z|]a =0 A |z|p =0 A |z|c #0 (17)

o e e [ola =0 A ol =0 A Jole =0 A lela =0 A |aly £0 A |zl £0 (18)
(U:s)/\(ac:e){cannotoccur,since lvz] > 1 (19)

[ola =0 A Joly 0 A Jole =0 A ela =0 A Jaly £0 A |zle =0 (20)

[ola =0 A [oly =0 A [vle £0 A |zla =0 A |zl =0 A |z]e £0 (21)

WEIA@# [ola=0 A Jolp #0 A [ole =0 A |zla =0 A [y =0 A [z]c £0 (22)

[ola =0 A [ols £0 A vl =0 A [zla =0 A |zl £0 A |ale #0 (23)

[ola =0 A Joly 0 A ole £0 A Jela =0 A laly =0 A Jele £0 (24)

For each of the two initial cases (vwz € a*b* and vwx € b*c*), we consider other
four:
(AN (z=¢)
(v=-¢€)A(z #e€),or
c(v=eN(z=¢
e (V£ e)N(x #e).
Condition (v =€) A (z = €), corresponding to cases (7) and (19) above, can not
of course happen since we know that vz # e and for this reason they are dropped
out. Next, for each of the subcases, it is possible to make statements about the

number of each kind of symbol in both v and x (whether they are zero or not zero).
Now observe that, in all 22 valid cases above, at most two numbers are not zero

r =€

7 |v|q stands for na v, that is, the number of symbols a contained in the word v. Similarly, |v|, stands for
nb v and |v|. stands for nc v.

160 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

while at least one number is zero. This means that, when v and x are pumped into
uvwzy, it is possible to conclude that at most two kinds of symbols are pumped
(those whose number is not zero) while at least one kind of symbol is not pumped
(those whose number is zero). Thus, in all cases, pumping v and = changes the
number of at most two different kinds of symbols, while the number of at least one
kind of symbol remains unchanged. As a consequence, pumping produces words
that do not belong to the language in all cases and the language anbncn is not
context-free.

As an example, consider case (1) and take i = 2 (corresponding to uvvwzxy).
The pumping of v and x increases the number of symbols a but surely does not
change the number of symbols b ¢. Thus, uvvwzxy necessarily has more symbols a
than symbols b and ¢ and can not belong to anbnen. Consider now case (12) and
take ¢ = 2 again. The pumping of v and x increases the number of symbols a and b
but surely does not change the number of symbols c¢. Thus, uvvwzrzy necessarily has
more symbols a than symbols ¢ and can not belong to anbnen. The same happens if
the number of symbols b is compared to the number of symbols ¢. The conclusions
are similar for all 22 cases, and show that the new word wvvwzzy can not belong
to anbncen in any situation.

Fortunately, the cases listed above do not have to be considered individually in
the formalization. Instead, we first prove that vwz € a*b* or vwx € b*c*. Then, for
each case, it is enough to prove that either v # € or x # €. If v # ¢, this means that
v contains at most two different kinds of symbols (with at least one symbol in it).
The same happens if # €. Thus, making 7 = 2 results in wvvwzxy that contains
different numbers of as, bs and cs.

One of the key issues in this formalization is to prove the rather intuitive result
about the structure of vwz in comparison to uvwzy, when considered its maximum
length n and that uvxwy = a™b"c™: that vwax belongs to either a*b* or b*c*.

This is accomplished by means of three auxiliary lemmas, presented next. The
first states that if s is a subword of a"b"c™ and |s| < m, then s must be a subword
of either a™b™ or b"c™. This proof alone has more than 400 lines of extensive case
analysis on the structure of x, ¥y, z and s, and has the following statement:

Lemma sublist_or:

V xyzs: list terminal,
YV i: nat,

lengthx =i —

nax —1i—

lengthy =i —

nby =i —

lengthz =i —
ncz—1i—

sublist (x++y++z) s —
lengths > 1 —

lengths <i —

sublist (x++y) s V sublist (y++z) s.

The proof of the second lemma, with approximately 180 lines, also has an in-
tuitive statement: that if s is a subword of xy, where = contains only symbols a

(zero or more) and y contains only symbols b (zero or more), then s must have only
symbols a (zero or more) followed by symbols b (zero or more):

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 161

Lemma sublist_only_a_b:
V s1 s2 s: list terminal,
only_a sl —

only_b s2 —

sublist (s1 ++s2) s —
only_a_b s.

The third lemma is similar to the second, and refers to subwords of yz, where y
contains only symbols b and z contains only symbols c:

Lemma sublist_only_b_c:
V sl s2 s: list terminal,
only_b s1 —
only_c s2 —

sublist (sl ++s2) s —
only_b_c s.

The whole formalization of this section is approximately 2,200 lines of script
long ® .

Comparison of the formal and text proofs

It is interesting to note that the size of the text proof of anbnen (15 lines) does
not differ much from the size of the text proofs of previous cases (10 lines each).
However, the size of the formal proof is bigger (more than 10 times bigger) than the
corresponding ones, which means that the formal proof of anbncen is more than 100
times longer than the corresponding text proof. This is probably due to the nature of
our third language, which introduced many combinatorial problems in the way to the
final solution. These combinatorial problems have simple and intuitive statements
which, however, led to many different cases to be considered, many lines of script to
be written and many different lemmas with similar statements and proofs.

While most of the lemmas used in this proof are short and repetitive (which
can surely be grouped and reduced in number by using proper parametrization), the
three lemmas stated above comprise almost 800 lines corresponding to approximately
40% of the whole formalization. This means that most of the effort put in this
formalization was used to prove results about the structure of a given substring in
comparison to the structure of another string. Since the authors are not aware of
any Coq libraries that could handle this in more efficient way, or simply handle it at
all, we consider that the lack of such a library increases considerably the complexity
of some formalizations (such as the present one). Also, that it might be the case
that a new library developed with this specific purpose be benefitial for similar
applications. The convenience of having such a library could be an opportunity and
an important outcome of our present work.

Another reason that may help understand the size and complexity of the formal
proof in comparison to the text proof is the fact that the later is, in a certain
sense, oversimplified. Informal statements may hide a number of different cases that
must be considered explicitly when developing a formal proof. This is the case, for
example, for most of the text proof presented before for language anbncn. Some
examples of it are:

8 The scripts of this section can be found in file pumping_anbncn.v.

162 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

e “due to its length limitation, contains only one or two different kind of symbols™;

e “if it contains only one kind of symbol, then ... are also built out of a single
symbol and the pumping of ... will change the number of a single symbol, while
the number of the other two remain unchanged”;

e “if it contains two different kinds of symbols, then ...might contain one or two
different kinds of symbols each”;

¢ “if both contain only one kind of symbol, pumping will change the number of at
most two symbols, while the third will remain unchanged”;

(154

e “if ... contain two different kinds of symbols, pumping will lead to a word where
the order is not respected”.

Thus, it is very possibile that if the text proof were more detailed and explana-
tory, then the difference in size and complexity between it and the corresponding
formal proof would not be considerable.

4 Intersection

To prove that the class of the context-free languages is not closed under intersection,
it is sufficient to present two context-free languages whose intersection is not a
context-free language. For that purpose we use the language anbncn, previously
proved not to be context-free in Section 3.3.

Text proof
Let Ly = {a"™0"c¢™|n > 0Am > 0} and Ly = {a™b"c"|n > 0 Am > 0}.
Note that Ly N Lo = anbnen, which is known as a non-context-free language.

Thus, we only have to prove that both L; and Lo are context-free. For that, take
G = ({5, X,Y,a,b,c},{a,b,c}, {S — XY, X = aXb,X — €Y = cY,Y — €})
and Gy = ({S,X,Y,a,b,c}, {a,b,c}, {S = XY, X = aX, X = ¢ Y — bYg,
Y — €}). Both G; and G4 are context-free grammars that generate respectively, L;
and Lo. Thus, L1 and Lo are context-free languages and the class of the context-free
languages in not closed under intersection.

Formalization of the proof

We initially represent formally the language intersection operation. This is ac-
complished by means of an inductive definition which states that a word belongs to
the intersection of two languages if and only if it belongs to both languages. This
definition is similar to other definitions used previously to represent the operations
of union, concatenation and Kleene star of context-free languages [9]:

Inductive 1_int (11 12: lang terminal): lang terminal:=
| 1_int_c:Vs: list terminal, 11 s — 12 s — 1_int 11 12 s.

We build the proof of this section on top of the previous result of Section 3.3,
that the language anbncn is not context-free. Thus, all we have to formalize is:

(i) Li is a context-free language;

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 163

(ii) Lg is a context-free language;
(iii) L1 N Lg = anbnen

There are many details involved in these simple statements, however.

The strategy used to prove (i) is to prove first that L; = Lqy - L1g with L) =
{a"V"|n > 0} and Lis = {¢™|m > 0}. That is, that L; can be expressed as
the concatenation of two other simpler languages (Li; and Ljz). The reason for
that is to simplify the proof that L; is context-free. Then, we use use a previously
formalized result [9], that the the class of the context-free languages is closed under
concatenation, to show that L is context-free.

Languages L1, L1; and Lo are formalized in Coq as follows:

Definition anbncm: lang terminal:=

fun (s: list terminal) =

Jx y z: list terminal,

di: nat,

s =x ++y ++z Alengthx — i Anax =1 A
lengthy = i Anby = i A length z = nc z.

Inductive anbn: 1list terminal — Prop:=
| anbn_1: anbn ||
| anbn_2: V w: list terminal, anbn w — anbn (|a]++w++[b]).

Inductive cm: list terminal — Prop:=
| em_1: cm ||
| em_2: V w: list terminal, cmw — cm ([c|++w).

The proof of step (i) starts by introducing context-free grammars that gener-
ate L1 and Lio, and then by proving that these grammars indeed generate the
corresponding languages (lemmas cfl_anbn and cfl_cm). Finally, we prove that
the concatenation of Li; and Lqs results in Ly, which is accomplished by lemma
cat_eq_anbncm. The last step of (i) is obtained through lemma cf1_anbncm, which
is a simple application of a previous result (lemma 1_cat_is_cf1, see [5]) and states
that the language anbncem is context-free as required.

For step (ii), that is, to prove that the language Lo is context-free, we first note
that Ly = Loy - Loy with Loy = {a”|m > 0} and Lo = {b"¢™ |n > 0}. However, a
different approach was adopted to obtain the proofs that Loy and Ly are context-
free. While an approach similar to the one used to prove that L; is context-free
could have been used (simply by changing as, bs and cs by, respectively, bs, ¢s and
as in the direct proof scripts), we decided to formalize first the substitution and then
use the result in languages that we previously proved to be context-free.

Thus, we prove that the class of the context-free languages is closed under alpha-
bet substitution (as long as this substitution is represented by a bijection between
the original and the new alphabets, which can be the same or not). We define the
substitution of the alphabet in a language in Coq by:

Definition change_alphabet_in_language

(t1 t2: Type) (11: lang t1) (f: t1 — t2): lang t2:=
fun (w2: list t2) =

Jwil: list ti,

11 wi A w2 = map f wi.

and the main result is:

Lemma change_alphabet_in_language_is_cfl:

164 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

YV t1 t2: Type,
V 11: lang ti,
V£ t1 - t2,
cfl 11 A bijective f —

cfl (change_alphabet_in_language 11 f).

Essentially, this lemma states that every context-free language that has its al-
phabet changed remains a context-free language. So, we define the bijection that
provides the necessary mappings:

Definition f (t1: terminal): terminal:=
match t1 with

| a=b
| b=c
| c=a

end.

This way, using the bijection f, we can easily proof that {b"c" | n > 0} is context-
free from the previous proof that {a"d™|n > 0} is context-free, and the same for
{c™,|m >0} and {a™, | m > 0}. Then, we proceed in a similar way as we did before
in order to prove that the concatenation of {a™,|m > 0} and {b"c™|n > 0} results
in Lo, and also that Lo is context-free.

For step (iii), we have first to prove that the intersection of L; and Ly indeed
results in anbncn, which is obtained by means of lemma int_eq_anbncn. Finally,
we proceed to our main theorem, the one that states that context-free languages are
not closed under intersection:

Theorem cfl_not_closed_intersection:
~V 11 12: lang terminal,
cfl 11 A cfl 12 — cfl (1_int 11 12).

With the previous results (including lemma not_cfl_anbncn from Section 3.3),
the proof is straigtfoward and only a few lines long. It is obtained by contradiction,
since we have both a prove that anbncn is context-free (from the hypotheses) and
that anbnen is not context-free (from Section 3.3) Y.

Comparison of the formal and text proofs

While the text proof is very straightforward and only a few lines long, the formal
proof is longer and plenty of details that range from the proof that a simple language
is context-free to the proof that a given language can result from the combination
of other simpler languages by means of the use of the appropriate operations. The
proofs are generally not short and use inductive arguments. The proof scripts for this
part of the formalization are approximately 1,500 lines long (for intersection.v)
and 500 lines long (for bijection.v).

5 Conclusions

Languages square and prime were easily proven not to be context-free, by straigh-
forward application of the Pumping Lemma. On the other hand, language anbncn
was harder to get to the same result.

9 The scripts of this section can be found in files intersection.v and bijection.v.

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 165

Besides these three languages, a fourth language was considered as well. The
tentative proof that the language anbnanbn, defined as {a"0"a™b™|n > 0} is not
context-free was, however, much harder and bigger than that for the language anbncn
(at least using our current strategy, that relies on the application of the Pumping
Lemma).

In a first proof sketch, we could prove that (vwz € a*b*) or (vwz € b*a*). Next,
for the first case, we could prove that (v € a*b*) A (z € b*) or (v € a*) A (z € a*b*).
Similarly, for the second case, we could prove that (v € b*a*) A (x € a*) or (v €
b*) A (z € b*a*). For the rest, we could consider whether or not v and z are empty
and make conjectures about v and x when they are made of two kinds symbols
by splitting them into two different substrings, each of them made of a single kind
of symbol. This sketch splits in 28 cases which, in turn, can be handled by three
different proof strategies.

A second proof sketch could be to proceed as outlined in the proof of anbncn:
first, to prove that (vwz € a*b*) or (vwax € b*a*). Next, to prove that at least one
of v and x must be non-empty. Finally, to make conjectures about the number of as
and bs in each of v and = (whether zero or not zero). This sketch leads to 22 cases
that can be proved by three different strategies. For space reasons, the tables that
summarize the cases in these two skectches are not included.

We tried to formalize a proof for anbnanbn based on the first attempt described
above, but the results were not encouraging. The proof script grew very fast and
had more than 4,000 lines when it was interrupted, still incomplete. The size and
complexity of the script became so big, with so many cases to be considered and
lemmas yet to be proved, that we decided not to go on for the time being. We did
not try to formalize the second sketch, which has a smaller number of cases to be
considered (22 versus 28).

For the sake of completeness, we should also make some considerations about
a fifth classical non-context-free language, which we shall call ww and which is
defined as the set of words ww over some alphabet (for example, {a,b}), such that
w € {a,b}*. To prove that ww is not context-free it is sufficient to take word
ab"a™b"™ and show that pumping over this word generates words that do not belong
to ww. For that purpose, we could use a strategy similar to the one used for language
anbnanbn, with the same number of cases to be considered. Thus, the complexixity of
the formalization for ww should be similar to that of the formalization of anbnanbn.
We have not tried to formalize ww.

It is worth to note that, for all five languages considered so far (square, prime,
anbnen, anbnanbn and ww), their definition and the text proofs that they are not
context-free are concise and elegant (the text proofs for anbnanbn and ww, although
not presented here, are also straightforward). For languages square and prime, it
is also possible to state that the corresponding formal proofs are straighforward to
build and are easy to read. For languages anbncn, anbnanbn and ww, however, the
situation is completely different. So, what explains the difference between these two
groups of languages? As mentioned in the case of language anbncn, explanations
may come both from the classical text proofs and the need to reason about the

166 M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167

structure of substrings, a feature that (as far as the authors are aware of) is not
natively available in Coq nor in any of its standard libraries.

First of all, the size and complexity of the formal proofs for anbncn, anbnanbn
and ww involve combinatory aspects needed in intermediate reasoning steps required
to build the final proof, and this led to large and fully detailed scripts. If this is a
consequence of some characteristic (or lack of feature) of Coq or its libraries, this
is a matter still to be investigated. Indeed, it sounds very much like the libraries
of Coq are not so well developed in respect to the combinatorics of strings, as it is
in other areas, such as sets, lists and algebra to mention a few. Thus, this might
suggest that some effort is required in this area in order to ease the development
of proofs such as the ones that we have discussed in Section 3. What is needed are
lemmas that prove that strings with some property that are substrings of another
string with another property can get proper descriptions. An example is a lemma
that proves that any string with maximum length n that is a substring of string
a™b"c" belongs to a*b*|b*c*. Similarly for any string with the same size n that is a
substring of a"b™a"b", in this case being described by a*b*|b*a*.

Note, however, that this need was not present in the formal proofs developed for
square and prime, which involve basically the length of the generated strings.

Second, we argue that perhaps the classical text proofs of anbnen, anbnanbn and
ww are not as clear and understandable as they seem or claim to be. Indeed, the text
proof that anbncn is not context-free is only 10 lines long, but hides in it 24 different
cases. For the language anbnanbn the situation is even worse: 28 (or 22) different
cases are hidden in the text proof, which is about 10 lines long as well. Is everyone
capable of seeing so many cases in so few lines of english text? Aren’t these text
proofs oversimplified and relying too much on the common sense and perceptions of
the reader (student, teacher, professional, whatever)?

The proof that context-free languages are not closed under intersection is a nice
result that derives almost directly from one of the previous results. It demanded,
however, some effort in order to adequately cope with the many details involved
in proofs that usually do not take too much time or effort from the reader of a
text proof (such as to convince himself that a given grammar generates a given
language). Once again, we see here the formalization making all the details of a
text proof explicit. This result, along with the other results previously obtained
about the formalization of closure under union, concatenation and Kleene star [9],
represent a good set of formalized results of closure properties for the class of the
context-free languages.

The results obtained so far are interesting in their own. They correspond to im-
portant applications of an important property of context-free languages which can
be used for different purposes. These include to guarantee the correctness of text
proofs that may hide too much information, and thus escape from the full under-
standing of the reader, and to better understand the nature of the corresponding
proofs. Also, these formal proofs are original and valuable material for courses in
formal language theory and/or formal reasoning using interactive proof assistants.

Future works include improvements in the source code of this formalization via

M.V.M. Ramos et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 151-167 167

simplifications and generalizations. As an example, files pumping_anbncn.v and
intersection.v contain different lemmas and functions that can be combined into
a single lemma or function. One case are functions na, nb and nc that count the
occurrences of, respectively, symbols a, b and ¢ in a list and can be grouped into a
single function that counts the occurrences of a parametrized symbol. Another case
are lemmas cfl_ambm and cf1l_bmcm that can be merged into a single lemma where
the terminal symbols are parameters of the lemma. Besides that, we plan to extend
our work on the formalization of context-free language theory with the formalization
of the closure of the class of the context-free languages under intersection with
regular languages, of the non-closure of the same class under complementation and
of Ogden’s Lemma, a stronger version of the Pumping Lemma for Context-Free
Languages [3].

References

[1] Yehoshua Bar-Hillel, Micha A. Perles, and Eli Shamir. On formal properties of simple phrase structure
grammars. Zeitschrift fiir Phonetik, Sprachwissenschaft und Kommunikationsforschung, 14:143-172,
1961.

[2] The Coq Development Team. The Coq Reference Manual, version 8.8.0, 2018. Available electronically
at https://coq.inria.fr/distrib/current/refman/.

[3] John E. Hopcroft and Jeffrey D. Ullman. Introduction To Automata Theory, Languages and
Computation. Addison-Wesley Publishing Co., Inc., 1979.

[4] Inria — Microsoft Research Joint Centre. SSReflect and the Mathematical Components library, 2018.
http://math-comp.github.io/math-comp/, accessed August 14th, 2018.

[5] Marcus Vinicius Midena Ramos. Formalization of Context-Free Language Theory. PhD thesis, Centro
de Informatica - UFPE, 2016. http://www.marcusramos.com.br/univasf/tese.pdf, 2016.

[6] Marcus Vinicius Midena Ramos. Source files, 2016. https://github.com/mvmramos/intersection, 2018.

|7] Marcus Vinicius Midena Ramos, José Carlos Bacelar Almeida, Nelma Moreira, and Ruy José
Guerra Barretto de Queiroz. Formalization of the Pumping Lemma for Context-Free Languages.
Journal of Formalized Reasoning, 9(2):53-68, 2016. https://jfr.unibo.it/article/view/5595.

[8] Marcus Vinicius Midena Ramos, José Carlos Bacelar Almeida, Nelma Moreira, and Ruy José
Guerra Barretto de Queiroz. On the Formalization of Some Results of Context-Free Language Theory.

In Jouko Viaénanen, Asa Hirvonen, and Ruy de Queiroz, editors, 28rd International Workshop, WoLLIC
2016, Puebla, Mexico, August 16-19th, 2016, Proceedings, volume 9803 of Lecture Notes in Computer
Science, pages 338-357. Springer, 2016. http://dx.doi.org/10.1007/978-3-662-52921-8 21.

9] Marcus Vinicius Midena Ramos and Ruy José Guerra Barretto de Queiroz. Formalization of closure
Yy
properties for context-free grammars. CoRR, abs/1506.03428, 2014. http://arxiv.org/abs/1506.03428.

[10] Marcus
Vinicius Midena Ramos and Ruy José Guerra Barretto de Queiroz. Formalization of simplification
for context-free grammars. CoRR, abs/1509.02032, 2015. http://arxiv.org/abs/1509.02032.

[11] Marcus Vinicius Midena Ramos, Joao José Neto, and Italo Santiago Vega. Linguagens Formais: Teoria
Modelagem e Implementa¢do. Bookman, 2009.

[12] Thomas A. Sudkamp. Languages and Machines. Addison-Wesley, 3rd edition, 2006.

https://coq.inria.fr/distrib/current/refman/

	Introduction
	Pumping Lemma for Context-Free Languages
	Languages
	Language square
	Language prime
	Language anbncn

	Intersection
	Conclusions
	References

