
Separating Gesture Detection and Application Control
Concerns with a Multimodal Architecture

Leonel Morgado
INESC TEC and Universidade Aberta

Coimbra, Portugal
leonel.morgado@uab.pt

Bernardo Cardoso, Fausto de Carvalho
PT Inovação

Aveiro, Portugal
{bernardo, cfausto}@telecom.pt

Luís Fernandes, Hugo Paredes, Luís Barbosa, Benjamim Fonseca, Paulo Martins, Ricardo Rodrigues Nunes
INESC TEC and UTAD

Vila Real, Portugal
{lfernandes,hparedes,lfb,benjaf,pmartins,rrnunes}@utad.pt

Abstract—Gesture-controlled applications typically are tied to
specific gestures, and also tied to specific recognition methods
and specific gesture-detection devices. We propose a concern-
separation architecture, which mediates the following concerns:
gesture acquisition; gesture recognition; and gestural control. It
enables application developers to respond to gesture-independent
commands, recognized using plug-in gesture-recognition modules
that process gesture data via both device-dependent and device-
independent data formats and callbacks. Its feasibility is
demonstrated with a sample implementation.

Keywords—gestural commands; concern independence;
gesture-based interfaces; LeapMotion; Kinect

I. INTRODUCTION
In so-called “natural” user interfaces (NUI), gestural-

interaction with the user environment is a forefront element,
from tactile screens of smartphones and tablets to full-body
somatic interaction using Microsoft Kinect or other devices [1].
They purport to be natural by leveraging users’ preexisting
skills Error! Reference source not found., and aim to render
the NUI invisible in cognitive terms Error! Reference source
not found.. Recently, however, the term “natural” in such
interfaces has been under critique, since the meaning associated
with gestures varies across cultures, social groups, and
sometimes even from person to person: “Most gestures are
neither natural nor easy to learn or remember. Few are innate
or readily predisposed to rapid and easy learning. Even the
simple headshake is puzzling when cultures intermix” [4].
Actual sequences of gestures and their association with
commands have not been under much scrutiny, and early
proposals for evaluation of the “naturalness” of task sequences
using gestures have now started to emerge [5]. The need to
enable the customization of gestures, leveraging the semantic
richness of gestures in specific cultures (gestural “emblems”)
a.k.a. as the “shamanic interface” concept, has also been
proposed [6].

In coming years, as knowledge builds up on interaction
design for gestural interfaces, current gestural command
methods for applications will likely become obsolete. This
obsolescence should not prevent current applications from
being available under new gestural command modes. Our
perspective on this problem is that it is simply a new
application scenario for the classic software engineering
paradigm of separation of concerns. In this paper, our
contribution to the software engineering of gesture-based
applications is an architecture proposal which separates the
following concerns: gesture acquisition; gesture recognition;
and gestural control. The actual code is open source, available
at: https://bitbucket.org/Apidcloud/inmerse-framework/

In our view, this architecture may enable software
development teams to approach each of these concerns
separately. Hence, a team working with a specific gesture-
acquisition device may provide the adapter modules that
leverage the device’s API to provide its data and
services/callbacks in a standardized way, usable by other
architectural modules. A team dealing with the recognition of
specific gestures may leverage the standardized data and
services to provide gesture-recognition services, and an
application-development team may employ both kinds of
modules (gesture-acquisition and gesture-recognition) to react
to commands, simply swapping modules when necessary,
avoiding fast obsolescence.

II. BACKGROUND

A. Separation of concerns in interactive applications
In interactive applications, the Model-View-Controller

(MVC) architectural style is typically used to attain separation
of concerns between visualization, application logic, and input
control. However, it has been criticized for breaking separation
of concerns in a key aspect: interpreting input and mapping it
to an application’s functionality [8]. Proposals for overcoming
this issue have emerged in recent years. For instance, the Curry

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.233

1548

& Grace approach moves interaction concerns into the View
module, a common approach in dialog-based applications [9].
But in gestural applications, where input and output take place
in different media, this simply replaces a breakdown of
separation by another. Angelopoulou et al. [11] proposed a
NUI system that operates as a front-end framework for
applications designed for traditional input, i.e., a wrapper
approach for legacy software. A more adequate approach for
development of new software is the MVIC extension to the
MVC style [8], which inserts an Interaction module between
the user and the Controller. A similar approach was followed
by Carvalho et al. specifically for gestural-command
applications, by proposing a three-tier approach to input
processing: gesture acquisition & recognition; parameterized
cultural mapping of gestures; and application control [10].

B. Low-cost gesture acquisition
The use of gestures to control computerized devices has

long been a topic of research [12], even for fields such as
mobile devices [13]. A generic goal is to leverage users’
preexisting experience of bodily interaction in space and its
associated rich semantics, to shrink the conceptual gap between
users’ actions and system response, and thus enable users to
work with more complex mental models [14]. E.g., enable non-
technical users to stage augmented-reality choreographies of
stories, and put across conflicting perspectives of urban
development [15].

There are currently many low-cost computational devices
and sensors available, and not surprisingly a large diversity of
low-cost gestural-interaction devices emerged, possibly
brought to the public’s attention due to the commercial success
of Nintendo’s Wii and its motion controller, the Wii Remote.
Most notably, Microsoft’s Kinect device has drawn much
attention from the press and the research community, due to its
ability to recognize full-body motion without requiring
calibration, and being readily usable not only on the Xbox
gaming system but also on PCs and other computational
devices. More recent devices include Leap Motion, which
tracks fingers, hands, wrists, and forearms (on both upper limbs
simultaneously), and the Myo armband, which uses a
combination of electromyography and kinetic sensors to
identify arm, hand, and finger motions.

C. Devices used in the protype
To produce a concrete implementation of the architecture

presented in this paper, we employed two distinct gesture-
acquisition devices: the Leap Motion and the recent Kinect 2.

Fig. 1. The Leap Motion (left) and Kinect 2 (right) devices

As shown in Fig. 1, the Leap Motion is a small brick-
shaped sensor, which samples the space above at regular
intervals. It detects the position of forearms, hands, and fingers,
and provides data in specialized structures over a sequence of
time frames.

The Kinect 2, also shown in the same figure, acts in a
similar way, but targeting the full body, therefore its data
structures are distinct, focusing on providing positions of the
body frame. A specific aspect of the Kinect 2 software services
is their ability to provide not just the body position, but also
detect higher order gestures (static and continuous) via
machine learning algorithms. Hence, applications are able to
process the sequence of body frame positions directly, and also
respond to Kinect-detected gestural emblems.

III. THE INMERSE MULTIMODAL ARCHITECTURE PROPOSAL
The proposal herein was developed in the context of a

corporate-funded innovation project, called InMerse
(mentioned in the acknowledgments section). InMerse aimed to
lay the grounds for creation and development of immersive and
augmented applications and services in a corporate context.
Rather than focus on specific application programming
interfaces (APIs) or similar one-shot developer-oriented tools,
an ongoing concern was for project outcomes to be made
available for later use, by different departments or teams, as
individuals and independent teams come up with ideas for
prototype products/services. This made us consider early on
that a team creating a prototype gesture-acquisition device
could be dismantled and not readily available for software
maintenance or customization at a later date, when a different
department might come up with an idea for testing it as part of
a different product/service prototype. Likewise, work done on
recognition algorithms for specific gestures would be more
readily available if it could be plugged-in into existing and
future applications and benefit from data acquired through new
devices, not just the ones available while the algorithms were
being developed. Finally, an application-development team
would be empowered if its operation could be independent
from the specifics of how gesture acquisition and recognition is
made. This perspective, alongside the overall concern with
avoiding early obsolescence, was the inspiration for the current
architecture.

A. Overview
The core structure of this architecture is the separation of

the three team-oriented perspectives mentioned above: gesture
acquisition, gesture recognition, and application command.

Fig. 2. The overview of the InMERSE multimodal architecture.

1549

A central core element provides intermediation and
abstraction services between modules servicing these
perspective. Fig. 2 provides this overview: different gesture-
acquisition devices are interfaced by device-specific Adapter
modules (left side of the picture), and multiple Decoder
modules are plugged-in to provide gesture recognition services
tuned to different requirements (right side, bottom). The core
Framework module provides the intermediation and
abstraction services and enables Application modules to react
to abstract commands, rather than the specific gestures that
elicited them.

This enables Applications and gesture recognition Decoders
to focus on commands and device-independent data and
callbacks, provided by the Framework module, rather than on
the low-level issues concerning gesture acquisition. For
instance, a typical concern of gesture acquisition is dealing
with lack of precision and ambiguity in acquired data [16][17].
In the InMerse architecture, low-level approaches to such
problems are dealt in Adapter modules, which can be
debugged, updated or even replaced independently. Similarly,
higher-level approaches are dealt with in Decoder modules,
with the same level of independence.

B. Data perspective
This architecture provides Applications access to three

different kinds of data, as shown in Fig. 3.

• Commands, which are gesture-independent
information. The Framework module will associate a
gesture identified by a Decoder module with a
command, hence an application doesn’t need to know
(or care) if “Activate” was issued by moving a finger
into a virtual button, focusing on it with one’s eyes for 3
seconds, or doing a thumbs’ up, for instance.

• Gestures, which is simply a transparent access to
Decoders’ output, if an Application requires at some
point this level of detail (for instance, for user tutoring
purposes).

• Basic Data, or transparent access to the Framework
data structures containing the gestural data.
Applications may require this, for instance, for
displaying continual motion of the user’s hand.

Providing access to lower-level data may seem to defeat the
purpose of separation of concerns – and it does. However, it
means an Application can use the concern-separation,
command-based approach whenever possible, and only be tied
to lower-level data when that is unavoidable in the current state
of the architecture. For instance, suppose an application allows
the user to “grab” a virtual object and “drag” it in space, until it
is “released”. The application can simply react to Commands
for “Start drag” and “End drag”, and benefit from separation of
concerns, and only collect raw data for space-tracking purposes
during dragging.

Hence, different gestures for “grabbing” and “releasing”
could be associated with the “Start drag” and “End drag”
commands, for different situations or users. For instance, a user
that is unable to perform arm movements could use a specific
Decoder to recognize gaze duration and blinking as “grab” and

“release” gestures (and the Application can use the Framework
module to associate these with “start drag” and “end drag”). In
this same scenario, the acquisition device of that user can
provide head-tracking data for the motion, which is stored in
the Framework as Basic Data, accessible by the Application for
providing feedback during the dragging.

Fig. 3. InMerse architecture Data and Callback perspective (each flow can be
implemented as either/both a function call or a function callback).

IV. AN IMPLEMENTATION OF THE INMERSE ARCHITECTURE
We have developed a prototype implementation of the

InMerse architecture, shown in Fig. 4, to ascertain its
feasibility. It is explained in the following sections and has
enabled us to confirm that indeed this approach is feasible and
warrants more in-depth exploration subsequently.

Fig. 4. Detail of the prototype implementation of the InMerse architecture

A. Gesture data acquisition: Basic Data and Adapters
As a first approach to storing Basic Data from gesture

acquisition, we defined it as a buffer (“Frame Buffer”), which
stores a sequence of timeframes (vd. Fig. 4). Each timeframe
(“Frame”) contains a static spatial position of the gesture data.
The actual data represented in each frame can vary
significantly from device to device, and it is each device-
specific Adapter that needs to convert device-specific data into
architecture-agnostic Frame data. While at the moment we are
simply considering skeleton data with joint positions, and using
traditional polymorphism to enable diverse data formats,
subsequent evolutions should enable a more diverse set of data
formats, using techniques such as ontology representation and
transformations, which we are exploring in parallel research
efforts [18], but are not the focus of this work. Another
example of details that require further study is that of

1550

differences in data production and consumption speeds,
between adapters, decoders, and applications. A possible
approach, which we’ve pursued in an Online Gymnastics
project [19], is to drop some frames to enable quality-of-
service responsiveness. These are just two examples of
problem areas that we acknowledge need to be tackled in
subsequent research, but that we are not pursuing in this paper,
whose goal is to present and make the case for the overall
InMerse architecture.

In the current prototype, Adapters have been implemented
with the internal structure presented in Fig. 4. We used a core
controller module, called Device Manager, which serves as a
bridge, dealing with the specific API calls and data formats of
the Software Development Kit provided by the manufacturer of
each gesture-acquisition device. To translate device-specific
data into the Frame data structure used by the current
Framework implementation, we created a Frame Adapter
module inside each Adapter. To provide the Framework with
access to services provided by device-specific callbacks, we
created an indirection module, inside each Adapter, called
Gesture Adapter. The reason for this naming is that common
services provided by device-specific APIs include preset
recognition of some gestures. By providing indirect access to
these via the Framework, where we created a Gesture Listener
submodule for this purpose, the Adapters enable Gesture
Decoder modules to benefit from leveraging low-level gesture
recognition when it is available.

B. Gesture recognition: Decoders
With the Basic Data on gestures stored in the Framework

module, Gesture Decoders access it to recognize gestures not
just as three-dimensional positions, but as a sequence of
positions in time. This means that it is the job of each Gesture
Decoder to decide which features are relevant for gesture
recognition from the Basic Data. In the scope of this
architecture, a “gesture” can be a simple static position in
space, a wide displacement of limbs or something as specific as
a cultural-meaningful ritual, with specific rhythmic and
amplitude requirements (in semiotics terminology, an emblem).

In the current prototype, we implemented this access to
Basic Data via two submodules of the Framework module. As
mentioned in the previous section, a Gesture Listener provides
the Decoders with indirect access to the low-level device SDK
callbacks. And the Frame Buffer submodule provides them
with access to the time sequence of Frames containing the
spatial position of skeleton joints.

C. Command issuing: Framework and Applications
When a Decoder recognizes a gesture, it reports it to the

Framework module, which will decide whether or not it is a
command to which an application needs to respond. This
implies that Applications need to register in the Framework
module which commands they are listening to, and the
Framework needs to be configured to perform the matching of
gestures to commands. In the current prototype, we
implemented a simple Command Detector submodule that
reads a configuration file with gesture-to-command pairings,
alongside some parameterization of the matching, but we
intend to explore more advanced methods. For instance, in an

earlier work, Carvalho et al. had a global “culture” setting
which was used to associate cultural-specific gestures with
generic commands [10], something we could readily include in
such a prototype, as well as more complex approaches. Again,
such details are for subsequent work and not the focus of this
paper. One variation we did implement was the ability to have
different operation modes as part of the Command Detector
operation, as described in the following section.

D. Operation modes
As mentioned in the previous section, we did include an

extra scenario – one might call it an intentional complication –
in the command detection process, to further test the feasibility
of the architecture. In this scenario, we considered the need for
an application to perform continuous hand-tracking operations,
such as dragging virtual items or pointing at virtual elements.

While this requires the application to have systematic
access to the hand position, which it can have by accessing the
Basic Data in the Framework, rather than device-specific data,
we considered how such scenarios might be initiated and
terminated. We considered two situations:

• Application-determined tracking, in which the
application decides to access the hand position in
response to its own internal state;

• Framework-determined tracking, in which the
application configures the framework with start and end
gestures for hand tracking.

Both situations are similar, in that the Application has to
retrieve the hand position form the Basic Data in order to
display its tracking to the user (e.g., moving/rendering the
dragged virtual object or virtual pointer). The major difference
is that in the first situation (application-determined) the Gesture
Decoders are fully operational, and proceed to identify
“gestures” as the tracked hands drag or point in the virtual
space. Thus, the application keeps receiving command notices
as those gestures are associated with commands, and it is the
application’s task to decide whether to ignore them or interpret
them. This also means that the whole system is potentially
being subjected to needless processing jobs. In the second
situation (framework-determined), the application configures
the framework with “start” and “end” gesture-command
pairings for tracking. When the start command is identified, the
application is notified, but no more command detections are
reported to the Application, which is solely receiving or
requesting Basic Data. When the end command is identified,
the application is notified, and from then on starts to be notified
of all Commands identified by the Framework.

These are thus two different operation modes of the
Framework. We called the first Acquisition Mode and the
second one Detection Mode. While we have not implemented
further, this approach opens up the possibility of having
Decoders identify the distinct mode in which the Framework is
operating, and adjust their recognition algorithms/jobs
accordingly.

1551

V. TEST PROTOTYPE: GIBBO 2D DIGITAL SIGNAGE

A. The digital signage application
To test the operation of the implemented prototype, we

developed a digital signage application with the open source
Gibbo2D1 game engine, which can be used seamlessly with
Leap Motion or Kinect 2 gesture-acquisition devices. Fig. 5
shows this application in action. Against a world map
backdrop, the user can pan, zoom in, and zoom out, using hand
gestures. In this figure, an animated virtual hand is making a
“pan left” gesture and the Portuguese-language text states
“Reproduce this gesture to proceed.” After presenting to the
user each of the various gestures that can be used and
requesting their reproduction as a tutorial, the user can use
those gestures for panning and zooming.

Fig. 5. Digital Signage prototype implemented using Gibbo2D and the
InMERSE framework

B. Implementation aspects
So that the Application could work seamlessly with Leap

Motion and Kinect 2 devices, we implemented an Adapter for
each. The user’s gesture data is captured by the device he/she is
using, and its Adapter translates this into Frame data structures,
stored in the Frame Buffer inside the Framework module.

From the frames in the Frame Buffer, the Gesture Decoder
module detects the valid gestures and passes them on to the
Framework module, whose Command Detector submodule
converts into Application-specific commands: pan left, pan
right, zoom in, and zoom out (plus a “start application”
command).

When the Digital Signage application receives a command
notification, it reacts accordingly alongside the world map
background (or, in the tutorial phase, reacts by either moving
along the tutorial or ignoring a wrong command).

An interesting situation was found while studying the
developer resources of Kinect 2. Time framing capture is
feasible in Kinect 2, but development examples are geared
towards defining gestures prior to execution, storing them in
gesture files or databases, and then running gesture detection
by direct access to the SDK to match frames with those stored
gestures. Following the InMerse architecture, this latter
approach should not be done entirely in a Gesture Detector

1 gibbo2d.anlagehub.com

module, since that would bypass the Framework and Adapter
modules, and thus break the separation of concerns. Rather,
loading a gesture database and launching events (callbacks, in
this paper’s terminology) upon detection should be done in the
Adapter module for the Kinect 2. This Adapter can load the
Framework module with time frames of the detected body, and
make gesture-detection events available to the Framework as
callbacks. This makes Kinect 2 data and events available to all
Gesture Detector modules, which can query the Frame Buffer
or listen to callbacks. But the Adapter needs to know which
gesture database to use, which means that taking advantage of
low-level Adapter services in Gestor Detectors may require
extending the current architecture with an upstream
configuration data flow. However, we have not included such a
flow in this paper, for we have not yet conducted theoretical
reflection on its impact nor have we prototyped its feasibility.

VI. DISCUSSION AND FINAL THOUGHTS
The usage/efficiency of this prototype architecture needs to

be tested in depth, as the results are very much preliminary. As
mentioned throughout the paper, there are still several open
issues and topics for reflection, requiring further work. We
have not addressed in detail how to achieve adequate
abstraction for multiple input data formats and diversified
semantic content (e.g. different skeleton assumptions), albeit
work done on ontology transformation in other research holds
promise for achieving a solution for this problem [18]. Also
mentioned was the issue of achieving adequate quality of
service in processing time frame data across devices with very
different capabilities in this regard. We have also not addressed
this issue, but work done by other teams by dropping some
frames to keep up with varying transmission and processing
capabilities is indicative that this problem may also be
reasonably addressed, albeit that team has not addressed
precision or accuracy impacts [19]. This may also be a pathway
to solve a related problem: the conversion between different
coordinate systems among devices.

More likely to impact the architecture is the likelihood to
find new constraints or requirements when conducting wider
field trials, such as speed or performance issues. The Kinect 2
features mentioned at the end of the last section, which point
towards the need for an upstream configuration flow from
Detectors to Adapters, is but an example of the kind of issues
such trials may bring to light.

An area which we find particularly interesting as a source
of future requirements is that of gesture detection by machine
learning. We have assumed programmatic gesture detectors,
ready to run, and not differences of operation between learning
and detection, or continuously improving detection by
providing continuous feedback. Exploring this may prove to be
a rich source of information for improving the architecture. In
its current state, our approach to have different operating
modes in the Framework (acquisition and detection) may offer
a pathway for this, by enlarging it with more modes (e.g.,
learning mode).

In spite of acknowledging the above shortcomings, the
results from this early prototype implementation of the
architecture and the development of the test application

1552

demonstrate the feasibility of the proposed architecture.
Specifically, it is a feasible way to develop gestural input
applications using separation of concerns between gesture
acquisition, gesture recognition, and application command. It is
the scope of its applicability and the mutations it must go
through to widen that scope that remain to be explored.

We hope to contribute to diminish the early obsolescence of
gesture-controlled applications and, by separating gestures
from their interpretation as commands, render gesture-
controlled applications more accessible to users with special
motion needs and to users from diverse cultural backgrounds.

ACKNOWLEDGMENTS
This work has been developed at INESC TEC in

cooperation and funded by PT Inovação. Part of this work has
been financed by the FCT – Fundação para a Ciência e a
Tecnologia (Portuguese Foundation for Science and
Technology) within project UID/EEA/50014/2013.

REFERENCES
[1] A. Valli, “The design of natural interaction,” Multimed. Tools Appl.,

vol. 38, no. 3, pp. 295–305, 2008.
[2] J. Blake, Natural User Interfaces in. NET: WPF 4, Surface 2, and

Kinect. Manning, 2011.
[3] M. Roupé, P. Bosch-Sijtsema, and M. Johansson, “Interactive navigation

interface for virtual reality using the human body,” Comput. Environ.
Urban Syst., vol. 43, pp. 42–50, 2014.

[4] D.A. Norman, “Natural user interfaces are not natural,” Interactions, vol.
17, no. 3, pp. 6-10, June 2010.

[5] L- Gamberini, A. Spagnolli, L. Prontu, S. Furlan, F. Martino, B.R.
Solaz, M. Alcañiz, and J.A. Lozano, “How natural is a natural interface?
An evaluation procedure based on action breakdowns,” Personal and
Ubiquitous Computing, vol. 17, no. 1, pp. 69-79, January 2013.

[6] L. Morgado, “Cultural awareness and personal customization of gestural
commands using a shamanic interface,” Procedia Computer Science, no.
27, pp. 449-459, 2014.

[7] E. Ernst, “Separation of concerns,” in Proceedings of the AOSD 2003
Workshop on Software-Engineering Properties of Languages for Aspect
Technologies (SPLAT), Boston, MA, USA, March 2003.

[8] M. Hesenius, and V. Gruhn, “MVIC – An MVC Extension for
Interactive, Multimodal Applications,” in Software Architecture - 7th
European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013.
Proceedings, K. Drira, Ed. Berlin: Springer, 2013, pp 324-327.

[9] E. Curry, and P. Grace, “Flexible Self-Management Using the
ModelView-Controller Pattern,” IEEE Software, vol. 25, no. 3, pp. 84-
90, May-June 2008.

[10] F. Carvalho, L. Morgado, and A. Coelho, “Shamanic interfaces for
computers and gaming platforms,” in INForum 2014 - Atas do 6º
Simpósio de Informática, S. P. Abreu and J. P. Faria, Eds. Porto,
Portugal: FEUP Edições, 2014, pp. 158-172.

[11] A. Angelopoulou, J. García-Rodríguez, A. Psarrou, M. Mentzelopoulos,
B. Reddy, S. Orts-Escolano, J. A. Serra, and A. Lewis, “Natural User
Interfaces in Volume Visualisation Using Microsoft Kinect,” in New
Trends in Image Analysis and Processing – ICIAP 2013, A. Petrosino,
L. Maddalena, and P. Pála, Eds. Berlin, Germany: Springer, 2013, pp.
11-19.

[12] J. Bernardes, R. Nakamura, and R. Tori, “Design and implementation of
a flexible hand gesture command interface for games based on computer
vision,” in Games and Digital Entertainment (SBGAMES), 2009 VIII
Brazilian Symposium on, 2009, pp. 64–73.

[13] S. Spanogianopoulos, K. Sirlantzis, M. Mentzelopoulos, amd A.
Protopsaltis, “Human computer interaction using gestures for mobile
devices and serious games: A review,” in 2014 International Conference
on Interactive Mobile Communication Technologies and Learning
(IMCL). Red Hook, NY, USA: IEEE, 2014, pp. 310-314.

[14] D. A. Bowman, E. Kruijff, J. J. LaViola Jr, and I. Poupyrev, 3D user
interfaces: theory and practice. Addison-Wesley, 2004.

[15] L. Morgado, R. Rodrigues, A. Coelho, O. Magano, T. Calçada, P.T.
Cunha, C. Echave, O. Kordas, S. Sama, J. Oliver, J. Ang, F. Deravi, R.
Bento and L. Ramos, “Cities in citizens’ hands,” in Proceedings of the
6th International Conference on Software Development and
Technologies for Enhancing Accessibility and Fighting Infoexclusion
(DSAI 2015), in press.

[16] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework
for gesture recognition and spatiotemporal gesture segmentation,”
Pattern Anal. Mach. Intell. IEEE Trans., vol. 31, no. 9, pp. 1685–1699,
2009.

[17] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth
images: A review,” in RO-MAN, 2012 IEEE, 2012, pp. 411–417.

[18] E. Silva, N. Silva, and L. Morgado, “Model-Driven Generation of Multi-
user and Multi-domain Choreographies for Staging in Multiple Virtual
World Platforms,” in Model and Data Engineering, 4th International
Conference, MEDI 2014 Proceedings, Y.A. Ameur, L. Bellatreche, and
G.A. Papadopoulos, Eds. Cham, Switzerland: Springer International
Publishing, 2014, pp. 77 - 91.

[19] F. Cassola, H. Paredes, B. Fonseca, P. Martins, S. Ala, F. Cardoso, F.
Carvalho, and L. Morgado, “Online-Gym: Multiuser Virtual
Gymnasium Using RINIONS and Multiple Kinect Devices,” in 2014 6th
International Conference on Games and Virtual Worlds for Serious
Applications (VS-GAMES), V. Camilleri, A. Dingli, and M.
Montebello, Eds. Danvers, MA, USA: IEEE, 2014, pp. 25-28.

1553

