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Abstract—Gesture-controlled applications typically are tied to 
specific gestures, and also tied to specific recognition methods 
and specific gesture-detection devices. We propose a concern-
separation architecture, which mediates the following concerns: 
gesture acquisition; gesture recognition; and gestural control. It 
enables application developers to respond to gesture-independent 
commands, recognized using plug-in gesture-recognition modules 
that process gesture data via both device-dependent and device-
independent data formats and callbacks. Its feasibility is 
demonstrated with a sample implementation. 

Keywords—gestural commands; concern independence; 
gesture-based interfaces; LeapMotion; Kinect 

I.  INTRODUCTION 
In so-called “natural” user interfaces (NUI), gestural-

interaction with the user environment is a forefront element, 
from tactile screens of smartphones and tablets to full-body 
somatic interaction using Microsoft Kinect or other devices [1]. 
They purport to be natural by leveraging users’ preexisting 
skills Error! Reference source not found., and aim to render 
the NUI invisible in cognitive terms Error! Reference source 
not found.. Recently, however, the term “natural” in such 
interfaces has been under critique, since the meaning associated 
with gestures varies across cultures, social groups, and 
sometimes even from person to person: “Most gestures are 
neither natural nor easy to learn or remember. Few are innate 
or readily predisposed to rapid and easy learning. Even the 
simple headshake is puzzling when cultures intermix” [4]. 
Actual sequences of gestures and their association with 
commands have not been under much scrutiny, and early 
proposals for evaluation of the “naturalness” of task sequences 
using gestures have now started to emerge [5]. The need to 
enable the customization of gestures, leveraging the semantic 
richness of gestures in specific cultures (gestural “emblems”) 
a.k.a. as the “shamanic interface” concept, has also been 
proposed [6]. 

In coming years, as knowledge builds up on interaction 
design for gestural interfaces, current gestural command 
methods for applications will likely become obsolete. This 
obsolescence should not prevent current applications from 
being available under new gestural command modes. Our 
perspective on this problem is that it is simply a new 
application scenario for the classic software engineering 
paradigm of separation of concerns. In this paper, our 
contribution to the software engineering of gesture-based 
applications is an architecture proposal which separates the 
following concerns: gesture acquisition; gesture recognition; 
and gestural control. The actual code is open source, available 
at: https://bitbucket.org/Apidcloud/inmerse-framework/ 

In our view, this architecture may enable software 
development teams to approach each of these concerns 
separately. Hence, a team working with a specific gesture-
acquisition device may provide the adapter modules that 
leverage the device’s API to provide its data and 
services/callbacks in a standardized way, usable by other 
architectural modules. A team dealing with the recognition of 
specific gestures may leverage the standardized data and 
services to provide gesture-recognition services, and an 
application-development team may employ both kinds of 
modules (gesture-acquisition and gesture-recognition) to react 
to commands, simply swapping modules when necessary, 
avoiding fast obsolescence. 

II. BACKGROUND 

A. Separation of concerns in interactive applications 
In interactive applications, the Model-View-Controller 

(MVC) architectural style is typically used to attain separation 
of concerns between visualization, application logic, and input 
control. However, it has been criticized for breaking separation 
of concerns in a key aspect: interpreting input and mapping it 
to an application’s functionality [8]. Proposals for overcoming 
this issue have emerged in recent years. For instance, the Curry 
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& Grace approach moves interaction concerns into the View 
module, a common approach in dialog-based applications [9]. 
But in gestural applications, where input and output take place 
in different media, this simply replaces a breakdown of 
separation by another. Angelopoulou et al. [11] proposed a 
NUI system that operates as a front-end framework for 
applications designed for traditional input, i.e., a wrapper 
approach for legacy software. A more adequate approach for 
development of new software is the MVIC extension to the 
MVC style [8], which inserts an Interaction module between 
the user and the Controller. A similar approach was followed 
by Carvalho et al. specifically for gestural-command 
applications, by proposing a three-tier approach to input 
processing: gesture acquisition & recognition; parameterized 
cultural mapping of gestures; and application control [10]. 

B. Low-cost gesture acquisition 
The use of gestures to control computerized devices has 

long been a topic of research [12], even for fields such as 
mobile devices [13]. A generic goal is to leverage users’ 
preexisting experience of bodily interaction in space and its 
associated rich semantics, to shrink the conceptual gap between 
users’ actions and system response, and thus enable users to 
work with more complex mental models [14]. E.g., enable non-
technical users to stage augmented-reality choreographies of 
stories, and put across conflicting perspectives of urban 
development [15]. 

There are currently many low-cost computational devices 
and sensors available, and not surprisingly a large diversity of 
low-cost gestural-interaction devices emerged, possibly 
brought to the public’s attention due to the commercial success 
of Nintendo’s Wii and its motion controller, the Wii Remote. 
Most notably, Microsoft’s Kinect device has drawn much 
attention from the press and the research community, due to its 
ability to recognize full-body motion without requiring 
calibration, and being readily usable not only on the Xbox 
gaming system but also on PCs and other computational 
devices. More recent devices include Leap Motion, which 
tracks fingers, hands, wrists, and forearms (on both upper limbs 
simultaneously), and the Myo armband, which uses a 
combination of electromyography and kinetic sensors to 
identify arm, hand, and finger motions. 

C. Devices used in the protype 
To produce a concrete implementation of the architecture 

presented in this paper, we employed two distinct gesture-
acquisition devices: the Leap Motion and the recent Kinect 2. 

 

Fig. 1. The Leap Motion (left) and Kinect 2 (right) devices 

As shown in Fig. 1, the Leap Motion is a small brick-
shaped sensor, which samples the space above at regular 
intervals. It detects the position of forearms, hands, and fingers, 
and provides data in specialized structures over a sequence of 
time frames. 

The Kinect 2, also shown in the same figure, acts in a 
similar way, but targeting the full body, therefore its data 
structures are distinct, focusing on providing positions of the 
body frame. A specific aspect of the Kinect 2 software services 
is their ability to provide not just the body position, but also 
detect higher order gestures (static and continuous) via 
machine learning algorithms. Hence, applications are able to 
process the sequence of body frame positions directly, and also 
respond to Kinect-detected gestural emblems. 

III. THE INMERSE MULTIMODAL ARCHITECTURE PROPOSAL 
The proposal herein was developed in the context of a 

corporate-funded innovation project, called InMerse 
(mentioned in the acknowledgments section). InMerse aimed to 
lay the grounds for creation and development of immersive and 
augmented applications and services in a corporate context. 
Rather than focus on specific application programming 
interfaces (APIs) or similar one-shot developer-oriented tools, 
an ongoing concern was for project outcomes to be made 
available for later use, by different departments or teams, as 
individuals and independent teams come up with ideas for 
prototype products/services. This made us consider early on 
that a team creating a prototype gesture-acquisition device 
could be dismantled and not readily available for software 
maintenance or customization at a later date, when a different 
department might come up with an idea for testing it as part of 
a different product/service prototype. Likewise, work done on 
recognition algorithms for specific gestures would be more 
readily available if it could be plugged-in into existing and 
future applications and benefit from data acquired through new 
devices, not just the ones available while the algorithms were 
being developed. Finally, an application-development team 
would be empowered if its operation could be independent 
from the specifics of how gesture acquisition and recognition is 
made. This perspective, alongside the overall concern with 
avoiding early obsolescence, was the inspiration for the current 
architecture. 

A. Overview 
The core structure of this architecture is the separation of 

the three team-oriented perspectives mentioned above: gesture 
acquisition, gesture recognition, and application command. 

 

Fig. 2. The overview of the InMERSE multimodal architecture. 
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A central core element provides intermediation and 
abstraction services between modules servicing these 
perspective. Fig. 2 provides this overview: different gesture-
acquisition devices are interfaced by device-specific Adapter 
modules (left side of the picture), and multiple Decoder 
modules are plugged-in to provide gesture recognition services 
tuned to different requirements (right side, bottom). The core 
Framework module provides the intermediation and 
abstraction services and enables Application modules to react 
to abstract commands, rather than the specific gestures that 
elicited them. 

This enables Applications and gesture recognition Decoders 
to focus on commands and device-independent data and 
callbacks, provided by the Framework module, rather than on 
the low-level issues concerning gesture acquisition. For 
instance, a typical concern of gesture acquisition is dealing 
with lack of precision and ambiguity in acquired data [16][17]. 
In the InMerse architecture, low-level approaches to such 
problems are dealt in Adapter modules, which can be 
debugged, updated or even replaced independently. Similarly, 
higher-level approaches are dealt with in Decoder modules, 
with the same level of independence. 

B. Data perspective 
This architecture provides Applications access to three 

different kinds of data, as shown in Fig. 3. 

• Commands, which are gesture-independent 
information. The Framework module will associate a 
gesture identified by a Decoder module with a 
command, hence an application doesn’t need to know 
(or care) if “Activate” was issued by moving a finger 
into a virtual button, focusing on it with one’s eyes for 3 
seconds, or doing a thumbs’ up, for instance. 

• Gestures, which is simply a transparent access to 
Decoders’ output, if an Application requires at some 
point this level of detail (for instance, for user tutoring 
purposes). 

• Basic Data, or transparent access to the Framework 
data structures containing the gestural data. 
Applications may require this, for instance, for 
displaying continual motion of the user’s hand. 

Providing access to lower-level data may seem to defeat the 
purpose of separation of concerns – and it does. However, it 
means an Application can use the concern-separation, 
command-based approach whenever possible, and only be tied 
to lower-level data when that is unavoidable in the current state 
of the architecture. For instance, suppose an application allows 
the user to “grab” a virtual object and “drag” it in space, until it 
is “released”. The application can simply react to Commands 
for “Start drag” and “End drag”, and benefit from separation of 
concerns, and only collect raw data for space-tracking purposes 
during dragging. 

Hence, different gestures for “grabbing” and “releasing” 
could be associated with the “Start drag” and “End drag” 
commands, for different situations or users. For instance, a user 
that is unable to perform arm movements could use a specific 
Decoder to recognize gaze duration and blinking as “grab” and 

“release” gestures (and the Application can use the Framework 
module to associate these with “start drag” and “end drag”). In 
this same scenario, the acquisition device of that user can 
provide head-tracking data for the motion, which is stored in 
the Framework as Basic Data, accessible by the Application for 
providing feedback during the dragging. 

 

Fig. 3. InMerse architecture Data and Callback perspective (each flow can be 
implemented as either/both a function call or a function callback). 

IV. AN IMPLEMENTATION OF THE INMERSE ARCHITECTURE 
We have developed a prototype implementation of the 

InMerse architecture, shown in Fig. 4, to ascertain its 
feasibility. It is explained in the following sections and has 
enabled us to confirm that indeed this approach is feasible and 
warrants more in-depth exploration subsequently. 

 

Fig. 4. Detail of the prototype implementation of the InMerse architecture 

A. Gesture data acquisition: Basic Data and Adapters 
As a first approach to storing Basic Data from gesture 

acquisition, we defined it as a buffer (“Frame Buffer”), which 
stores a sequence of timeframes (vd. Fig. 4). Each timeframe 
(“Frame”) contains a static spatial position of the gesture data. 
The actual data represented in each frame can vary 
significantly from device to device, and it is each device-
specific Adapter that needs to convert device-specific data into 
architecture-agnostic Frame data. While at the moment we are 
simply considering skeleton data with joint positions, and using 
traditional polymorphism to enable diverse data formats, 
subsequent evolutions should enable a more diverse set of data 
formats, using techniques such as ontology representation and 
transformations, which we are exploring in parallel research 
efforts [18], but are not the focus of this work. Another 
example of details that require further study is that of 
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differences in data production and consumption speeds, 
between adapters, decoders, and applications. A possible 
approach, which we’ve pursued in an Online Gymnastics 
project [19], is to drop some frames to enable quality-of-
service responsiveness. These are just two examples of 
problem areas that we acknowledge need to be tackled in 
subsequent research, but that we are not pursuing in this paper, 
whose goal is to present and make the case for the overall 
InMerse architecture. 

In the current prototype, Adapters have been implemented 
with the internal structure presented in Fig. 4. We used a core 
controller module, called Device Manager, which serves as a 
bridge, dealing with the specific API calls and data formats of 
the Software Development Kit provided by the manufacturer of 
each gesture-acquisition device. To translate device-specific 
data into the Frame data structure used by the current 
Framework implementation, we created a Frame Adapter 
module inside each Adapter. To provide the Framework with 
access to services provided by device-specific callbacks, we 
created an indirection module, inside each Adapter, called 
Gesture Adapter. The reason for this naming is that common 
services provided by device-specific APIs include preset 
recognition of some gestures. By providing indirect access to 
these via the Framework, where we created a Gesture Listener 
submodule for this purpose, the Adapters enable Gesture 
Decoder modules to benefit from leveraging low-level gesture 
recognition when it is available. 

B. Gesture recognition: Decoders 
With the Basic Data on gestures stored in the Framework 

module, Gesture Decoders access it to recognize gestures not 
just as three-dimensional positions, but as a sequence of 
positions in time. This means that it is the job of each Gesture 
Decoder to decide which features are relevant for gesture 
recognition from the Basic Data. In the scope of this 
architecture, a “gesture” can be a simple static position in 
space, a wide displacement of limbs or something as specific as 
a cultural-meaningful ritual, with specific rhythmic and 
amplitude requirements (in semiotics terminology, an emblem). 

In the current prototype, we implemented this access to 
Basic Data via two submodules of the Framework module. As 
mentioned in the previous section, a Gesture Listener provides 
the Decoders with indirect access to the low-level device SDK 
callbacks. And the Frame Buffer submodule provides them 
with access to the time sequence of Frames containing the 
spatial position of skeleton joints.  

C. Command issuing: Framework and Applications 
When a Decoder recognizes a gesture, it reports it to the 

Framework module, which will decide whether or not it is a 
command to which an application needs to respond. This 
implies that Applications need to register in the Framework 
module which commands they are listening to, and the 
Framework needs to be configured to perform the matching of 
gestures to commands. In the current prototype, we 
implemented a simple Command Detector submodule that 
reads a configuration file with gesture-to-command pairings, 
alongside some parameterization of the matching, but we 
intend to explore more advanced methods. For instance, in an 

earlier work, Carvalho et al. had a global “culture” setting 
which was used to associate cultural-specific gestures with 
generic commands [10], something we could readily include in 
such a prototype, as well as more complex approaches. Again, 
such details are for subsequent work and not the focus of this 
paper. One variation we did implement was the ability to have 
different operation modes as part of the Command Detector 
operation, as described in the following section. 

D. Operation modes 
As mentioned in the previous section, we did include an 

extra scenario – one might call it an intentional complication – 
in the command detection process, to further test the feasibility 
of the architecture. In this scenario, we considered the need for 
an application to perform continuous hand-tracking operations, 
such as dragging virtual items or pointing at virtual elements. 

While this requires the application to have systematic 
access to the hand position, which it can have by accessing the 
Basic Data in the Framework, rather than device-specific data, 
we considered how such scenarios might be initiated and 
terminated. We considered two situations: 

• Application-determined tracking, in which the 
application decides to access the hand position in 
response to its own internal state; 

• Framework-determined tracking, in which the 
application configures the framework with start and end 
gestures for hand tracking. 

Both situations are similar, in that the Application has to 
retrieve the hand position form the Basic Data in order to 
display its tracking to the user (e.g., moving/rendering the 
dragged virtual object or virtual pointer). The major difference 
is that in the first situation (application-determined) the Gesture 
Decoders are fully operational, and proceed to identify 
“gestures” as the tracked hands drag or point in the virtual 
space. Thus, the application keeps receiving command notices 
as those gestures are associated with commands, and it is the 
application’s task to decide whether to ignore them or interpret 
them. This also means that the whole system is potentially 
being subjected to needless processing jobs. In the second 
situation (framework-determined), the application configures 
the framework with “start” and “end” gesture-command 
pairings for tracking. When the start command is identified, the 
application is notified, but no more command detections are 
reported to the Application, which is solely receiving or 
requesting Basic Data. When the end command is identified, 
the application is notified, and from then on starts to be notified 
of all Commands identified by the Framework. 

These are thus two different operation modes of the 
Framework. We called the first Acquisition Mode and the 
second one Detection Mode. While we have not implemented 
further, this approach opens up the possibility of having 
Decoders identify the distinct mode in which the Framework is 
operating, and adjust their recognition algorithms/jobs 
accordingly. 
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V. TEST PROTOTYPE: GIBBO 2D DIGITAL SIGNAGE 

A. The digital signage application 
To test the operation of the implemented prototype, we 

developed a digital signage application with the open source 
Gibbo2D1 game engine, which can be used seamlessly with 
Leap Motion or Kinect 2 gesture-acquisition devices. Fig. 5 
shows this application in action. Against a world map 
backdrop, the user can pan, zoom in, and zoom out, using hand 
gestures. In this figure, an animated virtual hand is making a 
“pan left” gesture and the Portuguese-language text states 
“Reproduce this gesture to proceed.” After presenting to the 
user each of the various gestures that can be used and 
requesting their reproduction as a tutorial, the user can use 
those gestures for panning and zooming. 

 

Fig. 5. Digital Signage prototype implemented using Gibbo2D and the 
InMERSE framework 

B. Implementation aspects 
So that the Application could work seamlessly with Leap 

Motion and Kinect 2 devices, we implemented an Adapter for 
each. The user’s gesture data is captured by the device he/she is 
using, and its Adapter translates this into Frame data structures, 
stored in the Frame Buffer inside the Framework module. 

From the frames in the Frame Buffer, the Gesture Decoder 
module detects the valid gestures and passes them on to the 
Framework module, whose Command Detector submodule 
converts into Application-specific commands: pan left, pan 
right, zoom in, and zoom out (plus a “start application” 
command). 

When the Digital Signage application receives a command 
notification, it reacts accordingly alongside the world map 
background (or, in the tutorial phase, reacts by either moving 
along the tutorial or ignoring a wrong command). 

An interesting situation was found while studying the 
developer resources of Kinect 2. Time framing capture is 
feasible in Kinect 2, but development examples are geared 
towards defining gestures prior to execution, storing them in 
gesture files or databases, and then running gesture detection 
by direct access to the SDK to match frames with those stored 
gestures. Following the InMerse architecture, this latter 
approach should not be done entirely in a Gesture Detector 

                                                           
1 gibbo2d.anlagehub.com 

module, since that would bypass the Framework and Adapter 
modules, and thus break the separation of concerns. Rather, 
loading a gesture database and launching events (callbacks, in 
this paper’s terminology) upon detection should be done in the 
Adapter module for the Kinect 2. This Adapter can load the 
Framework module with time frames of the detected body, and 
make gesture-detection events available to the Framework as 
callbacks. This makes Kinect 2 data and events available to all 
Gesture Detector modules, which can query the Frame Buffer 
or listen to callbacks. But the Adapter needs to know which 
gesture database to use, which means that taking advantage of 
low-level Adapter services in Gestor Detectors may require 
extending the current architecture with an upstream 
configuration data flow. However, we have not included such a 
flow in this paper, for we have not yet conducted theoretical 
reflection on its impact nor have we prototyped its feasibility. 

VI. DISCUSSION AND FINAL THOUGHTS 
The usage/efficiency of this prototype architecture needs to 

be tested in depth, as the results are very much preliminary. As 
mentioned throughout the paper, there are still several open 
issues and topics for reflection, requiring further work. We 
have not addressed in detail how to achieve adequate 
abstraction for multiple input data formats and diversified 
semantic content (e.g. different skeleton assumptions), albeit 
work done on ontology transformation in other research holds 
promise for achieving a solution for this problem [18]. Also 
mentioned was the issue of achieving adequate quality of 
service in processing time frame data across devices with very 
different capabilities in this regard. We have also not addressed 
this issue, but work done by other teams by dropping some 
frames to keep up with varying transmission and processing 
capabilities is indicative that this problem may also be 
reasonably addressed, albeit that team has not addressed 
precision or accuracy impacts [19]. This may also be a pathway 
to solve a related problem: the conversion between different 
coordinate systems among devices. 

More likely to impact the architecture is the likelihood to 
find new constraints or requirements when conducting wider 
field trials, such as speed or performance issues. The Kinect 2 
features mentioned at the end of the last section, which point 
towards the need for an upstream configuration flow from 
Detectors to Adapters, is but an example of the kind of issues 
such trials may bring to light. 

An area which we find particularly interesting as a source 
of future requirements is that of gesture detection by machine 
learning. We have assumed programmatic gesture detectors, 
ready to run, and not differences of operation between learning 
and detection, or continuously improving detection by 
providing continuous feedback. Exploring this may prove to be 
a rich source of information for improving the architecture. In 
its current state, our approach to have different operating 
modes in the Framework (acquisition and detection) may offer 
a pathway for this, by enlarging it with more modes (e.g., 
learning mode). 

In spite of acknowledging the above shortcomings, the 
results from this early prototype implementation of the 
architecture and the development of the test application 
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demonstrate the feasibility of the proposed architecture. 
Specifically, it is a feasible way to develop gestural input 
applications using separation of concerns between gesture 
acquisition, gesture recognition, and application command. It is 
the scope of its applicability and the mutations it must go 
through to widen that scope that remain to be explored. 

We hope to contribute to diminish the early obsolescence of 
gesture-controlled applications and, by separating gestures 
from their interpretation as commands, render gesture-
controlled applications more accessible to users with special 
motion needs and to users from diverse cultural backgrounds. 
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