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Abstract

Nowadays applications produce infinite streams of data distributed across wide sensor
networks. In this work we study the problem of continuously maintain a cluster structure
over the data points generated by the entire network. Usual techniques operate by forwarding
and concentrating the entire data in a central server, processing it as a multivariate stream.
In this paper, we propose DGClust, a new distributed algorithm which reduces both the
dimensionality and the communication burdens, by allowing each local sensor to keep an online
discretization of its data stream, which operates with constant update time and (almost) fixed
space. Each new data point triggers a cell in this univariate grid, reflecting the current state of
the data stream at the local site. Whenever a local site changes its state, it notifies the central
server about the new state it is in. This way, at each point in time, the central site has the
global multivariate state of the entire network. To avoid monitoring all possible states, which is
exponential in the number of sensors, the central site keeps a small list of counters of the most
frequent global states. Finally, a simple adaptive partitional clustering algorithm is applied
to the frequent states central points in order to provide an anytime definition of the clusters
centers. The approach is evaluated in the context of distributed sensor networks, focusing on
three outcomes: loss to real centroids, communication prevention, and processing reduction.
The experimental work on synthetic data supports our proposal, presenting robustness to a
high number of sensors, and the application to real data from physiological sensors exposes
the aforementioned advantages of the system.

Keywords: online adaptive clustering, distributed data streams, sensor networks, incremental
discretization, frequent items monitoring.

1 Introduction

Data gathering and analysis have become ubiquitous, in the sense that our world is evolving
into a setting where all devices, as small as they may be, will be able to include sensing and
processing ability. Nowadays applications produce infinite streams of data distributed across wide
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Figure 1: Example of a mote sensor network and a plot of the data each univariate sensor is
producing over time. The aim is to find dense regions of the data space.

sensor networks (see example on figure 1). The aim of the analysis addressed in this work is to
continuously maintain a cluster structure over the data points generated by the entire network, as
clustering of sensor data gives information about dense regions of the sensor data space, yielding
informative support to everyday decisions [27].

Sensors are usually small, low-cost devices capable of sensing some attribute and of commu-
nicating with other sensors. On top of this, the networks created by today’s setting can easily
include thousands of sensors, each one being capable of measuring, analysing and transmitting
data series, which also implies resource restrictions which narrow the possibilities for high-load
computation, while operating under a limited bandwidth. Stream data has tendentiously infinite
length, while ubiquitous data has tendentiously infinite width. Therefore, data should also be
processed by sensor networks in a distributed way. Usual techniques operate by forwarding and
concentrating the entire data in a central server, processing it as a multivariate stream.

In this work we study the problem of continuously maintaining a cluster structure over the
data points generated by the entire network, where each sensor produces a univariate stream of
data. The main issues of the addressed setting are summarised in figure 1. The main problem
in applying clustering to data streams is that systems should consider data evolution, being able
to compress old information and adapt to new concepts [25]. In this paper, we propose a new
distributed algorithm which reduces both the dimensionality and the communication burdens.

In the next section our method is explained, with relevant analysis of the overall processing.
Section 3 focus on the advantages presented by our proposal in terms of memory and communi-
cation resources, especially important in distributed sensor networks. Validation of the system
and experimental results on real-world scenarios are presented in section 4. Section 5 presents
a quick discussion on the advantages extracted from the analysis of empirical results. In section
6, a review of previous related work is presented, whereas the final section concludes the paper,
including foreseen future work.

2 DGClust — Distributed Grid Clustering

This work addresses the problem of continuously monitoring clustering structures of distributed
sensor data. The main intuition supporting our research is to reduce dimensionality - by moni-
toring and clustering only frequent states - and communication - by applying online sensor data
discretization and controlled transmission to a central server.

In this paper we propose DG Clust, a distributed grid clustering system for sensor data streams,
which operates with the following procedure. Each local sensor receives data from a given source,
producing a univariate data stream, which is potentially infinite. Therefore, each sensor’s data
is processed locally, being incrementally discretized into a univariate adaptive grid. Each new
data point triggers a cell in this grid, reflecting the current state of the data stream at the local
site. Whenever a local site changes its state, that is, the triggered cell changes, the new state
is communicated to a central site. Furthermore, the central site keeps the global state of the
entire network where each local site’s state is the cell number of each local site’s grid. Nowadays,
sensor networks may include thousands of sensors. This scenario yields an exponential number
of cell combinations to be monitored by the central site. However, it is expected that only a
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Figure 2: Example of a 2-sensor network, with data distribution being sketched for each sen-
sor: although the number of cells to monitor increases exponentially with the number of sensors
(dimensions), and unless data is uniformly distributed in all dimensions (extremely unlikely in
usual data) the cells where most of the data lie are much less. Left plot presents an equal-width
discretization, while right plot presents an equal-frequency discretization.
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Figure 3: DGClust: Compact representation of streams produced in distributed sensors using
online discretization; centralized monitoring of the global state of the network, with lightweight
maintenance of frequent states; and fast and adaptable clustering of frequent states to estimate
actual clusters centers.

small number of this combinations are frequently triggered by the whole network, as observed
in the example sketched in figure 2. Thus, parallel to the aggregation, the central site keeps a
small list of counters of the most frequent global states. Finally, the current clustering definition
is defined and maintained by a simple adaptive partitional clustering algorithm applied on the
frequent states central points. Figure 3 summarises the main approach and the outcome of each
step of the algorithm.

2.1 Notation and Formal Setup

The goal is to find k cluster centers of the data produced by a network of d local sensors. Let
X = {X31,X3,..., X4} be the set of d univariate data streams, each of which is produced by one
sensor in one local site. Each local site i keeps a two-layered discretization of the univariate stream,
with p; intervals in the first layer and w; intervals in the second layer, where k < w; << p; but
w; € O(k). At each time ¢, each local sensor produces a value X;(t) and defines its local discretized
state s;(t), drawn from the set of possible states .S;, the unit cells in the univariate grid (]S;| = w;).



If no value is read, or s;(t) = s;(t — 1), no information is sent to the central site.
The central site monitors the global state of the network at time ¢, by combining each local

discretized state s(t) = (s1(t), s2(t), ..., sa(t)). Each s(t) is drawn from a finite set of cell combi-

nations E = {e1,ea,...,¢g}, with |E| = Hle w;. Given the exponential size of F, the central

site monitors only a subset F' of the top-m most frequent elements of F, with k < |F| << |E]|.
Relevant focus is given to size requirements, as |E| € O(k?) but |F| € O(dk®), with small 3. Fi-
nally, the top-m frequent states central points are used in an online adaptive partitional clustering
algorithm, which defines the current k& cluster centers, being afterwards continuously adapted.

2.2 Local Adaptive Grid

Discretization of continuous attributes is an important task for certain types of machine learning
algorithms. Although discretization is a well-known topic in data analysis and machine learning,
most of the works refer to a batch discretization where all the examples are available for discretiza-
tion. Few works refer to incremental discretization. However, it is commonly seen as an essential
tool for high-speed processing of data streams with limited memory resources [15]. For example,
grid clustering algorithms operate on discrete cells to define dense regions of points [30]. In our
approach, the main reason to perform discretization of each univariate data stream in sensor net-
works is to considerably reduce the communication with the central server, which tries to capture
the most frequent regions of the entire input space.

2.2.1 Partitional Incremental Discretization

In our approach, we apply incremental discretization at each sensor univariate stream X; using the
Partition Incremental Discretization (PiD) algorithm [14], which consists of two layers. The first
layer simplifies and summarizes the data, while the second layer constructs the final grid. Within
the scope of this work, we consider only equal-width discretization. Although equal-frequency
discretization seems better, it implies heavier computation and communication, and its benefits
fade out with the frequent state monitoring step.

The first layer is initialized based on the number of intervals p; (that should be much larger
than the desired final number of intervals w;) and the range of the variable. The range of the
variable is only indicative, as it is used to define the intervals in the first layer using a equal-width
strategy, but it is not rigid as layer-one bins can be split if necessary, monitoring the actual range
of the values. Each time a new value X;(t) is read by the sensor i, we increment the counter in
the corresponding interval.

After a given number of examples, the second layer can be defined. We consider a split operator
to be triggered in a given layer-one bin as soon as the number of hits in it is above a user-defined
threshold « (a percentage of the total number of points considered so far). This split operator
generates new intervals in layer one, adapting the initial intervals with the actual distribution
of values. This is especially important to correct badly initialized range values and to adapt to
slight changes in the distribution of values. The second layer merges the set of intervals defined by
the first layer, and defines the final univariate discretization grid (b1, ba, ..., by, ), with size w; > k
linear to the number of final clusters to find.

The process of updating the first layer works online, doing a single scan over the data stream,
hence being able to process infinite sequences of data, processing each example in constant time
and (almost) constant space. The update process of the second layer works online along with the
first layer. For each new example X;(¢), the system increments the counter in the second-layer
cell where the triggered first-layer cell is included, defining the discretized state s;(t). The grid
this way defined represents an approximated histogram of the variable produced at the local site.
Algorithm 1 presents the adaptive discretization procedure executed at each local site.



Algorithm 1 LocalAdaptiveGrid(X;, a)
Input: univariate stream X;; and threshold value «;
Output: void (sends discretized states s; to central site);
1: let n 0
2: while X;(t) < read_sensor(i) do
33 ne—n+1
let ¢ be the layer-one cell triggered by X;(t)
count, < count. + 1
if count./n > « then
split cell ¢, dividing count. evenly by the two cells
update second-layer intervals (b, b, ..., by, )
send (by, ba, ..., by, ) to central site
10:  end if
11:  let b be the layer-two cell triggered by ¢
12:  county < county + 1
13:  send s; < (t,b) to the central site
14: end while

2.3 Centralized Frequent State Monitoring

In this work we consider synchronous processing of sensor data. The global state is updated at each
time stamp as a combination of each local site’s state, where each value is the cell number of each
local site’s grid, s(t) = (s1(t), s2(t), ..., s4(t)). If in that period no information arrives from a given
local site i, the central site assumes that site ¢ stays in the previous local state (s;(t) < s;(t —1)).
Given that common sensor networks usually imply asynchronous communication, this problem
could be easily coped with using a time frame where the central server could wait for data from
the nodes. However, older values that could arrive after this time frame could only be considered
for the next time frame, and only if this is globally acceptable in the domain being studied.

A major issue with our setting is that the number |E| of cell combinations to be monitored
by the central site is exponential to the number of sensors, |E| = O(w?). However, only a small
number of this combinations represent states which are frequently visited by the whole network.
This way the central site keeps a small list, F, of counters of the most frequent global states,
whose central points will afterwards be used in the final clustering algorithm, with |F| = O(dk”),
for small 5.

2.3.1 Space-Saving Top-m Elements Monitoring

Each seen global state e € E is a frequent element f,. whose counter count, currently estimates
that it is the r*® most frequent state. The system applies the Space-Saving algorithm [21], to
monitor only the top-m elements. Basically, if we observe a state s(t) that is monitored in rank
r (fr = s(t)), we just increment its counter, count,.. If s(t) is not monitored, we replace f,,, the
element that currently has the least estimated hits, count,,, with s(t), and increment count,,. For
each monitored element f;, we keep track of its over-estimation, ¢;, resulting from the initialization
of its counter when it was inserted into the list. That is, when starting to monitor f;, set €; to the
value of the evicted counter. An element f; is guaranteed to be among the top-m elements if its
guaranteed number of hits, count; —e;, exceeds count,,+1 (in the following referred as count,. as it
is implemented by storing the count of the last evicted state). Algorithm 2 presents the necessary
procedure to keep the list of most frequent states.

The authors in [21] report that, even if it is not possible to guarantee top-m elements, the
algorithm can guarantee top-m’ elements, with m’ =~ m. Hence, suitable values for m should be
considered. Furthermore, due to errors in estimating the frequencies of the elements, the order
of the elements in the data structure might not reflect their exact ranks. Thus, when performing
clustering on the top-m elements, we should be careful not to directly weight each point by its rank.



Algorithm 2 SpaceSavingUpdate(F', m, s(t)) — adapted from [21]
Input: set F' of frequent states; maximum number m of states to monitor; current global state
s(t) «— (s1(t), s2(t), ..., s4(t));
Output: updated set F' of most frequent global states; updated number of states [; updated count
count, and overestimation varepsilon, for current state; count of the last evicted state count,
for guarantee assessment;
l «— |F| (the current number of monitored states)
r—i:fi==-s(),1<i<lI
if —3r then
if [ < m then
fiyr < s(t)
€41 < countyyy «— 0
l—r—I1+1
else
counte «— €y, < count,,
fm = s(t)
rem
end if
end if
count, «— count, +1
: update ranks, moving up (f,, count,,e,) while count, > count,_1
return (F,l, count,, &, count.)

I e~ O O
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The goal of this strategy is to monitor top-m states, using only the guaranteed top-m elements as
points for the final clustering algorithm.

One important characteristic of this algorithm is that it tends to give more importance to
recent examples, enhancing the adaptation of the system to data evolution. This is achieved by
assigning to a new state entering the top-m list one plus the count of hits of the evicted state.
Hence, even if this is the first time this state has been seen in the data, it will be at least as
important to the system as the one being discarded.

2.4 Centralized Online Clustering

The goal of DG Clust is to find and continuously keep a cluster definition, reporting the k cluster
centers. Each frequent state f; represents a multivariate point, defined by the central points of
the corresponding unit cells s; for each local site X;. As soon as the central site has a top-m set of
states, with m > k, a simple partitional algorithm can start, applied to the most frequent states.

2.4.1 Initial Centers

In the general task of finding k centers given m points, there are two major objectives: minimize
the radius (maximum distance between a point and its closest cluster center) or minimize the
diameter (maximum distance between two points assigned to the same cluster) [8]. The Furthest
Point algorithm [17] gives a guaranteed 2-approximation for both the radius and diameter mea-
sures. It begins by picking an arbitrary point as the first center, ¢;, then finding the remaining
centers ¢; iteratively as the point that maximizes its distance from the previously chosen centers
{c1,...,ci—1}. After k iterations, one can show that the chosen centers {ci,ca, ..., ¢} represent a
factor 2 approximation to the optimal clustering [17]. See [8] for a proof. This strategy gives a
good initialization of the cluster centers, computed by finding the center k; of each cluster after
attracting remaining points to the closest center ¢;. This algorithm is applied as soon as the
system finds a set of m’ > k guaranteed top-m states.



2.4.2 Continuous Adaptive Clustering

It is known that a single iteration is not enough to converge to the actual centers in simple k-means
strategies. Hence we consider two different states on the overall system operation: converged and
non-converged. At every new state s(t) that is gathered by the central site, if the system has not
yet converged, it adapts the clusters centers using the m’ guaranteed top-m states.

If the system has already converged, two different scenarios may occur. If the current state
is being monitored as one of the m’ top-m states, then the set of points actually used in the
final clustering is the same, so the clustering centers remain the same. No update is performed.
However, if the current state has just become guaranteed top-m, then the clusters may have change
S0 we move into a non-converged state of the system, updating the cluster centers. Another scenario
where the clusters centers require adaptation is when one or more local sites transmit their new
grid intervals, which are used to define the central points of each state. In this case we also update
and move to non-converged state.

A different scenario is created when a new state enters the top-m, replacing the least frequent
one. In this case, some of the previously guaranteed top-m may loose their guarantee. However,
if the list of frequent items is small (imposed by resources restrictions) this will happen very
frequently so we disregard this scenarios to prevent excessive computation when cluster centers
have already converged. Future work will focus on these scenarios for concept drift and cluster
evolution purposes.

In scenarios where clusters centers adaptation is needed, our system updates the clustering
definition by applying a single iteration of point-to-cluster assignment and cluster centers compu-
tation. This process (sketched in figure 4) assures a smooth evolution of the cluster centers, while
it nevertheless adapts them to the most recent data, as old data points tend to be less frequent.
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Figure 4: Online partitional clustering of most frequent states.

Figure 5 presents an example of a final grid, frequent cells and cluster centers for a specific
case with d = 2, k = 5, for different values of w and m. The flexibility of the system is exposed,
as different parameter values yield different levels of results. Moreover, the continuous update
keeps track of the most frequent cells keeping the gathered centers within acceptable bounds.
A good characteristic of the system is this ability to adapt to resource restricted environments:
system granularity can be defined given the resources available in the network’s processing sites.
Algorithm 3 presents the central adaptive procedure executed at the server site. The algorithm
for ClusterCentersUpdate(K, F') is omitted for simplicity and space saving.

3 Algorithm Analysis

Although working altogether in the distributed stream paradigm, there are three different levels of
process that we should inspect in our proposal, as they may introduce both complexity and error.
First, each univariate data stream is discretized, with only the discretized state being forwarded to
the central site. At this point, the granularity of each sensor’s grid will directly influence the error
in that dimension. Since the construction of the second layer is directly restricted to the intervals
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Figure 5: Example of final definition for 2 sensors data, with 5 clusters. Each coordinate shows
the actual grid for each sensor, with top-m frequent states (shaded cells), gathered (circles) and
real (crosses) centers, run with: (w = 6,m = 20), (w = 12,m = 60), (w = 24, m = 180), and
(w = 24, m = 180) presenting only guaranteed top-m.

Algorithm 3 CentralAdaptiveProcessing(L, k, m)

Input: list of local sites L = {l3, s, ..., l4}; number of clusters k; and frequent states m;
Output: set K of k cluster centers;

1: F « {} (set of frequent global states)

2: K «— {} (set of k cluster centers)

3: conv < false (are the centers stable?)

4: for each timestamp ¢ do
for each site [; € L do

if s;(t) has not been received then s;(t) « s;(t — 1)

end for
(1) — (51(8), 52(0), ., 5a(t))
<F, [, counts(py, €4(¢), counte> «— SpaceSavingUpdate(F', m, s(t)) (Algorithm 2)
10: if >k and K = {} then

11: K — FurthestPoint (F, k) (as in [17])

12:  else

13: if not conv or count,y — €4(+) = count, + 1 then
14: (K, conv) « ClusterCentersUpdate(K, F)

15: end if

16:  end if

17: end for

18: return K

defined in layer one, the final histograms will also be an approximation of the exact histograms
that would be defined directly if all data was considered. Nevertheless, with this two-layer strategy
the update of the final grid is straightforward. The layer-two intervals just need to be recomputed
when the split operator in layer one is triggered. Moreover, the number of intervals in the second
layer can be adjusted individually for each sensor, in order to address different needs of data
granularity and resources requirements, usually present in current real-world applications [28].

In this proposal we address univariate sensor readings. The data stream model we consider in
sensor networks assumes that a sensor value represents its state in a given moment in time. If the
readings of a local sensor fall consecutively in the same layer-two interval, no sound information
would be given to the central site. Thus, local sites only centralize information when a new
value triggers an interval different from the previously sent to the central server. The central
site only monitors the top-m most frequent global states, disregarding infrequent states which
could influence the final clusters. Finally, the system performs partitional clustering over the m’
guaranteed top-m frequent states which is a sample of the actual states, being biased to dense
cells. Moreover, although the furthest point algorithm may give guarantees on the initial centers
for the clustering of the frequent states, the adaptive update is biased towards small changes in
the concept generating the data streams.



3.1 Time and Space

Each sensor X; produces a univariate adaptive grid. This process uses the PiD algorithm which,
after the initial definition of the two layers based on n; examples, in O(n;logp;) time and O(p;)
space, is continuously updated in constant O(logp;) time and (almost) constant space. Since this
is done parallel across the network, the time complexity of the discretization of one example in the
entire network is O(log p) where p = max(p;), Vi € {1,2,...,d}. The central site aggregates the
state of each of the d local sites. The focus is on monitoring the top-m frequent global states, which
are kept in O(md) space (the actual m frequent states) and continuously updated in O(m) time
(linear search for the current state). The initial clustering of frequent states, and its subsequent
adaptation is made in O(km) time.

3.2 Communication

Data communication occurs only in one direction, between the local sites and the central site. All
queries are answered by the central server. Also, this communication does not include sending
the original data, rather informing the central server of the current discrete state of the univariate
stream of each local site. This feature of only communicating the state when and if it has changed
reduces the network’s communication requirements. The main reason of this is that, in usual
sensor data, sensor readings tend to be highly correlated with previously read value [26], hence
tending to stay in the same discretized state. In the worst case scenario, where all d local sites
need to communicate their state to the central site, the system processes d messages of one discrete
value. However, every time the local site X; changes its univariate grid, the central site must be
informed on the change so that it can correctly compute the points used to find the cluster centers,
which imply sending w; values. In the worst case scenario, the central site may have to receive
O(wd) data, where w = max(w;).

4 Experimental Evaluation

Evaluation of streaming algorithms is a hot-topic in research as no standard exists for evaluat-
ing models over streams of data [16]. Hence the difficulty to define exact evaluation processes.
Nevertheless, we conducted a series of experiments on synthetic scenarios, to assess the quality of
our proposal. All synthetic scenarios were generated by applying the data generator used in [12],
considering each dimension separated across sensors, in univariate streams.

The global view of the network scenarios is created by mixtures of k spherical Gaussians,
with means p; in the unit hypercube. Each scenario was generated according to three parameters:
dimensionality d of the network, the number of mixture components k, and the standard deviation
of each sensor stream in each component . Each scenario (d, k, o) is created with 100000 examples.
Figure 5 shows an example of the final grid obtained for d = 2 and different parameter values.
Given the scope of this validation, the system’s quality is measured by assigning each of the found
cluster centers to the closest real cluster center, using a greedy strategy. The loss of the chosen

assignment is given by
k d
L= > (&5 —cy) (1)
i=1 j=1

where ¢;; and ¢;; are the gathered and real values, respectively, for center ¢ in dimension j. Besides
loss, evaluation in the following sections is also done with respect to two other main outcomes:
number of values communicated to the server, to assess benefits in communication ratios; and
number of clustering updates performed by the central server, to assess the benefits of the system
in terms of computation reduction. Studied parameters are the granularity of the univariate
adaptive grid, w;,Vi € {1,2,...,d}, and the number of frequent states to monitor, m. We fixed
p; = 1000,Vi € {1,2,...,d}. Table 1 presents the studied parameters and the domain in which each
of them was studied. In this section, we present results from first sensitivity analysis experiments,
inter-dependence analysis of parameters, and application to real data from physiological sensors.



Table 1: Parameter description and corresponding values considered in each section of the exper-
imental evaluation: experiments with synthetic data for evaluation and sensitivity analysis; study
on possible parameter dependencies; and real data from physiological sensors.

Synthetic Data

Parameter Sensitivity Parameter PDMC Data
Analysis Dependencies

Scenario

d e {2,4,8,16,

d Number of dimensions/sensors de {2,3,4,5} -

32, 64,128}
o Standard deviation of data distribution o = .05 o =.1 -
k Number of clusters k=3 k€ {3,4,5} ke {23,4,5}
Local Grid Granularity
P Number of bins in each sensor’s first layer p = 1000 p = 1000 p = 1000
@ Threshold for splitting each sensor’s first layer a = .05 a = .05 o = .05

w e {5,7,9,11,

w Number of bins in each sensor’s second layer 13,18, 17,19, 21} w = wk + 1 w = wk + 1
w How much should w be influenced by k? - w € {1,2,3,4,5} w € {2,4,6,8,10}
Frequent States Monitoring

m € {6,9,12,15 5 5

m  Number of frequent states to monitor 18, 21, 24, 27, 30, m = ¢pwd | m = W= m = dw?
33,36, 39, 42, 45} v v

1) How much should m be influenced by d and w ¢ € {1,2,3,4,5}

2% How much should m be influenced by d and w? — v € {10,8,6} ~ € {10,8,6,4,2}

4.1 Evaluation on Synthetic Data and Parameter Sensitivity

For a first evaluation, we have created a set of scenarios based on k = 3 clusters, ranging di-
mensionality in d € {2,4,8,16,32,64,128} in order to inspect the impact of the number of sen-
sors in the quality of the results. For each scenario, 10 different datasets were created, using
o = .05, and the system’s sensitivity to parameters was evaluated: the univariate grid granu-
larity ranging in w € {5,7,9,11,13,15,17,19,21} and the number of states to monitor raging in
m € {6,9,12,15,18,21, 24,27, 30, 33, 36, 39,42,45}. The main rationale behind the choice of values
for these parameters is that we are addressing a scenario with k = 3 clusters. This way, it seems
empirically right to have an odd number of cells in each sensor’s grid, and a multiple of 3 states to
monitor (increasing the average number of states monitored per cluster). The complete set of plots
presenting the results for all the combination of parameters is included in Appendix A. There,
the reader can find, for each scenario and combination of parameters, an estimate of the mean
value for each outcome, with the corresponding 95% confidence interval. Here, we shall present an
overview discussion of those results, and focus on some precise results which are relevant to the
presentation, such as inspecting the quality of the system with respect to loss (to real centroids),
communication (from sensors to the server) and processing (of clustering updates).

4.1.1 Loss to Real Centroids

The impact of the granularity on loss seems evident. If you increase w in low values (slightly
above k) there is a reduction in loss. However, this benefit fades for higher values of w, indicating
that there is a point where increasing w no longer improves the final result. The same observation
can be made for the number of states to monitor (m) as increasing them above a given value
revealed small (or no) improvement in the resulting structure. To evaluate the sensitivity of the
system to the number of sensors, we analysed the average result for a given value of granularity
(w), averaged over all values of m (as loss seemed to be only lightly dependent on this factor). In
Figure 6 we plot these averaged results on a dimensionality scale, with an exponential increase of
the number of sensors. We note a slight increase in loss as the number of sensors increase (left
plot). However, the plot on the right indicates that this increase might be mostly explained by the
additive form of the loss function (Equation 1), as normalizing the loss by the number of sensors
produced results with no clear trend.

4.1.2 Communication to the Central Server

To evaluate the communication requirements, we monitor the amount of transmitted values as
a percentage of the total number of examples times the total number of sensors. We should
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Figure 6: Impact of the number of sensors (from d = 2 to d = 128) on loss, for each granularity
(from w = 5 to w = 21), averaged over all values of m (from m = 6 to m = 45). Right plot presents
the same results but considering a normalized version of the loss where results are normalized with
respect to the number of sensors.
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Averaged over m for each domain-granularty (dw) pair

values of m for each y (dw) pair

g
g
S

Average Communication

50% 60% 70% 80%  90%  100%

40%
L
0%
L

[ T T T 1 T T T T 1
2 8 16 22 64 128 2 8 16 2 64 128

Number of sensors (d) Number of sensors (d)

Figure 7: Impact of the number of sensors (from d = 2 to d = 128) on communication (left plot,
in % of examples x sensors) and processing clustering updates (right plot, in % of examples), for
each granularity (from w =5 to w = 21), averaged over all values of m (from m = 6 to m = 45).

stress that, since data is generated at random from Gaussian distributions, the amount of state
switching should be much higher than what could be expected from real sensors, which usually
produce highly-auto-correlated data. For this reason, the reduction in communication might not
be as strong as expected. Nonetheless, the transmission of values is highly dependent on the
granularity, since as more states are possible at each sensor, more state switching should occur,
hence more transmission is required. On the other side, this outcome does not depend on the
number of states to monitor at the central server, as it is only defined by the number of times a
sensor sends data to the central server. We can also note that with higher number of sensors the
confidence interval for the mean communication narrows, revealing an interesting effect of being
easier to estimate communication in wider networks. To evaluate the sensitivity of the system
to the number of sensors, we analysed the average result for a given value of granularity (w),
averaged over all values of m (as communication is not dependent on this factor). On the left plot
of Figure 7 we present these averaged results on the same dimensionality scale, with an exponential
increase of the number of sensors. The most relevant fact that rises from these results is that the
amount of communication does not depend on the number of sensors. This way, the benefits of
reduced transmission rates are extensible to wide sensor networks.

4.1.3 Processing Clustering Updates

Processing clustering updates is probably the most demanding task of the system. Clustering is
known to be a NP-hard problem, so it is usually hard to get good results with light processing.
To assess the impact of parameters on the processing requirements of the system, we monitor
the number of times a new example forced an update of the clustering structure. Results in this
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matter were challenging. First, we should stress that the number of clustering updates is quite
low compare to the total number of data points. Then, with respect to granularity, we could
note that there is a clear dependence of the outcome with this parameter. However, it is not
the same across different dimensionalities. It seems that processing requirements depend on a
combination of w and d altogether (which makes sense since these are the two factors defining the
search domain). A more expected result relates to the number of states to monitor, as we note an
increase in processing requirements with the increase of m, supporting the notion that a higher
number of states being monitored increases the number of less frequent states being included in the
clustering process, hence increasing the number of required updates. To evaluate the sensitivity of
the system to the number of sensors, we analysed the average result for a given value of granularity
(w), averaged over all values of m (as communication is not dependent on this factor). On the
right plot of Figure 7 we present these averaged results on the same dimensionality scale, with an
exponential increase of the number of sensors. As expected, an increase in the number of sensors
widened the domain of the problem, hence requiring more clustering updates. Nevertheless, we
should point out that the amount of updates is kept extremely low compared to the total number
of examples processed by the system.

4.1.4 Parameter Sensitivity

From the exposed results, we can stress that increasing the granularity (w) will only produce
better results until a given limit is reached, possibly depending on the number of clusters to find
(k), above which no benefits will be drawn from. Also, an unbounded increase in the number of
states to monitor (m) will not, per se, yield better results, hence supporting our initial thought
that only a small number of states are actually frequent and relevant for the clustering process.
A problem that rises from this is that the number of states the system should monitor seems to
depend on both the dimensionality (d) and the granularity (w).

4.2 Inter-Parameter Dependencies

From previous results, it seemed clear that as granularity should depend on the number of clusters
to find, the number of states to monitor should also depend on the granularity and the dimension-
ality of the problem. We look for a good relation between the scenario (k and d) and parameters
(w and m). Our assumption is that parameters should follow w € O(k) and m € O(dk?), for small
0 (possibly 8 = 1). To study this possibility, we define two factors w and ¢, where w = wk + 1
(allows extra cell which will mostly keep outliers) and m = ¢wd.

As first layers in the univariate grids have size >> 20, we set a = 0.05 stating that a first-
layer cell of the univariate grid will be split if it contains more that 5% of the total number of
points. The initial range is set to [0,1]. We set d € {2,3,4,5} and o = 0.1, varying k € {3,4,5},
w€{1,2,3,4,5} and ¢ € {1,2,3,4,5}. Each scenario was evaluated with results averaged over 10
datasets. All w; are set with the same value w = wk+ 1. We vary k within small values to inspect
the ability of the system to find well-separable clusters.

After aggregating all experiments, we computed Pearson’s correlation between the parameters
(w and ¢) and the resulting loss. The w parameter reported (as expected) negative correlation
with the loss (p = —0.7524), as better granularity diminishes the error implied by performing
clustering on a grid instead of the real values. However, higher granularity also implies higher
values for m, so a compromise should be found to optimize computational costs. After running
some empirical tests (which will be subject of thorough evaluation in the future), we found that w
should be larger than 1, in order to allow the existence of infrequent cells between frequent ones,
hence improving separability.

For the ¢ parameter, the study reported a positive correlation with loss (p = 0.3832), proving
that growing m above a given value will not, by itself, increase the quality of model. Although this
might go against the empirical intuition, the higher the m the higher the probability of including
infrequent states in the clustering algorithm (because these start to be considered guaranteed top-
m). This way, we decided to try a different approach, considering an upper bound on dw?. After
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Figure 8: Averaged loss over w € {2,4} and v € {6,8,10}, and 10 different data sets for each
combination of parameters and scenarios, for DG Clust and Continuous K-Means.
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DGClust vs Continuous K-Means
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Figure 10: Average loss comparison for different dimensions d and number of clusters k.

some simple testing of admissible values for the parameter, m is then defined as m = %2 with

v € {10,8,6}.

Figures 8 and 9 present the results gathered for different scenarios, comparing with a simple
centralized online k-means strategy, to which we refer as Continuous K-Means, which is a sim-
plification of the STREAM algorithm [23]. This strategy performs a K-Means at each chunk of
examples, keeping only the centers gathered with the last chunk of data weighted by the amount
of points that were assigned to each center. Once again we note how hard it becomes to define a
clear relation between w, d and m, although for higher values of k and d we could see some pos-
sible progressive paths towards an improvement in the competitiveness of our proposal, especially
expressed in Figure 10.

However, the identification of general parameters is always discussable. Although we plan to
perform more exhaustive sensitivity tests, in order to achieve at least acceptable ranges for the
parameters, we should stress that the flexibility included in the system allows for better deployment
in sensor networks and resource restricted environments.

4.3 Application to Physiological Sensor Data

The Physiological Data Modeling Contest Workshop (PDMC) was held at the ICML 2004 and
aimed at information extraction from streaming sensors data. The training data set for the
competition consists of approximately 10,000 hours of this data, containing several variables:
userID, sessionID, sessionTime, characteristic[1..2], annotation, gender and sensor[1..9]. We have
concentrated on sensors 2 to 9, extracted by userID, resulting in several experimental scenarios of
eight sensors, one scenario per userID.

For each scenario, we run the system with different values for the parameters, and compare
the results both with the Continuous K-Means and full data K-Means, the latter serving as “real”
centers definition. Since different sensors produce readings in different scales, we inspect the
distribution of each sensor on an initial chunk of data, defining the initial ranges to percentiles
25% and 75%. This process is acceptable in the sensor networks framework as expert knowledge
about the range is usually available. Hence, we are also allowing the system to adapt the local
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Figure 13: DGClust: Main results achieved by applying this strategy.

grids accordingly.

The system ran with k& € {2,3,4,5}, w € {2,4,6,8,10} and v € {10,8,6,4,2}. Figure 11
presents performance results in terms of loss. Beyond loss, also monitored was the amount of
communication and cluster adaptation in each run. Figure 12 presents the resulting performance
statistics. Given the characteristics of sensor data, subsequent readings tend to stay in the same
interval. Hence the advantage of local discretization: the system transmits only around 30% of
the total amount of values, including transmissions of recalculated second layer intervals. Also, we
should note that only a small part of the points require cluster center adaptation (less than 10%).
Overall we should stress that, given the flexibility of the system, a suitable combination of param-
eters can yield better results than centralizing the data, while preventing excessive communication
in the sensor network.

5 Discussion

The main characteristics of the system, arising also as important advantages, include: compact
representation of possibly infinite streams produced in distributed sensors, with possibly different
granularities for each sensor; possibility to adapt discretization and central processing to resources
available in the network; centralized monitoring of the global state of the network, with lightweight
maintenance of frequent states; and fast and adaptable clustering of frequent states to estimate
actual clusters centers.

Following the main intuition supporting our research, the advantages of using DGClust algo-
rithm are multifaceted:

e Each sensor’s data is processed locally, being incrementally discretized into a univariate
adaptive grid, with each new value triggering a specific cell of this grid, defining the local
state of the sensor — this in fact decreases the system’s sensitivity to uncertainty in sensed
data.

e Whenever a local site change its state, that is, the triggered cell changes, the new state is
communicated to a central site — this highly reduces the network’s communication require-
ments with the central site).

e The central server keeps a small list of counters of the most frequent global states — this
is extremely helpful as sensor networks may include thousands of sensors, leading to an
exponential number of cell combinations that should be monitored by the central site.

e The final clustering structure is defined and maintained by a simple partitional clustering
algorithm, applied on the frequent states, which is capable of online update and adaptation
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to the evolution of the data.

Figure 13 summarises the main results obtained by applying this strategy, from which we set
focus on the communication gains and the ability to process and cluster distributed sensor data
from a streaming point of view.

6 Related Work

The method we present in this paper is related with three other areas of research in data streams:
sensor network data processing, frequent items monitoring and distributed data clustering.

6.1 Sensor Data and Networks

Sensors are usually small, low-cost devices capable of sensing some attribute of a physical phe-
nomenon. In terms of hardware development, the state-of-the-art is well represented by a class
of multi-purpose sensor nodes called motes [9], which were originally developed at UC Berkeley
and are being deployed and tested by several research groups and start-up companies. Although
common applications are traditionally developed on low-level programming of the motes, recent
programming languages and environments such as Regiment [22] and EnviroSuite [19], provide
high level programming abstractions, allowing more complex programming and usage of sensor
devices as processing units for knowledge extraction scenarios.

Sensor networks are composed of a variable number of sensors (depending on the application),
which have several distinguishing features: (a) the number of nodes is potentially very large and
thus scalability is a problem, (b) the individual sensors are prone to failure given the often chal-
lenging conditions they experiment in the field, (c¢) the network topology changes dynamically, (d)
broadcast protocols are used to route messages in the network, (e) limited power, computational,
and memory capacity, and (f) lack of global identifiers [3].

In sensor network applications, data routing is usually based on two main approaches: (a)
sensors broadcast advertisements for the availability of the data and wait for interested nodes, or;
(b) sinks broadcast interest in the data and wait for replies from the sensors. Common problems
with these strategies are implosion and overlap [3]. To prevent it, data aggregation uses the limited
processing power and memory of the sensing devices to process data online, where data is gathered
from a neighborhood of sensor nodes and combined in a receiving node along the path to the sink.

6.2 Frequent Items in Data Streams

The problem of finding the most frequent items in a data stream S of size N is, roughly put, the
problem to find the elements e; whose relative frequency f; is higher than a user specified support
¢N, with 0 < ¢ < 1. Given the space requirements that exact algorithms addressing this problem
would need [6], several algorithms were already proposed to find the top-k frequent elements,
being roughly classified into counter-based and sketch-based [21]. Counter-based techniques keep
counters for each individual element in the monitored set, which is usually a lot smaller than the
entire set of elements. When an element is seen which is not currently being monitored, different
algorithms take different actions in order to adapt the monitored set accordingly. Sketch-based
techniques provide less rigid guarantees, but they do not monitor a subset of elements, providing
frequency estimators for the entire set.

Simple counter-based algorithms such as Sticky Sampling and Lossy Counting were proposed
in [20], which process the stream in reduced size. Yet, they suffer from keeping a lot of irrele-
vant counters. Frequent [11] keeps only &k counters for monitoring k elements, incrementing each
element counter when it is observed, and decrementing all counters when a unmonitored element
is observed. Zeroed-counted elements are replaced by new unmonitored element. This strategy
is similar to the one applied by Space-Saving [21], which gives guarantees for the top-m most
frequent elements.
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Sketch-based algorithms usually focus on families of hash functions which project the counters
into a new space, keeping frequency estimators for all elements. The guarantees are less strict but
all elements are monitored. The CountSketch algorithm [6] solves the problem with a given success
probability, estimating the frequency of the element by finding the median of its representative
counters, which implies sorting the counters. Also, Group Test method [7] employs expensive prob-
abilistic calculations to keep the majority elements within a given probability of error. Although
generally accurate, its space requirements are large and no information is given about frequencies
or ranking.

6.3 Clustering Data Streams

It is known that solving a clustering problem is the equivalent to finding the global optimal solution
of a non-linear optimization problem, hence NP-hard, suggesting the application of optimization
heuristics [4]. The main problem in applying clustering to data streams is that systems should
consider data evolution, being able to compress old information and adapt to new concepts. The
range of clustering algorithms that operate online over data streams is wide, including partitional,
hierarchical, density-based and grid-based methods. A common connecting feature is the definition
of unit cells or representative points, from which clustering can be obtained with less computational
costs. In this paper we address two types of clustering procedures: point-based clustering and grid-
based clustering.

6.3.1 Point-based Clustering

Several algorithms operate over summaries or samples of the original stream. Bradley et al. [5]
proposed the Single Pass K-Means, increasing the capabilities of k-means for large datasets, by
using a buffer where points of the dataset are kept in a compressed way. The STREAM [23]
system can be seen as an extension of [5] which keeps the same goal but has as restriction the
use of available memory. After filling the buffer, STREAM clusters the buffer into k clusters,
retaining only the & centroids weighted by the number of examples in each cluster. The process
is iteratively repeated with new points. The BIRCH hierarchical method [31] uses Clustering
Features to keep sufficient statistics for each cluster at the nodes of a balanced tree, the CF-tree.
Given its hierarchical structure, each non-leaf node in the tree aggregates the information gathered
in the descendant nodes. This algorithm tries to find the best groups with respect to the available
memory, while minimizing the amount of input and output. Another use of the CF-tree appears
in [1].

A different strategy is used in another hierarchical method, the CURFE system [18], where each
cluster is represented by a constant number of points well distributed within the cluster, which
capture the extension and shape of the cluster. This process allows the identification of clusters
with arbitrary shapes on a random sample of the dataset, using Chernoff bounds in order to
obtain the minimum number of required examples. The same principle of error-bounded results
was recently used in VFKM to apply consecutive runs of k-means, with increasing number of
examples, until the error bounds were satisfied [12]. This strategy supports itself on the idea of
guaranteeing that the clustering definition does not differ significantly from the one gather with
infinite data. Hence, it does not consider data evolution.

6.3.2 Grid-based Clustering

The main focus of grid-based algorithms is the so called spatial data, which model the geometric
structure of objects in space. These algorithms divide the data space in small units, defining a grid,
and assigning each object to one of those units, proceeding to divisive and aggregative operations
hierarchically. These features make this type of methods similar to hierarchical algorithms, with
the main difference of applying operations based on a parameter rather than the dissimilarities
between objects.
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A sophisticated example of this type of algorithms is STING [30], where the space area is
divided in cells with different levels of resolution, creating a layered structure. The main features
and advantages of this algorithm include being incremental and able of parallel execution. Also, the
idea of dense units, usually present in density-based methods [13], has been successfully introduced
in grid-based systems. The CLIQUE algorithm tries to identify sub-spaces of a large dimensional
space which can allow a better clustering of the original data [2]. It divides each dimension on
the same number of equally ranged intervals, resulting in exclusive units. One unit is accepted
as dense if the fraction of the total number of points within the unit is higher than a parameter
value. A cluster is the largest set of contiguous dense units within a subspace. This technique’s
main advantage is the fact that it automatically finds subspaces of maximum dimensionality in a
way that high density clusters exist in those subspaces.

The inclusion of the notion of dense units in simpler grid-based methods presents several bene-
fits. Statistical Grid-based Clustering system [24] was especially designed for data stream applica-
tions, where clusters are constituted by adjacent dense cells. It works by applying three different
divisive methods, based on the statistics of objects belonging to each cell: u-partition, which di-
vides one cluster in two setting the border at the mean of the parent group; o-partition, which
divides the group in two, one with 68% of the objects belonging to [u— o, u+0] (assuming a normal
distribution of objects) and another with the remainder tail objects; and a third method which
includes the efficient features of the previous, hybrid-partition. However, in distributed systems,
the increase in communication given the need to keep sufficient statistics may be prejudicial.

6.3.3 Distributed Clustering

Since current applications generate many pervasive distributed computing environments, data
mining systems must nowadays be designed to work not as a monolithic centralized application but
as a distributed collaborative process. The centralization of information yields problems not only
with resources such as communication and memory, but also with privacy of sensitive information.
Instead of centralizing relevant data in a single server and afterwards perform the data mining
operations, the entire process should be distributed and, therefore, paralleled throughout the entire
network of processing units. A recent example of such techniques was proposed by Subramaniam
et al., where an online system uses density distribution estimation to detect outliers in distributed
sensor data [29].

Recent research developments in clustering are directed towards distributed algorithms for
continuous clustering of examples over distributed data streams. In [10] the authors present
a distributed majority vote algorithm which can be seen as a primitive to monitor a k-means
clustering over peer-to-peer networks. The k-means monitoring algorithm has two major parts:
monitoring the data distribution in order to trigger a new run of k-means algorithm and computing
the centroids actually using the k-means algorithm. The monitoring part is carried out by an exact
local algorithm, while the centroid computation is carried out by a centralization approach. The
local algorithm raises an alert if the centroids need to be updated. At this point data is centralized,
a new run of k-means is executed, and the new centroids are shipped back to all peers.

Cormode et al. [8] proposed different strategies to achieve the same goal, with local and global
computations, in order to balance the communication costs. They considered techniques based
on the furthest point algorithm [17], which gives a approximation for the radius and diameter of
clusters with guaranteed cost of two times the cost of the optimal clustering. They also present
the parallel guessing strategy, which gives a slightly worse approximation but requires only a single
pass over the data. They conclude that, in actual distributed settings, it is frequently preferable to
track each site locally and combine the results at the coordinator site. These methods of combining
local and central processing are paradigmatic examples of the path that distributed data mining
algorithms should traverse.
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7 Concluding Remarks and Future Work

In this paper, we have proposed DGClust, a new distributed grid clustering algorithm for data
produced on wide sensor networks. Its core is based on online discretization of data, frequent state
monitoring, and online partitional clustering. These techniques jointly work towards a reduction
of both the dimensionality and the communication burdens. Experiments are presented in terms
of sensitivity tests and application to a real-world data set, from which some advantages of this
approach could be exploited. Current work is concentrated on determining acceptable ranges for
the parameters of the system and application to more real-world data. Future work will focus on
techniques to monitor the evolution of the clusters, taking advantage from the adaptive update of
clusters already implemented in the system. Furthermore, we are preparing the deployment of the
system in real wireless sensor networks, in order to better assess the sensitivity and advantages of
the system with respect to restricted resources requirements.
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A Experimental Evaluation Detailed Results

This appendix presents the complete set of results from the experiments endured in the pa-
rameter sensitivity analysis. Data is generated for a given scenario with k = 3 clusters, ranging
dimensionality in

d €{2,4,8,16,32,64,128}.
For each scenario, 10 different datasets were created, using ¢ = .05 and parameters varying as:
the univariate grid granularity ranging in
we {5,7,9,11,13,15,17,19,21},
and the number of states to monitor raging in
m € {6,9,12,15, 18,21, 24,27, 30, 33, 36, 39, 42,45}

Figures 14, 15 and 16 present the impact of the parameters on three final outcomes, respectively:
loss (to real centroids), communication (from sensors to the server) and processing (of clustering
updates). Loss is measured using the loss function of Equation 1. Communication is assess with
the transmission rate as a percentage of the total number of examples times the number of sensors.
Processing is evaluated as the amount of clustering updates required as a percentage of the total
number of examples. In each figure, first plot presents the impact of the number of sensors on the
outcome, for each granularity, averaged over all values of m. The remaining plots of the figure
present the estimate of the mean outcome (error bars represent the 95% confidence interval) for
each combination of parameters (d, w,m).
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Figure 15: Experimental evaluation in terms of transmitted values (% of examples x dimensions).
First plot presents the impact of the number of sensors (from d = 2 to d = 128) on transmitted
values, for each granularity (from w = 5 to w = 21), averaged over all values of m (from m = 6 to
m = 45). The remaining plots present the amount of transmitted values (error bars represent the
95% confidence interval) for each combination of parameters (d,w,m).
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Figure 16: Experimental evaluation in terms of the number of clustering updates (% of examples).
First plot presents the impact of the number of clusters (from d = 2 to d = 128) on the number
of clustering updates, for each granularity (from w =5 to w = 21), averaged over all values of m
(from m = 6 to m = 45). The remaining plots present the amount of clustering updates (error
bars represent the 95% confidence interval) for each combination of parameters (d, w,m).
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