q

Check for
updates

A Comparison of Message Exchange

Patterns in BFT Protocols
(Experience Report)

Fébio Silva™) . Ana Alonso, José Pereira, and Rui Oliveira

INESC TEC and U. Minho, Braga, Portugal
{fabio.l.silva,ana.n.alonso}@inesctec.pt, {jop,rco}@di.uminho.pt

Abstract. The performance and scalability of byzantine fault-tolerant
(BFT) protocols for state machine replication (SMR) have recently come
under scrutiny due to their application in the consensus mechanism of
blockchain implementations. This led to a proliferation of proposals that
provide different trade-offs that are not easily compared as, even if these
are all based on message passing, multiple design and implementation
factors besides the message exchange pattern differ between each of them.
In this paper we focus on the impact of different combinations of cryp-
tographic primitives and the message exchange pattern used to collect
and disseminate votes, a key aspect for performance and scalability. By
measuring this aspect in isolation and in a common framework, we char-
acterise the design space and point out research directions for adaptive
protocols that provide the best trade-off for each environment and work-
load combination.

1 Introduction

The popularization of cryptocurrencies backed by blockchain implementations
such as Bitcoin has led to a renewed interest in consensus protocols, particu-
larly in protocols that can tolerate Byzantine faults to prevent malicious partic-
ipants from taking fraudulent economic advantage from the system. Instead of
using established BFT protocols such as PBFT [7] to totally order transactions,
permissionless blockchains such as Bitcoin’s [14] and Ethereum [6] currently use
protocols based on Proof-of-Work [14], as scalability in the number of processes
is known to be an issue for classic BFT consensus protocols. This, however,
represents a trade-off: the ability to scale to large numbers of processes with a
possibly very dynamic membership comes at the cost of increased transaction
latency and probabilistic transaction finality.

An alternative path is taken by permissioned blockchains such as Hyperledger
Fabric [1], which use classical consensus protocols to totally order transactions,
motivating the need for higher scalability in BF'T protocols. The result has been

© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

A. Remke and V. Schiavoni (Eds.): DAIS 2020, LNCS 12135, pp. 104-120, 2020.
https://doi.org/10.1007/978-3-030-50323-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50323-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-50323-9_7

A Comparison of Message Exchange Patterns in BFT Protocols 105

that a variety of BFT protocols have been proposed, which, having identified
the number and/or size of the messages to be exchanged as the bottleneck for
scalability, take advantage of different message exchange patterns combined with
different cryptographic primitives [2,4,8,9,12,17].

The proposed protocols might be generally compared through decision
latency and throughput measurements in a common experimental setup, and
relative scalability evaluated by varying only the number of processes. There are
however a number of implementation factors that can affect performance and
hide the impact of the abstract protocol, including the programming language,
concurrency control strategy, and networking and cryptographic libraries.

We argue that a more interesting result for the proposal and implementation
of future protocols can come from assessing the impact of the selected message
exchange patterns and cryptographic primitives, in isolation of other implemen-
tation factors, as these are key aspects for protocol performance and strongly
impact scalability to a large number of processes.

This work makes the following contributions:

— We propose an experimental harness for reliably reproducing the performance
and scalability characteristics of the vote dissemination and collection phases
in a BFT protocol, including the message exchange pattern and the crypto-
graphic primitive.

— We run experiments for four message exchange patterns and three crypto-
graphic primitives, thus characterizing the design space for these protocols
in terms of resource usage (CPU and network) and potential parallelism. We
use these results to draw lessons for future research and development.

The rest of this paper is structured as follows. Section2 briefly describes
existing protocols in terms of the message exchange patterns and cryptographic
primitives used. Section 3 proposes a model for reproducing and measuring the
impact of these protocol features, Sect.4 presents the results obtained, which
are discussed in Sect. 5. Finally, Sect.6 presents the main lessons learned and
outlines future work.

2 Background

A practical BET protocol for state machine replication was initially proposed by
Castro and Liskov [7]. It allows clients to submit requests to a set of processes
that order and execute them. The challenge lies in ensuring that all correct pro-
cesses execute the same sequence of requests, regardless of crash faults, where
processes forget what has not yet been saved to a persistent log and byzantine
faults, where malicious processes behave arbitrarily, possibly generating mes-
sages that do not comply with the protocol. The number of tolerated faults is
bound to the number of processes in such a way that it requires 3t 4+ 1 processes
to provide safety and liveness in the presence of ¢ faults.

The challenge is addressed with a three phase message exchange protocol.
In a first stage, pre-prepare the current leader proposes a sequence number for

106 F. Silva et al.

a pending request. In a second stage, prepare, all processes that recognize the
sender of the message as the leader acknowledge it to all others. This is how-
ever not enough for agreement, as malicious processes might be sending different
messages to different destinations. Therefore, in the third phase, commit, pro-
cesses that got 2t acknowledgments will then confirm the outcome to all others.
Upon reception of 2t + 1 confirmations, the request can be executed. Note that
messages need to be authenticated to prevent malicious processes from forging
messages by impersonating other processes.

>
)
)
>

pre-prepare prepare commit

Fig. 1. Message exchange pattern in BFT agreement in three phases. It includes (a)
sending a message to all others; (b) receiving a message from all others; and (c)
quadratic number of messages being transmitted in the network.

The resulting message exchange pattern (broadcast) is depicted in Fig. 1.
Even if these messages do not convey the requests themselves and are restricted
to protocol information, it is problematic for performance in various ways. First,
(a) it requires each process to send a message to all others, which without a
true broadcast medium consumes CPU time in transport and network layers.
Second, each process has to receive and handle messages from all others (b). In
fact, even if only 2t + 1 replies are needed for progress, in the normal case where
no process is faulty, 3t + 1 messages will have to be delivered and decoded, thus
consuming CPU time. Finally, as all-to-all messages are exchanged, the network
bandwidth used grows quadratically with the number of processes. These issues
are bound to become scalability bottlenecks.

The typical answer to these issues is to design a message exchange pattern
that trades latency for bandwidth and exploits parallelism. For instance, instead
of directly sending a message to all destinations, it is first sent to a selected
subset that then relays it to some other subset. This avoids any of the processes
having to deal directly with all destinations and enables message exchange to be
done in parallel by the various intermediate processes. A similar strategy can be
used when collecting acknowledgments.

An option used in agreement protocols in the crash-stop model [11], is to
employ a centralized pattern, i.e., to rely on the central coordinator to collect
messages from all processes and then re-broadcast to all, making the number of

A Comparison of Message Exchange Patterns in BFT Protocols 107

messages grow linearly with the number of processes at the expense of an addi-
tional communication step. Another option is to organize processes in a logical
ring and have each of them add to and forward the message to the next (ring
pattern). This is the option taken in Ring Paxos[13] and in the Chain configu-
ration of the Aliph protocol [2]. Gossiping is a well known efficient distributed
information dissemination and aggregation strategy, hence it has also been pro-
posed in this context [12]. In this case, each bit of information is routed to a
small random subset of destinations, where it can be combined and forwarded
(gossip pattern).

Unfortunately, the assumption of byzantine faults makes this harder to
achieve than in the variants of Paxos for the crash-stop fault model, as a process
cannot trust others to correctly forward the information contained in messages
from others unless the original (simple) cryptographic signature is included ver-
batim. This works when disseminating information but is less useful when col-
lecting information from other processes, as the agreement protocol needs to do
in prepare and commit phases, as multiple signatures need to be included (set),
making message size grow with the number of processes. It is nonetheless viable
and is used in the Chain configuration of Aliph [2].

Some protocols employ cryptographic techniques that enable signatures to be
combined to mitigate this increase in message size. Designating specific processes
to act as collectors, which combine a pre-defined number of signatures into a
single one (threshold signatures), can be used in protocol phases that require the
collection of a minimum number of replies/confirmations [9,17]. Alternatively,
other protocols leverage techniques that allow signatures to be aggregated at each
step (aggregate signatures), thus eschewing the need to define specific processes
to carry out this operation but, in turn, verification requires knowing exactly
which signatures have been aggregated [4,12].

Table 1. Representative protocols for different message exchange patterns (rows) and
cryptographic primitive combinations (columns).

Simple/set | Threshold Aggregate
Broadcast |PBFT[7] |n/a n/a
Centralized SBFT [9], HotStuff [17] | LibraBFT [4]
Ring Chain [2]
Gossip Multi-level [12]

Table 1 lists representative combinations of message exchange patterns and
cryptographic primitives for creating digital signatures used in BFT protocols.
Notice that for the broadcast message pattern used in the original PBFT pro-
tocol [7] there is no need to use a cryptographic primitive to combine message
signatures, as these are sent directly. The other options might lead to useful

108 F. Silva et al.

combinations, as the computational effort required by different cryptographic
primitives needs to be weighed against savings in the amount of data that is
transmitted.

3 Model

To assess the impact of each combination of message exchange pattern and
cryptographic primitive we built a cycle-based simulation of the core phases of
a byzantine fault tolerant protocol. This allows us to highlight the impact of
these two factors without the experimental noise that would result from imple-
mentation details such as language, concurrency, networking, serialization and
cryptographic libraries. This also allows us to exhaustively experiment with all
combinations, including those that haven’t been tried before.

The protocol model is as follows. It reproduces only the common path of
the replication protocol, namely, the pre-prepare, prepare, and commit phases
of PBFT [7] as shown in Fig.1. A designated process (the coordinator) starts
a protocol instance by disseminating a proposal. Each process, upon receiving
that proposal, disseminates a first phase vote. Upon collecting first phase votes
from two thirds of processes (a first phase certificate), a process disseminates
a second phase vote. Agreement is reached when one third of processes collect
a second phase certificate (second phase votes from two thirds of processes).
The model thus omits request execution, interaction with clients, and the view
change protocol, needed to deal with failure of the coordinator.

The key to achieving different message exchange patterns is to allow each
process to forward information. In this case, the relevant information consists
of the votes for each phase of the protocol: instead of a process having to send
a vote directly to all others, as in the original PBFT protocol, it is possible for
the vote to be forwarded by intermediate processes, thus avoiding the need for
direct communication. We do this in a simple fashion: each process is able to
send all votes collected so far in each phase instead of just sending out its own.
The decision for when these votes are sent and to whom depends on a strategy
parameter, which leads to different message exchange patterns. Based on the
protocols described in Sect. 2, the considered message exchange patterns are:

Broadcast: The coordinator broadcasts the proposal and each process broad-
casts its own votes.

Centralized: The coordinator broadcasts the proposal and each process sends
its own votes only to the coordinator. Upon collecting a certificate, the coor-
dinator forwards it to the remaining processes.

Ring: Processes are disposed in a logical ring. The coordinator sends the pro-
posal to its successor. A process forwards the proposal and collected votes
to its successor until it forwards a second phase certificate.

Gossip: The coordinator sends the proposal to fanout processes. A process
forwards the proposal and collected votes to fanout processes every time it
receives a set that contains messages (either proposal or votes) it does not

A Comparison of Message Exchange Patterns in BFT Protocols 109

know about, until it forwards a second phase certificate. The destinations are
picked from a random permutation of all possible destinations, in a cyclic
order, to ensure deterministic termination [15].

All patterns except Broadcast require processes to forward collected votes.
Votes must be authenticated and same phase votes from distinct processes, if
correct, differ only in their signature. These signatures can be sent individually,
as a set, or make use of cryptographic techniques to reduce the size of messages
as follows:

Set: A simple approach is to forward a set containing known signatures. How-
ever, this entails that message size will be proportional to the number of
signatures.

Threshold: Threshold signatures allow any process to convert a set of signatures
into a single signature. However, this can only happen when the set contains
a pre-defined number of signatures — the threshold value. Up until that point
the whole set must be forwarded. In this context, the threshold value should
be two thirds of the number of processes (the size of certificates).

Aggregation: With signature aggregation, processes can aggregate any num-
ber of signatures into a single signature at any moment, but forwards must
include information about which processes’ signatures have been aggregated.
Additionally, for the gossip pattern, forwarded information must also include
how many times each signature has been aggregated, as these may, in turn,
be further aggregated.

Regarding the simulator, in each cycle, each active process runs to comple-
tion, sequentially processing all pending messages. In detail, a process is active
if it is the coordinator at the start of the protocol or if there is an incoming
message, ready to be received. Each process can thus receive and send multiple
messages per cycle. Messages sent in a cycle are made available at the destination
in the next cycle. This allows us to obtain several interesting metrics:

Number of Cycles to Reach a Decision: The number of cycles required to
reach a decision is the primary metric, as it provides a measurement of how
many communication steps are required.

Number of Messages Sent and Received: The number of messages sent and
received provide a measurement of network bandwidth used. By recording
these metrics individually for each process, we are also able to point out the
cases where the load is asymmetrically distributed.

Message Size in Bytes: The overhead that the message exchange pattern
combined with the cryptographic primitive entails in bytes. The space taken
by view, sequence number, requests, among others, are not regarded. This
metric is calculated from the content of the messages exchanged and is key
to assess the impact of collecting multiple votes in each forwarded message.

Number of Active Processes: The number of active processes is a measure
of parallelism, pointing out how many processes are able to make progress
in parallel and how evenly computational load is distributed.

110 F. Silva et al.

Actual CPU Time: Since the implementation used to process each message is
complete, i.e., includes de-serialization of the input signatures, protocol state
changes, cryptographic operations, and serialization of output signatures,
and would be usable in a real implementation, we measure the used CPU time
using hardware counters, and consider this as a measure of computational
effort.

The protocol model and cycle-based simulators have been implemented in
C++ and executed in a Linux server with dual AMD Opteron 6172 processors
(2100 MHz and 24 cores/hardware threads) with 128 GB RAM. All cryptogra-
phy is provided by the Chia-Network BLS signatures library.*

(a) (b) (c) (d)

400 1 1 1 1

300 1 1 1

200 4

100 7 -

cycles

ring
gossip
ring
gossip
ring
gossip
ring
gossip

-
w
©
o
e
©
o
s
o)

broadcast
broadcast

-]
1]
23
S =
8 =
Qo o
Iv]

Fig. 2. Number of cycles needed to reach a decision in an agreement instance, by each
process, per message exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145
processes; and (d) 193 processes.

centralized
centralized
centralized

4 Results

The cycle-based simulator and protocol model are now used to obtain results for
each relevant message exchange pattern and cryptographic primitive. It should
be pointed out that the broadcast pattern uses only simple message signatures,
as each process only sends its own vote and sends it directly to every other
process. On the other hand, in centralized, ring and gossip patterns, processes
forward collected votes and thus are evaluated with all cryptographic primitive

! https://github.com/Chia-Network/bls-signatures.

https://github.com/Chia-Network/bls-signatures

A Comparison of Message Exchange Patterns in BFT Protocols 111

600 A] q q
500 A b 1 1
-
c
b
400 h 1 1
[92]
] ®
o)
o]
o
o 300 4 h o 9
1S
—
o
@ 200
o 1®
1S
=]
c
100 j@ b b 7
0 - e @ '| R o @ E o @ 7 E e @
T T T T T T T T T T T T T T T T
" g 02 2 %4 T 2 2 3 T 2 2 3 T o 2
c ¥ £ W o ¢ £ W o Y £ W o Y £ @
o N c 2 9 N = 2 9 N = ALY N = 2
T T S T T T T
© g o © g o © g o © g =)
e ¢ e € e ¢ e €
o o o o o o o o
(9] (%) o o

Fig. 3. Number of messages sent in an agreement instance, by each process, per message
exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145 processes; and (d) 193
processes.

600 A § k b
< 5001 1 b b
19}
=
]
@ 400 . b T
%]
9]
o
@ 300 1 . T E
1}
1S
G
2 200 1 1 J b 7
o
o
€
S
c 100 @ : 4 J
0 - e @ 1 8 e @ 1 e e @ g e e
T T T T T T T T T T T T T T T T
" 3T 2 2 3 T 2 2 3 T 22 3 T2 2
c ¥ £ W o ¢ £ W o Y £ W o ¥ £ @
o N c] N = A N = 2 9 N = a
S S o S S
c £ o s £ > & £ > & £ [S)
e € e € e ¢ e €
8 o 8 o S o 8 o
(] 1) (] o

Fig. 4. Number of messages received in an agreement instance, by each process, per
message exchange pattern for: (a) 49 processes; (b) 97 processes; (c) 145 processes; and
(d) 193 processes.

112 F. Silva et al.
set
10000 - threshold
aggregate
& 8000 - -
>
2
ks .
o
< 6000 - -
o
>
o
&
o 4000 -
o
)
s 0
2000 A
ol e %@ O *
broadcast centralized ring gossip

Fig. 5. Message overhead due to signatures (in bytes), averaged per process, for each
combination of message exchange pattern and cryptographic primitive, for 97 processes.

«— broadcast «— centralized (remaining) gossip

centralized (coordinator)

(a)

ring

(b)

(c)

15000 A 4 b 1

12500 A

10000 A f—H b b

75001/ - 1 1

50001/~ - A

average message overhead (bytes)

2500 1 " -

0 - = = _ = = i = =

49 97 145 193 145

49 97 193
number of processes

145 193

Fig. 6. Overall average message overhead due to signatures (in bytes) for an increas-
ing number of processes, per cryptographic primitive: set of signatures (a), threshold
signatures (b) and signature aggregation (c). Values for the Broadcast pattern are also
presented for comparison.

A Comparison of Message Exchange Patterns in BFT Protocols 113

7000 -+ set
threshold
6000 - 9 aggregate
5000 A
m
£ 4000 1
[0}
£
> 3000 A
o
O
2000 1 4
1000 @ ® .
0 - ® * .
broadcast centralized ring gossip

Fig. 7. Total CPU usage (in ms) for each process, per combination of message exchange
pattern and cryptographic primitive, for 97 processes.

«— broadcast «— centralized (remaining) “— gossip
centralized (coordinator) *— ring
(a) (b) (c)
10000 - E R
8000 A E R
m
E
[}
E 6000 A k 1]
>
o
o
& 4000 A A FAA—
o
g . _ -
© 7
2000 - = e = {1 -/
01 1% © © “ 1 = -

49 97 145 193 49 97 145 193 49 97 145 193
number of processes

Fig. 8. Average CPU usage (in ms) per process, for an increasing number of pro-
cesses, per cryptographic primitive: set of signatures (a), threshold signatures (b) and
signature aggregation (c). Values for the Broadcast pattern are also presented for com-
parison.

114 F. Silva et al.

—— broadcast centralized —— ring —— gossip

100 A —

80 -
60 -
40 -

20 A

number of
active processes

04

200

number of incoming
and outgoing messages
per active process
= =
wul o w1
o o o
! ! !

o
L

2 4 6 8 10 12 14
cycle

Fig. 9. Number of active processes in each cycle (a) and the average number of incoming
and outgoing messages processed by each active process (b), per message exchange
pattern, for 193 processes. Ring continues past 400 cycles (cropped).

options. In addition, the number of destinations in the gossip pattern is set as
fanout = 2, the lowest value that can still define the pattern. These experiments
don’t account for either network or process faults, so there is no need for retrans-
missions, no messages are lost and messages are always correct. All experiments
are repeated with 49, 97, 145 and 193 processes, the number of processes required
to tolerate 16, 32, 48 and 64 malicious processes, respectively.

Because the gossip message pattern includes an element of randomness, the
results of several runs were analysed. In order to consolidate the results of those
runs, we first ranked the measurements for each metric per run. Then we cal-
culated the average value per rank. An alternative could be to use the identity
of each process to calculate average measurements. However, the identity of
processes in different runs is ultimately unrelated. Thus, the ranking method
provides better predictive ability, allowing us to provide, for example, an esti-
mate for how long it will take for the first process to decide and also for the last
to decide.

Figure2 shows the number of simulation cycles needed for deciding an
instance of the protocol, with each of the message exchange patterns. This is
the number of communication steps needed for processes to agree on the next
command to execute. For instance, with the broadcast pattern processes agree

A Comparison of Message Exchange Patterns in BFT Protocols 115

in four communication steps: first the coordinator broadcasts a proposal; pro-
cesses then receive the proposal and broadcast its first phase vote; afterwards
processes receive all first phase vote and broadcast a second phase votes; and
finally processes receive all second phase votes.

Results shown in Figs. 3, 4, 5, 6, 7 and 8 focus on resource usage. Note that
Figs.3, 4, 5 and 7 plot a dot for the result observed in each process, showing
where appropriate the dispersion of results depicted by the level of color satu-
ration: the more overlap, the higher the color saturation. This is evident in the
centralized pattern, as measurements regarding the coordinator are depicted as
mostly transparent and color saturation reveals the overlap regarding remaining
processes.

In detail, Figs.3 and 4 show, respectively, the number of messages sent and
received for an agreement instance, for each message exchange pattern and for
a growing number of processes. Figure5 shows the message overhead in bytes
due to votes carried, including the signatures in a run with 97 processes. A dot
is plotted for each process, showing the average message size for that process,
which in some configurations is variable. Figure6 then shows how the average
message size varies with the number of processes in the system. Likewise, Fig. 7
shows the CPU time consumed by each process. A dot is plotted for each of
them, showing that in some cases the load is variable. Figure 8 then shows how
the average CPU time used varies with the number of processes in the system.

Finally, Fig. 9 describes how the load is distributed across different processes
and across time, during the run of an agreement instance. In detail, Fig.9(a)
shows the number of active processes (i.e., those that receive and send mes-
sages in that cycle) as time progresses. Figure9(b) shows the average number
of incoming and outgoing messages that are processed by each of the active
processes.

5 Discussion

The considerations put forth in this section are based on the analysis of the
results presented in Sect. 4.

Broadcast. We start by discussing the results for the broadcast pattern as a
baseline, as it matches the original PBFT protocol [7]. In this pattern, each pro-
cess sends and receives messages directly to and from all others. Therefore, all
processes work in parallel sending and receiving n messages in each phase. Mes-
sages contain only one signature, thus the message overhead due to signatures
is always the same and does not change with the total number of processes.
The total CPU time is the same for all processes and increases linearly with the
number of processes, corresponding to the number of messages processed. As a
consequence, a decision is achieved in a small number of cycles.

116 F. Silva et al.

Centralized. For the centralized pattern we need to make a distinction between
the coordinator and the remaining processes since they behave differently. The
coordinator sends 3n messages and receives 2n messages while the remaining
processes always send 2 messages and receive 3 messages. The coordinator and
the remaining processes alternate executions, with the latter computing in par-
allel. The coordinator sends and receives n messages in each cycle (high load)
while the remaining processes only send and receive 1 message per cycle (low
load). The overhead due to signatures in messages received by the coordinator,
sent by the remaining processes, is always the same, since the messages only
contain one signature regardless of the cryptographic primitive.

Initially, regardless of the cryptographic primitive used the coordinator sends
proposals, which are always the same size (one signature). However, with the set
of signatures it forwards 2n/3 signatures in each phase. The total CPU time for
the coordinator is slightly higher than in the broadcast primitive because of the
certificates being forwarded. On the other hand, the remaining processes verify
the signatures from each certificate in batch, which is faster than verifying them
one by one as they do in the broadcast pattern. The total CPU time increases
linearly with the number of processes for both the coordinator and the remaining
processes.

With threshold signatures, all messages sent by the coordinator contain only
one signature, so the overhead due to signatures per message does not change
with the total number of processes. The coordinator’s total CPU time is roughly
the same as in the set of signatures primitive since the benefit of creating smaller
messages mitigates the drawback of computing threshold signatures. As with the
baseline set of signatures option, it also increases linearly with the number of pro-
cesses. The remaining processes only have to make a single signature verification
thus its total CPU time is the lowest overall and remains constant irrespective
of the number of processes.

Finally, with the aggregate signatures primitive, the certificates the coordina-
tor forwards contain one signature plus info detailing which signatures have been
aggregated. Aggregating signatures is a more expensive operation than creating
a threshold signature thus the total CPU time for the coordinator is the highest
among the centralized alternatives and it also increases linearly. The remaining
processes have to compute the info to verify the aggregated signature which is
slower than verifying a threshold signature but faster than verifying a set of
signatures.

Ring. With the ring pattern, the protocol completes after 2+1/3 laps around the
ring which results in two thirds of the processes to send and receive 2 messages
while one third sends and receives 3 messages. Processes compute sequentially
which results in no parallel processing. Process load is small as each process only
sends and receives 1 message per cycle.

With the set of signatures, message sizes range from 1 up to 4n/3 signatures
(two certificates) resulting in a big variation in the average size of messages
among processes. The total CPU time is the same for all processes, lower than
in broadcast and increases linearly with the number of processes.

A Comparison of Message Exchange Patterns in BFT Protocols 117

Using threshold signatures, messages are smaller than if using the set primi-
tive because when the number of signatures for a phase reaches 2n/3, a threshold
signature is created, replacing those individual signatures. The total CPU time
varies per process since some processes only verify the computed threshold sig-
natures. Despite the variation, it is lower than when using the set of signatures
and also increases linearly with the number of processes, although at a slower
rate.

Using aggregate signatures, messages contain up to 3 signatures plus related
information, namely the processes for which signatures have been aggregated.
Regarding total CPU time, there is a large variation between processes because
the computational effort of the processes that send and receive 3 messages is
considerably larger than that of processes that only send and receive 2 messages.
Still, even among processes that exchange the same number of messages some
variation occurs as those that receive a certificate from their predecessor are not
required to aggregate their signatures. This makes it the worst combination of
message exchange pattern and cryptographic primitive for the total CPU time
since it also grows exponentially with the number of processes.

Gossip. The number of messages each process sends and receives with the gossip
pattern is lower than with the broadcast message pattern and increases only
logarithmically with the number of processes. The number of active processes
in each cycle increases exponentially with base fanout. After logp n cycles, all
processes execute in parallel and each process sends and receives a small number
of messages in each cycle (low load).

With the set of signatures, message sizes can grow up to 4n/3 signatures (two
certificates). Since each process sends and receives more messages, the variation
of the average size of messages is smaller than in the ring pattern. The total
CPU time shows a small variation between processes but is always lower than
for the broadcast pattern, increasing linearly with the number of processes.

Using threshold signatures, messages are smaller because, again, when the
number of signatures for a phase reaches 2n/3, a threshold signature is created
replacing these. The total CPU time also shows a small variation among different
processes, being higher overall than if using the set of signatures. The reason is
that it is likely that by the time some process is able to generate a threshold
signature and send it to others, most of the processes will have also collected
enough messages to generate a certificate themselves. This means that most pro-
cesses will use CPU time to generate threshold signatures but few processes will
actually make use of the threshold signatures generated by others. Nevertheless,
it is still lower than with the broadcast pattern and increases linearly with the
number of processes.

Using aggregate signatures, messages contain up to 3 signatures plus informa-
tion on aggregation. There is a big variation among different processes regarding
the total CPU time, with the average being higher than with the broadcast
pattern. It increases linearly with the number of processes.

118 F. Silva et al.

6 Lessons Learned and Future Work

Considering the results obtained with our simulation model of the core part of
the protocol needed for a byzantine fault tolerant replicated state machine, we
can now draw some important lessons to steer future research and development
effort:

There is No Absolute Best Message Fxchange Pattern. The first interesting con-
clusion is that none of the tested message exchange patterns performs optimally
in all scenarios. In fact, if processes can handle sending and receiving as many
messages as the number of processes (i.e., small clusters of powerful servers),
then the centralized pattern combined with threshold signatures should be the
best option, since it requires exchanging the least messages and results in lower
computational effort for the majority of processes, when compared to the broad-
cast pattern. This is the approach of SBFT [9] and HotStuff [17]. However, as the
number of processes grows it becomes harder to sustain such loads. In this case,
the gossip pattern with signature aggregation might be the best choice since it
evenly distributes the load across servers, without the overhead of the broadcast
pattern. The ring pattern induces very high latency since there is no parallel
processing. However, it might allow for high throughput if multiple protocol
instances run in parallel. Moreover, there are also other patterns not included in
this work, such as the communication trees employed by ByzCoin [10].

Cryptographic Primitives Provide a Range of CPU vs Network Bandwidth Trade-
Offs. The threshold signatures primitive requires a set of signatures to be for-
warded until the threshold value is reached, which is a disadvantage when com-
bined with either the ring or the gossip patterns. Moreover, if the set of processes
changes, new private keys must be generated for each process to create a new
master public key with which threshold signatures can be verified. In terms of
computation, the signature aggregation primitive is always the slowest. This is
partly due to the operations necessary for aggregating signatures and for verify-
ing them. This means that we get a range of trade-offs between computational
effort and network bandwidth, that suit different environments. Finally, we also
believe that the cryptographic library is not optimized to re-aggregate exist-
ing aggregate signatures, which affects ring and gossip but not the centralized
pattern [5].

Owverall Conclusion: The Case for Adaptive Protocols. The results obtained thus
make a strong case for adaptive protocols that can be configured to use differ-
ent message exchange patterns and a choice of cryptographic primitives to suit
different environment and application scenarios. Moreover, these results make
a strong case for automated selection of the best message pattern and crypto-
graphic primitive combination by monitoring the current environment. Current
proposals addressing these issues are Aliph [2] and ADAPT [3] which, however,
don’t cover the full spectrum of options. Other optimizations can also be included
in such a protocol, like recent work on distributed pipelining [16], since they are
orthogonal to this proposal.

A Comparison of Message Exchange Patterns in BFT Protocols 119

Future Work. First, the proposed simulation model can be used to obtain addi-
tional results and as a test bed for the optimization of the various patterns. For
instance, message size in the gossip pattern, for any cryptographic primitive,
might be further reduced if one takes into consideration the destination process.
For example, if a second phase vote from the destination is already known, there
is no point in sending it the first phase certificate. We can also collect results
for a wider range of protocol parameters (e.g., varying the fanout in the gossip
pattern) and, also, assess the behavior or each combination in the presence of
faults, by implementing the view change protocol. Finally, these results also pave
the way for research, namely, by providing data that can be used to train and
test adaptation policies.

Acknowledgment. This work is financed by National Funds through the Portuguese
funding agency, FCT - Fundacdo para a Ciéncia e a Tecnologia within project
UIDB/50014/2020.

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for
permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference
EuroSys 2018. Association for Computing Machinery, New York (2018). https://
doi.org/10.1145/3190508.3190538

2. Aublin, P.L., Guerraoui, R., Knezevié, N., Quéma, V., Vukoli¢, M.: The next 700
BFT protocols. ACM Trans. Comput. Syst. 32(4), 12:1-12:45 (2015). https://doi.
org/10.1145/2658994

3. Bahsoun, J.P., Guerraoui, R., Shoker, A.: Making BFT protocols really adaptive.
In: Proceedings of the 29th IEEE International Parallel & Distributed Processing
Symposium, May 2015

4. Baudet, M., et al.: State machine replication in the libra blockchain (2019)

5. Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASTACRYPT 2018. LNCS, vol.
11273, pp. 435-464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03329-3_15

6. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper

7. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation OSDI 1999,
pp. 173-186. USENIX Association, Berkeley (1999). http://dl.acm.org/citation.
cfm?id=296806.296824

8. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium
on Operating Systems Principles SOSP 2017, pp. 51-68. ACM, New York (2017).
https://doi.org/10.1145/3132747.3132757

9. Gueta, G.G., et al.: SBFT: a scalable and decentralized trust infrastructure. In:
IEEE International Conference Dependable Systems and Networks (DSN) (2019)

10. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing
bitcoin security and performance with strong consistency via collective signing. In:
25th {usenix} Security Symposium ({usenix} Security 16), pp. 279-296 (2016)

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/2658994
https://doi.org/10.1145/2658994
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://github.com/ethereum/wiki/wiki/White-Paper
http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824
https://doi.org/10.1145/3132747.3132757

120

11.
12.

13.

14.

15.

16.

17.

F. Silva et al.

Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18-25 (2001)
Long, J., Wei, R.: Scalable BFT consensus mechanism through aggregated sig-
nature gossip. In: 2019 IEEE International Conference on Blockchain and Cryp-
tocurrency (ICBC), pp. 360-367, May 2019. https://doi.org/10.1109/BLOC.2019.
8751327

Marandi, P.J., Primi, M., Schiper, N., Pedone, F.: Ring Paxos: a high-throughput
atomic broadcast protocol. In: 2010 IEEE/IFIP International Conference on
Dependable Systems & Networks (DSN), pp. 527-536. IEEE (2010)

Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.
bitcoin.org/bitcoin.pdf

Pereira, J., Oliveira, R.: The mutable consensus protocol, pp. 218-227 (2004).
https://doi.org/10.1109/RELDIS.2004.1353023

Voron, G., Gramoli, V.: Dispel: byzantine SMR with distributed pipelining. arXiv
preprint arXiv:1912.10367 (2019)

Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BF'T con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347-356 (2019)

https://doi.org/10.1109/BLOC.2019.8751327
https://doi.org/10.1109/BLOC.2019.8751327
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/RELDIS.2004.1353023
http://arxiv.org/abs/1912.10367

	A Comparison of Message Exchange Patterns in BFT Protocols
	1 Introduction
	2 Background
	3 Model
	4 Results
	5 Discussion
	6 Lessons Learned and Future Work
	References

