
SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg 330077

The main goal of the Architectural Solutions for
Services Enhancing digital Television (ASSET)
project1,2 is to overcome the limitations of cus-

tom-specific implementation in a complete digital system
for TV content creation. These limitations are due to
lack of connectivity and interoperability between equip-
ment and applications; lack of generalized middleware
for multimedia content management and exchange with
openly defined interfaces; and the use of different types
of databases with respect to access and data model.
Technical solutions available on the market are integrat-
ed or proprietary and are usually expensive to develop.
They are not sufficient in serving the requirements of
end-users; in particular, broadcasters.

The ASSET project has defined and developed a soft-
ware architecture and the corresponding technologies
necessary for the unified management of digital TV con-
tent. This covers the complete operational workflow,
including acquisition, creation, editing, control, storage,
broadcasting, publishing, and archiving of digital TV
content. The project therefore defines and/or imple-
ments (1) a harmonized data model and interfaces for
accessing and manipulating the multimedia objects cov-
ering the essence (audio and video) and the associated
metadata, based on existing standardization work; (2) a
command and control system between the different
ASSET components, as well as a middleware layer,
based on distributed technology, in order to expose an
interface for controlling the different ASSET devices and
servers; and (3) a reliable way to interchange audiovisu-
al program material, system, and descriptive metadata
between the different ASSET components as an integral
part of a production and content management system.

The ASSET project utilizes open standards and
emerging concepts and technologies such as MXF;3
standard data models for describing essence; XML;4
and distributed system technologies for defining the

The ASSET Architecture—
Integrating Media Applications and
Products through a Unified API
By M. Cordeiro, P. Viana, J. Ruela, M. Body, B. Cousin, D. Bommart, G. Ferrari, W. Bernet,
M. Strambini, E. Müller, M. Laurentin, B. Algayres, S. Daulard, I. Höntsch, and T. Marx

Applications and products currently avail-
able for the broadcasting market are verti-
cally integrated or proprietary. They are
based on components requiring specific
and costly development to interoperate
and typically rely on a single manufacturer
or system integrator. Hence, they are not
fully compliant with broadcasters’ require-
ments. Architectural Solutions for Services
Enhancing digital Television (ASSET) is a
European-funded project. Its main goal is
to overcome the limitations of custom-
specific implementations in a digital sys-
tem for TV content creation. These limita-
tions are generally due to the misfit of
interfaces between software layers, propri-
etary application program interfaces (APIs)
of equipment from different vendors, and
the lack of a generalized middleware for
multimedia content management with
openly defined interfaces. Besides pre-
senting the ASSET-proposed architecture
and concepts, this paper describes the
prototype under development to test and
demonstrate the project proposals.

M. Cordeiro P. Viana J. Ruela

Cordeiro.qxd 8/12/04 2:52 PM Page 307

330088 SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg

concept of an ASSET middleware. XML is used
for exchanging command and control informa-
tion, such as service identification and parame-
ters, through a set of predefined application pro-
gram interaces (APIs). MXF is the proposed
solution for the exchange of content between
ASSET frameworks, and the implementations
shall follow the standard recommendations.
However, although the project supports the use
of MXF, the proposed architecture is agnostic of
the coding format and does not exclude other
solutions.

A prototype, based on a typical workflow in a
newsroom platform, demonstrates and validates
the benefit of the ASSET approach.

ASSET Architecture
The ASSET architecture is based on a soft-

ware framework composed of a set of three
standard interfaces and protocols for applica-
tions and products working together in an inte-
grated environment. Applications communicate
with the framework using the ASSET Public
API, which allows them to communicate with
any other application; access the public services
provided by the framework; and use additional
functionalities implemented by third-party inte-
grators as aggregated services.

Products from different manufacturers are integrated
in the ASSET framework either natively, using an
ASSET agent, or via an ASSET proxy. They are con-
trolled and managed through the Media ASSET Bus
API, based on XML service schema definitions. This API
ensures an easy and seamless integration of devices
and products in the framework.

An ASSET Private API is defined to access core ser-
vices of the framework that enable the workability of this
integrated environment. This API is only used internally
in order to guarantee the overall system integrity. Figure
1 illustrates the different components of the ASSET
architecture.

ASSET Components
The ASSET architecture defines a number of con-

cepts, components, and functions that enable the imple-
mentation of an ASSET-compliant framework. The core
of the framework consists of three main components.

The ASSET Public Services expose the mandatory ser-
vices of the framework to the applications and to the
aggregated services through the Public API. These ser-
vices provide a minimum set of multimedia functionality,
sufficiently rich and extensible in order not to limit the
system efficiency. They ensure the consistency and
integrity of the system by handling the internal logic
such as access right, resource allocation, etc., required
for each operation.

The ASSET Common Services provide implementa-
tion of key infrastructure requirements such as security,
logging, notification, and resource management. This
allows a uniform and single implementation of these ser-
vices throughout the framework. They expose a private
API that can only be used by ASSET Public Services.

The ASSET Function Services provide an abstraction
of functionalities, such as encoder, recorder, and player,
to the ASSET Public Services. They hide the specifici-
ties of the different interconnected products. For

THE ASSET ARCHITECTURE—INTEGRATING MEDIA APPLICATIONS
AND PRODUCTS THROUGH A UNIFIED API

Figure 1. ASSET architecture.

Cordeiro.qxd 8/12/04 2:52 PM Page 308

SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg 330099

example, for a public service, a VTR output and a video
server output are considered as two system-wide logical
output ports.

At the application and business logic layer, three com-
ponents are introduced. The ASSET Compliant applica-
tions are the top-level ASSET software components.
They use the Public API to access services provided by
the framework and, optionally, by ASSET aggregated
services.

The ASSET Services Library is a software component
included in, or linked with, an application, which makes it
compliant with the ASSET framework and gives it
access to the ASSET public services. The ASSET
Aggregated Services implement additional business
logic on top of public services, or even other aggregated
services. They register in the framework as new ser-
vices available for ASSET-compliant applications. For
example, complex workflows may be specified as
aggregated services and then made available to other
connected applications or aggregated services.

At the product layer, product is a manageable hard-
ware or software component that implements one or
several common functions (Most of the video server

products implement a recorder
function, a player function, and a
storage function.) and logical com-
ponents such as logical ports,
repositories, and so forth. Products
are compatible with the ASSET
framework if (1) an ASSET-compli-
ant product is managed by the
framework through a built-in
ASSET agent; or (2) a legacy prod-
uct is not, or cannot have, a built-in
ASSET agent. The ASSET frame-
work can nonetheless manage
such a product through an external
software module called an ASSET
Proxy. For example, a VTR is not
capable of including a built-in
ASSET agent and has to be con-
nected through an ASSET Proxy.

Media ASSET Bus
Most of the ASSET framework is

built on top of a software bus called
the Media ASSET Bus, or MAB.

The goal of the MAB is to provide support for the inte-
gration of the widest range of products within the
ASSET framework, independent of the underlying oper-
ating system environment and protocols.

The MAB defines a set of standard interfaces and
synchronization processes that ensure a seamless inter-
operability between ASSET components and products.
These interfaces allow any third-party media application
or product to be integrated with the MAB by developing
a simple software adapter in an agent or a proxy. A
MAB software development kit (SDK) is provided in
order to facilitate this task. It gives a uniform way of con-
necting devices, registering services, and exchanging
messages within the ASSET framework.

The integrated environment offered by the MAB is
based on a transport abstraction layer (TAL) that takes
care of message exchanges. Messages have XML for-
mat, thus ensuring flexibility and adaptability of the
ASSET solution. The concept of the Media ASSET Bus
is illustrated in Fig. 2. Different ASSET components and
products are interconnected via software adapters on
top of the MAB SDK.

THE ASSET ARCHITECTURE—INTEGRATING MEDIA APPLICATIONS
AND PRODUCTS THROUGH A UNIFIED API

Figure 2. Media ASSET Bus.

Cordeiro.qxd 8/12/04 2:52 PM Page 309

331100 SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg

Demonstration Platform
The purpose of the demonstration platform, which is

being implemented as part of the ASSET project, is to
show the feasibility and simplicity of integrating different
broadcast systems via the ASSET middleware. It should
also serve as a reference system, where end users,
administrators, and integrators can test and verify the
implemented functionality against the requirements,
thus validating the result of the project.

The demonstrator uses one client and two providers
of different manufacturers to emulate a simple workflow
of a news platform. The client is a newsroom application
that controls the ingest process and lists the content
stored on the online video server. The providers are an
ingest server and an online storage system provided by
a video server. Both the providers and the client applica-
tion are connected to the ASSET middleware. All the
command and control operations and data exchange
are controlled by components of the ASSET middle-
ware. Interaction between the different components
used in the demonstrator is presented in Fig. 3.

Demonstration Platform Components
The demonstration platform will make the following

set of public, common,
and function services
available:

Public Services: (a)
Record PS provides an
API to start, stop, and
restart the recording of
the pre-programmed
feeds. (b) Metadata PS
is the central access
point for accessing,
creating, and modifying
any kind of metadata in
the system, such as
content management
metadata and descrip-
t ive metadata. (c)
Repository PS provides
the interface for the
applications to access
and modify content
stored in any repository

(online, nearline).
Common Services: (a) Service Repository CS pro-

vides a mechanism for common and function services
to register to the framework so that they can be
addressed and accessed by other services or applica-
tions. (b) Notification CS provides a subscription mech-
anism for other services and applications to be notified
of events such as creation and modifications to
objects. (c) UMID Generator CS provides a unique
material identifier according to SMPTE 330M.5 (d)
Content Management Metadata CS maintains the link
between a UMID and the repositories where the mater-
ial is located.

Function Services: (a) Record FS provides an
abstraction layer (entities, data exchanged) for control-
ling audio/video input ports. For example, sending differ-
ent commands to control the recording of a media asset.
In the demonstrator scenario, the Record PS uses the
record function to control the input port of the acquisition
server. (b) Repository FS provides an abstraction layer
for controlling all the storage repositories of a system.
The repository for the demonstrator is an online storage
video server that stores the material ingested by the
acquisition service.

THE ASSET ARCHITECTURE—INTEGRATING MEDIA APPLICATIONS
AND PRODUCTS THROUGH A UNIFIED API

Figure 3. ASSET demonstration platform components.

Cordeiro.qxd 8/12/04 2:52 PM Page 310

Demonstration Hardware
Architecture

The demonstrator components are
connected using different network
technologies as presented in Fig. 4.
The newsroom application displays
the status of the ingest operation and
lists all content stored on the online
video server. Incoming material (A/V
feeds) are digitized with different tech-
nical qualities. High-resolution copies
are recorded on the video server.
Each time a recording is initiated, a
new and unique UMID will be associ-
ated with the new feed. The video
server informs the ASSET framework
about the new content creation and
status changes.

Register Record and
Repository Functions—Use
Case

Some use cases were
developed to model the
behavior and the interac-
tion between different
modules in the demon-
strator. Figure 5 presents
the Record and
Repository FS registra-
tion into the ASSET
framework. The following
steps are executed:

A0—All the PS sub-
scribe for notifications to
the Notification CS in
order to receive notifica-
tions in which they are
interested: the Metadata
PS to receive all modifi-
cations regarding the
creation, deletion, move,
and modification of con-
tent; and the Record and
Repository PS to receive
notifications about the

SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg 331111

THE ASSET ARCHITECTURE—INTEGRATING MEDIA APPLICATIONS
AND PRODUCTS THROUGH A UNIFIED API

Figure 4. ASSET network architecture for the demonstrator platform.

Figure 5. ASSET demonstration registration scenario.

Cordeiro.qxd 8/12/04 2:52 PM Page 311

corresponding newly registered functions.
A1—The Record and Repository proxies are regis-

tered to the ASSET framework. The Service Repository
CS creates the corresponding function services acting
as client stubs for the proxies. After that, the corre-
sponding PS are notified about the new registrations
through the Notification CS. Generally, the public ser-
vices would read the predefined configuration from the
Configuration Management CS. In the demonstrator
scenario, the configuration for the proxies are stored in
configuration files read by the corresponding PS. The
PS initializes the corresponding proxy by calling the
function services’ Initialize command, passing the con-
figuration in the XML data parameter.

A2—After its registration, the Repository proxy sends
a notification describing its content. This notification is
received by the Metadata PS, which updates the
Content Management CS information regarding the con-
tent location (repository) and media assets structures.

Conclusion
This paper gives an overview of the work developed

within the scope of the ASSET project. The software
architecture and the main concepts are described, and
a simplified prototype that is expected to test and vali-
date the project approach is presented. This work is
expected to improve the interconnection between
equipment and media applications in digital TV environ-
ments, solving some of the problems users and system
integrators currently face.

References
1. IST-2001-37379—Architectural Solutions for Services

Enhancing digital Television, http://mog.inescporto.pt/ist-
asset.

2. Paula Viana et al., “A Unified Solution for the Integration of
Media Applications and Products in Broadcaster
Environments—The ASSET Architecture,” Proc. of the
NAB Conference 2003, pp. 172-176, April 2003.

3. Proposed SMPTE Standard, 377M-2003, “Material
Exchange Format (MXF) File Format Specification,”
www.smpte.org.

4. W3C, Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation, World Wide Consortium,
www.w3c.org/TR/REC-xml, Oct. 2000.

5. SMPTE 330M-2000, “Unique Material Identifier (UMID),”
www.smpte.org.

331122 SMPTE MMoottiioonn IImmaaggiinngg Journal, September 2004 • wwwwww..ssmmppttee..oorrgg

THE ASSET ARCHITECTURE—INTEGRATING MEDIA APPLICATIONS
AND PRODUCTS THROUGH A UNIFIED API

THE AUTHORS
Mário Cordeiro graduated with a degree in electrical
and computer engineering from the University of
Porto, Portugal, in 2000. He was a researcher at
INESC Porto from September 2000 to April 2003,

distributed systems, graphical user interfaces, and
MXF. In May 2003, Cordeiro joined MOG Solutions,
where he is currently developing middleware services
and graphical user interfaces.

Paula Viana (pviana@inescporto.pt) received B.S.
and M.Sc. degrees in electrical and computer engi-
neering from the University of Porto, Portugal, in 1989
and 1994, respectively. She is an adjunct professor at
the Polytechnic Institute of Porto, where she teaches
courses in telecommunications. She is also a senior
researcher in the telecommunications and multimedia
unit at INESC Porto. Viana’s main research activities
and interests are in the area of networked audiovisual
systems.

José Ruela (jruela@inescporto.pt) received a degree
in electrical engineering from the University of Porto,
Portugal, in 1971, and a Ph.D. in electrical engineer-
ing from the University of Sussex, U.K., in 1982. He is
an associate professor at the University of Porto,
where he teaches courses in data communications
and computer networks. He is manager of the
telecommunications and multimedia unit at INESC
Porto, an R&D institute affiliated with the University of
Porto. His main research interests are in resource
management, quality of service, and performance
evaluation in high-speed networks.

ASSET Consortium
The work presented in this paper was developed,
from June 2002 to September 2003, in the framework
of ASSET (Architectural Solutions for Services
Enhancing digital TV), a European-funded project
(IST-2001-37379). The ASSET partners are
Compaq-HP Group, France (D. Bommart); Thomson
Broadcast Systems, France (S. Daulard); Dalet
a.n.n., Germany (W. Bernet, E. Müller); INESC Porto,
Portugal (M. Cordeiro, P. Viana, J. Ruela); INRIA,
France (M. Body, B. Cousin); Institut für
Rundfunktechnik, Germany (I. Höntsch, T. Marx);
Front Porch Digital Inc., France (M. Laurentin, B.
Algayres); SHS Multimedia, Italy (G. Ferrari, M.
Strambini).

First published in the IBC2003 Conference Proceedings, Amsterdam, The
Netherlands, Sept. 11-15, 2003. Copyright © International Broadcasting
Convention.

Cordeiro.qxd 8/12/04 2:52 PM Page 312

where he worked n several projects in the area ofo

