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Abstract. In recent years, periocular recognition has become a popular
alternative to face and iris recognition in less ideal acquisition scenarios.
An interesting example of such scenarios is the usage of mobile devices
for recognition purposes. With the growing popularity and easy access to
such devices, the development of robust biometric recognition algorithms
to work under such conditions finds strong motivation. In the present
work we assess the performance of extended versions of two state-of-
the-art periocular recognition algorithms on the publicly available CSIP
database, a recent dataset composed of images acquired under highly
unconstrained and multi-sensor mobile scenarios. The achieved results
show each algorithm is better fit to tackle different scenarios and appli-
cations of the biometric recognition problem.

1 Introduction

Over the past few years face and iris have been on the spotlight of many research
works in biometrics. The face is a easily acquirable trait with a high degree of
uniqueness, while the iris, the coloured part of the eye, is composed by a set
of irregular textural patterns resulting from its random morphogenesis during
embryonic development [1]. These marked advantages, however, fall short when
low-quality images are presented to the system. With the increasing popularity
and availability of mobile devices capable of performing the whole biometric
recognition framework, from data acquisition to final decision, serves as further
motivation for research in the field of unconstrained biometrics [2]. Several recent
works have tried to explore alternative hypotheses to overcome this challenge,
either by developing more robust algorithms or by exploring new traits to allow
or aid in the recognition process.
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The periocular region is one of such unique traits. It is common to describe
the periocular region as the region in the immediate vicinity of the eye. Peri-
ocular recognition can be motivated as a representation in between face and
iris recognition. It has been shown to present increased performance when only
degraded facial data or low quality iris images are made available. Even in mobile
application scenarios, the periocular region does not require rigid capture or
complex imaging systems, thereby making it easy to acquire even by an inexpe-
rienced user. Nevertheless, several problems arise when attempting to perform
periocular biometrics in mobile environments. The wide variety of camera sen-
sors and lenses used in mobile devices produce discrepancies in working images,
as they might be acquired with both color distortions and multiple resolutions.
On-the-go acquisition by inexperienced subjects will result in demanding pose,
illumination, and expression changes, thereby yielding variable acquisition angles
and scales, or rotated images. All these limitations are intrinsic to the nature of
mobile devices and must, thus, be handled by the recognition algorithm.

On the present work we aim to compare the performance of two state-of-the-
art approaches to periocular recognition - an extension of Monteiro et al. [3] to
multiple features and fusion strategies and Santos et al. [2] - when exposed to
images acquired on multiple mobile scenarios, using a recently collected multi-
sensor periocular database [2]. We evaluate both approaches with regards both
to recognition performance as well as the processing time, with real-world appli-
cations in mind. Finally, we present some preliminary results on cross-sensor
periocular recognition, thourgh the analysis of whether or not multiple sensors
from varying manufacturers present meaningful interoperability.

2 Related Work

Periocular biometrics is a recent area of research, proposed by the first time in
a feasibility study by Park et al. [4]. In this pioneer work, the authors suggested
the periocular region as a potential alternative to circumvent the significant chal-
lenges posed to iris recognition systems working under unconstrained scenarios.
The same authors analysed the effect of degradation on the accuracy of peri-
ocular recognition [5]. Padole and Proença [6] also explore the effect of scale,
pigmentation and occlusion, as well as gender, and propose an initial region-of-
interest detection step to improve recognition accuracy.

Ross et al. [7] explored information fusion based on several feature extrac-
tion techniques, to handle the significant variability of input periocular images.
Information fusion has become one of the trends in biometric research in recent
years and periocular recognition is no exception.

Some works have explored the advantages of the periocular region as an aid
to more traditional approaches based on iris. Joshi et al. [8] proposed feature
level fusion of wavelet coefficients and LBP features, from the iris and periocular
regions respectively, with considerable performance improvement over both sin-
gular traits. A more recent work by Tan et al. [9] has also explored the benefits of
periocular recognition when highly degraded regions result from the traditional
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iris segmentation step. The authors have observed discouraging performance
when the iris region alone is considered in such scenarios, whereas introducing
information from the whole periocular region lead to a significant improvement.
A thorough review of the most relevant method in recent years concerning peri-
ocular recognition and its main advantages can be found in the work by Santos
and Proença [10].

On the present work we chose to perform a comparative analysis of two recent
approaches to the issue of periocular recognition, when working with images
acquired in unconstrained mobile scenarios. These works, by Monteiro et al. [3]
and Santos et al. [2], will be analyzed in further detail in the following section.

3 Recognition Algorithms

This section will detail both previously referred methodologies for periocular
recognition. Both approaches will be analysed in a comparative scenario so as
to ascertain their main advantages and disadvantages in the mobile acquisition
environments that serve as motivation for the present work.

Fig. 1. Flow diagram of the main composing blocks of the methodology proposed in [3].

3.1 Method 1: GMM-UBM

The GMM-UBM algorithm for periocular recognition, first proposed by Monteiro
et al. [3], is schematically represented in Fig. 1. During the enrollment, a set of N
models describing the unique statistical distribution of biometric features for each
individual n ∈ {1, . . . , N} is trained by maximum a posteriori (MAP) adaptation
of an Universal Background Model (UBM). The UBM is a representation of the
variability that the chosen biometric trait presents in the universe of all individu-
als. MAP adaptation works as a specialization of the UBM based on each individ-
ual’s biometric data. The idea of MAP adaptation of the UBM was first proposed
by Reynolds [11], for speaker verification. The tuning of the UBM parameters in
a maximum a posteriori sense, using individual specific biometric data, provides
a tight coupling between the individual models and the UBM, resulting in better
performance and faster scoring than uncoupled methods, as well as a robust and
precise parameter estimation, even when only a small amount of data is available.
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The recognition phase is carried out through the projection of the features
extracted from an unknown sample onto both the UBM and the individual
specific models (IDSM) of interest. A likelihood-ratio between both projections
outputs the final recognition score. Depending on the functioning mode of the
system - verification or identification - decision is carried out by thresholding or
maximum likelihood-ratio respectively. The use of a likelihood-ratio score with
an universal reference works as a normalization step, mapping the likelihood
values in accord to their global projection. Without such step, finding a global
optimal value for the decision threshold would be a far more complex process.

Gaussian Mixture Models (GMM) were chosen to model both the UBM and
the individual specific models (IDSM). Regarding feature extraction while the
original algorithm used SIFT keypoint descriptors alone, on the present work we
present an extension to four distinct descriptors, as detailed later.

3.2 Method 2: Santos et al.

This algorithm, proposed in [2], may be divided into four main blocks: nor-
malization using a device-specific color correction and region-of-interest (ROI)
definition; feature encoding using information from both the iris and the peri-
ocular region; feature matching and score-level fusion. The flow of information
through the aforementioned blocks is schematically depicted in Fig. 2.

Fig. 2. Flow diagram of the main composing blocks of the methodology proposed in [2].

During the normalization block a device-specific color-correction was applied
so as to compensate for possible chromatic distortions observed in real-life sce-
narios. Another variability source that is commonly observed in data acquired
with mobile devices is variable scale. In order to overcome such problem, and
making use of a state-of-the-art iris segmentation algorithm [12], the authors
propose a segmentation of the iris boundary, to serve as a reference for the peri-
ocular region. Using the previously calculated radius of the iris, ri, the periocular
ROI was defined as 35 square patches that formed a 7×5 grid, where each patch
had an area equivalent to 1.4r2i .

Periocular data was encoded using a similar feature extraction scenario as
the one described for the previous methodology. SIFT, HOG, uLBP (as well
as the original LBP) and GIST, were also tested independently and used in a
conjugated manner. For the iris region, in addition to these descriptors, a fifth
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approach was also explored, using the original iriscode algorithm proposed by
Daugman [13]. For a single image a total of 11 feature descriptors is, therefore,
extracted: 5 for the periocular region and the same 5 plus the iriscode for the
iris region.

Matching was carried out by comparing the 11 pairs of feature descriptors
extracted from a pair of images, using the matching algorithm specified for each of
them (χ2 for histogram-based algorithms, distance-based score for pairs of SIFT
keypoints and Hamming Distance for iriscode), resulting, thus, in 11 individual
scores. Performance can then be evaluated either for each descriptor individually
or by exploring more complex fusion strategies. In the original algorithm, a multi-
layer perceptron artificial neural network was used to achieve such fusion.

3.3 Algorithm Extensions

Besides the comparative analysis between the two methodologies described in the
previous sections, we also present some extensions to their original formulations.
Such modifications will be present in the following sections.

Pre-processing. An no pre-processing strategy was included in the original
formulation of the GMM-UBM algorithm, we aimed to assess if its presence
could bring about a significant improvement in performance. We chose the Dis-
crete Cosine Transform (DCT), as proposed by Chen et al. [14] for illumination
normalization in face images, as it yielded the best overall performance. This
technique is based on the removal of low-frequency coefficients of the DCT, in
order to compensate for the variations in lighting conditions, that are known to
lie, mainly, on such frequency band. We also tested the device-specific colorcor-
rection technique proposed in Method 2.

Periocular Segmentation. As the GMM-UBM approach presented no pre-
liminary periocular segmentation in its original form, and in order to achieve
an uniform set of conditions for performance comparison, we chose to perform
segmentation with the same methodology used for Method 2, as described in
Sect. 3.2.

Feature Descriptors. Similar to segmentation, we chose to explore the perfor-
mance of multiple features using Method 1, as we believed that multiple sources
of information might offer the algorithm an increased robustness when dealing
with more complex and realistic datasets. Similar to Method 2 we chose to test
the GMM-UBM with the LBP, HOG and GIST descriptors, besides the original
SIFT formulation.

Fusion Strategies. Fusion scenarios can contribute, in some complex situa-
tions, to an overall improvement of system performance. On the present work,
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two fusion strategies at score level were evaluated: performance-weighted score-
level fusion and neural network score-level fusion. Both are novel to Method 1,
which did not include any score-level fusion in its original formulation, while the
simpler performance-weighted strategy is tested as an alternative to the original
version of Method 2.

– Performance-Weighted Score-Level Fusion: the fusion score, sf , is
obtained by a weighted sum of the individual scores obtained for each feature
individually:

sf = wfeat1 × sfeat1 + wfeat2 × sfeat2 + ... + wfeatN × sfeatN (1)

where sfeatn is the individual score obtained for feature n ∈ 1...N and wfeatn

is its corresponding weight in the final score. The weight of each feature is
computed in relation to its individual performance:

wfeatn =
pfeatn∑N
i=1 pfeati

(2)

where pfeatn is the individual performance obtained with a specific metric for
feature n and the denominator term is introduced so that

∑
i wfeati = 1.

– Neural Network Score-Level Fusion: the final recognition score, sf , is
obtained by a multilayer perceptron artificial neural network (MLP-NN),
trained on a small data partition which is not included in the test phase. NN-
based methods have been applied widely to classification problems because
of their high learning capacities and good generalization [2]. In the present
study, two hidden layers NN were trained using back-propagation. The archi-
tecture of the NN was as follows: the first hidden layer had the same number of
neurons as the number of individual scores derived from the matching stage,
i.e. 4 for Method 1 and 11 for Method 2; the second hidden layer had 2 and
6 neurons for Methods 1 and 2 respectively, while the final (output) layer
presented a single layer outputting the final sf value.

Besides these strategies, we also analyzed the effect of fusing information from
different channels of the RGB colorspace. Integration of information, in this case,
was performed by treating each color channel individually and computing three
independent recognition scores for each one: rR, rG and rB . The final score was
obtained by simple averaging these three values.

4 Results and Discussion

The present section will serve as a detailed analysis of the comparison carried out
between the two algorithms presented in the last section. We start by offering
some insight regarding the specific details of the multi-sensor periocular database
on which both algorithms were assessed, as well as the experimental setups and
performance metrics used for such assessment. We then present and discuss the
main results regarding both recognition performance as well as processing time
and possible limitations and advantages of each algorithm in real-world scenarios.
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4.1 CSIP Database

The CSIP database, created for the assessment of the original version of Method
2 [2], is a recent and publicly available dataset, designed with the main goal of
gathering periocular images from a representative group of participants, acquired
using a variety of mobile sensors under a set of variable acquisition conditions.
Given the heterogeneity of the camera sensors and lens setups of consumer mobile
devices, 10 different setups were used during the dataset acquisition stage: four
different devices, some of which had both frontal and rear cameras, and LED
flash. This variety of sensors confers a strong appeal to the CSIP database regard-
ing its potential use for the assessment of algorithms under a highly heteroge-
neous set of conditions. A visual example of an image for each subset of the same
individual is depicted in Fig. 3. Each participant was imaged using all of the test
setups.

Fig. 3. Examples of images from each subset of the CSIP database. From (a-j) respec-
tively: AR0, AR1, BF0, BR0, BR1, CF0, CR0, CR1, DF0 and DR0.

To simulate the variable noise associated with on-the-go recognition, partic-
ipants were not imaged at a single location, but instead they were enrolled at
multiple sites with artificial, natural, and mixed illumination conditions. In total,
50 participants were enrolled, all Caucasian and mostly males (82%), with ages
ranging between 21 and 62 years (mean = 31.18±9.93 years). For each periocular
image acquired by the mobile devices, a binary iris segmentation mask was also
produced. The masks were obtained automatically using the state-of-the-art iris
segmentation approach proposed by Tan et al. [12], which is particularly suit-
able for uncontrolled acquisition conditions, as demonstrated by its first place
ranking at Noisy Iris Challenge Evaluation - Part 1 (NICE.I) (NICE.I) [15].

4.2 Experimental Setup

In order to achieve a fair comparison between both tested algorithms, a uniform
experimental setup was defined and adapted to fit the specifics of each method.
With that in mind, the set of all images of the CSIP dataset was divided as
follows: 50% of the images per individual and per subset were kept to either train
the models in Method 1 or to serve as reference for each identity in Method 2;
the remaining 50%, apart from a small independent set used to train the fusion
neural networks, were used to assess the performance of both methodologies.
Performance assessment was adapted to fit the nature of the originals algorithms:
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– Method 1: given an input image I of an unknown source and an associ-
ated identity claim S, the score, rs, associated with this image/claim pair is
computed by the likelihood-ratio, rs = proj(desc(I),IDSMS)

proj(desc(I),IDSMUBM ) , where desc(I)
represents the feature descriptor extracted from image I and proj(X,GMM)
represents the projection of feature vector X onto a specific GMM (either the
claimed ID’s IDSM or the UBM). This process is repeated for every possible
ID, so that for image I the assessment block outputs a total of N scores, with
N being the total number of individuals enrolled in the database.

– Method 2: given an input image I of an unknown source and an associated
identity claim S, the score, rs, associated with this image/claim pair is com-

puted by the averaging of image/image pair similarities, rs=
∑nID

k=1 score(I,IID,k)

nID
,

where score(I, IID,k) is the comparison score obtained using Method 2 between
the unknown image I and the k-th reference image from a specific known ID.
The averaging is made in relation to the total number of reference images for
the given ID, nID. This process is repeated for every possible ID, so that for
image I the assessment block outputs a total of N scores, with N being the
total number of individuals enrolled in the database.

After the N scores are extracted for each image, using both methodologies,
performance is assessed for either identification or verification modes. For identi-
fication we chose to use the rank-1 recognition rate metric, which represents the
rate of images for which the highest of the N recognition scores corresponded
to the true ID. On the other hand, for verification, we computed the equal error
rate. This value corresponds to the error rate observed when a specific acceptance
threshold is applied to the recognition scores and the resulting false positive and
false negative rates are equivalent.

4.3 Performance Comparison

The main results obtained for the setups outlined in the previous sections are
summarized in Table 1. All results concern the average performance observed
with 10-fold cross-validation for a specific methodology (GMM-UBM or Santos
et al. [2]), pre-processing strategy (device specific color correction - DS-CC -
or discrete cosine transform - DCT), and single feature (LBP, SIFT, GIST or
HOG) or fusion of multiple features (performace-weighted sum-rule - PW-SR -
or multilayer perceptron artificial neural network - NN).

Careful observation of the values presented in Table 1 allows for some inter-
esting conclusions to be achieved. Regarding both tested metrics, there is no
significantly better algorithm for all the tested subsets. While the UBI algo-
rithm achieves the best average identification performance (Table 1) amongst
the whole set of tested subsets, the UBM algorithm still manages to achieve
significantly better performances for two of such subsets - CF0 and DR0 - while
managing to achieve values in a very similar range for five other subsets - AR0,
AR1, BR0, BR1 and CF0. In fact, only for the BF0, CR0 and DF0 subsets
does the difference in performance between the two algorithms become signifi-
cant. This non-uniformity in the relative behaviour of performance between the
two methodologies might indicate that even though the sources of information
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Table 1. Rank-1 recognition rates obtained for each subset of the CSIP database for
some variations of both tested methodologies.

CSIP Subset

Pre-Proc. Feat(s) Trait(s) AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DF0 DR0

M.1 DS-CC PW-SR P 88.4 97.8 73.5 86.5 93.1 85.0 72.1 92.1 45.5 81.7

DCT PW-SR P 94.9 97.7 75.0 86.5 91.7 91.3 83.7 93.2 55.5 91.7

r1(%) DCT RGB PW-SR P 97.4 100 83.8 93.2 95.8 92.5 82.6 94.3 50.0 95.0

DCT NN P 94.3 99.4 83.8 89.3 96.8 84.2 79.8 94.2 54.8 82.9

M.2 DS-CC LBP P 89.8 100 75.6 81.7 91.8 75.3 79.6 96.8 59.4 72.0

DS-CC SIFT P 81.8 100 73.2 84.2 100 61.8 61.3 96.8 82.8 57.3

DS-CC GIST P 96.6 100 87.8 93.0 98.8 84.3 92.5 94.6 75.0 84.0

r1(%) DS-CC HOG P 68.2 92.6 56.1 64.6 72.9 42.7 55.9 78.5 40.6 54.7

DS-CC NN P+I 95.5 100 92.7 95.3 95.3 85.4 90.3 97.9 76.6 80.0

DS-CC PW-SR P+I 93.2 100 90.2 91.4 98.8 87.6 81.7 98.9 73.4 82.7

M.1 DS-CC PW-SR P 3.3 3.0 8.7 4.0 1.4 6.2 8.0 4.5 17.4 7.5

DCT PW-SR P 2.5 2.9 7.9 4.3 1.7 4.6 5.1 4.2 14.8 5.0

r1(%) DCT RGB PW-SR P 1.7 0.5 7.5 4.4 1.5 4.5 5.3 4.0 19.3 4.1

DCT NN P 2.1 0.7 7.3 5.3 1.3 5.9 9.6 4.0 24.0 11.3

M.2 DS-CC LBP P 9.6 4.3 14.7 17.4 10.1 13.5 11.0 5.7 23.9 16.0

DS-CC SIFT P 9.9 0.6 16.5 14.5 0.1 16.0 19.2 2.1 28.3 18.1

DS-CC GIST P 5.2 3.3 11.1 12.0 6.3 10.3 8.9 5.3 20.2 12.0

r1(%) DS-CC HOG P 17.1 7.4 24.4 23.7 13.6 21.8 20.8 11.8 28.9 22.5

DS-CC NN P+I 6.3 0.6 9.1 11.7 7.1 10.1 9.7 4.0 19.1 13.1

DS-CC PW-SR P+I 7.5 0.8 10.4 12.2 5.9 9.3 10.5 3.5 20.5 12.6

and the feature descriptors used for its encoding are very similar, the modeling
strategies used in both works adapt better for some acquisition scenarios. By
visual observation of the images it is readily understandable that the BF0 and
DF0 images are the ones that present lower resolution and overall image quality
(Fig. 3). The UBM modeling strategy might, therefore, not be able to aptly train
GMMs capable of correctly and in a robust way describe such low quality data.
As the UBI data uses direct matching algorithms that are optimized for each fea-
ture descriptor, the results in low quality data might be improved. On the other
hand, when the quality of input images is a bit higher, as far as images acquired
with mobile devices can go, the UBM algorithm either reaches the same ranges
of the UBI results, or even exceeds it for moderately more complicated scenarios
such as CF0 and DR0. A different set of observations can, however, be carried
out by the analysis of the EER values used to assess performance in verification
scenarios (Table 1). Here the UBM algorithm consistently achieves better per-
formance regardless of the tested subset. This variable behavior might indicate
that while the UBI algorithm present a higher discriminative power between
individuals, the UBM algorithm, probably due to the score normalization effect
inherent to the method, is more fit to distinguish between classes (genuine and
impostor users) in an identity check application.
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A behavior that is easily observable, regardless of the methodology and
subset that we choose to focus on, is that images acquired with flash illumi-
nation present considerably better results than their non-flash counterparts.
This observation was somewhat expected, as flash illumination might serve as a
solution to overcome the variable lighting conditions that were referred as a nat-
ural limitation of mobile device acquisition in Sect. 1. To the extent of our knowl-
edge no ocular health problems are commonly associated to overexposure to flash
illumination in mobile devices, and with the growing technological advances in
the manufacturing of such devices, flash illumination might play a crucial role
in the implementation of image-based biometrics in mobile environments in the
near future. Concerning pre-processing, Table 1 shows that DCT normalization
far exceeds the performance obtained with the device-specific color-correction
proposed in the original work with the CSIP database. Using a fixed trans-
formation rather than a device-specific approach, that relies on the definition
of new transformation matrices for each new device, presents a more robust
and reliable alternative as far as the integration of periocular recognition in
real-life applications is concerned. Furthermore, it can be seen that the results
obtained using information from the three available color channels also results
in a non-negligible increase in performance for a variety of subsets. Even though
the recognition performance is increased, it must be noted that processing time
is increased three times, as the same algorithm must be run in three separate
instances. Even though these instances could be ran in parallel, the technological
burden for such approach in mobile devices might exceed the current limits.

One more topic to take into consideration regards the alternative fusion
strategies that were tested. From Santos et al.s results, it can be observed that
the use of neural networks over a simpler performance-weighted approach, results
mostly in non-significant variations in the performance. A similar set of conclu-
sions can be drawn for the GMM-UBM results.When comparing this results with
the ones obtained for individual features, however, the positive effect of fusion,
regardless of its details, is readily discernible. The choice of the fusion strategy
should, therefore, be constrained by the specific scenario of application and on
how each strategy performs.

On a final note, regarding the processing time of each tested methodology,
some considerations can be taken. Given an unknown image I and a single iden-
tity check, either by likelihood-ratio or average image similarity, the single-image
processing time was computed and averaged for all test images. It was observed
that Method 1 using DCT normalization and performance-weighted sum-rule
fusion spent an average of 0.018 seconds on this process, whereas Method 2 spent
an average of 0.130 seconds for an analogous computation, using device-specific
color correction and neural network fusion. This discrepancy is easily explained
by the larger amount of features used by Method 2 (11 vs. 4). Real-life applica-
tions based on periocular recognition are expected to work as fast as possible, so
as to accurately replicate real-time operation. With that in mind, the UBM app-
roach, with its uniform and fast matching algorithm based on GMM projections,
seems to present an interesting alternative for further research. Even though the
performance obtained for more unconstrained scenarios (for examples DF0) is
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still far from acceptable, future work on more robust representations or future
improvements to the intrinsic architecture of the algorithm might help overcome
such limitations. The same thought is applicable to the UBI approach, where
a more efficient matching strategy might bring about considerable decreases in
processing time, with no significant nefarious effect over performance.

4.4 Cross-Sensor Recognition

Some preliminary experiments were also carried out in cross-sensor scenarios.
In this alternative to the biometric recognition problem, enrollment and recog-
nition are carried out using data acquired using different sensors. Some of the
most interesting results obtained were that, for both methods, only some spe-
cific setups showed considerable interoperability. For example, using the GMM-
UBM approach, and using the AR1 set for training and the BR1 set for testing,
a recognition rate of 86.1% was achieved, whereas the single setup scenarios
yielded 100% and 95.8% respectively. This relatively small loss in performance,
when compared to other cross-sensor scenarios, might relate to similarities in the
hardware of the rear cameras of devices A and B, as well as to the more uniform
conditions in lighting, as a result of flash illumination. A similar behavior was
observed for a few other pairs of setups - BR1/CR1, AR0/BR0 and BR0/DR0
for example - but, in general, a signifi- cant drop in performance is observed for
cross-sensor scenarios, regardless of the tested methodology. Further research
is, therefore, needed to achieve stability in performance when enrollment and
testing are carried out in highly variable acquisition conditions.

5 Conclusions and Future Work

In the present work we assess the performance of two extended versions of state-
of-the-art algorithms for periocular recognition in mobile devices. We extend
Monteiro et al. to multiple feature representations and score-level fusion, and
adapt Santos et al. to an alternative fusion strategy. The comparative analysis
of both approaches shows that, depending on the specific real-world applica-
tion for which a system is developed, each algorithm presents its advantages
and disadvantages. Santos et al. is more fit to identification problems with less
restrictions concerning processing time, presenting high performance for a wide
variety of noise factors. On the other hand, the GMM-UBM approach presents a
faster matching time, with better performance in verification scenarios. Regard-
ing mobile device applications, it would be interesting to explore a joint method-
ology that managed to keep the fast matching step from Method 1, while achiev-
ing good performance in both identification and verification. Further research on
both methodologies could lead to interesting improvements. It would also be of
relevance to assess how the presented methodologies behave, in their current
state, when implemented in existing mobile devices, so as to better understand
their current limitations in more realistic scenarios. Another interesting focus
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of future work would concern on the improvement of performance in the cross-
sensor scenario presented in Sect. 4.4, so that enrollment in a single device could
serve for recognition purposes in multiple environments.
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