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Abstract

This paper presents a study of the metaphorism pattern of relational specifica-
tion, showing how it can be refined into recursive programs.

Metaphorisms express input-output relationships which preserve relevant in-
formation while at the same time some intended optimization takes place. Text
processing, sorting, representation changers, etc., are examples of metaphorisms.

The kind of metaphorism refinement studied in this paper is a strategy
known as change of virtual data structure. By framing metaphorisms in the
class of (inductive) regular relations, sufficient conditions are given for such
implementations to be calculated using relation algebra.

The strategy is illustrated with examples including the derivation of the
quicksort and mergesort algorithms, showing what they have in common and
what makes them different from the very start of development.

Keywords: Programming from specifications, Algebra of programming,
Weakest precondition calculus.

Politicians and diapers should be changed often and
for the same reason.

(attributed to Mark Twain)

1. Context

The witty quote by 19th century author Mark Twain that provided inspira-
tion for the title of this paper embodies a metaphor which the reader will surely
appreciate. But, what do metaphors of this kind have to do with computer
programming?

A synergy between metaphors in cognitive linguistics and some relational
patterns common in the field of formal specification, termed metaphorisms, was
suggested in our earlier conference paper [1], which the current paper extends
by framing the approach into the study of the wider class of inductive regular

Preprint submitted to Elsevier April 9, 2018



relations [2]. In particular, an algebra useful for reasoning about such specifica-
tion patterns is developed, whose ubiquity is already observed by Jaoua et al.
[2]:

We have found regular relations to be very general; in particular,
[...] most [...] specifications we encounter in practice are regular.

Metaphorisms are regular relations represented by symmetric divisions of
inductive functions (aka. folds or catamorphisms) restricted by other regular
relations expressing some kind of optimization. After introducing the metaphor
and metaphorism concepts and their underlying algebra, this paper presents a
generic process of implementing metaphorisms towards divide & conquer pro-
gram strategies based on implicit, virtual data structures.

Related work. This paper follows our previous line of research [3] in investigat-
ing relational specification patterns which involve the shrinking combinator for
controlling vagueness and non-determinism. It also relates to the work on rep-
resentation changers [4] and on the relational algebra of programming in general
[5, 6]. Our calculation of sufficient conditions for implementing metaphorisms
via change of virtual data-structure, illustrated with the quicksort and mergesort
algorithms, can be regarded as a generalization and expansion of the derivation
of quicksort by Bird and de Moor [5], where it is given in a rather brief and
terse style.

Interest in so-called regular relations dates back to at least the work by
Riguet in the late 1940’s [7]. Their use as specification devices was pioneered
by Jaoua et al. [2] and Mili et al. [6] in the early 1990’s. Shortly afterwards,
Hutton’s PhD thesis [8] presents a number of program derivations in which
such relations are in evidence. Rectangular relations, a special case of regular
relations, have also been studied in [7, 9]. Interestingly, Jaoua et al. [2] already
acknowledge that it is common for specifications to be written as the intersection
of an equivalence relation with a rectangular relation, which is precisely the
specification pattern at focus in the current paper.

Metaphorisms can also be regarded as relational generalizations of so-called
metamorphisms [10, 11]. Virtual data structures have been studied mainly from
the perspective of deforestation [12, 13]. Their role in structuring divide and
conquer algorithms is commonly accepted but less worked out in a formal con-
text.1 Sorting is addressed from this perspective in Bird & de Moor’s textbook
[5], which also stresses algorithm classification through synthesis in the spirit
of [14]. In the same vein, the role of intermediate, virtual types in classifying
and cataloguing specifications in software repositories has also been emphasized
[15].

1 In the words of Swierstra and de Moor [12] “virtual data structures (...) play the role of
a catalyst in the development of programs, in the sense that in the final program they have
been transformed away”.
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2. Introduction

Programming theory has been structured around concepts such as syntax,
semantics, generative grammar and so on, that have been imported from Chom-
skian linguistics. The basis is that syntax provides the shape of information
and that semantics express information contents in a syntax-driven way (e.g.
the meaning of the whole dependent on the meaning of the parts).

Cognitive linguistics breaks with such a generative tradition in its belief that
semantics are conveyed in a different way, just by juxtaposing concepts in the
form of metaphors which let meanings permeate each other by an innate capacity
of our brain to function metaphor-wise. Thus we are led to the metaphors
we live by, quoting the classic textbook by Lakoff and Johnson [16]. If in a
public discussion one of the opponents is said to have counterattacked with a
winning argument, the underlying metaphor is argument is war ; metaphor time
is money underlies everyday phrases such as wasting time, investing time and
so on; Twain’s quote lives in the metaphor politics is dirty, the same that would
enable one to say that somebody might need to clean his/her reputation, for
instance.

In his Philosophy of Rhetoric [17], Richards finds three kernel ingredients in a
metaphor, namely a tenor (e.g. politicians), a vehicle (e.g. diapers) and a shared
attribute (e.g. soiling). The flow of meaning is from vehicle to tenor, through
the (as a rule left unspecified) common attribute. A sketchy characterization of
this construction in the form of a “cospan”

T

g
��

V

f��
A

(1)

is given in [18]. Functions f : V → A and g : T → A, the “witnesses” of the
metaphor, extract a common attribute (A) from both tenor (T) and vehicle
(V). The cognitive, æsthetic, or witty power of a metaphor is obtained by hiding

A, thereby establishing a composite, binary relationship2 T V
g◦·foo between

tenor and vehicle — the “T is V” metaphor — which leaves A implicit.
It turns out that, in the field of program specification, many problem state-

ments are metaphorical in the same (formal) sense: they are characterized as
input-output relationships in which the preservation of some kernel information
is kept implicit, possibly subject to some form of optimization.

A wide class of optimization criteria can be characterized by so called regu-
lar, or rational relations.3 First, some intuition about what regularity means in
this context: a regular relation is such that, wherever two inputs have a common

2Given a binary relation R, writing b R a (read: “b is related to a by R”) means the same
as a R◦ b, where R◦ is said to be the converse of R. So R◦ corresponds to the passive voice;
compare e.g. John loves Mary with Mary is loved by John: (loves)◦ = (is loved by).

3Also called difunctional or uniform — see e.g. [7, 2, 8, 5].

3



image, then they have exactly the same set of images. In other words, the image
sets of two different inputs are either disjoint or the same. As a counterexam-
ple, take following relation, represented as matrix with inputs taken from set
{a1, . . , a5} and outputs delivered into set {b1, . . , b5}:

R a1 a2 a3 a4 a5
b1 0 0 1 0 1
b2 0 0 0 0 0
b3 0 1 0 0 0
b4 0 1 0 1 0
b5 0 0 0 1 0

(2)

Concerning inputs a3 and a5, regularity holds; but sets {b3, b4} and {b4, b5} —
the images of a2 and a4, respectively — are neither disjoint nor the same: so
R isn’t regular. (It will become so if e.g. b4 is dropped from both image sets or
one of b3 or b5 is replaced for the other in the corresponding image set.)

These relations are also called rational because they can be represented by
“fractions” of the form f

g , where f and g are functions and notation R
S expresses

the so-called symmetric division [19, 20] of two relations R and S . As detailed
in the sequel, it can be easily shown that g◦ · f = f

g , meaning that metaphors

(1) are rational relations.
This paper is organized in two main parts. In the first part we develop an

algebra of metaphors expressed as rational relations and address the combination
of metaphors with another class of rational relations (called rectangular) used to
express requirements on the “tenor” (“output”) side of metaphors. The second
part focusses on metaphors f

g where V and T are inductive (recursive) types
and f and g are morphisms which extract a common view of such types. That
is, f and g become catamorphisms [5], also known as folds [21].

We use the word metaphorism [1] to refer to the specification pattern just
described. An example of this is text formatting, a relationship between format-
ted and unformatted text whose metaphor consists in preserving the sequence
of words of both, while the output text is optimized wrt. some visual criteria.4

Other examples could have been given:

• Change of base of numeric representation — the number represented in
the source is the same represented by the result, cf. the ‘representation
changers’ studied by Hutton and Meijer [4].

• Source code refactoring — the meaning of the source program is preserved,
the target code being better styled wrt. coding conventions and best prac-
tices.

• Gaussian elimination — it transforms a system of linear equations into a
triangular system that has the same set of roots.

4It is the privilege of those who don’t work with wysiwyg text processors to feel the
rewarding (if not æsthetic) contrast between the window where source text is edited and that
showing the corresponding, nice-looking PDF output.
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• Sorting — the bag (multiset) of elements of the source list is preserved,
the optimization consisting in obtaining an ordered output.

The optimization implicit in all these examples can be expressed by reducing
the vagueness of relation g◦ · f in (1) according to some criterion telling which
outputs are better than others. This can be achieved by adding such criteria in
the form of a relation R that “shrinks” g◦ · f ,

M = (g◦ · f ) � R

T

T

g
��

R

??

V

f��

M

__

g◦·foo

A

(3)

using the “shrinking” operator proposed by Mu and Oliveira [3] for reducing
non-determinism. By unfolding the meaning of this relational operator, the
relationship (3) established by M is the following:

t M v ⇔ (g t = f v) ∧ 〈∀ t ′ : g t ′ = f v : t R t ′〉

In words: for each vehicle v , choose among all tenors t ′ with the same (hidden)
attribute of v those that are better than any other with respect to R, if any.

A metaphorism M = (g◦ · f ) � R therefore involves two functions and an
optimization criterion. In the text formatting metaphorism, for instance,

[String ]

(>>=words) %%

String

wordszz

Formatoo

[String ]

arrow Format relates a string (source text) to a list of strings (output text
lines) such that the original sequence of words is preserved when white space is
discarded. (Monadic function >>=words promotes words from strings to lists of
strings.5) Formatting consists in (re)introducing white space evenly throughout
the output text lines. For economy of presentation, the diagram omits the
optimization part in

Format = ((>>=words)◦ · words) � R (4)

where relation R : [String ] ← [String ] should capture the intended formatting
criterion on lines of text, e.g. evenly spaced lines better than unevenly spaced
ones, and so on.

Formally, nothing precludes f and g from being the same attribute function,
in which case types V and T are also the same. Although less interesting from a

5Technically, (>>=words) is termed the Kleisli lifting (or extension) of function words [22].
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strictly (cognitive) metaphorical perspective, metaphorisms of this instance of
(3) are very common in programming — take sorting as example, where V and
T are inhabited by finite sequences of the same (ordered) type. Interestingly,
some sorting algorithms actually involve another data-type, but this is hidden
and kept implicit in the whole algorithmic process. Quicksort, for instance,
unfolds recursively in a binary fashion which makes its use of the run-time heap
look like a binary search tree.6 Because such a tree is not visible from outside,
some authors refer to it as a virtual data structure [12].

Contribution. This paper addresses a generic process of implementing metapho-
risms that introduces divide & conquer strategies through implicit, virtual data
structures. In particular, it

• introduces the relational notions of metaphor and metaphorism and devel-
ops their algebra based on rational relations, including divide & conquer
factorization laws (Sections 4 and 5);

• gives results for implementing metaphorisms as hylomorphisms [5] (Sec-
tions 6 and 7), of which two examples are given: quicksort (Sect. 8) and
mergesort (Sect. 9).

The paper also includes Sections 11 and 12, which conclude and discuss future
work, respectively. Proofs of some auxiliary results are given in Appendix A.

3. Relation algebra preliminaries

Functions. A function f : X → Y is a special case of a relation, such that
y f x ⇔ y = f x .7 The equality sign forces f to be totally defined and
deterministic. (We read y = f x saying “y is the result — not a result — of
applying f to x”.) This makes (total) functions quite rich in relational algebra.
For instance, any function f satisfies not only the shunting rules

f · R ⊆ S ⇔ R ⊆ f ◦ · S (5)

R · f ◦ ⊆ S ⇔ R ⊆ S · f (6)

where R, S are arbitrary (suitably typed) binary relations, but also

b(g◦ ·R · f)a ⇔ (g b)R(f a) (7)

6Similar patterns can be found in other divide & conquer algorithms.
7Following a widespread convention, functions (i.e. total and deterministic relations) will be

denoted by lowercase characters (e.g. f , g) or identifiers starting with a lowercase characters,
while uppercase letters are reserved to arbitrary relations.

In order to save parentheses in relational expressions, we adopt the following precedence
rules: (a) unary operators take precedence over binary ones ; (b) composition binds tighter
than any other binary operator; (c) intersection binds tighter than union; (d) division binds
tighter than intersection.
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a rule which helps moving variables outwards in expressions. For R the identity
function id x = x , (7) instantiates to b(g◦ · f)a ⇔ g b = f a, that is, to
metaphor (1).

Given k ∈ K , k : X → K denotes the polymorphic constant function which
always yields k as result: k · f = k , for every f . Predicates are functions of type
X → B, where B = {t, f} is the set of truth values. The constant predicates

true = t , false = f (8)

are used in the sequel. Notation

! :X → 1 (9)

is chosen to describe the unique (constant) function of its type, where 1 denotes
the singleton type.

Symmetric division. Given two arbitrary relations R and S typed as in the
diagram below, define the symmetric division S

R [20] of S by R by:

b
S

R
c ⇔ 〈∀ a :: a R b ⇔ a S c〉 B

R $$

C

Szz

S
Roo

A

(10)

That is, b S
R c means that b and c are related to exactly the same outputs (in

A) by R and by S . Another way of writing (10) is b S
R c ⇔ {a | a R b} = {a |

a S c} which is the same as

b
S

R
c ⇔ ΛR b = ΛS c (11)

where Λ is the power transpose [5] operator which maps a relation Q : Y ← X
to the set valued function ΛQ : X → P Y such that ΛQ x = {y | y Q x }.
Another way to define S

R is [20]

S

R
= R \ S ∩ R◦ / S◦ (12)

which factors symmetric division into the two asymmetric divisions R \ S and
R / S which can be defined by Galois connections:

R ·X ⊆ S ⇔ X ⊆ R \ S (13)

X · R ⊆ S ⇔ X ⊆ S / R (14)

Pointwise, b (P / Q) a means ∀ x : a Q x : b P x (right division) and
b (P \Q) a means ∀ x : x P b : x Q a (left division). Note that, by (13, 14),
(12) is equivalent to the universal property:

X ⊆ S

R
⇔ R ·X ⊆ S ∧ S ·X ◦ ⊆ R (15)
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From the definitions above a number of standard properties arise [20]:(
S

R

)◦
=

R

S
(16)

S

R
· Q

S
⊆ Q

R
(17)

f ◦ · S

R
· g =

S · g
R · f

(18)

id ⊆ R

R
(19)

Thus R
R is always an equivalence relation, for any given R. Furthermore,

R =
R

R
⇔ R is an equivalence relation (20)

holds.8 Finally note that, even in the case of functions, (17) remains an inclu-
sion:

f

g
· h

f
⊆ h

g
(21)

Relation shrinking [3]. Given relations S : A ← B and R : A ← A, define
S �R : A←B, pronounced “S shrunk by R”, by

X ⊆ S �R ⇔ X ⊆ S ∧ X · S◦ ⊆ R cf. diagram:

B

S

��

S�R

��
A A

R
oo

(22)

This states that S �R is the largest part of S such that, if it yields an output for
an input x, it must be a maximum, with respect to R, among all possible outputs
of x by S. By indirect equality, (22) is equivalent to the closed definition:

S �R = S ∩R/S◦ (23)

Among the properties of shrinking [3] we single out two fusion rules

(S · f ) � R = (S � R) · f (24)

(f · S) �R = f · (S � (f◦ ·R · f)) (25)

that will prove useful in the sequel. Putting universal properties (15,22) together
we get, by indirect equality,

R

g
= g◦ · (R � id) (26)

f

R
= (R � id)◦ · f (27)

8This is proved by Riguet on page 134 of [7], where the symmetric division R
R

is denoted
by noy.(R), for “noyaux” of R (“noyaux” means “kernel”). For those readers not wishing to
delve into the notation of Riguet [7] we give a simple proof of (20) in Appendix A based on
the laws of relation division.
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capturing a relationship between shrinking and symmetric division: knowing
that R � id is nothing but the deterministic fragment of R, we see how the
vagueness of arbitrary R replacing either f or g in f

g is forced to shrink.

Recursive relations. Later in the paper we shall need a number of standard
constructions in relation algebra that are briefly introduced next. (For the
many details omitted please see e.g. the textbook by Bird and de Moor [5].)

Let F be a relator [23], that is, a mathematical construction such as, for any
type A, type F A is defined and for any relation R :B ← A, relation F R :F B ←
F A is defined such that F id = id, F R◦ = (F R)◦ and F (R · S ) = (F R) · (F S ).

Any relation R : A← F A is said to be a (relational) F-algebra. Special cases
include functional F-algebras and, among these, those that are isomorphisms.
Within these, the so-called initial F-algebras, say inF : T ← F T, are such that,
given any other F-algebra R : A ← F A, there is a unique relation of type
A ← T, usually written (|R|), such that (|R|) · inF = R · F (|R|) holds. Type T
(often denoted by µF to express its relationship with the base relator F) is also
referred to as initial. The meaning of such relations (|R|), usually referred to as
catamorphisms, or folds, is captured by the universal property :

X = (|R|) ⇔ X · inF = R · (F X ) (28)

The base F captures the recursive pattern of type T (which we write as µF). For
instance, for T the datatype of finite lists over a given type A one has{

F X = 1 + A×X
F f = id+ id× f

(29)

This instance is relevant for the examples that come later in this paper.
Given F-algebras R : A ← F A and S : B ← F B , the composition H =

(|R|) · (|S |)◦, of type A ← B , is usually referred to as a hylomorphism [5]. H is
the least fixpoint of the relational equation X = R ·(F X ) ·S◦. The intermediate
type µF generated by (|S |)◦ and consumed by (|R|) is known as the virtual data
structure [12] of the hylomorphism. The opposite composition (|S |)◦ · (|R|), for
suitably typed S and R, is sometimes termed a metamorphism [11].

Two properties stem from (28) that prove particularly useful in calculations
about (|R|), namely fusion

S · (|R|) = (|Q |) ⇐ S · R = Q · F S (30)

and cancellation (cf. above):

(|R|) · inF = R · F (|R|) (31)

Fusion is particularly helpful in the sense of finding a sufficient condition on
S , R and Q for merging S · (|R|) into (|Q |). In the words of Bird and de Moor
[5], law (30) is probably the most useful tool in the arsenal of techniques for
program derivation. The remainder of this paper will give further evidence of
this statement.
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4. On the algebra of metaphors

Metaphors as symmetric divisions. Substituting S ,R := f , g in (15) and using
the shunting rules (5,6) we obtain, by indirect equality:

f

g
= g◦ · f (32)

So, a metaphor g◦ · f (3) can be expressed as a symmetric division. On the
other hand, moving the variables of (11) outwards by use of (7), we obtain the
following power transpose cancellation rule:9

ΛS

ΛR
=

S

R
(33)

Read from right to left, this shows a way of converting arbitrary symmetric
divisions into metaphors.

Hereafter we will adopt f
g as our canonical notation for metaphors. This has

the advantage of suggesting an analogy with rational numbers 10 which makes
calculation rules easy to understand and memorize. From (16) we immediately
get that converses of metaphors are metaphors:11(

f

g

)◦
=

g

f
(34)

Moreover, f
id = f and g◦ = id

g , consistent with id being the unit of composition,
R · id = R = id · R. As expected,

id

g
· f

id
=

f

g

holds, a corollary of the more general:12

id

g
· h

k
· f

id
=

h · f
k · g

(35)

If id plays the role of the multiplicative identity 1 in the rational number
analogy, what is the counterpart of number 0? It is the empty relation ⊥, which
is represented by any f

g such that g◦ · f is empty, that is, g y 6= f x for any

choice of x and y . (Any two relations R and S such that R◦ · S ⊆ ⊥ are

9This rule is nothing but another way of stating exercise 4.48 proposed by Bird and de Moor
[5]. Note that ΛR is always a (total) function.

10This analogy was first noted by Jaoua et al. [2] where functions, rational relations and
arbitrary relations are paralleled with integers, rationals and reals, respectively.

11As (the perception of) time predates money in human evolution, it is reasonable to guess
that metaphor time is money might have started the other way around, by its converse
money is time, although this is highly speculative of course.

12Equality (35) can be regarded as a generalization of Proposition 4.5 given by Jaoua et al.
[2].
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said to be range disjoint.) For instance, true
false = ⊥, where true and false are the

constant functions yielding the corresponding truth values (8). In general,

a 6= b ⇔ a

b
= ⊥

where a and b denote constant functions. The opposite situation of a = b above
leads to a

a = >, where y > x holds for all y , x . The canonical presentation of

this largest possible metaphor is

!A
!B

= >B←A (36)

recall (9).

Intersecting metaphors. In the words of C.S. Peirce, y > x simply means that
“y is coexistent with x” [24]. Suggestively, the symbol chosen by Peirce to
denote > is ∞. Although semantically poor, this metaphor surely holds about
any x and y related by any other metaphor. In a sense, it can be regarded as
the starting point for any metaphorical relationship, obtained by some form of
refinement. Metaphor conjunction is one way of doing such refinement,

f

g
∩ h

k
=

f M h

g M k
(37)

where the pairing of two functions, say f Mh, is defined by (f Mh) x = (f x , h x ).13

As an example of the intersection rule consider

true

q
∩ p

true
=

true M p

q M true

where p and q are predicates and true is the everywhere true predicate already
introduced. It is easy to show that y true

q x = q y and y p
true x = p x hold; so

the intersection should mean q y ∧ p x . In fact:

y
true M p

q M true
x

⇔ { pointwise meaning of f
g

and f M g }

(q y ,t) = (t, p x )

⇔ { equality of pairs ; predicate logic }
q y ∧ p x

�

13The fact that metaphors are preserved by intersection, captured by (37), follows immedi-
ately from a more general law of relation algebra [5]: (RM S)◦ ·(P M Q) = R◦ · P∩S◦ Q , where
pairing is extended to arbitrary relations in the expected way: (y, z ) (R M S) x ⇔ (y R x) ∧
(z S x). Note how these laws include what are normally regarded as the two key benefits of
the calculus of relations: converse functions as specifications and intersection of specifications
[25, 26] .
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We will focus on the particular metaphoric pattern f
g ∩

true
p = f Mtrue

gMp later in
this paper:

y (
f

g
∩ true

p
) x ⇔ (g y = f x ) ∧ p y

In this relational specification pattern, outputs y preserve some common infor-
mation wrt. inputs x with the additional ingredient of satisfying post-condition
p.

Rectangular metaphors. A relation R is said to be rectangular iff R = R · > ·R
holds [7, 9]. Note that R ⊆ R · > · R always holds: b R a implies that there
exist a ′, b′ such that b R a ′ and b′ R a. Metaphors of the form a

f (meaning

f x = a for some given a) are rectangular, as the following calculation shows:

a

f
· > · a

f
=

a

f

⇔ { since R ⊆ R · > · R always holds }
a

f
· > · a

f
⊆ a

f

⇐ { monotonicity of composition (by f ◦) }

a · > · a

f
⊆ a

⇔ { shunting (5) ; a
a

= > }

> · a

f
⊆ >

⇔ { any relation is at most > }

true

�

As rectangularity is preserved by converse, f
a is also rectangular.

Kernel metaphors. In keeping with the analogy between fractions of integers
and fractions of functions one might wish the equality f

f = id to hold, but this

only happens for f injective.14 As seen in Sect. 3, metaphor f
f is an equivalence

relation and therefore reflexive:

id ⊆ f

f
(38)

14Morphisms such that S
S

= id are referred to as straight by Freyd and Scedrov [20] and
generically underlie the proof strategy known as indirect equality [5].
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It is known as the kernel of f and it “measures” the injectivity of f , as defined
by the preorder

f 6 g ⇔ g

g
⊆ f

f
(39)

where f 6 g means that f is less injective than g .15 Clearly, ! 6 f 6 id for any
f (36,38). The following alternative way of stating (39)

f 6 g ⇔ 〈∃ k :: f = k · g〉 (40)

is given by Gibbons [21].

Every equivalence relation A A
Roo is representable by a kernel metaphor,

and canonically by

R =
ΛR

ΛR
(41)

where the power transpose ΛR maps each element of A into its equivalence class.
(41) follows immediately from (20) and (33).

Weakest preconditions. Given a predicate p, we define the metaphor p? by

p? = id ∩ true

p
(42)

This is called the partial identity16 for p in the sense that

y (p?) x ⇔ (p y) ∧ y = x

holds. That is, p? is the fragment of id where p holds. Note that p? = id∩ p
true

by converses. The rectangular metaphor true
p can be recovered from p? by

p? · > =
true

p
(43)

(Conversely, > · p? = p
true .) It is easy to show that

f ∩ true

q
= q? · f

f ∩ p

true
= f · p?

hold.17 Thus, q (resp. p) work as post (resp. pre) conditions for function f . The
particular situation in which q? · f = f · p? holds captures a weakest/strongest
pre/post-condition relationship expressed by the following universal property:

f · p? = q? · f ⇔ p = q · f (44)

15See e.g. [27, 21]. This injectivity preorder is the converse of the determination order of
[28].

16 Partial identities are also known as coreflexives, monotypes or tests [29, 20, 30].
17Check (A.3) and (A.4) in Appendix A.
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Condition p = q · f is equivalent to p = wp (f , q), the weakest precondition
(wp) for the outputs of f to fall within q . Property (44) enables a “logic-free”
calculation of weakest preconditions, as we shall soon see: given f and post-
condition q , there exists a unique (weakest) precondition p such that q? · f can
be replaced by f · p?. Moreover:

f

f
· p? = p? · f

f
⇐ p 6 f (45)

where 6 denotes the injectivity preorder on functions (39,40). Relational proofs
for (44) and (45) are given in Appendix A.

Products of metaphors. Metaphors can also be combined pairwise, leading to
metaphors on pairs.18 This situation is captured by the product rule,

f

g
× h

k
=

f × h

g × k
(46)

telling that the product of two metaphors is a metaphor. Relational (Kronecker)
product is defined as expected, (x , y) (R × S ) (a, b) ⇔ x R a ∧ y S b, which,
in the case of functions, becomes (f × g) (a, b) = (f a, g b). Both pairing and
product can be written pointfree,

R × S = R · π1 M S · π2 (47)

R M S = π◦1 · R ∩ π◦2 · S (48)

where π1 (a, b) = a and π2 (a, b) = b are the standard projections. The proof
of (46) follows:

f

g
× h

k

= { (47) ; (35) }

f · π1
g

M
h · π2

k

= { (48) ; (35) }

f · π1
g · π1

∩ h · π2
k · π2

= { (37) }

f · π1 M g · π1
h · π2 M k · π2

18By referring to the quixotic plot of a couple of politicians in some particular situation, one
might wish to suggest that one of them behaved like Don Quixote and the other like Sancho
Panza.
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= { (47) twice }

f × g

h × k
�

Functorial metaphors. Metaphor product rule (46) can be regarded as an in-
stance of a more general result: any relator F 19 distributes over a metaphor
f
g :

F
f

g
=

F f

F g
(49)

This result follows immediately from standard properties of relators, F (R ·S ) =
(F R) · (F S ) and F (R◦) = (F R)◦. Rule (46) corresponds to F (R,S ) = R × S ,
where F is binary. Thus

f

g
+

h

k
=

f + h

g + k
(50)

also holds, where direct sum R+S is the same as [i1 ·R , i2 ·S ], where i1 and i2 are

the standard injections associated to a datatype sum, A
i1 // A + B B

i2oo

and

C A + B
[R ,S ]oo (51)

denotes the junction R · i◦1∪R · i◦2 of relations C A
Roo and C B

Soo . By
(40), one has

[f , g ] 6 f + g (52)

since [f , g ] = [id, id] · (f + g) by coproduct laws. Moreover,

f + g 6 h + k ⇔ f 6 h ∧ g 6 k (53)

holds by coproduct laws too, since h+k
h+k ⊆

f+g
f+g is equivalent to h

h + k
k ⊆

f
f + g

g

by (50).

Difunctionality and uniformity. A relation R is said to be difunctional [7, 9] or
regular [2] wherever R · R◦ · R = R holds, which amounts to R · R◦ · R ⊆ R
since the converse inclusion always holds.

Metaphors are difunctional because every symmetric division is so, as is easy
to check by application of laws (17) and (16). The fact that every function f is
difunctional can be expressed by f · ff = f .

19Recall from Sect. 3 that a relator F is an (endo)functor F that preserves converses.
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A relation R is said to be uniform [2] if and only if ΛR 6 R, where preorder
(39) is extended to arbitrary relations

R 6 S ⇔ S◦ · S ⊆ R◦ · R (54)

as in [27]. Metaphors are uniform relations, because a relation is uniform iff it
is difunctional (regular), as the following calculation shows:

R is uniform

⇔ { definition above }

ΛR 6 R

⇔ { (54) ; (32) }

R◦ · R ⊆ ΛR

ΛR

⇔ { Λ cancellation (33) }

R◦ · R ⊆ R

R

⇔ { universal property (15) of symmetric division }

R · R◦ · R ⊆ R

⇔ { definition above }

R is difunctional

�

Note how step R◦ · R ⊆ R
R above captures the intuition about a regular (i.e.

uniform, difunctional) relation R, as given in the introduction, recall (2): a1 (R◦·
R) a2 tells that a1 and a2 have some common image; a1

R
R a2 tells that they

have exactly the same image sets.

Functional metaphors. When is a metaphor f
g a function? Shunting rules (5,6)

are equivalent to saying that f is total (or entire) — id ⊆ f ◦ f , which we
have already seen in fraction notation (38) — and deterministic (or simple) —
f · f ◦ ⊆ id. We shall use notation ρ f = f · f ◦ for the range (of output values)
of f .

By (5,6), checking the totality of f
g — id ⊆ g

f ·
f
g — amounts to ρ f ⊆ ρ g :

the attribute value of any given vehicle is the attribute value of some tenor. In
case g is surjective (ρ g = id), f

g is total for any f . For determinism to hold,

ρ f
g = f

g ·
g
f ⊆ id, rule (21) offers the sufficient condition g

g = id, that is, g
injective suffices.

For total metaphors, the inclusion h ⊆ f
g has at least a functional solution

h, which can be calculated using the rule

h ⊆ f

g
⇔ g · h = f (55)
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that relies on the useful law of function equality

f ⊆ g ⇔ f = g ⇔ f ⊇ g (56)

itself a follow-up of shunting rules (5,6).

5. Divide & conquer metaphors

“Shrinking” metaphors. Thus far we have not taken into account the shrinking
part of (3), which we now write using fraction notation:

M =
f

g
� R (57)

By law (24) one gets:

f

g
� R = (

id

g
� R) · f

Below we will show that this equality is an instance of a more general result
that underlies more elaborate metaphor transformations that prove useful in the
sequel. The main idea of such transformations is to split a T Voo metaphor
in two parts mediated by an intermediate type, say W in

T Woo Voo

which is intended to gain control of the “pipeline”. This can be done in two
ways. Suppose there is a surjection h : W → T onto the tenor side, that is,
ρ h = h ·h◦ = id. Then the splitting can be expressed as in the following diagram

T W
hoo

h
$$

V

f��

Xoo

f
g �R

yy

T
g ##

A

(58)

provided one can find a relation X such that h · X = f
g � R. Alternatively, we

can imagine surjection h onto the vehicle side, say h : W→ V in

T

g
��

W
Yoo

h||
V

h◦oo

f
g �R

zz

V

f
||

A

(59)

and try and find relation Y such that Y · h◦ = f
g � R.
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Note how intermediate type W is a representation of T or V in, respectively,
(58) and (59), h acting as a typical data refinement abstraction function.20

Anticipating that the two-stage schemas of (58) and (59) are intended to specify
divide & conquer implementations of the original metaphor, let us calculate
conquer step Y in the first place:

f

g
� R

= { identity of composition }

(
f

g
� R) · id

= { h assumed to be a surjection, ρ h = h · h◦ = id }

(
f

g
� R) · h · h◦

= { law (24) }

(
f · h

g
� R)︸ ︷︷ ︸

Y

·h◦

Clearly, in this refinement strategy, the optimization of the starting metaphor
goes into the conquer stage, where it optimizes a richer metaphor between tenor
T and W, the new vehicle. Divide step h◦ is just a representation of the original
vehicle V into the new vehicle W (59). Altogether:

f

g
� R = (

f · h
g
� R) · h◦ for h surjective (60)

In a diagram, completing (59):

T

T

R
88

g
��

W
f ·h
goo

f ·h
g �R

dd

h||
V

h◦oo

f
g �Ruu

V

f
||

A

Dually, it is to be expected that the derivation of X in (58) will yield an
optimized divide step where most of the work goes, running h as conquer step

20Following the usual terminology [31], by an abstraction we mean a simple (ie. functional)
and surjective relation. In this paper all abstractions are total (entire), that is, they are
functions. In symbols, α is an abstraction function iff id ⊆ α◦ · α and id = α · α◦.
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to abstract from W, the new tenor, to T, the old tenor. Due to the asymmetry
of shrinking, the inference of X is less immediate, calling for definition (23):

f

g
� R

= { (23) ; converse of a metaphor (34) }

f

g
∩ R /

g

f

= { h assumed to be a surjection, ρ h = h · h◦ = id }

h · h◦ · ( f

g
∩ R /

g

f
)

= { injective h◦ distributes over ∩ ; (18) }

h · ( f

g · h
∩ h◦ · R /

g

f
)

= { (14) ; shunting (6) }

h · ( f

g · h
∩ h◦ · (R / g) · f )︸ ︷︷ ︸

X

Clearly, the choice of some intermediate w by X tells where the optimization
has moved to, as detailed below by rendering X in pointwise notation:

w X v ⇔
let a = f v
in (g (h w) = a) ∧ 〈∀ t : a = g t : (h w) R t〉

In words:

Given vehicle v, X will select those w that represent tenors (h w)
with the same attribute (a) as vehicle v, and that are best among all
other tenors t exhibiting the same attribute a.

Altogether:

f

g
� R = h · ( f

g · h
∩ h◦ · (R / g) · f ) for h surjective (61)

A calculation similar to that showing f
g difunctional above, will show that R / g

being difunctional is sufficient for factor h◦ · (R / g) · f in (61) to be so.

Post-conditioned metaphors. Let us finally consider the following pattern of
metaphor shrinking

f

g
�

true

q
(62)
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indicating that only the outputs satisfying q are regarded as good enough. That
is, q acts as a post-condition on f

g . An example of (62) is the metaphor

Sort =
bag

bag
�

true

ordered

where bag is the function that extracts the bag (multiset) of elements of a
finite list and ordered the predicate that checks whether a finite list is ordered
according to some predefined criterion. Clearly, V = T in this example.

The laws developed above for metaphor shrinking can be instantiated for
this pattern and reasoned about. Alternatively, it can easily be shown that (62)
reduces to

f

g
∩ q? · > (63)

provided f
g is entire (total), which is surely the case wherever f = g , as we have

seen. This follows from this law of the shrinking operator proved in Appendix
A:

S � (q? · >) = q? · S ⇐ S is entire (64)

Specifications of the form f
f ∩q? · > are intersections of an equivalence relation

with a rectangular relation, a common specification pattern already identified
by Jaoua et al. [2]. As intersections of rational relations are rational (regular)
relations, pattern f

f ∩ q? · > is rational. By (A.3), (63) further reduces to

q? · f

g

a pattern to be referred to as a postconditioned metaphor. Sorting thus is one
such metaphor,

Sort = ordered? · Perm where Perm =
bag

bag
(65)

where y Perm x means that y is a permutation of x .
Understandably, the divide & conquer versions of a postconditioned metaphor

are easier to calculate than in the generic cases above, because one can take ad-
vantage of wp laws such as e.g. (44). Corresponding to (61), one gets

q? · f

g
= h · p? · f

g · h
for h surjective and p = q · h (66)

since:

q? · id · f

g

= { h assumed surjective }
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q? · h · h◦ · f

g

= { switch to wp p (44), cf. q? · h = h · p? }

h · p? · f

g · h︸ ︷︷ ︸
X

The counterpart of (60) is even more immediate:

q? · f

g
= q? · f · h

g︸ ︷︷ ︸
Y

·h◦ for h surjective (67)

6. Metaphorisms

Thus far, types T, V and W have been left uninterpreted. We want now
to address metaphors in which these are inductive (tree-like) types specified by

initial algebras, say T F T
inFoo , W G W

inGoo and V H V
inHoo , assuming

such algebras exist for functors F, G and H, respectively. Moreover, f , g and
h become folds (catamorphisms) over such initial types, recall Sect. 3. We
shall refer to such metaphors involving catamorphisms over inductive types as
metaphorisms [1].

To facilitate linking each type with its functor, we shall adopt the familiar
notation µF instead of T, µG instead of W and µH instead of V. The popular
notation (|R|) will be used to express folds over such types, recall (28). Also
useful in the sequel is the fact that inductive predicates can be expressed by
folds too, in the form of partial identities:21

(|R|) ⊆ id ⇐ R ⊆ inF (68)

Our first example of metaphorism calculation by fusion (30) is the derivation
of a simple (functional) representation changer [4]:

A representation changer is a function that converts a concrete rep-
resentation of an abstract value into a different concrete representa-
tion of that value.

Metaphorisms of the form k ·(|y|)
(|y|) are representation changers, in which the change

of representation consists in picking an attribute of the vehicle, extracted by (|y |),
changing its value by applying k and then mapping the new attribute value back
to the tenor, which in this case is of the same type as the vehicle.

21 Property (28) establishes (|R|) as the unique fixpoint of the equation X = R · (F X ) · in◦F,
and therefore the least prefix point too: (|R|) ⊆ X ⇐ R · (F X ) · in◦F ⊆ X [5]. From this, one
can easily infer (68), that fold is a monotonic operator, etc.
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Theorem 1. Representation changer k ·(|y|)
(|y|) is refined by a functional implemen-

tation (|x |) provided, for some z such that k · y = z · F k holds, x ⊆ z ·F (|y|)
(|y|) also

holds. Proof: the proof relies on (double) fusion (30):

(|x |) ⊆ k · (|y |)
(|y |)

⇔ { (55) }

(|y |) · (|x |) = k · (|y |)

⇔ { fuse k · (|y |) into (|z |) assuming k · y = z · F k (30) }

(|y |) · (|x |) = (|z |)

⇐ { fusion (30) again }

(|y |) · x = z · F (|y |)

⇔ { metaphors (55) }

x ⊆ z · F (|y |)
(|y |)

�

Comparing the top and bottom lines of the calculation above we see that the
“banana brackets” of (|x |) have disappeared. This condition, together with the
intermediate assumption k · y = z · F k , are sufficient for the refinement to take
place.

The example of application of this theorem given below is a quite simple
one, its purpose being mainly to illustrate the calculational style which will be
followed in the rest of the paper to derive programs from metaphorisms. Let
the initial algebra for finite lists be denoted by the familiar

inF = [nil , cons] (69)

where nil = [ ] is the constant function which yields the empty list and
cons (a, s) = a : s adds a to the front of s. The underlying functor is F f =
id + id × f , recall (29). Let add (x , y) = x + y denote natural number addi-
tion and k = (b+) be the unary function that adds b to its argument. Define
y = [zero , add] where zero is the everywhere-0 constant function. So sum = (|y |)
is the function which sums all elements of a list.

The intended change of representation between a vehicle v and tenor t is
specified by sum t = b + sum v . Clearly, (b+) · [zero , add] = z · (id+ id× (b+))
has solution z = [b , add], since b + 0 = b and b + (h + t) = h + (b + t). Knowing

z , our aim is to solve x ⊆ z ·F (|y|)
(|y|) for x = [x1 , x2], helped by the following law

[x , y ] ⊆ [g , h]

f
⇔ x ⊆ g

f
∧ y ⊆ h

f
(70)

easy to infer by coproduct and metaphor algebra.
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Applied to our example, this yields x1 ⊆ b
(|y|) and x2 ⊆ add·(id×(|y|))

(|y|) , the

latter equivalent to (|y |) · x2 = add · (id × (|y |)). From this we get x2 = cons
by cancellation (31). On the other hand, x1 is necessarily a constant function
w such that (|y |) w = b. The simplest choice for w is the singleton list [b ].
We therefore obtain the following functional solution for the given metaphor,
unfolding r = (|x |) to pointwise notation:

r [ ] = [b ]

r (a : t) = a + r t

7. Shrinking metaphorisms into hylomorphisms

This section focusses on metaphorisms that are equivalence relations over

inductive data types. Let µF F µF
inFoo , and let A F A

koo be given, so

that A µF
(|k |)oo . It turns out that not only is R = (|k |)

(|k |) itself a relational fold

R = (|R · inF|)

of type µF µF
oo , but also it is a congruence for the algebra inF.22 This

follows from the following theorem.

Theorem 2 (F-congruences). Let R be a congruence for an algebra h :F A→
A of functor F, that is

h · (F R) ⊆ R · h i.e. y (F R) x ⇒ (h y) R (h x ) (71)

hold and R is an equivalence relation. Then (71) is equivalent to:

R · h = R · h · (F R) (72)

For the particular case h = inF, (72) is equivalent to:

R = (|R · inF|) (73)

For R presented as a kernel metaphor R = f
f , (71) is also equivalent to

f · h 6 F f (74)

where 6 is the injectivity preorder (39). (Proof: see Appendix A.)
�

A standard result in algebraic specification states that if a function f defined
on an initial algebra is a fold then f

f is a congruence [32, 21]. Although not

22The Perm equivalence relation is an example of this, recall (65).
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strictly necessary, we give below a proof that frames this result in Theorem 2

by making R = (|k |)
(|k |) in (73) and calculating:

(|k |)
(|k |)

= (| (|k |)
(|k |)
· inF|)

⇔ { universal property (28) ; metaphor algebra (49) }

(|k |) · inF
(|k |)

=
(|k |) · inF

(|k |)
· F (|k |)
F (|k |)

⇔ { cancellation (31) ; f · f
f

= f }

(|k |) · inF
(|k |)

=
k · F (|k |)

(|k |)

⇐ { Leibniz }

(|k |) · inF = k · F (|k |)

⇔ { universal property (28) }

true

�

For example, in the case R = Perm (65), (73) instantiates to

Perm · inF = Perm · inF · (FPerm)

whose useful part is

Perm · cons = Perm · cons · (id× Perm)

In words, this means that permuting a sequence with at least one element is the
same as adding it to the front of a permutation of the tail and permuting again.

The main usefulness of (72,73) is that the inductive definition of a kernel
equivalence relation generated by a fold is such that the recursive branch (the
F term) can be added or removed where convenient, as shown in the sequel.

To appreciate relational fold fusion (30) and Theorem 2 at work in metapho-
rism refinement let us consider metaphorisms of the postconditioned form M =

q? · (|k |)(|k |) instantiating diagram (58) for inductive types µF and µG:23

µF µG
(|h|)Goo

(|h|)G
&&

µF

(|k |)F��

Xoo

q?· (|k|)F
(|k|)F

xx

µF

(|k |)F
%%
A

23Since there are folds over different types in the diagram we tag each of them with the
corresponding functor.
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As before, this assumes a (surjective) abstraction function (|h|)G :µG → µF ensur-
ing that every inhabitant of µF can be represented by at least one inhabitant of
the intermediate type µG. By direct application of (66) we obtain the equation

q? · (|k |)F
(|k |)F

= (|h|)G · p? · (|k |)F
(|k |)F · (|h|)G︸ ︷︷ ︸

X

(75)

provided q? · (|h|)G = (|h|)G · p? — recall (44). Our main goals are, therefore:

• to find p such that

(|h|)G · p? = q? · (|h|)G (76)

holds, where q is given;

• to convert X = p? · (|k |)F
(|k |)F·(|h|)G , of type µG ← µF (75), into the converse of

a fold, X = (|Z ◦|)◦, for some Z : G µF ← µF.

In general, we shall use notation [(R)] to abbreviate the expression (|R◦|)◦. In
case Z above happens to be a function g , the original metaphorism (whose
recursion is F-shaped) will be converted into a so-called hylomorphism [5]

(|h|)G · [(g)]G

whose recursion is G-shaped, thus carrying a “change of virtual data-structure”.

Shifting the metaphor. For the purposes of our calculations in this paper it is
enough to consider the partial identities (coreflexives) p? (resp. q?) in (76) on
inductive type µG (resp. µF) generated by constraining the initial algebra inG
(resp. inF),

p? = (| µG G µG
inGoo G µG

w?oo |)

q? = (| µF F µF
inFoo F µF

t?oo |)

for suitable pre-conditions w and t — recall (68).
The calculation of (76) proceeds by fusion (30), aiming to reduce both (|h|)G ·

p? and q? · (|h|)G to some relational fold (|R|)G over µG. On the right hand side,
fusion yields

q? · (|h|)G = (|R|)G ⇐ q? · h = R · (G q?) (77)

On the other side:

(|h|)G · p? = (|R|)G
⇔ { inline p? = (|inG · w?|)G }
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(|h|)G · (|inG · w?|)G = (|R|)G
⇐ { fusion (30) }

(|h|)G · inG · w? = R · G (|h|)G
⇔ { cancellation: (|h|)G · inG = h · G (|h|)G (31) }

h · G (|h|)G · w? = R · G (|h|)G
⇔ { switch to r? such that G (|h|)G · w? = r? · G (|h|)G holds (44) }

h · r? · G (|h|)G = R · G (|h|)G
⇐ { Leibniz }

h · r? = R

Thus R = h · r? ensures proviso (76). By replacing R in the other proviso —
the side condition of fusion step (77) — one obtains

q? · h = h · r? · G q?

µF

q?

��

G µF

G q?

��

hoo

µF G µF
h

oo G µF
r?
oo

(78)

that has to be ensured together with the other assumption above:

G (|h|)G · w? = r? · G (|h|)G

G µG

G (|h|)G
��

G µG

G (|h|)G
��

w?oo

G µF G µF
r?
oo

(79)

Let us summarize these calculations in the form of a theorem.

Theorem 3. Let µG
(|h|)G // µF be an abstraction of inductive type µF F µF

inFoo

by another inductive type µG G µG
inGoo , and q? = (|inF · t?|)F be a partial iden-

tity representing an inductive predicate over µF.
To calculate the weakest precondition p for (|h|)G to ensure q on its output,

say p? = (|inG ·w?|)G, it suffices to find a predicate r on G µF such that (78) and
(79) hold.
�

Note how condition r on G µF in proviso (78) is the weakest precondition for
algebra h to maintain q , while (79) establishes w as the weakest precondition
for the recursive branch G (|h|)G to ensure r on its output.

26



Calculating the “divide” step. Armed with side conditions (78) and (79), our
final aim is to calculate X = [(Z )] in (75):

p? · (|k |)F
(|k |)F · (|h|)G︸ ︷︷ ︸

X

= [(Z )]

⇔ { converses ; [(Z )] = (|Z ◦|)◦ }

(|k |)F · (|h|)G
(|k |)F

· p? = (|Z ◦|)

⇔ { (|h|)G · p? = q? · (|h|)G assumed — cf. (76) }

(|k |)F
(|k |)F

· q? · (|h|)G = (|Z ◦|)

⇐ { fusion (30) ; functor G }

(|k |)F
(|k |)F

· q? · h = Z ◦ · G (|k |)F
(|k |)F

· G q?

⇔ { proviso (78): q? · h = h · r? · G q? }

(|k |)F
(|k |)F

· h · r? · G q? = Z ◦ · G (|k |)F
(|k |)F

· G q?

⇐ { Leibniz }

(|k |)F
(|k |)F

· h · r? = Z ◦ · G (|k |)F
(|k |)F

(80)

We are still far from having a closed formula for Z . Can we get rid of term

G (|k |)F
(|k |)F from the right hand side? This is where Theorem 2 plays a role, enabling

such a cancellation provided we ensure that equivalence (|k |)F
(|k |)F is a congruence for

algebra h, which (by virtue of Theorem 2) amounts to ensuring (|k |)F·h 6 G (|k |)F.
In words: (|k |)F · h should be no more injective (54) than the recursive branch
G (|k |)F. It turns out that we shall need yet another similar injectivity clause
involving r in the sequel. Altogether:

(|k |)F · h 6 G (|k |)F (81)

r 6 G (|k |)F (82)

Below we resume the calculation of (80) assuming (81) and (82):

(|k |)F
(|k |)F

· h · r? = Z ◦ · G (|k |)F
(|k |)F

⇔ { (72) }

(|k |)F
(|k |)F

· h · G (|k |)F
(|k |)F

· r? = Z ◦ · G (|k |)F
(|k |)F
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⇔ { (49) first, then (45) thanks to (82) }

(|k |)F
(|k |)F

· h · r? · G (|k |)F
G (|k |)F

= Z ◦ · G (|k |)F
G (|k |)F

⇐ { drop G (|k|)F
G (|k|)F

(Leibniz) }

(|k |)F
(|k |)F

· h · r? = Z ◦ (83)

Taking converses, we get

Z = r? · (|k |)F
(|k |)F · h

(84)

from (83) — another metaphorism, of the expected type G µF µF
oo .

Summing up, note how the original metaphorism q? · (|k |)F(|k |)F gets converted into

a hylomorphism whose divide step is another metaphorism (84). Recall that r
acts as wp for algebra h to maintain q and that w is the wp for the recursive
branch G (|h|)G to ensure r .

Altogether, the “outer” metaphor which we started from (involving only µF)
disappears and gives place to an “inner” metaphor between inductive types µG

and µF (the divide step), whereby the optimization is internalized. This “inner”
metaphor is more interesting, as we can see by looking at an example of all this
reasoning. Before this, we close this section with the checklist of all provisos
that have to be verified for Z (84) to exist:

• (78) — establishes r as the weakest precondition for G-algebra h to main-
tain q as an invariant.

• (79) — establishes w as the weakest precondition for the recursive branch
G (|h|)G to ensure r as post-condition.

• (81) — (|k |)F · h should be no more injective than the recursive branch
G (|k |)F.

• (82) — inputs undistinguishable by G (|k |)F should also be undistinguish-
able by predicate r .

8. Example: Quicksort

This section shows how the derivation of quicksort as given e.g. by Bird and
de Moor [5] corresponds to the implementation strategy for metaphorisms given
above, under the following instantiations:

• The starting metaphorism is (65) where Perm is the list permutation
relationship.
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• µF is the usual finite list datatype with constructors (say) nil and cons,
that is, inF = [nil , cons] with base F f = id+ id× f (29).

• µG is the binary tree data type whose base is G f = id+ id× f 2 and whose
initial algebra is (say) inG = [empty , node]. (We use abbreviation f 2 for
f × f .)

• (|k |)F = bag , the function which converts a list into the bag (multiset) of
its elements.

• (|h|)G = flatten, for h = [nil , inord ] where inord (a, (x , y)) = x ++ [a ] ++
y ; that is, flatten is the binary tree into finite list (inorder) traversal
surjection.

• q = ordered (65), that is, q? = (|[nil , cons] · (id + mn?)|), for mn (x , xs) =
〈∀ x ′ : x ′ εµF

xs : x ′ > x 〉 where εµF
denotes list membership; that is,

predicate mn (x , xs) ensures that list x : xs is such that x is at most the
minimum of xs, if it exists.

As seen in Sect. 7, we first have to search for some predicate r that, following
(78), should be the weakest precondition for [nil , inord ] to preserve ordered lists
(q?). We calculate:

q? · [nil , inord ] = [nil , inord ] · r? · (id+ id× (q?× q?))

⇔ { switch to s such that r? = id+ s?; coproducts }

[q? · nil , q? · inord ] = [nil , inord · s? · (id× (q?× q?))]

⇔ { the empty list is trivially ordered }

q? · inord = inord · s? · (id× (q?× q?))

⇔ { universal property (44) }

s? · (id× (q?× q?)) = (q · inord)?

Knowing the definitions of q and inord , we easily infer s by going pointwise:

q (x ++ [a ] ++ y)

⇔ { pointwise definition of ordered lists }
(q x ) ∧ (q y)
〈∀ b : b εµF

x : b 6 a〉 ∧ 〈∀ b : b εµF
y : a 6 b〉︸ ︷︷ ︸

s (a,(x ,y))

(85)

Knowing s and thus r , we go back to (84) to calculate the (relational) coalgebra
that shall control the divide part, still letting r? = id+ s?,

Z : 1 + µF × (µF × µF)← µF

Z = (id+ s?) · bag
bag·[nil ,inord]

(86)
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as follows:

Z = (id+ s?) · bag

bag · [nil , inord ]

⇔ { let Z ◦ = [Z◦1 , Z
◦
2 ] }

[Z◦1 , Z
◦
2 ]
◦

= (id+ s?) · bag

bag · [nil , inord ]

⇔ { take converses }

[Z◦1 , Z
◦
2 ] =

bag · [nil , inord ]

bag
· (id+ s?)

⇔ { Perm (65) ; coproducts }

[Z◦1 , Z
◦
2 ] = [Perm · nil ,Perm · inord · s?]

⇔ { coproducts; Perm · nil = nil; converses }{
Z1 = nil◦

Z2 = s? · inord◦ · Perm

⇔ { go pointwise }{
Z1 x ⇔ x = [ ]

(a, (y , z )) Z2 x ⇔ (a, (y , z )) (s? · inord◦ · Perm) x

The second clause of the bottom line just above unfolds to:

(a, (y , z )) Z2 x ⇔ s (a, (y , z )) ∧ (y ++ [a ] ++ z ) Perm x

In words, y Z x has the following meaning: either x = [ ] and Z yields the
unique inhabitant of singleton type 1 (cf. Z1) or x is non-empty and Z splits a
permutation of x into two halves y and z separated by a “pivot” a, all subject
to s calculated above (85). Note the free choice of “pivot” a provided s holds.
In the standard version, a is the head of x and Z2 is rendered deterministic as
follows (Haskell notation):

x2 (h : t) = (h, ([a | a ← t , a 6 h ], [a | a ← t , a > h ]))

It is easy to show that the particular partition chosen in this standard version
meets predicate s. But there is, still, a check-list of proofs to discharge.

Ensuring bi-ordered (virtual) intermediate trees. This corresponds to (79) of the
check-list which, instantiated for this exercise, is:

G flatten · (id+ x?) = (id+ s?) · G flatten
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Letting w? = id+ x?, the goal is to find weakest precondition x that is basically
s “passed along” G flatten from lists to trees:24

(id× flatten2) · x? = s? · (id× flatten2)

⇔ { (44) }

x = s · (id× flatten2)

⇔ { go pointwise }

x (a, (t1, t2)) = s (a, (flatten t1,flatten t2))

⇔ { definition of s }

x (a, (t1, t2)) =

{
〈∀ b : b εµF

(flatten t1) : b 6 a〉
〈∀ b : b εµF

(flatten t2) : a 6 b〉

⇔ { define εµG = εµF · flatten }

x (a, (t1, t2)) = 〈∀ b : b εµG
t1 : b 6 a〉 ∧ 〈∀ b : b εµG

t2 : a 6 b〉)

In words, x in p? = (|inG ·w?|)G = (|inG · (id+ x?)|)G ensures that the first part of
the implementation, controlled by the divide step coalgebra Z calculated above
(86) yields trees which are bi-ordered. Trees with this property are known as
binary search trees [33].

Preserving the metaphor. Next we consider side condition (81) of the check-list,
which instantiates to:

bag · [nil , inord ] 6 id+ id× bag2

⇐ { coproducts; (52) }

bag · nil + bag · inord 6 id+ id× bag2

⇔ { (53) ; any f 6 id [27] }

bag · inord 6 id× bag2

⇔ { (40) }

〈∃ k :: bag · inord = k · (id× bag2)〉

That k exists arises from the fact that bag is a homomorphism between the
monoid of lists and that of bags: algebra k will join two bags and a singleton
bag in the same way as inord (a, (x , y)) yields x ++ [a ] ++ y , at list level.

Down to the multiset level. Finally, we have to check the last assumption (82) of
the ckeck-list. By (40) and (44), this amounts to finding u such that G bag ·r? =

24As before, we abbreviate flatten × flatten by flatten2 for economy of notation.
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u? · G bag :

G bag · r? = u? · G bag

⇔ { G R = id+ id× R2 ; r? = id+ s?; let u? = id+ v? }

(id+ id× bag2) · (id+ s?) = (id+ v?) · (id+ id× bag2)

⇔ { coproducts }

(id× bag2) · s? = v? · (id× bag2)

⇔ { (44) }

s = v · (id× bag2)

⇔ { go pointwise }

s (a, (x , y)) = v (a, (bag x , bag y))

⇔ { unfold s }

v (a, (bag x , bag y)) =

{
〈∀ b : b εµF

x : b 6 a〉
〈∀ b : b εµF

y : a 6 b〉

⇔ { assume εB such that εµF = εB · bag }

v (a, (bag x , bag y)) =

{
〈∀ b : b εB (bag x ) : b 6 a〉
〈∀ b : b εB (bag y) : a 6 b〉

⇐ { substitution }

v (a, (b1, b2)) =

{
〈∀ b : b εB b1 : b 6 a〉
〈∀ b : b εB b2 : a 6 b〉

Thus we have found post-condition u ensured by id × bag2 with s as weakest-
precondition.

Finally, multiset membership εB = ∈ · support can be obtained by taking
multiset supports, whereby we land in standard set membership (∈). Altogether,
we have relied on a chain of memberships, from sets, to multisets, to finite lists
and finally to binary (search) trees.

Note how this last proof of the check-list goes down to the very essence of
sorting as a metaphorism: the attribute of a finite list which any sorting function
is bound to preserve is the multiset (bag) of its elements — the invariant part
of the sorting metaphor.

9. Example: Mergesort

In a landmark paper on algorithm classification and synthesis [14], Dar-
lington carries out a derivation of sorting algorithms that places quicksort and
mergesort in different branches of a derivation tree. In this section we give
a calculation of mergesort which shows precisely where they differ, given that
both are divide & conquer algorithms.
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The fact that mergesort relies on a different kind of tree, called leaf tree and
based on a different base functor, say K f = id+ f 2, is not the main difference.
This resides chiefly in the division of work of mergesort which, contrary to
quicksort, does almost everything in the conquer step. In our setting,

while quicksort follows generic metaphorism refinement plan (58),
mergesort follows plan (59), recall Sect. 5.

With no further detours we go back to (67), the instance of (59) which fits the
sorting metaphorism, to obtain

q? · bag

bag
= q? · bag · tips

bag︸ ︷︷ ︸
(|X |)K

·tips◦

where tips = (|t |)K is the fold which converts a leaf tree into a sequence of leaves,
in the obvious way: t = [singl , conc], where singl a = [a ] and conc (x , y) =
x ++ y .25

Divide step tips◦ can be refined into a function using standard “converse of
a function” theorems, see e.g. [25, 34]. Our aim is to calculate X , the K-algebra
that shall control the conquer step. We reason:

(|X |)K = q? · bag

bag
· (|t |)K

⇐ { fusion (30) ; functor K }

q? · bag

bag
· t = X · (K q?) · K bag

bag

⇐ { (72) assuming bag
bag

is a K-congruence for algebra t ; Leibniz }

q? · bag

bag
· t = X · K q?

Next, we head for a functional implementation x ⊆ X :

x · K q? ⊆ q? · bag

bag
· t

⇐ { cancel q? assuming x · K q? = q? · x (44) }

x ⊆ bag · t
bag

Again we obtain solution x : K µF → µF as a metaphor implementation,
essentially requiring that x preserves the bag of elements of the lists involved,
as in quicksort. Note that the surjectivity of bag allows for a total solution
x , whose standard implementation is the well-known list merge function that

25Note that the trivial case of empty list is treated separately from this scheme.
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merges two ordered lists into an ordered list. This behaviour is in fact required
by the last assumption above, x ·K q? = q? · x . The other assumption, that bag

bag

is a congruence for algebra t , amounts to (recall Theorem 2):

bag · t 6 K bag

⇐ { t = [singl , conc]; coproduct injectivity (52,53) ; K f = id+ f 2 }{
bag · singl 6 id
bag · conc 6 bag2

⇔ { any f 6 id }

bag · conc 6 bag2

⇔ { (40) }

〈∃ k :: bag (x ++ y) = k (bag x , bag y)〉

⇔ { same argument as in quicksort }

true

�

Summing up, the workload inversion in mergesort, compared to quicksort,
can be felt right at the start of the derivation, by grafting the (range of the)
virtual tree representation at the front rather than at the rear of the pipeline.

10. Example: minimum height trees

Our last example addresses a metaphorism (|f |)
(|g|) �R in which R is an optimiza-

tion preorder. It is adapted from [25] where it is labelled tree with minimum
height. Rephrased in our setting, the problem to be addressed is that of reshap-
ing a binary tree so as to minimize its height :26

tips

tips
� 6height (87)

Recall that tips = (|[singl , conc]|)K converts a tree into the sequence of its
leaves.27 Heights of trees are calculated by function height = (|[id, ht ]|)K where
ht (a, b) = (a t b) + 1, for a t b = b ⇔ a 6 b. Finally, 6height is a shorthand
for height◦ · (6) · height , the preorder that ranks trees according to their height.

By rule (24), (87) is the same as (tips◦ � 6height) · tips. Bird et al. [25] show
the advantage of handling tips◦ using a different format for trees known as left

26That is to say, leaves are numbers representing heights of subtrees, and the problem is to
assemble the subtrees into a single tree of minimum height.

27Note that tips is called flatten in [25]. Recall K f = id + f 2 and inK = [leaf , fork] from
Sect. 9.
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spine.28 Let µK A + µK
2inKoo be our datatype of trees with leaves of type A.

The corresponding left spine datatype is S = A × µK
∗ and it is isomorphic to

µK. This isomorphism, termed roll as in [25], is depicted below in the form of a
diagram, where α is obvious and insn = [nil , snoc] is the “snoc” variant of initial
algebra of lists:29

A× µK
∗

roll

��

A× (1 + µK × µK
∗)

id×insnoo A + (A× µK
∗)× µK

αoo

id+roll×id
��

µK A + µK × µK
inK

oo

To obtain roll◦ one just has to reverse all arrows in the diagram, since they are
all isomorphisms.

The left spine representation is introduced as in the previous examples:

(tips◦ � 6height) · tips

= { roll · roll◦ = id }

((roll · roll◦ · tips◦) � 6height) · tips

= { by (25) abbreviating �′ = (6)height·roll and troll = tips · roll }

roll · (troll◦ ��′) · tips

Altogether, we are lead to a metaphorism between binary trees and left spines,
post processed by roll :

A× µK
∗

µK A× µK
∗

roll
oo

roll **

�′ 66

troll
11

µK

tips
tips �6height

~~

tips��

tips
trolloo

tips
troll ��

′hh

µK

tips ((
A+

The hard bit above is troll◦ ��′, to be addressed in two steps: first, we convert
troll◦ = (|S |) for some S using the converse of a function theorem by Bird and
de Moor [5]. Then we use the greedy theorem of shrinking [3] to refine (|S |) ��′
into (|S � �′|). For easy reference, we quote both theorems below from their
sources.

28In essence, left spines offer a bottom-up access to trees, in this case more convenient than
the standard top-down traversal.

29Recall snoc (x , xs) = xs ++ [x ] from [5].
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Theorem 4 (Converse of a function). Let F T
inT // T and A

f // T be
given. Then f ◦ = (|R|) provided R : A ← F A is surjective and such that
f · R ⊆ inT · F f . (Proof: see theorem 6.4 in [5].)
�

Theorem 5 (Greedy shrinking). (|S � R|) ⊆ (|S |) � R provided R is transitive
and S is monotonic with respect to R◦, that is, S · (F R◦) ⊆ R◦ · S. (Proof:
see theorem 1 in [3].)
�

In our case, inT : F A+ → A+ (non-empty lists) where F X = A + A × X ,
assuming A fixed. (A = Z in [25].) We aim at troll◦ = (|[R ,Q ]|), where R : A×
µK
∗ ← A and Q : A × µK

∗ ← A × (A × µK
∗). While R = id M nil is immediate,

Q is constrained by theorem 4

Q ⊆ cons · (id× troll)

troll
(88)

and by theorem 5:

Q · (id× (�′)◦) ⊆ (�′)◦ ·Q (89)

Solutions will be of the form (|[one M nil ,Q � �′]|) by the following properties of
shrinking [3]:

[S, T ] �R = [S �R, T �R]

f � R = f ⇐ R is reflexive

The following property of troll

troll · (id× cons · (leaf × id)) = cons · (id× troll)

naively suggests solution Q = id × cons · (leaf × id) which, however, does not
work: for input tree

6 10
��@@

9 1
��@@

��� HHH

12 7
��@@

1 4
��@@

��� HHH

�����
XXXXX

with height 15, (|id× cons · (leaf × id)|) · tips would generate output tree

6 10
��@@ 9

��� @@ 1

�
�� @@ 12

��� @@ 7

��� @@ 1

�
�� @@ 4

��� @@
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with height 17, worsening the input rather than improving it. Still, because

head · troll = π1

one may stick to the pattern Q = π1 M U · (id× (leaf × id)), for some U :µK
∗ ←

A× (µK × µK
∗).

It turns out that finding U such that Q satisfies (88,89) is not easy [25].
The solution is a strategy allowed by the monotonicity of shrinking on the
optimization relation: if P ⊆ R then S � P ⊆ S � R and therefore (|S � P |) ⊆
(|S � R|).30 At this point we can pick the refinement U = minsplit given in [25]:

minsplit (a, (x , [ ])) = [x ]
minsplit (a, (x , y : xs))
| (a t height x )< height y = x : y : xs
| otherwise = minsplit (a, (fork (x , y), xs))

For the input tree given above, this refinement will yield

6
10

9 1
��@@

��
H
HH

��HHH
12

7
1 4
��@@

��
H
HH

��HHH

((((((( HHH

with (minimum) height 14.
To follow the reasoning by Bird et al. [25] that leads to the above solution

note that, although shrinking is not used there, it is in a sense implicit. Take
S � R and apply the power-transpose to S , obtaining (∈ · ΛS ) � R. Since ΛS is
a function we can use (24) to get (∈ � R) · ΛS . The relation ∈ � R : A ← P A,
which picks minimal elements of a set according to criterion R is written min R
in [25]. So expressions of the form (min R ·ΛS ) in that paper express the same
as S � R in the current paper.

The ordering on left spines found in [25] to ensure the monotonicity of Q is
vlspinecosts where lspinecosts (a, ts) = [(height · roll) (a, x ) | x ← pref ts ],
pref ts lists the prefixes of ts in length-decreasing order, and [a1 . . am ] v
[b1 . . bn ] ⇔ m 6 n ∧ 〈∀ i : i 6 m : ai 6 bi〉. As examples, let s be
the left spine of the first, balanced tree given above as example, and s ′ be that
of the last, minimal-height one. We have lspinecosts s = [15, 12, 11, 6] while
lspinecosts s ′ = [14, 12, 6], meaning s ′ vlspinecosts s. That vlspinecosts ⊆
�′ =6height·roll holds follows immediately from head · lspinecosts = height · roll .

11. Conclusions

This paper identifies a pattern of relational specification, termed metapho-
rism, in which some kernel information of the input is preserved at the same

30The refined greedy theorem by Bird et al. [25] corresponds to this use of theorem 5.
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time some form of optimization takes place towards the output of an algorith-
mic process. Text processing, sorting and representation changers are given as
examples of metaphorisms.

Metaphorisms expose the variant/invariant duality essential to program cor-
rectness in their own way: there are two main attributes in the game, one is to
be preserved (the essence of the metaphor, cf. invariant) while the other is to
be mini(maxi)mized (the essence of the optimization, cf. variant).

At the heart of relational specifications of this kind the paper identifies
the occurrence of metaphors characterized as symmetric divisions [20, 35] of
functions. This makes it possible to regard them as rational (regular) relations
[2] and develop an algebra of metaphors that contains much of what is needed
for refining metaphorisms into recursive programs.

In particular, the kind of metaphorism refinement studied in the paper
is known as changing the virtual data structure, whereby algorithms are re-
structured in a divide & conquer fashion. The paper gives sufficient conditions
for such implementations to be calculated in general and gives the derivation of
quicksort and mergesort as examples. The former can be regarded as a gener-
alization of the reasoning about the same algorithm given by Bird and de Moor
[5].

Altogether, the paper shows how such divide & conquer refinement strategies
consist of replacing the “outer metaphor” of the starting specification (metapho-
rism) by a more implicit but more interesting “inner metaphor”, which governs
the implementation. Where exactly this inner metaphor is located depends on
the overall refinement plan.

The quicksort example shows how the outer metaphor, relating lists which
permute each other, gives place to an inner metaphor located in the divide step
that relates lists to binary search trees. This provides technical evidence for
quicksort being usually classified as a “Hard Split, Easy Join” [36] algorithm:
indeed, the “metaphor shift” calculated in Sect. 8 shows the workload passing
along the conquer layer towards the divide one, eventually landing into the coal-
gebra which governs the “hard” divide process. Conversely, the inner metaphor
in the case of mergesort goes into the algebra of the conquer step, explaining
why this is regarded as a “Easy Split, Hard Join” algorithm by Howard [36].
As seen in the paper, this has to do with where the virtual data structure is
placed, either at the front or at the rear of the starting metaphorism.

From the linguistics perspective, metaphorisms are formal metaphors and
not exactly cognitive metaphors. But computer science is full of these as well,
as its terminology (e.g. “stack”, “pipe”, “memory”, “driver”) amply shows. If
a picture is worth a thousand words, perhaps a good metaphor(ism) is worth a
thousand axioms?

12. Future work

The research reported in this paper falls into the area of investigating how
to manage or refine specification vagueness (non-determinism) by means of the
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“shrinking” combinator proposed elsewhere [3, 37]. The interplay between this
combinator and metaphors (as symmetric divisions) has room for further re-
search. Can f

g be generalized to some R
S and still retain metaphors’ ability

to equate objects of incompatible orders [38]? Facts (26), (27) and (33) point
towards such a generalization. This relates to another direction for possible
genericity: metaphorisms as given in this paper call for a division allegory [20]
such as that of binary relations. Can this be generalized? Gibbons [21] asks a
similar question and suggests regular categories as the right abstraction. It will
be interesting to generalize metaphorisms in a similar, categorial way.

Another direction for future research is to generalize shrinking in metapho-
risms to thinning [5]. A notation similar to S � R can be adopted for thinning,

S � R = ∈ \ S ∩ (∈◦ · R) / S◦

where S �R is a set-valued relation: x (S �R) a holds for exactly those x such that
x ⊆ ΛS a and x is lower-bounded with respect to R. S �R corresponds to that
part of S �R whose outputs are singletons containing minima, η ·(S �R) ⊆ S �R
where η b = {b}. For R a preorder one has:

S � R = (∈ � R) · (S � R)

So preorder shrinking can be expressed by thinning. Not surprisingly, shrinking
and thinning share similar laws, namely (24), cf. (S · f ) �R = (S �R) · f . Thus,
refining metaphorisms under thinning can also follow the converse of a function
strategy enabled by theorem 4. Moreover, the thinning counterpart to the
greedy theorem, (|(S · F ∈)�R|) ⊆ (|S |)�R suggests similar refinement processes.
Whether thinning offers genuinely new opportunities for metaphorism reasoning
as compared to shrinking is a subject for future research.
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him to contribute to the 2013 Humanities and Sciences colloquium where [18]
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was presented. This was followed by several interesting coffee-time conversations
in which Álvaro eventually pointed to Lakoff’s work [16]. Reading this classic
changed the author’s perception of natural language for ever.

On the technical side, comments and suggestions by Ali Jaoua and Ali Mili
are gratefully acknowledged. Last but not least, the author thanks the detailed
suggestions and comments made by the anonymous referees which helped to
improve the original manuscript.
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Appendix A. Auxiliary lemmas and proofs

Lemma 6. Given predicate q and function f ,

(q · f )? = δ (q? · f ) (A.1)
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holds, where

δR = id ∩ R◦ · R (A.2)

is the domain of R.
Proof:

(q · f )?

= { (42) }

id ∩ true

q · f

= { since f
f

is reflexive (38) }

id ∩ f

f
∩ true · f

q · f

= { (37) ; products }

id ∩ (id M true) · f
(id M q) · f

= { (32) ; (37) }

id ∩ f ◦ · (id ∩ true

q
) · f

= { (42) }

id ∩ f ◦ · q? · f

= { (A.2) }

δ (q? · f )

�

The rest of this appendix provides proofs of results left pending in the main
text.

Proof of property (20). Part (⇒) — R
R is always an equivalence relation, recall

Sect. 3. Part (⇐) — assume that R is an equivalence relation. Then:

R = R \ R

⇔ { since R ⊆ R \ R just states that R is transitive (13) }

R \ R ⊆ R

⇐ { since R · (R \ R) ⊆ R by (13) }

R \ R ⊆ R · (R \ R)
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⇐ { composition is monotone }

id ⊆ R

⇔ { R is reflexive }

true

Then:

R =
R

R

⇔ { (12) ; R◦ / R◦ = (R \ R)◦ }

R = R \ R ∩ (R \ R)◦

⇔ { R = R \ R above }

R = R ∩ R◦

⇔ { since R is symmetric: R = R◦ }

true

�

Proof of property (44). Part (⇒) — show that p = q ·f follows from f ·p? = q?·f :

p = q · f
⇔ { bijection between predicates and partial identities }

p? = (q · f )?

⇔ { (A.1) ; f · p? = q? · f assumed }

p? = δ (f · p?)

⇔ { δ (R · S) = δ (δR · S) }

p? = δ (δ f · p?)

⇔ { δ f = id }

p? = δ (p?)

⇔ { domain of a partial identity is itself }

true

�
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Part (⇐) — show that f · p? = q? · f holds assuming p = q · f :

f · p? = q? · f
⇔ { substitution p := q · f ; (A.1) }

f · δ (q? · f ) = q? · f

⇐ { ⊆-antisymmetry, since δ (q? · f ) ⊆ f ◦ · q? · f and f · f ◦ ⊆ id }

q? · f ⊆ f · δ (q? · f )

⇔ { R = R · δR }

q? · f · δ (q? · f ) ⊆ f · δ (q? · f )

⇐ { monotonicity of composition }

q? ⊆ id

⇔ { q? is a partial identity }

true

�

Proof of property (45). By (39), p 6· f is equivalent to the existence of some q
such that p = q · f holds, which in turn is equivalent to f · p? = q? · f by (44).
Then:

f

f
· p?

= { metaphors (32) ; (44) }

f ◦ · q? · f
= { converses ; partial identities }

(q? · f )◦ · f

= { again (44) and (32) }

p? · f

f

�

Proof of property (64). Our strategy is indirect equality carried over the uni-
versal property of the shrinking operator (22):

X ⊆ S � (q? · >)

⇔ { (22) ; (36) }

X ⊆ S ∧X · S◦ ⊆ q? · !

!
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⇔ { shunting (6) ; converses }

X ⊆ S ∧X · (! · S)◦ ⊆ q? · !◦

⇔ { assume S entire, so ! ·S = ! }

X ⊆ S ∧X · !◦ ⊆ q? · !◦

⇔ { shunting (6) ; (36) }

X ⊆ S ∧X ⊆ q? · >
⇔ { (A.4) below }

X ⊆ q? · S
:: { indirect equality }

S � (q? · >) = q? · S
�

The proof relies on a well-known property of partial identities, given below
together with its converse version:

R · p? = R ∩ > · p? (A.3)

q? ·R = R ∩ q? · > (A.4)

see e.g. [39].

Proof of Theorem 2. Equality (73) follows immediately from (72) by fold-cancellation
(31). Next we show the equivalence between (72) and (71):

R · h = R · h · (F R)

⇔ { R · h ⊆ R · h · (F R) holds by id ⊆ F R, since id ⊆ R }

R · h · (F R) ⊆ R · h

⇔ { (R·) is a closure operation, see (A.5) below }

h · (F R) ⊆ R · h
�

The last step relies on the fact that composition with equivalence relations is a
closure operation:

R · S ⊆ R ·Q ⇔ S ⊆ R ·Q (A.5)

This fact is used elsewhere [40] to reason about functional dependencies in
databases. Below we rephrase its proof using the power transpose ΛR which
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maps objects to their R-equivalence classes (41):

R · S ⊆ R ·Q
⇔ { R = ΛR

ΛR
(41) }

ΛR

ΛR
· S ⊆ ΛR

ΛR
·Q

⇔ { ΛR
ΛR

= ΛR◦ · ΛR (32) ; shunting (5) }

ΛR · ΛR◦ · ΛR · S ⊆ ΛR ·Q
⇔ { f · f ◦ · f = f (difunctionality) }

ΛR · S ⊆ ΛR ·Q
⇔ { shunting (5) ; ΛR◦ · ΛR = ΛR

ΛR
= R (41) }

S ⊆ R ·Q
�

Finally, the proof that (74) is equivalent to (71) for the special case R = f
f :

h · (F f

f
) ⊆ f

f
· h

⇔ { metaphor algebra: (32) etc }

F
f

f
⊆ f · h

f · h
⇔ { injectivity preorder (39) ; relator F (49) }

f · h 6 F f

�
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