Computers and Operations Research 109 (2019) 1-11

journal homepage: www.elsevier.com/locate/cor

Contents lists available at ScienceDirect

Computers and Operations Research

omputers &
ns Research

Branch-and-bound algorithms for minimizing total earliness and n

Check for

tardiness in a two-machine permutation flow shop with unforced idle |%&&

allowed

Jeffrey Schaller®*, Jorge Valente”

2 Department of Business Administration, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226-2295, USA
b JAAD-INESC TEC, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

ARTICLE INFO ABSTRACT

Article history:

Received 22 April 2018
Revised 27 February 2019
Accepted 22 April 2019
Available online 23 April 2019

Keywords:

Scheduling
Branch-and-Bound
Flow shop

Earliness and tardiness

The two-machine permutation flow shop scheduling problem with the objective of minimizing total ear-
liness and tardiness is addressed. Unforced idle time can be used to complete jobs closer to their due
dates. It is shown that unforced idle time only needs to be considered on the second machine. This re-
sult is then used to extend a lower bound and dominance conditions for the single-machine problem
to the two-machine permutation flow shop problem. Two branch-and-bound algorithms are developed
for the problem utilizing the lower bound and dominance conditions. The algorithms are tested using
instances that represent a wide variety of conditions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The focus of our research in this paper is on the scheduling
problem of minimizing total earliness and tardiness in a flow shop
environment. When scheduling customer jobs to be completed us-
ing an organization’s resources, a variety of objectives can be con-
sidered, including the efficient use of resources and providing good
customer service.

An important customer service objective is meeting customer
due dates. Typically, when a customer places an order, a date for
the completion of the order or job is agreed upon. If the job is
completed after the date it was due, the job is tardy, and the
length of time between the job’s completion time and its due date
is its tardiness. On the contrary, if a job is completed before its due
date, then the job is early, and the length of time between the due
date and the job’s completion time is its earliness.

Tardiness has long been a traditional measure of scheduling ef-
fectiveness. When jobs are tardy, this can cause sales to be lost or,
even worse, customers might switch to another supplier. Producers
must also be concerned with early completion of customer orders.
Indeed, when jobs are completed early the product must be stored,
which not only requires space, but also causes capital to be tied up

* Corresponding author.
E-mail addresses: schallerj@ecsu.ctstateu.edu (J. Schaller), jvalente@fep.up.pt (J.
Valente).

https://doi.org/10.1016/j.cor.2019.04.017
0305-0548/© 2019 Elsevier Ltd. All rights reserved.

in inventory. This is true whether the product is stored at the cus-
tomer’s site or the producer’s site.

As industry has intensified its emphasis on improving supply
chain management in recent decades, earliness has been increas-
ingly included as a measure of scheduling effectiveness. Therefore,
there has been increased research into scheduling problems that
have the objective of minimizing total earliness and tardiness.

In this paper, we consider a flow shop environment. In a flow
shop there are multiple resources of different types, which we re-
fer to as machines, which are used to complete jobs. A key feature
of a flow shop is that all the jobs use the machines in the same
order as they progress through the shop.

Historically, most of the research on the flow shop environment
has considered the so-called permutation flow shop. In a permu-
tation flow shop the jobs are processed in the same order on each
machine. There are two reasons why most of the research has fo-
cused on permutation flow shops. First, a permutation flow shop
is conceptually simpler. Second, in practice it is often difficult to
change the order of the jobs from machine to machine. We only
consider permutation schedules in this paper.

One of the ways to reduce the earliness of a job is to delay its
processing and therefore its completion time. On a single-machine
this is referred to as inserted idle time. Methods for finding op-
timal schedules that consider inserted idle have been developed
(Schaller, 2007) for the single-machine problem, but not for more
advanced multi-stage production systems. For example, research
for flow shops with minimizing total earliness and tardiness (see

https://doi.org/10.1016/j.cor.2019.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.04.017&domain=pdf
mailto:schallerj@ecsu.ctstateu.edu
mailto:jvalente@fep.up.pt
https://doi.org/10.1016/j.cor.2019.04.017

2 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11

Fernandez-Viagas et al., 2016) have focused only on heuristic meth-
ods, and do not consider delaying of job processing by using un-
forced idle time.

In this research our goal is to extend the methods used in
branch-and-bound algorithms for the single-machine problem to
the two-machine permutation flow shop problem. By doing this,
we hope to develop methods that can optimally solve small-sized
instances of the problem. Additionally, we hope to obtain insights
that will prove useful for developing heuristic methods that can be
applied to larger-sized instances.

The remainder of the paper is organized as follows. Section two
provides a literature review of relevant research for the problem.
Section three gives a formal description of the problem and ex-
plains how to insert unforced idle time, in a two-machine permu-
tation flow shop, to minimize total earliness and tardiness given
a sequence. In section four, we show how a lower bound for
the single-machine problem can be extended to the two-machine
permutation flow shop and propose two branch-and-bound algo-
rithms.

In section five, we develop dominance conditions that are de-
rived from the single-machine problem and integrate them into
the branch-and-bound algorithms. In section six we describe how
the computational tests were constructed, and then present the re-
sults of those tests. Finally, section seven concludes the paper.

2. Literature review

Many papers for scheduling problems with both earliness and
tardiness costs have been published. The first survey for early/tardy
scheduling that covers most of the early work was provided by
Baker and Scudder (1990). Hoogeveen (2005) reviewed multicrite-
ria problems that included earliness and tardiness in a more recent
survey. The single-machine environment has the most papers with
an early/tardy objective. Valente (2009) reviews more recent pa-
pers that address an early/tardy scheduling with no idle time on a
single-machine.

Kanet and Sridharan (2000) reviewed the early papers that ad-
dressed scheduling problems that include inserted idle time. Three
of these early papers focused on how to insert idle time to opti-
mize the objective, given a sequence for the single-machine prob-
lem. Fry et al. (1987) first addressed this problem by using a linear
programming formulation. Davis and Kanet (1993) and Yano and
Kim (1991) used special characteristics of the problem to develop
more efficient timetabling procedures.

Branch-and-bound procedures were developed by Davis and
Kanet (1993), Kim and Yano (1994), and Schaller (2007) for finding
an optimal sequence and schedule for the single-machine problem.
In all three of these branch-and-bound procedures a partial se-
quence of jobs is represented by a node in the branch-and-bound-
tree.

Davis and Kanet (1993) use their timetabling procedure to cal-
culate the earliness and tardiness of jobs in a partial sequence,
which provides a lower bound for the objective, but does not con-
sider the yet to be sequenced jobs. Kim and Yano (1994) developed
an improved lower bound by considering all jobs, i.e. both those in
the partial sequence and the ones that are still to be sequenced.

Schaller (2007) integrated the timetabling algorithm into the
lower bound calculation, and also considered all jobs (those in the
partial sequence, as well as the remaining ones), and found this
lower bound to be better than that of Kim and Yano. Dominance
conditions for the single-machine problem with inserted idle time
were also developed by Kim and Yano (1994), Szwarc (1993), and
Schaller (2007).

Much less research has been conducted, for the earliness and
tardiness objective, on production environments other than a
single-machine. To the best of our knowledge, there are eight pa-

pers for the flow shop environment that include earliness and tar-
diness in the objective. None of these papers considers unforced
idle time.

Moslehi et al. (2009) consider the objective of minimizing the
sum of maximum earliness and tardiness in a two-machine flow
shop and present an optimal procedure. Chandra et al. (2009) con-
sidered a permutation flow shop problem where all the jobs have
the same due date. Several objectives, including earliness and tar-
diness minimization, were considered by Madhushini et al. (2009),
and branch-and-bound procedures were developed for permuta-
tion flow shops.

Zegordi et al. (1995) present a simulated annealing algorithm
with specialized knowledge for scheduling permutation flow shops
to minimize the sum of weighted earliness and tardiness. A kanban
flow shop was addressed by Rajendran (1999), and heuristics were
developed for scheduling the kanban containers, for the objectives
of minimizing the total weighted flowtime, weighted tardiness and
weighted earliness.

Schaller and Valente (2013b) proposed a genetic algorithm and
compared it with five other neighborhood search procedures and
metaheuristics, for a permutation flow shop to minimize total
earliness and tardiness. The same problem was considered by
M'Hallah (2014), who developed a variable neighborhood search-
inspired heuristic for the same problem.

Schaller and Valente (2013a) compare several metaheuristics for
a permutation flow shop to minimize total earliness and tardiness
with family setups; and found that a genetic algorithm worked
best. Fernandez-Viagas et al. (2016) present a new constructive
heuristic, as well as bounded local search procedures, for minimiz-
ing total earliness and tardiness in permutation flow shops.

To the best of our knowledge, the consideration of using un-
forced idle time in a permutation flow shop to reduce the sum
of earliness and tardiness has not been addressed in previous re-
search. In this paper, we show how results for the single-machine
problem to minimize total earliness and tardiness can be extended
to a two-machine permutation flow shop.

3. Problem description

In the problem considered there are n jobs that need to be pro-
cessed in a flow shop with two machines. Let d; be the due date of
job j (j=1, ..., n). The processing time and completion time of job
j (=1, ..., n) on machine m (m=1, 2) are represented by pj; and
Cim, respectively. The earliness of job j, E;, is defined as: E;=max
{dj - Cjp, 0}, for j=1...., n. The tardiness of job j, Tj, is defined as:

n
Tj=max {Cj, - d;, 0}, for j=1,..., n. Minimizing Z= ; E; + T; (total

j
earliness and tardiness) is the objective.

This problem has a non-regular objective, and therefore un-
forced idle time can be inserted to possibly improve the objec-
tive, by increasing the completion time of jobs that would be early.
Forced idle time is required whenever a machine becomes avail-
able but the next job to be processed on that machine is not yet
ready for processing. However, to our knowledge, previous research
has not considered unforced idle time for this problem.

In this paper, we consider unforced inserted idle time. We
use [j] to denote the job sequenced in position j. Also, we use
Fljjjm to denote the forced idle time, and Ulj, to denote the
unforced idle time, before the job in position j on machine m.
Furthermore, we use Ijj,, to denote the total idle time on ma-
chine m before the job in position j (Ijjjm = Fljjjm + Uljjjm). Com-
pletion times for the job in position j can then be calculated as
Ciopn =Cjoz =0, Cpjj =Cfj - 11 + Ul + Py and: Cjp =max {Cyjpp,
Cij - 1123+ Uljjpz +Pyjja-

Since only permutation schedules are considered in this re-
search, a sequence of jobs that will be processed in the same

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11 3

Table 1
Notation used in the paper.

Notation Description

n Number of jobs

j Job index. j=1, ..., n

m Machine index. m=1 or 2

d; Due date of job j

Cim Completion time of job j on machine m

E; Earliness of job j, Ej=max {d; - Cj, 0}

T; Tardiness of job j, Tj=max {Cj, - d;, 0}

[i] Job sequenced in position j

Fljjjm Forced idle time on machine m before the job sequenced in position j
Uljm Unforced idle time on machine m before the job sequenced in position j
Ifjjm Total idle time on machine m before the job sequenced in position j (Ijjm = Fljjjm + Uljjjm)

order on each machine is required to define a solution. Also, since
unforced inserted idle time can be used to reduce the earliness of
jobs, we also need to determine if and where to insert unforced
idle time, for a given sequence of jobs, to determine a schedule,
and hence a solution. Table 1 provides a summary of the notation
introduced in this section.

For a given sequence of jobs, the completion time of job [j] on
machine 2 will determine the earliness or tardiness of the job in
position j of the sequence. As previously shown in this section,
the completion time Cjj;, = max {Cjjj1, Cjj - 12} + Uljjj2 + Pyjj2, Where
Cioj2 =0. Therefore, a lower bound on the start time of the job in
position j on the second machine is given by max {Cj;y, Cjj- 12}
Similarly, a lower bound on the completion time of the job in po-
sition _] is max {le, C[_] - 1]2}+p[j]2 (UI[J]Z :0)

A single-machine timetabling procedure for inserting idle time
into a given sequence for minimizing total earliness and tardiness
(Fry et al., 1987; Davis and Kanet, 1993; Kim and Yano, 1994) can
be used with the constraint that the jobs cannot start before max
{Ci)» Cj - 1)2} for [j]=1...., n. Inserting unforced idle time on ma-
chine 1 does not need to be considered, as doing so can only
tighten the above constraint, and possibly increase a solution’s ob-
jective value.

The problem can therefore be written as the mathematical pro-
gram FS2ET.

FS2ET:

Minimize Z = Z::1 max {C[J]Z - dm, O} + max {d[_]] - C[j]z, O}

(1)
Subject to:
J .
Cm] = Zk:l (p[k]l) for] =], ..., (2)
Ciiz = G112 + Ul + Ppjp2 forj=1.....n (3)
C[j]z > C[j]] + U[[j]z + P[j2 forj=1,...,n (4)
Cop=0 (5)

Eq. (1) is the sum of earliness and tardiness. Constraint sets 2,
3, 4 and 5 develop the completion times for each job on the second
machine. These completion times are compared to the due dates to
calculate the total earliness and tardiness in Eq. (1). Constraint set
(6) requires nonnegative unforced idle times.

4. Branch-and-bound algorithms and bounds
4.1. Branch-and-bound algorithms

In this section, we propose two branch-and-bound al-
gorithms that extend a procedure previously developed by
Schaller (2007) for the single-machine problem. In both branch-
and-bound algorithms, a node in the branch-and-bound tree rep-
resents a partial sequence of jobs. For each node in the branch-
and-bound tree, both a lower bound and an upper bound on the
optimal objective value is calculated, an upper bound is calculated,
and some conditions that could help fathom the node are also ex-
amined.

An incumbent value, that represents the value of the total earli-
ness and tardiness of the current best sequence, is compared to the
lower bound found for a node. If the incumbent value is less than
or equal to the lower bound, the node is fathomed. Each node’s
associated partial sequence is completed using a simple heuristic,
and its associated objective value is calculated to obtain an upper
bound. If the upper bound found is less than the incumbent value,
then the incumbent value is updated, and the sequence is retained
as the best sequence found so far.

If a complete sequence is found with an objective value that
is less than the incumbent, then the incumbent is updated, and
the complete sequence is retained as the best sequence found. An
initial incumbent value and solution are obtained by sorting the
jobs in earliest due date order (EDD), inserting idle time in the
resulting sequence and calculating the solution’s total earliness and
tardiness.

The difference between the two algorithms is that in the first
one, referred to as BBI, a node represents an initial partial se-
quence, while in the second one, denoted as BBP, a node instead
corresponds to a post partial sequence. When a node represents
an initial partial sequence, the sequence is built from the begin-
ning, starting with the first job to be processed, and working to-
ward the end of the sequence to the last job to be processed. On
the contrary, when a node represents a post partial sequence, the
sequence is built from the end, starting with the last job to be pro-
cessed, and working toward the beginning of the sequence to the
first job to be processed.

The reason for trying these two versions of the branch-and-
bound algorithm is that in Schaller (2007)’s branch-and-bound al-
gorithm for the single-machine problem, which was shown to be
the most effective, a node represented a post partial sequence. Us-
ing a post partial sequence in the single machine problem was
straightforward as a job’s completion time before the considera-
tion of inserting idle time is known (it is equal to the sum of the
processing times of the not yet scheduled jobs, plus the job’s pro-
cessing time).

In the two-machine permutation flow shop problem we would
know the job’s completion time on the first machine. However, we

4 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11

Table 2
Notation introduced in this section.

Notation Description

o A partial sequence.

p The number of jobs in the partial sequence o’.
o’ Set of jobs that have not yet been sequenced.
q The number of jobs in the set ¢’ (q=n - p).

P (SPT,) The sum of the processing times of the j jobs with the shortest processing times on machine m, in the set o’

P (LPTj,) The sum of the processing times of the j jobs with the longest processing times on machine m, in the set 0.

deppyj) The jth job’s due date when the jobs in ¢’ are sorted in earliest due date order.

LBCjjp2 A lower bound for the completion time on the second machine, for the job in position j of a sequence, when no unforced idle time is used.
Iij2 The idle time on machine two before the job in position j.

would not know its completion time on the second machine. We
can calculate a lower bound for a job’s completion time on the
second machine and use it in place of the actual completion time,
but this causes the lower bound to be weaker. Using a node to
represent an initial partial sequence in the branch-and-bound tree
overcomes this problem, as we can calculate the completion times
on both the first and second machines, for each job in the partial
sequence, before any unforced idle time is considered.

4.2. Lower bounds

The lower bounds developed in this section are based on the
lower bound developed by Schaller (2007) for a single machine
environment, suitably modified to reflect scheduling in a two- ma-
chine flow shop. The lower bounds for the two branch-and-bound
algorithms are quite similar in nature, though they necessarily dif-
fer somewhat due to the use of initial or post partial sequences.

We will first consider a node in BBP that represents p jobs in
a post partial sequence o. Let q=n - p and let ¢’ be the set con-
sisting of these q jobs that have not yet been sequenced. When
we complete the sequence, including the jobs in the set ¢’, then
a timetabling algorithm will be used to solve FS2ET and obtain its
sum of earliness and tardiness.

We could obtain a lower bound without considering the jobs
in o’ by solving FS2ET for the jobs in o, but this lower bound
would be weak. The lower bound can be improved by considering
the jobs that have not yet been sequenced, that is, the jobs in the
set ¢.” To develop the lower bound we use the following notation.

P(SPTj;) = the sum of the processing times of the j jobs with the
shortest processing times on the first machine, in the set o”.
P(SPTj,) =the sum of the processing times of the j jobs with the
shortest processing times on the second machine, in the set
o
P(LPTj,)=the sum of the processing times of the j jobs with the
longest processing times on the second machine, in the set
o’
dgppyj) = the jth job’s due date when the jobs in o~ are sorted in
earliest due date (EDD) order (dgppyj; < deppyig if j < k).
LBC[jj, =a lower bound for the completion time on the second
machine, for the job in position j of the sequence, when no
unforced idle time is used.
[[jj2 =the idle time immediately inserted before the job in posi-
tion j.
Table 2 provides a summary of the notation introduced in this
section.
Schaller (2007) proved that if the due dates in EDD order (dgpp)
are substituted for the actual due dates, and compared to the ac-
tual completion times, a lower bound on the total earliness and

n
tardiness is obtained. That is, we have:)~ (max {Cjj, - dgppyjs
=1

n
0})+ max {dEDD[j] - C[_]]Zv O}) < z% (max {C[j]Z - dm, 0}+max {d[.l] -
j=

Cjjj2> 0}). This result can be used as a substitute for (1) to provide
a lower bound.

We also would not know the actual completion times (Cj;j, for
j=1, ..., n) of the jobs in a sequence. However, we can calculate
lower and upper bounds on these completion times using the fol-
lowing equations. First the lower bound:

P(SPsz) + ZL:] l[k]2 = C[j]Z

and

J J
ka, 13k2+2:k:q+1 Pik)2 +Zk:1 Iz < Cpipe

And the upper bound:

P(LPTj) + Zi:1 Ijga = Cyip2

and

j j
I +Zk=q+1 P+, Iz =Ci2

We also know that the completion time for the job in position j
of a sequence must be greater than or equal to the lower bound on
the completion time if no unforced idle time is used before the job
in position j (Cjjj, > LBCjjp,). These equations can be substituted for
(2), (3) and (4) of the mathematical program FS2ET, and we can
then formulate the following mathematical program FS2ETEDD1 to
develop a lower bound, given a post partial sequence o.

FS2ETEDD1:

forj=1,....q

forj=1,....q

for j=q+1,...,n

Minimize Z, g
=", (max {Cyp — depoyy. 0} + max {deooy) — . 0})
+ Zjn=q+1 (max {C[j]z - d[j], 0} + max {d[j] - sz, 0}) (7)
Subject to:

forj=1,...,q
(8)

j)
P(SPsz) + Zk=q+1 Pikj2 + Ke1 I[k]2 = CU]Z

for j=q+1,...,n
9)

Do Pt Ly Pl 2o, e =Cie

J .
P(LPsz) + Zk:l l[l(]2 > C[j]z fOF] =1,..., q (10)

Zkea’ pk2+24ﬂk:q+1 p[k]2+zjk:1 I[k]2 = CU]Z

for j=q+1,....n

(11)
Cyp = LBCp2 forj=1,....,n (12)
ljp. >0 forj=1,...n. (13)

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11 5

Eq. (7) is the objective function in mathematical program
FS2ETEDD1. The due dates of the jobs that have not yet been se-
quenced (o’) are sorted in EDD order. These due dates are used
for the first q positions, and the actual due dates are used for the
other positions. Completion times and idle times need to be deter-
mined for the solution of the mathematical program.

Constraint set 8 sets a lower bound for the completion times
on the second machine for the first q jobs of a complete sequence.
This constraint set requires the completion time of the job se-
quenced in the jth position of a complete sequence to be at least
as great as the sum of the processing times of the jobs in the set
o’ on the second machine, sorted in shortest processing time or-
der, for the first j positions, plus any idle time that is used.

Constraint set 9 sets a lower bound for the completion times
on the second machine, for the last p jobs of a complete sequence.
This constraint set requires the completion time of the job se-
quenced in the jth position of a complete sequence, for positions
q+1 to n, to be at least as great as the sum of the processing
times of the jobs in the set o’ on the second machine, plus the
sum of the processing times on the second machine of the jobs
sequenced in positions q+1 to j, plus any idle time that is used.

Constraint set 10 sets an upper bound for the completion times
on the second machine for the first q jobs of a complete se-
quence. This constraint set requires the completion time of the
job sequenced in the jth position of a complete sequence to be
no greater than the total processing time, on the second machine,
of the j jobs in the set ¢’ with the longest processing times on the
second machine, plus the total processing time on the second ma-
chine of the jobs sequenced in positions q+1 to j (if j > q), plus
any idle time that is used.

Constraint set 11 sets an upper bound for the completion times
on the second machine for the last p jobs of a complete sequence.
This constraint set requires the completion time of the job se-
quenced in the jth position of a complete sequence, for positions
q+1 to n, to be no greater than the sum of the processing times of
the jobs in the set ¢’ on the second machine, plus the sum of the
processing times, on the second machine, of the jobs sequenced in
positions q+1 to, j plus any idle time that is used.

Constraint set 12 requires the completion time of the job se-
quenced in the jth position of a complete sequence to be at least
as great as a lower bound on the completion time considering both
machines. This lower bound will be defined below. Finally, con-
straint set (13) requires nonnegative inserted idle times.

The lower bounds on completion times in constraint sets 8 and
9 only consider the processing times on the second machine. By
considering the processing times of jobs on the first machine, an
additional lower bound for completion times on the second ma-
chine can be developed. We use the notation LBCj;}, to denote that
this is a lower bound on the completion time on the second ma-
chine of the job in the jth position of a complete sequence. This
lower bound does not consider any unforced idle time but may be
tighter than the lower bound obtained by using constraint sets 8
and 9.

For positions 1 through q, LBCjjj, is defined as: LBCjjj, =max
{P(SPTy1) + P(SPTj.k41)2) k=1, ..., j} for positions 1 through q. For
positions q+ 1 through n, it is instead calculated as:

j
LBCj =max{ > P+ Y Pgi- LBCo1p2 § + Ppjpz-

keo’ k=q+1

In this lower bound, and for the first q positions, we obtain a
lower bound for the processing times on the first machine for the
first k jobs. This represents a lower bound on the start time, on
the second machine, of the job in position k. After the job starts,
on the second machine, of the job in position k, we still need to
process the jobs in positions k through j, on the second machine,

to complete the job in position j. We would not know these pro-
cessing times but use a lower bound on their sum. We then take
the maximum lower bound for k < j.

If j > q, we know the sum of the processing times on the first
machine for the first j jobs of a complete sequence. This represents
a lower bound on the start, on the second machine, of the job
in position k. To this start time, we then add the processing time
on the second machine of the job in position k, to obtain a lower
bound on its completion. A lower bound on the start, on the sec-
ond machine, of the job in position k can also be obtained by using
the lower bound on the completion time of the job sequenced im-
mediately before job [K] (LBCjj_;}2). To this, we then add the pro-
cessing time, on the second machine, of the job in position k, to
obtain a lower bound on its completion. We use the maximum of
these two lower bounds for the jobs sequenced in positions j > q.

The objective (7) and constraint sets 8, 9, and 11 correspond to
the mathematical model that provides a lower bound for the single
machine problem developed by Schaller (2007). The timetabling al-
gorithm developed by Schaller (2007) can then be used to solve
the model with these constraint sets. A minor modification to the
timetabling algorithm, in order to include constraint set 10, is used
in this research to develop the lower bound.

Given an initial partial sequence o with p jobs, in the BBI algo-
rithm we can use the mathematical program FS2ETEDD2 to obtain
a lower bound.

FS2ETEDD2:

Minimize ZLB
p
(max {C[j]Z - d[j], O} + max {d[j] - CU]Z’ 0})

Jj=

+ Z (max {C[j]z — deppyj)» 0} + Mmax {dEDD[j] — G 0}) (14)
Jj=p+1

= =

Subject to:

j j
> Pz +)l = G forj=1,....p (15)
k=1 k=1

Ciiz = Cj——12 + Iz + Py forj=1.....p (16)
C[j]z > C[j]] + lmz + pmz fOl'j =1,..., p (]7)

p i
P(SPT(j,p)z) + Z Pikj2 + Z I[k]2 < C[J]Z for j = p+1,....,n
k=1 k=1

(18)

p J
P(LPTU‘,p)z) + Z Pikj2 + lek]Z > CU]Z forj=p+1,....n
k=1 k=1

(19)
Ciipz = LBCjjpp forj=p+1,....,n (20)
Ijj2, =0 forj=1,...n. (21)

The objective (14) is the same as (7). However, and since we
have an initial partial sequence instead of a post partial sequence,
the actual due dates are used for the jobs in the first p positions,
while due dates sorted in earliest due date order are used for the
jobs in the last n - p positions (that is, for the jobs in set ¢’).

6 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11

Since we know the processing times on both machines of the first
p jobs in a sequence, we can calculate the actual completion times
when the amount of unforced idle time is determined. This is rep-
resented by constraints 15, 16, and 17.

We can obtain lower and upper bounds for the completion
times for the positions that will be filled by the jobs in the set o’,
and this is represented by constraint sets 18, 19, and 20. Constraint
set (21) requires nonnegative inserted idle times. The timetabling
algorithm used in FS2ETEDD1 was modified to account for the dif-
ferent constraints, and this algorithm is used to solve FS2ETEDD2
to obtain a lower bound.

4.3. Upper bound

For each node to be evaluated, in either of the branch-and-
bound algorithms (BBI or BBP), if its lower bound is less than the
incumbent value, then an upper bound is calculated. First, the par-
tial sequence is completed. This is done by sorting the unscheduled
jobs in earliest due date order (EDD). For the BBI algorithm these
jobs are placed after the initial partial sequence, while for the BBP
algorithm they are placed before the partial sequence.

A timetabling algorithm is then used to insert unforced idle
time, by minimizing the objective value for the sequence. The total
earliness and tardiness of this schedule is the upper bound. If the
upper bound is less than the incumbent value, then the incumbent
value is updated, and this sequence is retained as the best solution
found.

5. Dominance conditions

This section presents conditions for jobs that are adjacent in
a partial sequence that can eliminate further consideration of the
partial sequence in the branch-and-bound tree. There are condi-
tions that have been used for the single-machine early/tardy prob-
lem with inserted idle allowed that can be modified, to be used in
the two-machine permutation flow shop problem.

The modifications to the single-machine conditions are needed
because we need to consider processing on the first machine, as
well as the second machine, in the two-machine permutation flow
shop problem. Also, since the conditions are examined with re-
spect to a partial sequence, we need to consider what will happen
to the start and completion times on the second machine, as jobs
are added to a partial sequence. In order to evaluate a partial se-
quence, we can use a timetabling algorithm to insert unforced idle
time on the second machine for the jobs in the partial sequence
and calculate the earliness and tardiness of the jobs in the partial
sequence.

5.1. Initial versus post partial sequences

When we check the conditions, it is important to remember
that if we are working with an initial partial sequence (BBI), then
the completion times of the jobs (on the second machine) in this
initial partial sequence could be pushed earlier as jobs are added
to the partial sequence. If we are working with a post partial se-
quence (BBP), then the completion times of the jobs in the post
partial sequence could be pushed to a later completion time as
jobs are added to the partial sequence.

This can be demonstrated with the following five job example.
The data for pj;, pj, and d;, j=1, ..., 5, are shown in Table 3.

If we are considering the initial partial sequence 1 - 2 - 3, the
completion times of these jobs without unforced idle are shown
in Table 4A. Fig. 1 shows the Gantt chart for this initial partial se-
quence without unforced idle time.

As unforced idle time is used, the three jobs in the initial par-
tial sequence will have their completion times increased, as their

Table 3
Data for the example.

Job

Pj2 2 4 6 10 10
d; 39 37 38 36 39

Table 4
Completion times for the example initial partial sequence.

4A. Before unforced idle time is used.

job
Machine 1 2 3
G 2 10 15
G 4 14 21
4B. After unforced idle time is used.
Job
Machine 1 2 3
G 2 10 15
G 33 37 43
4C. After adding two more jobs.
Job
Machine 1 2 3 4 5
G 2 10 15 20 22
G 28 32 38 48 58

ML |] | |

M2 | [] L]l

Fig. 1. Gantt chart for initial partial sequence, without unforced idle time.

processing times are right-shifted because each of the jobs is early.
In this example, eventually the start and completion times of the
three jobs on the second machine will form a block, and there will
be no idle time between these jobs.

The completion times of the jobs are shown in Table 4B, and
the associated Gantt chart is shown in Fig. 2. At this point, increas-
ing the idle time before the first job of the block by one unit will
cause the objective to increase one unit. This is due to the fact,
that one job is early, one is on time, and one job is tardy. Likewise,
decreasing the idle time before the first job of the block by one
unit will also cause the objective to increase one unit.

When jobs 4 and 5 are added to the partial sequence to create a
complete sequence 1 - 2 - 3 - 4 - 5, then the completion times for
the jobs will be as shown in Table 4C. The associated Gantt chart
is shown in Fig. 3. Since the processing on the second machine
for the two additional jobs occurs after the other jobs, these two
additional jobs will be tardy if the completion times for the first
three jobs shown in Table 4B were used.

Therefore, the processing of the first three jobs is left shifted,
and idle time is decreased to decrease the objective value. With
the completion times shown in Table 4C, two jobs are early, one
job is on time, and two jobs are tardy, so adding or decreasing idle
time before the block of jobs will increase the objective.

If we consider the post partial sequence 3 - 4 - 5, then the
completion times on the second machine of these jobs could
be right-shifted (increased) as additional jobs are added. Table 5
shows the completion times for the post partial sequence for the
above example.

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11 7

ML |

M2

v

Right shift using unforced
idle time

Fig. 2. Gantt chart for initial partial sequence, with unforced idle time.

A

Left shift due to the
two added jobs.

Fig. 3. Gantt chart with two additional jobs added.

Table 5
Completion times for the example post partial sequence.

5A. With unforced idle time.

Job
Machine 1 2 3 4 5
G 15 20 22
G 26 36 46
5B. After adding two more jobs.

Job
Machine 1 2 3 4 5
G 2 10 15 20 22
G 28 32 38 48 58

5.2. Rules for the single-machine problem

In this section, we provide a review of the rules used to
eliminate nodes from further consideration in the single-machine
early/tardy problem. In this paper, these rules will be modified so
they can be used for the two-machine flow shop problem.

A rule for adjacent jobs was developed by Szwarc (1993). This
rule determines the order for the two adjacent jobs based on
whether they are scheduled before or after a calculated time.
Szwarc’s (1993) rule, restated by Schaller (2007) for the case where
all weights for the costs are equal to 1, is provided below.

Szwarc’s (1993) Rule: For each pair of jobs j and k, if they are
to be adjacent to each other, job k should be before job j if they are
started before tji, and j should be before job k if they are started
after tj, where

tjk = {dJ — —0.5% (pJ + pk), lfdJ — —dk >0.5% (pj — _pk) <0,

dj——p;——0.5x% (pj+px). ifdj— —d < 0.5% (pj — —py) <O,

0, lpr = Pk&dj - _dk < 0}

Kim and Yano (1994) provided two rules for a pair of adja-
cent jobs. The two rules are derived from Szwarc’s rule (1993) and
are therefore corollaries of Szwarc’s rule. The first rule determines

which job is first if the jobs are early or on time, and the second
rule determines which job is first if the jobs are tardy or on time.

Rule 1: If adjacent jobs j and k are started later or equal to
max {d;, di}, job j should be before job k when py > p;, and job k
should be before job j when py < p;.

Rule 2: If adjacent jobs j and k are completed earlier than or at
the same time as min {d; - p;, di - p}, job j should be before job
k when py < pj, and job k should be before job j when py > p;.

Szwarc's rule is stronger than these rules, that is, Szwarc’s
rule eliminates the partial sequences that are eliminated by
these rules. An additional corollary of Szwarc’s rule, as noted by
Schaller (2007), is that if there exist two jobs j and k such that
pj=pk and d; < dy, and the jobs are adjacent, then job j should be
before job k. Schaller (2007) also shows that job j should be before
job k, even when they are not adjacent, if p;=py and d; < dj.

5.3. Rules for Two-machine permutation flow shop scheduling

The rules reviewed in the previous section could be valuable in
reducing the search space in a flow shop environment. One condi-
tion that is necessary for the rules of the previous section to apply
in flow shops is that there is no idle time on the second machine
between the two adjacent jobs to be examined.

Let jobs j and k be adjacent jobs in a sequence, with job j pre-
ceding job k. Also, let St,, be the start time of processing for job
k on machine m. Then, for any of the rules in the preceding sub-
section to be of use, we must have St, =Cj,. Consider schedules S
and S’ which are the same, with the following exception. In both
schedules jobs j and k are adjacent, but job j precedes job k in S,
while job k precedes job j in S'.

Let job h be the first job scheduled after jobs j and k, if jobs j
and k are not the last two jobs in schedules S and S'. If jobs j and
k are the last jobs to be in the schedules, we define a fictitious job
h with py; =oo0. Let G, (S), Cym (S), Cjm (S'), and Cyyy, (S') represent
the completion times of jobs j and k on machine m in schedules
S and S'. Since jobs j and k are adjacent, and there will be no idle
time between the two jobs on the first machine, then Cyy (S)=GCj;
(S).

The completion time on the second machine, for the job in the
latter of the two positions, could differ in schedules S and S’. If

8 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11

the following two conditions (A and B) are both true, the rules
for adjacent jobs in previous subsection can be used for the two-
machine permutation flow shop problem.

A) Either Cy;, (S) < Cjp (S") or Gy (S) < Cjy (S')+Pn1, and
B) Sty, (S)=Cj, (S) and Stj, (S)=Cy, (S)).

Proof. If schedule S has an earlier completion time for the two
jobs than schedule S, that will not affect the completion times of
the jobs sequenced after jobs j and k, unless the earlier completion
time under schedule S is beneficial. The reason for this is unforced
idle time could be used to increase the completion time of these
jobs on the second machine, if that is needed to reduce earliness.

If the completion time on the second machine for the two jobs
in schedule S is greater than that of schedule S’, but less than the
completion time of the two jobs on the first machine plus the pro-
cessing time on the first machine of the next job to be scheduled
after jobs j and k (job h), then again the completion times for the
jobs sequenced after jobs j and k will also not be affected. If the
completion time is later under schedule S than schedule S’, how-
ever, that could increase the completion times on the second ma-
chine of the jobs sequenced after jobs j and k, and unforced idle
time cannot be used to cause earlier completion times, so the later
completion times could cause the objective to increase.

The completion times of the jobs that are scheduled before jobs
j and k would also not be affected by whether schedule S or S’ is
chosen. Since there is no idle time between the two jobs on the
second machine (the start time of the job sequenced second equals
the completion time of the job sequenced first in both schedules),
the comparison of the schedules involves a simple interchange be-
tween the two jobs on the second machine and is not affected
by the completion times of the jobs on the first machine. There-
fore, the local problem (adjacent job exchange) becomes the same
as the single-machine problem, and the rules for comparing ex-
changes of adjacent jobs on a single-machine can be applied to
the two-machine permutation flow shop problem. [[End of Proof

We can now restate the rules for adjacent jobs on a single ma-
chine, so they can be applied to the two-machine permutation
flow shop problem. Condition 1 is Kim and Yano’s (1994) rule 1
modified to be used for the two-machine flow shop problem.

Condition 1: If jobs j and k are adjacent and cannot be started
on the second machine earlier than max {d;, di}, if (1) pyo > pjo,
(2) St (S')=Cyy (S') and Sty (S)=Cj, (S), and (3) Gy, (S) < Cjp (S))
or Cy (S) < Cjy (S')+Pni, then schedule S will be at least as good
as schedule S’ in terms of the objective, and job j should be before
job k.

When evaluating partial sequences, condition 1 will be effective
for post partial sequences, as in BBP. A timetabling algorithm can
be used to optimize the partial sequence, and if a pair of adjacent
jobs is found to meet condition 1, then it can be used to eliminate
a node. The reason for this is that as jobs are added to partial se-
quences in BBP, the completion times on the second machine could
become later, but not earlier, and therefore condition 1 will still be
met.

However, this is not the case for initial partial sequences, as in
BBI. When an initial partial sequence is being evaluated, it must
be remembered that as jobs are added, the completion times on
the second machine of the jobs in the partial sequence could be
pushed earlier, and therefore cause the criteria of condition 1 to
not be met.

If it is determined that criteria 2) and 3) of condition 1 will
be met (this can be determined by scheduling the initial partial
sequence without using any unforced idle time) then Swarc’s rule
(1994) can be used to determine maximum completion times, on
the second machine, for jobs j and k as defined by condition 2.

These completion times can be used to strengthen the lower
bound for an initial partial sequence. These maximum completion
times could also cause other completion times for jobs sequenced
earlier than jobs j and k to violate condition 3 (to be presented
later).

Condition 2: If there are two adjacent jobs in an initial par-
tial sequence, j and k, that cannot be started on the second ma-
chine earlier than max {d;, di}, and job k precedes job j, then if
(1) Po > Pjz. and (2) Sty (S)=Cy, (S') and St (S)=C (S). and
(3) Gz (S) = Cjp (S) or Cyy (S) < Cjy (S')+pqi1, with the comple-
tion of the partial sequence then the completion time of job k in
S’ (Cxp (S')) must be less than or equal to tj, + pyo, and the com-
pletion time of job j in S’ (Cj, (S')) must be less than or equal to
tik + Pk2 + Pj2-

Condition 3 is Kim and Yano’s (1994) rule 2 modified to be used
for the two-machine permutation flow shop problem.

Condition 3: If two adjacent jobs, j and k, are completed on the
second machine before or equal to min {d; - pjp, dx - Pyo}, if (1)
Pra < Pj2 and (2) Cip (S) = Cpp (S") or Cp (S) = Cjy (S')+ppy, then
schedule S will be at least as good as S’, and job j should be before
job k.

Note that Stj; (S)=Cy, (S) and St, (S)=Cj, (S) has been
dropped from this condition. This is because the job sequenced
first of the two jobs in either schedule will be early, and unforced
idle time will be used to increase its completion time to equal the
start time of the job sequenced second of the two jobs. Therefore,
these criteria will be met.

Condition 3 will be effective for initial partial sequences, as in
BBI. A timetabling algorithm can be used to optimize the partial
sequence, and if a pair of adjacent jobs is found to meet condition
3, then it can be used to eliminate a node. The reason for this is
that as jobs are added to partial sequences in BBI, the completion
times on the second machine could become earlier, but not later,
and therefore condition 3 will still be met.

However, this is not case for post partial sequences, as in BBP.
When a post partial sequence is being evaluated, it must be re-
membered that as jobs are added, the completion times on the
second machine of the jobs in the partial sequence could be
pushed later, and therefore cause the criteria of condition 3 to not
be met. If it is determined that criteria (2) of condition 3 will be
met, then Swarc’s rule (1994) can be used to determine minimum
completion times on the second machine for jobs j and k, as de-
fined by condition 4.

These completion times can be used to strengthen the lower
bound for a post partial sequence. These minimum completion
times could also cause other completion times for jobs sequenced
later than jobs j and k to violate condition 1.

Condition 4: If there are two adjacent jobs in a post partial se-
quence, j and k, and job k precedes job j, then if (1) py, < pj, and
(2) Gy (S) = Gjp (S') or Cyy (S) < Gjy (S')+ Pni» then the comple-
tion time of job k in S’ (Cy, (S’)) must be greater than or equal to
tjk + Pi2, and the completion time of job j in S’ (Cj, (S')) must be
greater than or equal to tj, + Py + Pj-

Condition 5 is the modified version of Schaller’s (2007) rule for
jobs that have equal processing times, and are adjacent to each
other, for use with the two-machine permutation flow shop prob-
lem. In this condition, the two jobs must have equal processing
times on the second machine.

Condition 5. If jobs j and k are adjacent, (1) pi, =pjp, (2) Stj,
(8)=Ck (S), and (3) d;j < dy, then schedule S will be at least as
good as S’, and job j should be before job k.

The next condition, condition 6, is not derived from the single-
machine early/tardy problem, but from the two-machine permuta-
tion flow shop problem with an objective of minimizing total tar-
diness (Sen et al. 1989). For this condition, let set B be the set of
jobs sequenced before jobs j and k.

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11 9

Condition 6. If jobs j and k are adjacent, (1) pj, < Pi, (2)
Pj1 < Pr1» (3) Pj1 < Pjp, and (4) IZBPH + Pj1 + Pj2 = dj, then sched-
€.

ule S will be at least as good as S’, and job j should be before job
k.

Proof. The completion times of the jobs sequenced before jobs j
and k are not be affected by which schedule, S or S, is selected.
Requirements (1), (2) and (3) ensure Cy, (S) < Cj (S'), so addi-
tional unforced idle time can be used on the second machine for
schedule S for the jobs sequenced after jobs j and k. This allows
that the completion times for schedule S, of the jobs sequenced
after jobs j and k, could equal those for schedule S'. So, the to-
tal earliness and tardiness of the jobs sequenced after jobs j and k
under schedule S is less than or equal to that of schedule S'.

Criterion 4) ensures that job j will not be early in either sched-
ule. Therefore, to prove this condition we only need to prove that
Tj (S)+Eg (S) +Ty (S) < Tj (S)+Ex (S') +Ty (S). If dg > Gy (S)),
then Ty (S)=Ty (S)=0, Tj (S) < T; (S’), and Ei (S') < Ej (S), so we
have Tj (S)+Ey (S) +T (S) < Tj (') +Ey (S') +Ty ().

If dy < d;, then neither job j or k will be early, and Ey (S)=Ey
(§8)=0. By (1) and (2), we have G; (S) < C (S), and Cy, (S) < Cp,
(S'). Therefore, T; (S)+Ey (S) +Ty (S) < Tj (S)+Ex (S) +Tk (S).
If d_| < dl(< G (S’), then T_] (s) - TJ (S) = Ex (S) +Ty (S). Thus,
we have Tj (S)+Ey (S) +Ty (S) < Tj () +Ex (S') +Tx (S). //[End of
Proof

Condition seven is based on Schaller (2007)’s single-machine
condition for jobs that have equal processing times, but these jobs
are not necessarily adjacent to each other. For this condition let
set B be the set of jobs sequenced between jobs j and k. Consider
a schedule S in which job j precedes job k and is sequenced im-
mediately before the set of jobs B, and job k is sequenced immedi-
ately after the set of jobs B. Let S’ be a schedule that has the same
sequence as schedule S, with the exception that the positions of
jobs j and k are exchanged, so job k immediately precedes the set
of jobs B, and job j is sequenced immediately after the set of jobs
B.

Condition 7. If for two jobs j and k, (1) px, =Dpj2, (2) Pj1 < Pxa»
and (3) d; < dy, then job j precedes job k in an optimal schedule.

Proof. The completion times of the jobs sequenced before jobs j
and k will not be affected by the choice of which job, j or k, is
sequenced earlier. Since pj; < Py, the jobs in set B will be com-
pleted on the first machine earlier or at the same time (if pj; = pyq)
if job j precedes job k. Therefore, unforced idle time can be used,
if necessary, to set the completion times on the second machine,
of the jobs in set B when j is sequenced before job k to be equal
to those when job k is sequenced before job j.

Since the completion time on the first machine will be the
same for the job sequenced immediately after the set B (either job
Jj or k) and pj, =py,, the completion times of the jobs sequenced
after the job that is sequenced second among jobs j and k will
not be affected by the choice of which schedule S or S’ is chosen.
Therefore, to prove this theorem it only needs to be proved that E;
(S)+TJ (S)+Ex (S) 4T (S) < Ej (S')+Tj (S)+Ex () +T (S)).

Note that we have Cj; (S)+pjp < Cqg (S)+pr and Cgy
(8)+pr2=Cj1 (S')+pj2. Let Z; (S)=E; (S)+T; (S), Z (S)=Ey (S)+Ty
(S) Zj (S)=E; (S)+T; (S'), and Z (S')=Ey (S)+Ti (S'). Also let
A=dy - dj and D=Cy;, (S) - Gy, (S'). There are two cases to con-
sider: (1) Ciq (S)+Pr2 — dx = 0 and (2) Cyy (S)+Pya - di < 0.

Case (1) Ciq (S)+prz - dg > 0. Having Cyq (S)+pxp —dg = 0
implies that Cy, (S)=Cj; (S') and Z; (S')=Z; (S)+A. Also, we have
Cio (S) = Giq (S)+ P2 = Cjy (S)+pjp. Since unforced idle time can
be used to set Cjp (S)=Cy, (S'), if di > Gy, (S') then Z; (S) > Z; (S)
- A. Since C_]Z (S) < Cl(2 (S’), if dk < CI(Z (S') then Zl((S') > Z_] (S) -
A. Therefore, for this case, Z; (S)+Zy (S) < Zj (S)+Z (S").

Case 2) Ci (S)+pk2 - dl(< 0.1If dk < Co (S), then CJ2 (S’):Ckz
(S) and Z; (S')=Z (S)+A. Since Z; (S') = Z; (S) - A, we have
Z, (S)+Z (5) = Zj (S)+Z (). If dy = i (). then 7, (5)=2,
(S)+D. Also, Cp (S') < Cy, (S) and d; < dy. Since unforced idle
time can be used to set Cj, (S)=Cy, (S'), if necessary, then Z; (S) <
Z; (S')+D. Therefore, we have Z; (S)+Z (S) < Z; (S')+Z (S) for
this case. //[End of Proof

Two additional procedures are created by incorporating the
dominance conditions. The BBID algorithm uses a node to repre-
sent an initial partial sequence and incorporates the dominance
conditions. The BBPD algorithm uses a node to represent a post
partial sequence and incorporates the dominance conditions.

6. Computational test

The proposed algorithms are tested on instances generated ran-
domly with several levels of the number of jobs, and under various
conditions of due date range and tightness.

6.1. Data

The procedures described in sections four and five were tested
on problems that consisted of several levels of the number of jobs,
and for nine due date range and tightness distributions. A set of 10
instances is generated for each combination of number of jobs and
due date range and tightness parameters. Nine levels of number of
jobs (n) are tested: n=8, 10, 12, 14, 16, 18, 20, 25, and 30.

A uniform distribution was used to generate the processing
times of the jobs on each machine. These times were generated
over the integers 1 and 10. To randomly generate the due dates for
the jobs, a uniform distribution was also used over the integers MS
(1 -r-R/2)and MS (1 - r+R/2), where MS is the makespan esti-
mated for the instance using the makespan lower bound proposed
in Taillard (1993), and R and r referred to as the due date range
and tardiness factors are parameters.

Three levels of due date range (R) were tested: R=0.2, 0.6
and 1.0. We also considered three levels of due date tightness (r):
r=0.0, 0.2 and 0.4. These levels of R and r result in nine sets of
due date parameters for each level of n.

The Turbo Pascal programming language was used to code the
procedures, which then tested on a Dell Inspiron 1525 GHz Lap
Top computer. Each procedure was performed for a maximum of
300 seconds for an instance. If a procedure was unable to prove
an optimal solution for an instance within the time limit, it was
terminated. For each procedure and for each combination of n, R
and r, we recorded the average seconds used per instance, as well
as the number of instances solved within 300 seconds.

6.2. Results of the test

Tables 6 and 7 show the results of the test for each level of
number of jobs. Table 6 shows the average amount of time re-
quired per instance, while Table 7 shows how many instances were
solved within the time limit. It is shown that for each of the algo-
rithms the time required to solve instances increases with an in-
crease in the number of jobs.

The results also show that the procedures that use a node to
represent a post partial sequence (BBP and BBPD) instead of an
initial partial sequence (BBI and BBID) generally require less time
to solve instances than their counterpart algorithms. These algo-
rithms were able to solve more of the instances with 16 or more
jobs than their counterparts.

Including the dominance conditions into the algorithms had a
positive effect. The BBID and BBPD algorithms required less time
than the BBI and BBP procedures, respectively, for all levels of jobs.

10 J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11

Table 6
Average seconds by number of jobs.

Number of Jobs

Procedure 8 10 12 14 16 18 20 25 30

BBI 0.061 0.629 6.77 27.83 97.84 172.36 265.21 299.47 300.00
BBP 0.060 0.516 2.63 21.40 94.69 177.67 259.23 297.85 298.49
BBID 0.047 0.238 122 8.15 26.52 73.97 157.42 28791 288.73
BBPD 0.050 0.264 0.97 4.08 15.67 67.56 129.56 265.34 289.67

Table 7
Number of problems solved by number of jobs.

Number of Jobs

Procedure 8 10 12 14 16 18 20 25 30

BBI 90 90 90 90 73 54 17 2 0
BBP 90 90 90 90 78 51 20 1 1
BBID 90 90 90 90 88 77 61 9 5
BBPD 90 90 90 90 90 8 71 18 6
Table 8
Average seconds by r and R for n=16.
Procedure
r R BBI BBP BBID BBPD
0.00 0.20 129.86 127.57 16.32 8.40
0.00 0.60 91.53 107.39 10.10 9.19
0.00 1.00 54.11 8.42 10.93 2.20
0.20 0.20 103.23 129.76 13.32 26.07
020 060 7113 99.69 14.71 14.87
0.20 1.00 12.37 14.08 3.92 2.81
0.40 0.20 204.54 121.39 91.06 3144
0.40 0.60 166.06 174.60 53.47 33.64
0.40 1.00 4771 69.27 26.04 12.41
Table 9
Number of problems solved by r and R for n=16.
Procedure
r R BBI BBP BBID BBPD
000 020 9 7 10 10
0.00 0.60 8 8 10 10
0.00 1.00 9 10 10 10
0.20 0.20 8 8 10 10
0.20 0.60 10 8 10 10
0.20 1.00 10 10 10 10
0.40 0.20 4 10 9 10
0.40 0.60 6 7 9 10
0.40 1.00 9 10 10 10

The two algorithms with the dominance conditions included also
solved more instances with 16 or more jobs. As the number of
jobs increased the difference in the number of instances solved by
the algorithms with the dominance conditions, compared to their
counterparts without the dominance conditions increased.

Tables 8 and 9 show the results of the test for each combination
of due date tightness and range parameters (r and R) when n=16.
Table 8 shows the average amount of time required per instance,
while Table 9 shows the number of instances solved within the
time limit.

The results show that as due dates become tighter, the algo-
rithms generally required more time to solve instances. Three of
the four algorithms were unable to solve all the instances with
the tightest due dates tested (r=0.40). As the due date range in-
creases, the algorithms generally required less time to solve in-
stances.

When the due date range was 1.00, three of the four algorithms
were able to solve all the instances within the time limit and the

other algorithm was able to solve 28 of the 30 instances. The BBPD
algorithm required the least amount of time for seven of the nine
combinations, and was the only algorithm that was able to solve
all the instances within the time limit.

7. Conclusion

In this research, the two-machine permutation flow shop prob-
lem with the objective of minimizing total earliness and tardiness
is addressed. Using unforced idle time to reduce the earliness of
some jobs is considered. It is shown that unforced idle time is only
needed on the second machine.

Approaches for the single-machine early/tardy problem with in-
serted idle time allowed are extended to the two-machine permu-
tation flow shop. These include lower bounding procedures and
conditions to reduce the search. Four branch-and-bound proce-
dures were developed and tested. The tests show that the branch-
and-bound procedure that uses a node to represent a post partial
sequence and includes dominance conditions generally worked the
best.

Since the approaches use properties of the two-machine per-
mutation flow shop problem, and the results of the tests show the
amount of time required to solve problems to optimality increases
quickly, it is unlikely that extending the methods to more than
two machines will allow for quickly solving to optimality problems
other than those with a small number of jobs. Therefore, future re-
search on heuristic methods that can generate good solutions for
larger sized instances would be beneficial.

References

Baker, K.R., Scudder, G.D., 1990. Sequencing with earliness and tardiness penalties:
a review. Oper. Res. 38, 22-36.

Chandra, C., Mehta, P, Tirupati, D., 2009. Permutation flow shop scheduling with
earliness and tardiness penalties. Int. J. Prod. Res. 47, 5591-5610.

Davis,].S., Kanet, J.J., 1993. Single-machine scheduling with early and tardy comple-
tion costs. Naval Res. Logist. 40, 85-101.

Fernandez-Viagas, V., Dios, M., Framinan,].M., 2016. Efficient constructive and com-
posite heuristics for the permutation flowshop to minimize total earliness and
tardiness. Comput. Oper. Res. 70, 38-68.

Fry, T.D., Armstrong, R.D., Blackstone, J.H., 1987. Minimizing weighted absolute de-
viation in single machine scheduling. IIE Trans. 9, 445-450.

Hoogeveen, H., 2005. Multicriteria scheduling. Eur. J. Oper. Res. 167, 592-623.

Kanet,]J., Sridharan, V., 2000. Scheduling with inserted idle time: problem taxon-
omy and literature review. Oper. Res. 48, 99-110.

Kim, Y.D., Yano, C.A., 1994. Minimizing mean tardiness and earliness in single-
machine scheduling problems with unequal due dates. Naval Res. Logist. 41,
913-933.

Madhushini, N., Rajendran, C., Deepa, Y., 2009. Branch-and-bound algorithms for
scheduling in permutation flowshops to minimize the sum of weighted flow-
time/sum of weighted tardiness/sum of weighted flowtime and weighted tardi-
ness/sum of weighted flowtime, weighted tardiness and weighted earliness of
jobs.]. Oper. Res. Soc. 40, 991-1004.

Moslehi, G., Mirzaee, M., Vasei, M., Azaron, A., 2009. Two-machine flow shop
scheduling to minimize the sum of maximum earliness and tardiness. Int.]J.
Prod. Econ. 122, 763-773.

M’Hallah, R., 2014. An iterated local search variable neighborhood descent hybrid
heuristic for the total earliness tardiness permutation flow shop. Int. J. Prod.
Res. 52 (13), 3802-3819.

Rajendran, C., 1999. Formulations and heuristics for scheduling in a Kanban flow-
shop to minimize the sum of weighted flowtime, weighted tardiness and
weighted earliness of containers. Int. J. Prod. Res. 37, 1137-1158.

Schaller, J.E., 2007. A comparison of lower bounds for the single-machine early tardy
problem. Comput. Oper. Res. 34, 2279-2292.

http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0012
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0414
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0414
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0017

J. Schaller and J. Valente / Computers and Operations Research 109 (2019) 1-11 1

Schaller, J.E., Valente, J.M., 2013. An evaluation of heuristics for scheduling a non-de-
lay permutation flow shop with family setups to minimize total earliness and
tardiness. J. Oper. Res. Soc. 64 (6), 805.

Schaller, J.E., Valente,].M., 2013. A comparison of metaheuristic procedures to
schedule jobs in a permutation flow shop to minimise total earliness and tardi-
ness. Int. J. Prod. Res. 51 (3), 772.

Sen, T., Dileepan, P, Gupta,].N.D., 1989. The two-machine flowshop scheduling
problem with total tardiness. Comput. Oper. Res. 16, 333-340.

Szwarc, W., 1993. Adjacent ordering in single-machine scheduling with earliness
and tardiness penalties. Naval Res. Logist. 40 (2), 229-244.

Yano, C.A., Kim, Y-D., 1991. Algorithms for a class of single machine weighted tardi-
ness and earliness problems. Eur.]. Oper. Res. 52, 161-178.

Taillard, E., 1993. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64,
278-285.

Valente, JM.S., 2009. Beam search heuristics for the single machine scheduling
problem with linear earliness and quadratic tardiness costs. Asia-Pacific J. Oper.
Res. 26, 319-339.

Zegordi, S.H., Itoh, K., Enkawa, T., 1995. A knowledgeable simulated annealing
scheme for the early/tardy flow shop scheduling problem. Int. . Prod. Res. 33,
1449-1466.

http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30100-5/sbref0029

	Branch-and-bound algorithms for minimizing total earliness and tardiness in a two-machine permutation flow shop with unforced idle allowed
	1 Introduction
	2 Literature review
	3 Problem description
	4 Branch-and-bound algorithms and bounds
	4.1 Branch-and-bound algorithms
	4.2 Lower bounds
	4.3 Upper bound

	5 Dominance conditions
	5.1 Initial versus post partial sequences
	5.2 Rules for the single-machine problem
	5.3 Rules for Two-machine permutation flow shop scheduling

	6 Computational test
	6.1 Data
	6.2 Results of the test

	7 Conclusion
	References

