
Noname manuscript No.
(will be inserted by the editor)

Exploring Multi-Relational Temporal Databases with a
Propositional Sequence Miner

Carlos Abreu Ferreira · João Gama · Vı́tor Santos Costa

Received: date / Accepted: date

Abstract In this work we introduce the MuSer, a propo-
sitional framework that explores temporal information
available in multi-relational databases. At the core of
this system is an encoding technique that translates the
temporal information into a propositional sequence of
events. By using this technique we are able to explore
the temporal information using a propositional sequence
miner. With this framework we mine each class parti-
tion individually and we do not use classical aggrega-
tion strategies, like window aggregation. Moreover, in
this system we combine feature selection and proposi-
tionalization techniques to cast a multi-relational clas-
sification problem into a propositional one.

We empirically evaluate the MuSer framework us-
ing two real databases. The results show that mining
each partition individually is a time and memory effi-
cient strategy that generates a high number of highly
discriminative patterns.

Keywords Sequence Mining; Discriminative Patterns;
Multi-relational Temporal Databases

School of Engineering, Polytechnic of Porto
Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto,
Portugal
Tel.: +351228340500
Fax: +351228321159
E-mail: cgf@isep.ipp.pt

LIAAD - INESC TEC LA
Rua Dr. Roberto Frias, 378, 4200 - 465 Porto, Portugal
E-mail: joao.jgama@gmail.com

CRACS - INESC TEC LA
Rua do Campo Alegre, 1021-1055, 4169-007 Porto, Portugal
E-mail: vsc@dcc.fc.up.pt

1 Introduction

Quite often, multi-relational databases accumulate data
over long periods of time. To explore such temporal
records we can use aggregation operators, like win-
dow aggregation, or use special purpose techniques
that explore the time order of the events. In this work
we assume that the temporal data stored in a subset
of tables are sequences of events that reflect the evolu-
tion of a phenomenon of interest. As an example, con-
sider a multi-relational dataset in a medical domain.
A patient is subject to a sequence of examinations and
a set of measurements, corresponding to the results of
different analysis, are taken. For each patient, we get
a sequence of measurements over time. Our hypothe-
sis is that the evolution of these measurements might
encode relevant information for the diagnosis of a cer-
tain disease. The problem we address here is therefore
how can we explore such information? In more general
terms, can we extract implicit multi-relational tempo-
ral information that can be used to learn predictive
and high accurate decision models? We believe that
both intra-table and inter-table temporal patterns can
be used for this purpose. To do so, we develop an ar-
chitecture that is grounded in the propositionalization
methodology [10, 30].

In this work we propose MuSer (MUlti-relational
SEquential patteRn knowledge learning), a framework
that discovers sequence patterns available in a sub-
set of relational tables. The algorithm is organized as
a pipeline. We start by converting the multi-relational
temporal data into what we call a sequence database. In
this new database the temporal information of each
example is represented by a heterogeneous sequence,
that can include events registered in one or more ta-
bles. In a second phase, we run a sequence miner to

2 Carlos Abreu Ferreira et al.

find frequent sequences in each database partition. Next,
in phase three, we select a subset of sequence patterns.
We extract the discriminative frequent ones, e.g. those
that appear in only one class, and using a chi-square
filter we remove class unrelated sequences. In phase
four we map the selected patterns into a binary set of
attributes, that indicate the presence or absence of a
sequence in a particular example. Last, we induce a
classification model using a propositional algorithm.

To evaluate our methodology, we use two multi-re-
lational datasets and compute the number of patterns,
the run-time, the peak memory usage and the gener-
alization accuracy of the learned classification models.
Moreover, we compare the performance of our system
against the RUSE-WARMR system [10], that finds first-
order logic itemsets and aggregates temporal data us-
ing a set of statistics.

The contributions of this work are therefore:

– We developed MuSer, a framework that explores
heterogeneous sources of time data recorded in a
multi-relational database. Our methodology explores
temporal records by abstracting patterns over time.
We do not deal with explicit time, instead we ex-
plore the order of the events.

– The MuSer architecture searches for sequence pat-
terns in each class partition individually. With this
strategy we find a large number of in-class and dis-
criminative patterns.

In the next section we present related work that
motivated the development of the MuSer algorithm.
In Section 3 we present a detailed description of the
MuSer framework. Next, in Section 4, we present and
discuss the obtained results. In the last section we con-
clude and point to the development of new method-
ologies that can include valuable domain knowledge.

2 Related Work

In this section we present an overview of the related
work that inspired us and contributed to the develop-
ment of the MuSer framework.

Let I = {i1, i2, . . . , in} be a set of items and e an
event such that e ⊆ I. A sequence is an ordered list
of events e1e2 . . . em where each ei ⊆ I. Given two se-
quences α = a1a2 . . . ak and β = b1b2 . . . bt, sequence
α is called a subsequence of β if there exists integers
1 ≤ j1 < j2 < . . . < jl ≤ t such that a1 ⊆ bj1 , a2 ⊆
bj2 , . . . , ak ⊆ bjl . A sequence database is a set of tuples
< sid, α > where sid is the sequence identification and
α is a sequence. The count of a sequence α in a database
of sequences D, denoted count(α, D), is the number of

examples in D that contain the α subsequence. The sup-
port of a sequence α is the ratio between count(α, D)
and the number of sequences in D. We denote sup-
port of a sequence as support(α, D). Given a sequence
database D and a minimum support value λ, the prob-
lem of sequence mining is to find all subsequences in D
having a support value equal or higher than the user-
defined value, the λ value. Each one of the obtained
sequences is also known as a frequent sequence or a
sequential pattern.

There exists a wide range of algorithms that can ex-
plore propositional sequential data efficiently. To the
best of our knowledge, Agrawal and Srikant introduced
the problem of mining sequential patterns in [2]. In [26]
these two authors introduce the GSP algorithm, an al-
gorithm that generalizes the original sequential pat-
tern mining problem and that is inspired in search pro-
cedure of the well-known Apriori algorithm [1]. GSP
uses a levelwise candidate generation strategy to find
all frequent sequences. The algorithm uses the lattice
structure to generate all candidate item sequences. It
starts by finding all frequent 1-items that constitute the
lattice base. Then, in an iterative process, at each lat-
tice level the frequent sequences of the previous level
are combined to generate new frequent sequence can-
didates. Notice that at each lattice level l only the fre-
quent subsequences of level l − 1 are used to generate
new candidates.

The problem with this approach is the huge num-
ber of findings, especially when we run the sequence
miner to find patterns with a low support value. In
such a case, and if working with large datasets, the
complexity of the search space can make it impossible
to find patterns with low frequency. To alleviate these
issues, algorithms that can find a constrained subset of
sequential patterns from propositional data have been
developed. Examples include CloSpan [28] that returns
a set of closed sequential patterns, VMSP [12] that finds
maximal sequential patterns and cSPADE [29] that finds
a constrained set of sequential patterns. By using cSPADE
we can find, among other, sequential patterns predic-
tive of one or more classes. In [18] it is claimed that
by using highly predictive or contrasting sequences as
input to a propositional classifier we can get general-
ization accuracy gains that range from 10% to 50%.

A different approach, that is known to be success-
ful, is to use post-processors, filters, to select interesting
patterns. Some use sequential ad-hoc selection, that are
model unrelated, whereas others use wrapper filters,
that select features based on the induced models.

In [17] the authors introduce MineSeqLog algorithm
to find first-order logic (FOL) sequences. The algorithm
combines ideas from version spaces [25, 4, 15] and lev-

Exploring Multi-Relational Temporal Databases with a Propositional Sequence Miner 3

Table 1: Relational database used to illustrate the encoding technique
Patient Info

(Target Table)
Id Sex BornDate Class
1 m 19520109 c
2 f 19750123 b

Blood Analysis
Id Date RBC WBC
1 19750102 high normal
1 19780203 high high
2 19770107 high low

Urinalysis
Id Date Exam Value
1 19741201 plt high
1 19750102 alb normal
1 19750102 ttp normal
1 19760204 alb normal
2 19800403 alb normal

Algorithm 1: MuSer pseudo-code
input : a multi-relational dataset r; three thresholds

λ, the support value of the sequence miner
and k, the number of top patterns to map

output: a classification model

Pre-Processing Encoding1
s← conversion (r);2

3
s1, . . . , sm ← partition (s);4
Finding Frequent Patterns5

for i = 1 to m do6
s fi ← SequenceMiner(si,λ);7

8
Filtering9

Sdisc ← discriminate(s f1, . . . , s fm);10
Sinter ← sort(Sdisc,chi-square);11

12
Mapping13

rEnlargedTarget ← Mapping(Sinter , k, rtarget);14

15
Classifier Induction16

ClassifierIndution(rEnlargedTarget);17

18

elwise search to find the complete set of frequent pat-
terns. This algorithm suffers from two major problems.
When fed with large databases, that accumulate data
over a long period of time, the algorithm is unable to
find long patterns.

ILP approaches have an enormous representational
power but are often criticized for lacking scalability [5]:
ILP algorithms may not be very effective for the large
search spaces induced by sequence databases.

One approach to solve the scalability issue of ILP
systems is to use propositionalization [16, 30, 8]. The
idea is to augment the descriptive power of the target
table by mapping clauses (new attributes) on the target
table.

Even with recent progress on scalability there ex-
ists Prolog data which remain almost impossible to ex-

plore effectively by using only ILP based approaches.
As an example, intra-table and inter-table temporal pat-
terns remain hard to explore. One approach, followed
by WARMR [7] is to use aggregation methodologies,
unfortunately losing relevant time information. One
example of this approach is the RUSE-WARMR [10]
framework. In the first phase the WARMR finds fre-
quent datalog queries [7]. Next, these findings are pruned
and the most interesting patterns are mapped into the
target table. In the last phase, a classification model
is learned using the augmented target table. In View
Learning [6] we can define and use alternative views of
the database, i.e., we can define new fields or tables.
Such new fields or tables can also be highly useful in
learning, but still require searching a very large search
space.

The work presented in [11] introduces a framework
that runs a propositional sequence miner to find fre-
quent, closed or maximal patterns available in the full
dataset. In the final phase a FOL theory is learned us-
ing a ILP algorithm. The main issue with this approach
is that by taking the full dataset as input the algorithm
cannot find valuable discriminative sequence patterns.

3 The MuSer Framework

In this section we present the MuSer framework. This
new architecture explores temporal and logico-relational
information to build descriptive and high accurate clas-
sifier models. More precisely, the framework explores
sequences of events registered in one or more tables
of a Prolog database. In the first phase we convert the
Prolog data into a sequence database. Then, in a sec-
ond phase, we run a sequence miner in each class par-
tition to find all sequential patterns. Next, consider-
ing the huge number of findings, we introduce two
filters to select the discriminative and class correlated
patterns. In the fourth phase, the most interesting fre-

4 Carlos Abreu Ferreira et al.

Table 2: Sequence Database
ID Sequence Class
1 (9) (3 5 7 8) (7) (3 6) c
2 (3 4) (7) b

quent sequences are mapped into the target table, gen-
erating an enlarged target table. In the last phase, we
learn a classification model by taking the enlarged tar-
get table as input to a propositional classifier.

To best explain the MuSer architecture we follow
the pseudo-code presented in Algorithm 1.

3.1 Encoding Methodology - Phase 0

Here we introduce the strategy that converts the Pro-
log temporal data into a convenient sequence database.
We use the relational database presented in Table 1 to
best explain this encoding methodology. This illustra-
tive database is inspired in the PKDD 2005 Hepatitis
dataset and has three tables recording the follow-up
of two patients. One of these tables is the target ta-
ble, named Patient Info. This table records, for each pa-
tient, a masked ID, the sex, the date of birth and the
class label. The other two tables record sequences of
blood analysis and urinalysis examinations. The Blood
Analysis table records, for each patient, the examina-
tion date and the patient’s RBC and WBC parameters.
Table Urinalysis registers for each patient the value of
three urine test parameters: alb, plt and ttp.

First, for each example available in the Prolog tar-
get table we find all the associated relations that record
temporal information. Next, we sort all temporal tuples
using the order of occurrence of the events. After this
process, for each example we obtain a chronological
sequence of multiple events. In Figure 1 we present the
event sequence of patient number one. In this case, the
sequence includes a sequence of blood and urinalysis
events.

Next, we built an attribute-value sequence for each
example. As an example, for patient one we get (plt =
high)(RBC = high, WBC = normal, alb = normal, ttp =
normal)(alb = normal)(RBC = high, WBC = high). In
this new sequence each itemset corresponds to all records
registered at a given date/time. Then, we define a one-
to-one encoding map f : Attributes × Values −→ N.
This mapping associates a unique number to each attribute-
value pair. We define this map according to the type
of the attributes. For each discrete attribute we find
the range of attribute values and map each attribute-
value pair onto a unique integer value. This map is a
three element tuple having the attribute name, the at-

Table 3: Enlarged target table
MID subtype sex bornDate S1 S2

1 c m 19520109 1 1
2 b f 19750123 0 1

tribute value and the unique integer number that iden-
tifies the attribute-value. When dealing with continu-
ous attributes, first we apply a discretization strategy
and then proceed in the same way we do for discrete
attributes. The attribute discretization approach is spe-
cific of the problem and the domain we are dealing.

Table 2 shows the sequence database that we ob-
tain when we apply this encoding technique to our
example database. In this table each sequence corre-
sponds to an example in the target table and each sub-
sequence corresponds to all events that occur at the
same time. In this example we define the one-to-one
map f (rbc, low) = 1, f (rbc, normal) = 2, f (rbc, high) =
3, f (wbc, low) = 4, f (wbc, normal) = 5, f (wbc, high) = 6,
f (alb, normal) = 7, f (ttp, normal) = 8, f (plt, high) = 9.
Using this map the sequence of events registered for
patient one is encoded into the sequence (9) (3 5 7 8) (7) (3 6).

3.2 Finding Frequent Sequence Patterns - Phase 1

Having the sequence database built in the pre-processing
phase, we now need to use a methodology to find new
and interesting descriptors. Thus, we run a sequence
miner in each class partition of the sequence database
(line 7 of Algorithm 1). This way we get all in-class
frequent patterns, the s fi set. Each one of these i sets
contains patterns that have at least a minimum sup-
port equal to λ, a user-defined threshold. Regarding
the nature of the sequence miner, the type and the di-
mension of the problem being addressed we usually
get an overall huge number of patterns. Among these
patterns there are high discriminative and class cor-
related patterns that we must keep and uninteresting
and redundant patterns that must be eliminated.

3.3 Feature Selection - Phase 2

To select discriminative sequences we introduce the
discriminative filter (line 10). Using this filter we select
a set of discriminative sequences, the Sdisc set, a set of
patterns that were found in only one of the partitions.
This pruning operation is accomplished with a simple
matching operation that keeps non-agreeing patterns.

Consider that when we run the sequence miner in
the sequence database of partition b we find the two

Exploring Multi-Relational Temporal Databases with a Propositional Sequence Miner 5

19741201P1

p l t=h igh

19750102

alb=normal

19760204

alb=normal

19780203

t tp=norma l

RBC=high WBC=normal RBC=high WBC=high

Figure 1: Patient one sequence of events

sequences: Sb1 : (9) (5 8) (3 6) and Sb2 :(10) (7). More-
over, by running the same algorithm in the sequence
database of partition c we obtain sequences Sc1 : (3) (7)
and Sc2 : (10) (7). After applying the discriminative fil-
ter we eliminate Sb2 and Sc2 and keep sequences S1 :
(9) (5 8) (3 6) found in class partition b and S2 : (3) (7)
from class partition c.

After eliminating the non-discriminative patterns
some class uncorrelated patterns remain. To eliminate
some of these patterns we use the Chi-square filter that
computes the chi-squared test statistic [3]. To compute
the chi-square statistic, for each discriminative sequence
pattern found, first we compute a contingency table
that summarizes the information about the number of
sequences in each class partition that contain (and do
not contain) the given discriminative sequence pattern.
Then, we take each contingency table and compute the
chi-squared test statistic, whereas the null hypothesis
is that the joint distribution of the cell counts in the
2-dimensional contingency table is the product of the
row and column margins. The chi-squared test statis-
tic value that we obtain for each sequence pattern is
then used to sort descending the set of discriminative
sequence patterns. The lower the chi-square statistic
value the closest we are to reject the null hypothesis,
i.e, to reject that the two categorical variables (class
and pattern) are independent.

By applying sequentially these two filters we get a
sorted set of patterns. To include the descriptive power
of these patterns in the learning process we need to
map each of the new sequences/features into the tar-
get table.

3.4 Mapping Features - Phase 3

In this section we explain how we map each one of the
k (a user-defined parameter) most interesting patterns.
For each pattern we add a new Boolean attribute to the
target table. The value of each new attribute is com-
puted using the following rule. If the sequence pattern
associated with the new attribute is a subsequence of
the example sequence, the new attribute takes value

one. Otherwise the attribute takes value zero. This way
we get an enlarged target table that includes the prim-
itive attributes and the new Boolean attributes.

In Table 3 we present the augmented target table of
the example database presented in Table 1. In this ta-
ble we have two new attributes, corresponding to the
two sequence patterns, S1 and S2, introduced above.
For each patient and sequence pattern the value of the
associated attribute is computed according to the ex-
istence of the sequence pattern in the patient related
records. This way each patient is described by the prim-
itive attributes in the target table, the sex, the date of
birth and the two sequence patterns.

3.5 Classifier Induction - Phase 4

In the last step (line 17) we learn a classification model.
We take the enlarged target table as input to a propo-
sitional classifier and learn a classification model. This
model can include either primitive or new descriptors.
In figures 2 and 3 bellow we present two examples of
decision tree models that we can learn.

4 Experimental Evaluation

In this section we experimentally evaluate the MuSer
framework. First we describe the configuration of the
experiments. Then we present and discuss the obtained
results.

4.1 Datasets

In this section we present the datasets that we used to
evaluate the MuSer framework. We present the Hep-
atitis1 and the Protein Prolog datasets [14, 20].

The Hepatitis dataset records long term monitor-
ing, from 1982 to 1990, of patients having hepatitis B
and C subtypes. One table provides personal data about
patients. The other tables record blood, urinalysis and

1 http://lisp.vse.cz/challenge/

6 Carlos Abreu Ferreira et al.

biopsy examination data. The task that we address in
this work is to discriminate between patients having
hepatitis subtype B and C. In these experiments we
select a subset of tables and performed limited fea-
ture selection. We explore table pte030704, that records
basic information about the patients; table bioe030704,
that records the results of biopsy made by each patient;
table ilabe030704 that records information about mea-
surements in in-hospital examinations; table labne030704,
that records information about measurements in in-
hospital examinations and table hemate030704, that con-
tains results on hematological analysis. All the frame-
works and algorithms presented in this work explore
temporal data from tables ilabe030704 and hemate030704.
Regarding the feature selection, we explore all infor-
mation available in tables pte030704 and hemate030704
and select [22] only the GOT, GPT, TTT, ZTT, T-CHO,
CHE, ALB, TP, T-BIL, D-BIL, I-BIL, ICG-15, PLT, WBC
and HGB features of the ilabe030704 table. We discretize
each numerical feature using medical knowledge avail-
able in table labne030704. We use three bins: low, nor-
mal and high. The results registered in table bioe030704
were used to label each patient. The label of each pa-
tient is the result obtained in the first biopsy registered
for each patient. After preprocessing, in the subtype
problem we end up with 206 hepatitis-B patients and
297 hepatitis-C patients.

The second dataset is concerned with protein sec-
ondary structure classification. The dataset consists of
logical sequences describing the secondary structure
of protein domains. This task is a multi-class (5 classes)
classification problem and the goal is to predict one of
the five most populated SCOP folds of alpha and beta
proteins (a/b): TIM beta/alpha-barrel (721 examples),
NAD(P)-binding Rossmann-fold domains (360 exam-
ples), Ribosomal protein L4 (274 examples), Cysteine
hydrolase (441 examples), and Phosphotyrosine pro-
tein phosphatases I-like (290 examples). Inside round
brackets we present the class distribution of the dataset.

4.2 Configuration of the Experiments

In this section we present the configuration of the ex-
periments that we define to evaluate the performance
of the MuSer framework.

The MuSer framework is a general architecture that
can combine a large set of propositional sequence min-
ers and classifiers. In this work we run the PrefixSpan
sequence miner [23] to find all the frequent patterns
and the C4.5 decision tree algorithm. In fact, we run
the J48 algorithm, a C4.5 clone algorithm available in
WEKA [27]. Moreover, we define another instance of
MuSer that runs a linear kernel [24] in the last step of

the framework. The SVM algorithm used is also part
of the WEKA collection.

To best evaluate our contribution we set the param-
eters of the MuSer framework to values that can high-
light the strengths of the architecture and facilitate a
comparison against the RUSE-WARMR systems [10],
that finds first-order logic itemsets and aggregates tem-
poral data using a set of statistics. We set the PrefixS-
pan minimum support value, the λ parameter of the
MuSer framework, equal to 90% and 80% and map ei-
ther the top ten or the top twenty ranked patterns, the
k parameter of the framework.

For each instance of the MuSer framework we run a
stratified ten-fold cross validation procedure and com-
pute the number of patterns, the run-time and the peak
memory usage of each step. In the experiments that
have been conducted in the multi-class problem, the
protein fold classication problem, we use the round-
robin evaluation strategy [13]. Thus, we build 20 bi-
nary models (this is five class problem) in each one of
the ten folds and use the majority vote among all pair-
wise classification problems to classify each example
available in the test set. In case of ties we decide in fa-
vor of the majority class. Moreover, for this dataset we
report the mean number of patterns, the peak memory
usage and the run-time of each algorithm/framework
of the first 10 binary problems (f1 vs f2; f1 vs f23; f1 vs
f37; f1 vs f55; f2 vs f23; f2 vs f37; f2 vs f55; f23 vs f37;
f23 vs f55; f37 vs f55). We use this strategy to clarify
the advantage of mining each database partition indi-
vidually. Different from this strategy, we compute the
mean generalization accuracy of each system using all
the results obtained by the 20 binary classifiers.

Moreover we compute the Wilcoxon signed-rank
hypothesis test [3] to assess if there is statistically sig-
nificant accuracy improvements over the RUSE-WARMR
framework. The null hypothesis of the test is that the
median of the differences is zero. Moreover, we define
the confidence level to be 95%.

Furthermore, we run the YAP2 prolog compiler to:
convert the Prolog data into a sequence database, elim-
inate non-discriminative patterns and project the Pre-
fixSpan findings into the target table.

4.3 Results

In this section we present the results that we obtain in
the experiments we run to solve the problems avail-
able in the Hepatitis and in the Protein dataset.

In tables 4, 6, 7 we present, respectively, the num-
ber of patterns found, the peak memory usage and

1 http://www.dcc.fc.up.pt/∼vsc/Yap/

Exploring Multi-Relational Temporal Databases with a Propositional Sequence Miner 7

Table 4: Number of patterns found in each step of the MuSer framework
Sequence Miner Filters C4.5

Datasets Support Top-K Part A Part B Discriminative Chi-square TreeSize

Hepatitis
0.9 10 0.1 (0.3) 67.6 (29.6) 67.5 (29.7) 10.0 (0.0) 7.4 (1.8)

20 0.1 (0.3) 67.6 (29.6) 67.5 (29.7) 20.0 (0.0) 10.2 (3.4)

0.8 10 122.1 (59.1) 56010.6 (19036.9) 55888.5 (19060.9) 10.0 (0.0) 3.0 (0.0)
20 122.1 (59.1) 56010.6 (19036.9) 55888.5 (19060.9) 20.0 (0.0) 6.0 (0.0)

Protein
0.9 10 10006.2 (651.8) 356.0 (19.8) 9923.3 (651.4) 10.0 (0.0) 7.5 (2.1)

20 10006.2 (651.8) 356.0 (19.8) 9923.3 (651.4) 20.0 (0.0) 11.2 (2.6)

0.8 10 80537.2 (4301.2) 3230.3 (364.2) 81779.5 (4355.3) 10.0 (0.0) 7.6 (1.8)
20 80537.2 (4301.2) 3230.3 (364.2) 81779.5 (4355.3) 20.0 (0.0) 10.5 (3.9)

Table 5: Generalization accuracy of the MuSer framework
C4.5 SVM

Datasets Support Top-K Accuracy Wilcoxon p-value Accuracy Wilcoxon p-value

Hepatitis

0.9 10 64.10 (6.97) 0.33 65.50 (5.32) 0.18
20 65.50 (5.72) 0.21 65.50 (6.06) 0.23

0.8 10 79.90 (5.92) 0.00 80.10 (6.31) 0.00
20 79.90 (5.92) 0.00 80.10 (6.31) 0.00

RUSE – 63.42 (6.92)

Protein

0.9 10 76.86 (0.03) 0.00 76.14 (0.02) 0.00
20 78.24 (0.03) 0.00 78.20 (0.03) 0.00

0.8 10 79.11 (0.02) 0.00 76.86 (0.03) 0.00
20 79.97 (0.03) 0.00 77.87 (0.03) 0.00

RUSE – 63.18 (1.18)

the run-time required by each step of our framework.
In each table we identify the dataset used as input,
present the value of λ, the support value of the se-
quence miner, and k, the number of top ranked pat-
terns we map, respectively, in columns one, two and
three. Thus, each table row corresponds to an instance
of our framework.

In Table 4 we present the sequence patterns found
in each partition of the dataset. We use Part A and Part
B column headers to identify the column where we
present the patterns found in, respectively, the minor-
ity class and the majority class of the Hepatitis dataset.
In columns six and seven we present the number of
patterns that we get after running the discriminative
and the chi-square filters. Moreover, in the last column
we present the number of nodes of the decision tree
learned. We present the size of the induced tree to high-
light the relation between the support value of the se-
quence miner and the complexity of the generated de-
cision tree models.

In tables 6 and 7 we use the same column descrip-
tors used in Table 4 to present the peak memory us-
age (in kilobytes) and time (in seconds) needed by each
step of the MuSer architecture.

In Table 5 we present the generalization accuracy
(and standard deviation) of the models that we learn
using either the C4.5 algorithm or the linear kernel SVM
algorithm in the last step of the MuSer system. More-
over, we present the generalization accuracy that we

A28142

b (179.0/45.0)

= 0

c (273.0/51.0)

= 1

Figure 2: MuSer’s best induced decision tree for the Hepatitis
subtype problem

get when we run the baseline algorithm. The RUSE-
WARMR results were obtained when we run the C4.5
algorithm in the last step, and with the support value
of the WARMR algorithm equal to 80% and by map-
ping the twenty most interesting patterns. Furthermore,
we present the p-value of the Wilcoxon test that we ob-
tained when we compare the generalization accuracy
of each MuSer instance against the baseline, the RUSE-
WARMR framework. We show two columns heading
the (wilcoxon) p-value text. The first one shows the p-
value of each instance of the MuSer algorithm that uses
the C4.5 algorithm in the last step of the MuSer frame-
work. The second column shows the same information
for the experiments that we run the SVM to learn the
classification model.

In Figure 2 we present the tree model induced in
the best run of the experiments we made with the Hep-
atitis dataset. This results were obtained in the first
fold of the 10-cv evaluation. In this run we obtained

8 Carlos Abreu Ferreira et al.

Table 6: Peak memory usage in each step of the MuSer framework
Sequence Miner Filter Chi-Square Classifier

Datasets Support Top-K Part A Part B Mapping C4.5 SVM

Hepatitis
0.9 10 613.2 (39.1) 1203.2 (37.1) 196930.4 (54680.0) 42759.6 (2435.1) 35544.4 (611.5) 55045.2 (213.0)

20 612.4 (39.4) 1204.8 (37.6) 196312.0 (53586.2) 44692.4 (2312.5) 36026.4 (1174.2) 56818.4 (268.4)

0.8 10 875.6 (22.4) 2006.0 (93.9) 3773773.2 (3341.2) 1263896.8 (495713.9) 36351.6 (713.5) 55445.2 (298.3)
20 874.4 (23.8) 2006.0 (93.2) 3774758.4 (3256.2) 1270796.4 (502124.9) 35174.0 (788.1) 57100.8 (654.0)

Protein
0.9 10 916.4 (4.9) 752.7 (3.3) 636752.9 (12406.4) 442126.1 (48448.6) 36515.4 (681.5) 58082.6 (848.3)

20 916.2 (4.7) 752.6 (3.4) 636936.5 (12417.7) 443263.8 (47970.7) 37865.6 (570.9) 60600.5 (908.3)

0.8 10 1010.9 (7.0) 830.6 (6.9) 787832.9 (1047.4) 3347801.2 (288293.0) 36362.2 (561.2) 58195.1 (871.9)
20 1011.1 (7.5) 830.6 (7.2) 787873.7 (879.3) 3202965.5 (367953.5) 37245.2 (1202.4) 59632.5 (1715.7)

Table 7: Run-time of each step of the MuSer framework
Sequence Miner Filter Chi-Square Classifier

Datasets Support Top-K Part A Part B Mapping C4.5 SVM

Hepatitis
0.9 10 0.0 (0.0) 0.0 (0.0) 3.2 (0.8) 0.3 (0.5) 0.2 (0.4) 0.3 (0.5)

20 0.0 (0.0) 0.0 (0.0) 3.0 (0.5) 0.3 (0.5) 0.2 (0.4) 0.2 (0.4)

0.8 10 0.0 (0.0) 18.6 (6.4) 911.9 (316.2) 10.4 (4.0) 0.1 (0.3) 0.3 (0.5)
20 0.0 (0.0) 18.4 (6.4) 900.7 (306.8) 10.5 (4.2) 0.2 (0.4) 0.4 (0.5)

Protein
0.9 10 1.8 (0.3) 0.0 (0.1) 142.2 (9.4) 4.8 (1.1) 0.2 (0.4) 0.3 (0.5)

20 1.8 (0.2) 0.0 (0.1) 141.2 (9.0) 4.1 (0.7) 0.2 (0.3) 0.4 (0.5)

0.8 10 11.2 (0.8) 0.2 (0.3) 1186.3 (62.0) 39.4 (4.2) 0.2 (0.4) 0.3 (0.4)
20 11.2 (0.9) 0.2 (0.2) 1190.8 (62.8) 41.5 (5.0) 0.2 (0.4) 0.5 (0.5)

b o r n d a t e

A25

< = 1 9 4 0 - 1 2 - 1 5

b (255.0/114.0)

> 1 9 4 0 - 1 2 - 1 5

A20

= 0

c (166.0/26.0)

= 1

c (21.0/9.0)

= 0

b (10.0/1.0)

= 1

Figure 3: Example of a decision tree induced when the support
value of MuSer’s sequence miner is set to 90%

an accuracy of 92%. This result was obtained by set-
ting the support value of the sequence miner to 80%
and mapping the ten most interesting patterns. In this
specific example the split attribute that appears in the
inner node of the tree is the sequence pattern A28142 :
(30 33 37 48) that corresponds to the (che=normal d-
bi=normal gpt=high t-bil=normal) itemset. This is a se-
quence of size one but we found trees and linear ker-
nels that use sequences of larger sizes. In Figure 3 we
present a tree that was found when we set the support
value of the sequence miner to 90%. Different from the

tree presented in Figure 2, this tree uses also primitive
attributes, the borndate attribute.

4.4 Analysis of the Results

The results of the experiments show that important
gains can be obtained if we explore time information
using special purpose methodologies. In particular, we
show that the MuSer framework obtained significant
gains in two classification problems. Even without us-
ing all the information available in each dataset and
without including background knowledge from experts,
we get significant accuracy wins over the baseline in
the hepatitis subtype problem and in the protein fold
classification problem. Only when we run the MuSer
framework with support value equal to 90% we do not
get significant accuracy gains. In both problems we get
accuracy gains of approximately 17 percentage points.

Moreover, the results that we present here are bet-
ter than the ones obtained by algorithms that also ex-
plore the order of the events. In the Hepatitis dataset
we get gains of approximately 1 percentage points over
the work presented in [22], that was developed with
the special purpose to explore the Hepatitis dataset.
It is important to stress this result because we do not
explore information available in all tables and do not
include expert knowledge in the mining process. [22]
uses computational expensive sub-graph patterns found
by the Graph-Based Induction [19] as input to a deci-
sion tree learner.

Exploring Multi-Relational Temporal Databases with a Propositional Sequence Miner 9

In the protein problem we obtained generalization
accuracy gains of approximately 4 percentage points
over the work developed by Kersting [14]. This work
introduces Logical Hidden Markov Models, a method-
ology that can include expert/background knowledge
in the mining process.

Moreover, we run the XMuSer framework [11] but
replacing the ILP learner with a propositional learner.
We test the same C4.5 and the linear kernel SVM al-
gorithms that we run the MuSer framework. With this
modification we get a system that only differs in the
mining step. Using the same configurations we use to
evaluate the MuSer framework, we get in XMuSer runs
a generalization accuracy losses of at least 15 and 4
percentage points in, respectively, the Hepatitis and
Protein datasets. Thus, this MuSer gains are explained
by the dual pattern mining strategy, that finds a large
number of highly discriminative frequent sequences
by mining each database partition individually.

Furthermore, we observe that in both problems the
generalization accuracy increases with the decrease of
the PrefixSpan support value. Moreover, if we increase
the number of patterns to map from ten to twenty pat-
terns, typically we get better results. This later behav-
ior has some limitations as we explain in [9]. If we map
a larger set of patterns the propositional classifier can
overfit the data.

Regarding the analysis of the number of patterns
found in each step of the MuSer framework, we get an
exponential growth in the number of patterns found.
The high growth rate is clear from the analysis of columns
4 and 5 of Table 4. The lower the support value the
higher the number of patterns. This issue of sequence
miners is well known [23] and was the source of many
problems we have in this work. We were unable to find
all patterns having support equal or less than 70%.

The effectiveness of the filters is clear when we an-
alyze the number of patterns we found when we run
the sequence miner with a minimum support value
equal to 80%. Typically we get numerous irrelevant
and redundant patterns. Without the use of both fil-
ters, mainly the chi-square filter that selects class re-
lated patterns, we could not obtain the presented re-
sults or would get worst generalization ability of the
obtained classification models [9]. The number of pat-
terns found by the sequence miner makes almost im-
possible to map all patterns and/or run any classifier
on the augmented target table. We run some experi-
ments with lower support values and we have to wait
several weeks to learn a classification model in a single
dataset fold.

Moreover, the number of patterns comes at high
memory and run-time costs as we can see in Table 6

and Table 7. In these tables we do not present infor-
mation about the discriminative filter, the one that re-
moves matching patterns and is implemented with a
simple matching operation that keeps non-agreeing pat-
terns. We do so because the peak memory usage and
run-times of this operation can be several orders of
magnitude smaller than the other operations. This is
especially clear when we run the sequence miner with
low support values. The effectiveness of the discrimi-
native filter can be apparent in datasets where we get
many agreeing patterns.

Also, we think that the obtained patterns require
the analysis of domain technicians. We are not special-
ists in hepatitis or protein fold structure but we obtain
some sequence patterns that, we hope, can be useful to
unveil the mechanisms of disease progression or pro-
tein structure.

5 Conclusions

In this work we presented MuSer, a framework that ex-
plores temporal information stored in Prolog databases.
The main contributions of the proposed system is a
method that explores temporal patterns presented in
relational data without losing valuable relational infor-
mation, the ordering of the events, and a dual mining
strategy that explores each database partition individ-
ually.

Based on the excellent results of other algorithms
that use the propositionalization technique, the archi-
tecture of our algorithm consists of four steps. After a
pre-processing phase, where we convert the temporal
information available in the relational database into a
database of sequences, in the first phase, we find all
sequence patterns using the efficient PrefixSpan algo-
rithm. Then, in a second phase, considering the huge
number of uninteresting and irrelevant patterns we in-
troduce two filters. The discriminative filter that prunes
agreeing patterns and a chi-square filter that sorts pat-
terns using the chi-square statistic. Next we map the
most interesting patterns into the relational target ta-
ble. This way we obtain an enlarged target. In the last
phase, we induce a decision tree model using the aug-
mented table as input to C4.5 algorithm.

We experimentally evaluate the MuSer framework
using two datasets and defining a large set of configu-
rations. Our experiments show that the learned mod-
els are highly accurate and readable. Moreover, when
we compare the results of MuSer against the baseline
algorithm, the RUSE-WARMR algorithm we get sig-
nificant better results. Remember that RUSE-WARMR
aggregates temporal information, i.e., do not explore
the temporal information conveniently. Moreover, in

10 Carlos Abreu Ferreira et al.

the hepatitis subtype problem we get the best results
we can find in the literature. In the Protein dataset we
are aware of better results but we beat the work of
Kersting[14]. This is an important work that was a ref-
erence during a set of years. These results are even
more interesting because we do not use all the infor-
mation available in the dataset and do not include do-
main expert knowledge.

The algorithm has some limitations related to the
huge number of sequential patterns found and the in-
clusion of domain knowledge in the learning process.
For instance, we try to explore the Financial dataset
(http://lisp.vse.cz/challenge/), that has too
many long sequence patterns with support values higher
than 80%, and we were unable to run the original ver-
sion of the PrefixSpan algorithm to find all patterns.
With the original implementation we are unable to con-
strain the algorithm to find small sequence patterns.
Moreover, even if run an algorithm that finds all pat-
terns, we may be unable to map them. If we map all
such patterns we get files with dozens of gigabytes
that are intractable. Thus, in the future we will intro-
duce strategies to constrain the search space, eliminate
expensive filtering and mapping operations. An ex-
ample of a recent work that considers such strategies
is [21].

Acknowledgements

We acknowledge projects NORTE-07-0124-FEDER-
000056/59 financed by the North Portugal Regional
Operational Programme (ON.2 - O Novo Norte), un-
der the National Strategic Reference Framework (NSRF),
through the Development Fund (ERDF), and by na-
tional funds, through the Portuguese funding agency,
Fundao para a Cincia e a Tecnologia (FCT). Authors
also acknowledge the support of the European Com-
mission through the project MAESTRA (Grant Num-
ber ICT-750 2013-612944). The first author was also funded
by FCT and the Polytechnic Institute of Porto, Portu-
gal, under the PhD grant SFRH/PROTEC/49634/2009.

References

1. Agrawal R, Srikant R (1994) Fast algorithms for
mining association rules. In: Proceedings of the
20th International Conference on Very Large Data
Bases, Morgan Kaufmann, Santiago de Chile,
Chile, pp 487–499

2. Agrawal R, Srikant R (1995) Mining sequential
patterns. In: Eleventh International Conference on
Data Engineering, Taipei, Taiwan, pp 3–14

3. Baron M (2013) Probability and Statistics for Com-
puter Scientists, Second Edition, 2nd edn. Chap-
man & Hall/CRC

4. Bayardo RJ (1998) Efficiently mining long patterns
from databases. SIGMOD Rec 27(2):85–93, DOI
10.1145/276305.276313, URL http://doi.acm.
org/10.1145/276305.276313

5. Blockeel H, Sebag M (2003) Scalability and effi-
ciency in multi-relational data mining. SIGKDD
Explorations 5(1):17–30

6. Davis J, Burnside E, Dutra IC, Page D, Costa
VS (2005) An integrated approach to learning
bayesian networks of rules. In: Proceedings of the
16th European conference on Machine Learning,
Springer-Verlag, Berlin, Heidelberg, ECML’05, pp
84–95, DOI 10.1007/11564096 13, URL http://
dx.doi.org/10.1007/11564096_13

7. Dehaspe L, Toivonen H (1999) Discovery of
frequent datalog patterns. Data Min Knowl Dis-
cov 3(1):7–36, DOI 10.1023/A:1009863704807,
URL http://dx.doi.org/10.1023/A:
1009863704807

8. Dolques X, Mondal K, Braud A, Huchard M,
Le Ber F (2014) Rca as a data transforming
method: A comparison with propositionalisation.
In: Glodeanu C, Kaytoue M, Sacarea C (eds) For-
mal Concept Analysis, Lecture Notes in Computer
Science, vol 8478, Springer International Publish-
ing, pp 112–127

9. Ferreira CA, Gama J (2007) Rank ensemble fea-
tures for constructive induction. In: Proceedings of
the Workshop on General Artificial Intelligence, in
the 13th Portuguese Conference on Artificial Intel-
ligence (EPIA), Guimarães, Portugal, pp 45–57

10. Ferreira CA, Gama J, Costa VS (2008) RUSE-
WARMR: Rule Selection for Classifier Induction
in Multi-relational Data-Sets. In: 20th IEEE Inter-
national Conference on Tools with Artificial In-
telligence, IEEE Computer Society, Dayton, Ohio,
USA, vol 1, pp 379–386

11. Ferreira CA, Gama J, Costa VS (2012) Predictive
sequence miner in ilp learning. In: Proceedings
of the 21st Inductive Logic Programming Confer-
ence, Springer, Windsor Great Park, United King-
dom, Lecture Notes in Computer Science, pp 130–
144

12. Fournier-Viger P, Wu C, Gomariz A, Tseng VS
(2014) VMSP: efficient vertical mining of maximal
sequential patterns. In: Advances in Artificial In-
telligence - 27th Canadian Conference on Artifi-
cial Intelligence, Canadian AI 2014, Montréal, QC,
Canada, May 6-9, 2014. Proceedings, Springer, pp
83–94

Exploring Multi-Relational Temporal Databases with a Propositional Sequence Miner 11

13. Fürnkranz J (2002) Round robin classification.
Journal of Machine Learning Research 2:721–747

14. Kersting K, Raedt LD, Raiko T (2006) Logical
hidden markov models. J Artif Intell Res (JAIR)
25:425–456

15. Kramer S, Raedt LD, Helma C (2001) Molecular
feature mining in hiv data. In: Proceedings of the
seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM,
New York, NY, USA, KDD ’01, pp 136–143, DOI
10.1145/502512.502533, URL http://doi.acm.
org/10.1145/502512.502533

16. Krogel MA, Rawles S, Zelezný F, Flach P, Lavrač
N, Wrobel S (2003) Comparative evaluation of ap-
proaches to propositionalization. In: Horváth T
(ed) Inductive Logic Programming, 13th Interna-
tional Conference on Inductive Logic Program-
ming (ILP–2003), Springer Verlag, Lecture notes in
computer science, vol 2835, pp 197–214

17. Lee SD, Raedt LD (2004) Constraint based min-
ing of first order sequences in seqlog. In: Database
Support for Data Mining Applications: Discov-
ering Knowledge with Inductive Queries, Lec-
ture Notes in Computer Science, Springer-Verlag
Berlin, vol 2682, pp 155–176

18. Lesh N, Zaki MJ, Ogihara M (1998) Mining fea-
tures for sequence classification. Tech. Rep. TR98-
22, MERL - Mitsubishi Electric Research Labo-
ratories, 201 Broadway, Cambridge, MA 02139,
URL http://www.merl.com/publications/
TR98-22/

19. Matsuda T, Horiuchi T, Motoda H, Washio T, Ku-
mazawa K, Arai N (1999) Graph-based induction
for general graph structured data. In: Discovery
Science, Lecture Notes in Computer Science, Porto,
Portugal, vol 5808, pp 340–342

20. Mauro N, Basile TMA, Ferilli S, Esposito F (2011)
Optimizing probabilistic models for relational se-
quence learning. In: Kryszkiewicz M, Rybinski H,
Skowron A, Ra Z (eds) Foundations of Intelligent
Systems, Lecture Notes in Computer Science, vol
6804, Springer Berlin Heidelberg, pp 240–249, DOI
10.1007/978-3-642-21916-0 27, URL http://dx.
doi.org/10.1007/978-3-642-21916-0_27

21. Mauro ND, Esposito F (2013) Ensemble relational
learning based on selective propositionalization.
CoRR abs/1311.3735

22. Ohara K, Yoshida T, Geamsakul W, Motoda H,
Washio T, Yokoi H, Takabayashi K (2004) Analysis
of hepatitis dataset by decision tree graph-based
induction. In: Proceedings of Discovery Challenge,
pp 173–184

23. Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q,
Dayal U, Hsu MC (2001) PrefixSpan: Mining Se-
quential Patterns Efficiently by Prefix-Projected
Pattern Growth. ICDE pp 215–224

24. Platt JC (1998) Sequential minimal optimization:
A fast algorithm for training support vector
machines. Tech. rep., ADVANCES IN KERNEL
METHODS - SUPPORT VECTOR LEARNING

25. Raedt LD (2008) Logical and Relational Learn-
ing. Cognitive Technologies, Springer, URL
http://www.springer.com/computer/
artificial/book/978-3-540-20040-6

26. Srikant R, Agrawal R (1996) Mining sequential
patterns: Generalizations and performance im-
provements. In: Apers P, Bouzeghoub M, Gar-
darin G (eds) Advances in Database Technology
EDBT ’96, Lecture Notes in Computer Science, vol
1057, Springer Berlin Heidelberg, pp 1–17, DOI 10.
1007/BFb0014140, URL http://dx.doi.org/
10.1007/BFb0014140

27. Witten IH, Frank E (1999) Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann

28. Yan X, Han J, Afshar R (2003) CloSpan: Mining
Closed Sequential Patterns in Large Datasets. SDM
pp 166–177

29. Zaki MJ (2000) Sequence mining in categorical
domains: Incorporating constraints. In: CIKM, pp
422–429

30. Zelezný F, Lavrač N (2006) Propositionalization-
based relational subgroup discovery with rsd. Ma-
chine Learning 62(1-2):33–63

