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Abstract—Autonomous underwater vehicles (AUVs) are in-
creasingly being used to perform search operations but its
capabilities are limited by the efficiency of the planning process.
The objective of the paper is to propose new survey planning
methods for AUVs. In particular, the problem of multi-objective
search mission planning with an AUV navigating in known or
unknown 3D environments is studied. The vehicle should com-
pletely cover the operating area while maximizing the probability
of detecting the targets and minimizing the required energy
and time to complete the mission. The approach presented here
differs from other CPP methods in that paths for coverage are
generated based on a coverage map that is actively maintained
as the vehicle executed its mission. Our replanning approach
borrows ideas from case-based reasoning (CBR) in which old
problem and solution information helps solve a new problem.
The resulting combination takes advantage of both paradigms
where our evolutionary approach in conjunction with an artificial
neural network (ANN), presented earlier, delivers robustness and
adaptive learning while the case-based component speeds up
the replanning process. The experiments show that the online
algorithm was able to successfully replan missions in varied
scenarios and guarantee full area coverage while minimizing
resource consumption.

I. INTRODUCTION

Fully autonomous AUV surveys still have important limita-
tions. Such operations require the AUVs to be submerged for
extended periods of time and that they possess high degree of
autonomy. This autonomy implies that the robot is capable of
reacting to static obstacles and unpredictable dynamic events
that may block the successful execution of a task. To achieve
this goal, solutions need to be developed in path planning,
map building and navigation.

The path planning process that involves passing a robot’s
sensor over all points in a target area is known as coverage path
planning (CPP), and there is substantial research addressing
this problem in the literature. It is essential to ensure the
completeness of coverage, meaning that no accessible area
should be left uncovered at the end of the coverage mission.
The restrictions on the path planning module are usually
severe since it is operating within a larger system with limited
onboard resources. For example, the path planning algorithm
must be able to plan one or more safe paths with minimum
energy expenditure that fulfills the objective in a timely
manner based on acquired sensor data without hogging system
resources such as CPU cycles or memory.

It is assumed that an environment where an AUV navigates
in 3D space is partially known. Although mapping data of

the seafloor is given in advance, it is likely incomplete or
inaccurate as there may exist unknown obstacles in the area,
for example. Therefore, knowledge about the environment
must be incrementally acquired by using sensors onboard the
AUV.

Many real world problems in robotics are dynamic and
require dynamic algorithms capable of adapting over time.
Algorithms may need to react not only to changes in the
physical environment, but also to dynamic vehicle and mission
constraints. An optimal solution for one instance might not
be optimal in the next instance. Therefore, there is a need
for robots with the ability to learn, memorize, and deal with
different environments.

II. CONTRIBUTIONS
The key contributions of this work include:

« A mission replanning technique that uses past experience
to decrease replanning time while maximizing detection
performance and minimizing resource consumption. Past
experience is maintained in the form of previous solutions
generated by the EA and its ANN [1]. The algorithm is
capable of handling unknown environments by first exe-
cuting a conservative exploratory mission and then pro-
cess all the acquired information and replan accordingly.
It includes map building and clustering techniques and the
replanning strategy is chosen by evaluating performance
of each of these phases.

o Experiments which demonstrate that the proposed meth-
ods are successful and effective in planning search mis-
sions.

III. PROBLEM STATEMENT

The principal problem under study in this paper is how
to design and implement a more flexible 3D path planning
algorithm that enables an AUV to efficiently cover the bot-
tom of a submerged area with no missed areas and with a
specified minimum POD. The planner should identify a set
of parallel tracks, representing sonar swaths, that maximize
the estimated performance of a search operation, using the
available knowledge and resources. Searching for a path
requires the consideration of the environment characteristics
(terrain topography), available resources (characteristics of
the onboard sensors, available battery power), maximum time
available for the mission and vehicle kinematic constraints.



A discrete search modeling paradigm is considered, where
the objects of search are stationary and the region to be
searched W is partitioned into a collection of N small cells
c; that are mutually exclusive and exhaustive over the region.
Our concern is whether the cells are occupied by objects of
interest. The mission is generally considered complete when
a proportion of cells have been covered to a specified level
Cthresh-

IV. RELATED WORK

Coverage strategies can be classified according to several
criteria. One important distinctive characteristic is whether a
certain technique needs access to a map of the environment
prior to performing coverage, or if it is capable of achieving
coverage of an unknown environment. This characterization is
often differentiated as offline coverage versus online coverage
[2]. A comprehensive survey of the existing coverage path
planning methods may be found in Galceran et al. [3]. Seto
[4] performed a review of the state-of-art of autonomy for
underwater vehicles.

A lawn-mowing search pattern [5] with several parallel
tracks is standard if no prior information on potential target
locations is available. As the area boundary becomes more
complex, decomposition methods [6] are used to divide the
area into simple subareas.

Hert et al. [7] presented an 3D online CPP algorithm for
an AUV moving in an unknown underwater environment.
3D coverage is achieved by applying a 2D terrain-covering
algorithm in successive horizontal planes laying at different
depths. However, this algorithm disregards the correlation
between successive horizontal planes. Since it does not focus
on the efficiency of the coverage result in the new plane, it
cannot guarantee the efficiency of the three dimensional terrain
covering process.

Oksanen and Visala [8] developed two (greedy) approaches
for solving the 2D CPP in the case of agricultural applications
with non omnidirectional vehicles. Their online algorithm,
although incremental, plans paths on the basis of the machine’s
current state and the search is on the next swath instead of the
next subfield (the result from area decomposition procedure to
identify simpler areas to operate). There are advantages and
disadvantages with the algorithm and it does not solve the
coverage path planning problem optimally.

Lee et al. [9] presented an online complete CPP and control
algorithm for a mobile robot. It focuses on smoothing the
coverage path for more energy efficient coverage. However,
using a high resolution map requires high processing power
which may be a problem for low power embedded computers.

Xu et al. [10] extended an optimal coverage algorithm [11]
for the general class of non-holonomic robots, particularly
UAVs. The general strategy involves computing a trajectory
through a known environment with obstacles that ensures com-
plete coverage of the terrain while minimizing path repetition.
The online motion planner can adjust the coverage footprint
width to compensate for the deviations in trajectory.

Paull et al. [12] present an approach to 2D seabed coverage
for minehunting missions using a sidescan sonar. Paths are
planned using multi-objective optimization involving informa-
tion theory and branch entropy based on a hexagonal cell
decomposition. One disadvantage of the method is the need
to tune the weights in the objective function and the lack of
guidance on how to do so.

Candeloro et al. [13] proposed an extension to Paull’s
[14] planner, aiming to plan coverage missions for finding
objects of interest using an underwater vehicle equipped with a
camera. It is assumed the vehicle navigates in an unstructured
and often poorly known environment but the sea bottom is
considered to be flat.

Since many information is available a priori, an optimal path
should be precomputed offline. The path should be modified
only if the newly acquired information while the mission
is being executed is found to be significantly different. The
amount of data that needs to be processed for online planning
can make the search task infeasible if relying on the limited
onboard processing power. Thus, there should be a realistic
balance between the reduction of the path search space and
search performance.

A. Detection performance

In order to assess the effectiveness of a search operation
we need to be able to estimate the detection performance that
should be achieved in a specific mission.

1) Lateral range: The concept of lateral range curve (LRC)
was introduced by Koopman [15]. Imagine a searcher follow-
ing an infinitely long, straight path, searching on either side
of that path. Lateral range refers to the perpendicular distance
an object is to the searcher’s path. That searcher’s LRC p(z)
is the probability of detecting a stationary object that is at its
closest exactly a distance x from the searcher’s path.

2) Probability of detection: POD is an estimate of how
likely it will be for a search performed in a given area to find
an object, assuming it is there. It is a conditional probability
since we are assuming that the object is in the area searched.
It has become the de facto measurement used in search and
rescue theory. It depends on three things:

o The “detectability index” (effective sweep width) for the
combination of search object, search environment, and
sensor present in the search task;

o The amount of effort spent in searching the area;

o The size of the area searched.

It is known that an overlap in area coverage can improve

the detection performance.

V. ONLINE MISSION PLANNING

In this section, the application of the previously presented
EA [1] to a partially known environment, while the AUV
is executing a mission, is discussed. From the online path
planning perspective, environmental changes occur due to
either update of mapping data by newly acquired information
or due to the (erroneous) movement of the AUV. The envi-
ronmental changes may lead to changing the current path in



order to avoid collision or improve the path with respect to an
optimization criterion in a new environment.

An idea that is particularly interesting to us is that problems
seldom exist in isolation. A truly efficient system must expect
to tackle related problems over its lifetime and it would be
an advantage if such a system could improve its performance
with experience. For this reason, a system that uses a case-
base as a long term knowledge store in a new planning
algorithm is proposed. Our approach borrows ideas from case-
based reasoning (CBR) in which old problem and solution
information, stored as cases in a case-base, helps solve a
new problem. The case-base does what it is best at: memory
organization. The replanner, which coordinates the execution
of local optimization or evolutionary search (needed in the
worst case where no feasible solutions are retrieved), handles
what it is best at: adaptation. The resulting combination
takes advantage of both paradigms where our evolutionary
approach in conjunction with ANNs [1], presented earlier,
delivers robustness and adaptive learning while the case-
based component speeds up the replanning process. In the
approach described here, the problem is to adapt the current
mission in order to achieve a given level of performance. The
casebase stores the best individuals, the Pareto set, found using
the offline evolutionary planner. Hence, each case describes
mission parameters such as track spacing, track direction,
depth or altitude of the path relative to the seafloor and the
vehicle velocity and corresponding expected mission perfor-
mance according to pre-existent assumptions (prior map, ocean
currents, energy available, etc). This CBR mission replanner
is characterized not only by retrieval and repair of past routes
but also by synthesis of new mission parameters whenever
acceptable routes could not be retrieved. Thus the planner is
capable of handling situations where an appropriate matching
past cases are not found in the casebase. Figure 1 represents
a flowchart of the online mission planning process.

A. Map building

The information regarding the terrain topography needed
for terrain representation is provided by a file, containing the
DEM, consisting of terrain elevation for positions at regularly
spaced horizontal intervals. Figure 2(b) shows an example
3D occupancy grid map constructed from SSS/altimeter range
measurements obtained during experimental trials.

To address potential errors and inaccuracies in the map used
for mission planning, close-proximity range measurements
provided by the vehicle’s sensors during mission execution
need to be used.

Miller and Campbell [16] propose a mixture-model based
technique, where the elevation of each grid cell is modeled
as a mixture of Gaussian elevation estimates. This algorithm
provides an estimate of the elevation uncertainty in each grid
cell.

Measurements are associated to multiple locations in the
elevation model using a Gaussian sum conditional density
to account for uncertainty in the measured elevation and in
the location of the measurement. Some important features

are treating sensor measurements with a statistical model
(handling multiple sources of uncertainty) and allowing a
quick update of the terrain map. A graphical visualization of
the procedure is presented in figure 2.

The basic steps of the procedure are:

1) statistically represent each sensor measurement;

2) associate measurements with grid cells to which it is
most likely to correspond;

3) fuse measurements assigned to each grid cell;

4) merge new and old grid maps.

B. Clustering
The next step is identifying areas that need better coverage:

« find cells with coverage below minimum;
« organize these cells in different groups;
« create areas that contain each group.

We implemented an agglomerative clustering algorithm,
considering the need to agglomerate cells and the existence
of a large number of identified areas.

Since clustering is the grouping of similar instances/objects,
some sort of measure that can determine whether two objects
are similar or dissimilar is required. Merging clusters whose
centroids are at the shortest distance is a straightforward rule.

Single-link clustering defines the distance between two
clusters as the minimum distance between their members:

dmin(Cs, Cy) =min || p; — p; || ey
pi€C;,p;jinCj
It’s called "single link" because it says clusters are close if
they have even a single pair of close points, a single "link".
In summary, our strategy consists of 3 phases that can be
visualized in figure 3:

1) first clustering phase: merge clusters using centroid

distance;

2) second clustering phase: merge clusters using single link

similarity;

3) define areas to cover.

1) First clustering phase: Here, each cluster is represented
by its centroid. The distance between clusters becomes the
distance between its centroids. The algorithm searches for
clusters close to each other and merges them, updating the
corresponding centroids afterwards. Finding the best value for
minimal cluster similarity, which is inversely proportional to
the centroid distance, is problematic because if this value is
too small then clusters will be big (the distances from points
inside each cluster to its centroid are higher) and there will
be a smaller amount of clusters. If this value is too high then
many small clusters will be created (smaller distances between
points and its centroid). This process is described by algorithm
1.

2) Second clustering phase: When adjacent clusters start
getting too big they become harder to merge because the
distance between its centroids is too big. This problem can
be solved by adding a second clustering phase that merges
clusters by measuring the minimal distance between them.
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Fig. 1. Mission flowchart.

(a) Original DEM. (b) Local DEM built from data acquired by (c) Resulting DEM after combining a local
a vehicle during a mission. map from a vehicle. The smoothness of
the elevation measurements here is closely
related to the variance of the elevation mea-
surements on the original map.

Fig. 2. Graphical demonstration of the map building algorithm.

(a) Phase 1. (b) Phase 2. (c) Phase 3.

Fig. 3. Graphical demonstration of the clustering algorithm.



Algorithm 1: First Phase Clustering Algorithm.

Algorithm 2: Second Phase Clustering Algorithm.

function FirstClusteringPhase (grid, settingsminsimitarity);
input : grid(:,5),i =1,...,n&j =
1, ceey M Settingsminsimilarity
output: clusters = {clusterso, ..., clustersy}
while size(clusters) > 1 do
/% Find most similar clusters x/
for i < 1 to length(similaritymatrix) do
for j < i+1 to length(similaritymatrix;) do
sim = similaritymatriz;;;

c1=1;
c2 =]
end
end
/+ If clusters are not close enough then
terminate and return clusters */
if sim < Settingsminsimilarity then
| return clusters;
end
/* merge most similar clusters x/

clusters.add(Merge(clusters., ,clustersc,));

clusters.remove(cy);

clusters.remove(cs);

/* update centroids x/

centroids.remove(cy);

centroids.remove(cs);

centroids.add(GetCentroid(clusters.last));

//* update similarity */

stmilaritymatriz.removecolumn(cy );

similaritymatriz.removecolumn(cs);

stmilaritymatriz.removerow(cy);

stmilaritymatriz.removerow(cs);

for i < 1 to length(similaritymatrix) do
similaritymatriz;.add(
ClusterSimilarityCentroidDistance(centroids;,

centroids.last));
end

end
return clusters;

Since the goal is to solve a coverage problem, the shape and
size of the areas that will be created by the identified clusters
needs to be analysed. The area is defined by the convex hull
containing the identified cluster. Hence an area may contain
cells that don’t need better coverage, and that decreases
the efficiency of the process. The settingshuiimazratio Was
introduced to establish a lower bound on efficiency of the
coverage task. The ratio between the area of the hull around a
new cluster and the area of the cells that need better coverage
is compared to this parameter and the new cluster is only
accepted if the ratio is inferior. This process is described by
algorithm 2.

3) Area boundary definition: Finally, once the clusters are
determined, the areas that will be used in the replanning
process can be defined. The areas are convex hulls that contain
each cluster. If the area is too small and if using a SSS (with
nadir gap) it may not be possible to cover all the cells inside
each area. For this reason the polygon that defines each area is
enlarged by the average nadir width for that section, allowing
coverage from outside the original area.

function SecondClusteringPhase (grid, settingsminsimitarity);

input : clusters = {clusterso, ..., clustersy,};
Settingsminsimilarity; Settingshullmazratio

output: clusters = {clusterso, ..., clustersq}

/* clusters and centroids are initialized

to phase 1 output */
while size(clusters) >1 do
/* Find most similar clusters */

for i < 1 to length(similaritymatriz) do
for j < i+1 to length(similaritymatriz;) do
sim = similaritymatrici;;

ca =i
c2 = J;
end
end
/+ If clusters are not close enough then
terminate and return clusters */

if sim < settingsminsimitarity then
| return clusters;

end

/+ Test cluster candidate */

clustercandidate = Merge(clusters., ,clustersc,);

hull = ConvexHull(clustercandidate);

/* area occupied by the cluster */

clusteroccupiedarea = size(clustercandidate)*cellsize;

hulloccupiedarea = CalculatePolygonArea(hull);

oversizeratio = hulloccupiedarea/clusteroccupiedarea;

if oversizeratio < settingsnuiimazratio then

/* accept new cluster */

clusters.add(clustercandidate);,

clusters.remove(ci);

clusters.remove(cs);

/+ update similarity */

stmilaritymatriz.removecolumn(cy );

similaritymatriz.removecolumn(cs);

stmilaritymatriz.removerow(cy );

stmilaritymatriz.removerow(cs);

for i < 1 to length(similaritymatrix) do

similaritymatriz;.add(
ClusterSimilaritySingleLink(clusters;,

clusters.last));

end

end
end
return clusters;

4) Clustering evaluation: The quality of the created clus-
ters is evaluated using the silhouette coefficient, which is a
cluster validity measure.

Clcoh - Clsep

—_— 1<z <1 2
max(cleoh, Clsep)’ = Clsil = 2

Cl sil(j) =

The silhouette coefficient cly; combines two measures
named cluster cohesion cl.,, and cluster separation clgcp,
both for individual points as well as clusters and clusterings.
Cluster cohesion measures how closely related are objects in
a cluster. It is determined by calculating the average distance
between points inside a cluster. Cluster separation measures
how distinct or well separated a cluster is from other clusters.
It is determined by calculating the average distance between



points inside different clusters. If a set of points can be clearly
grouped into clusters, then it can be expected that the distance
between clusters will be large compared to the radius of the
clusters. This is a measure of how tightly grouped all the points
are. Negative values indicate that the cluster radius is greater
then the distance between clusters, so that clusters overlap,
suggesting poor clustering performance. Large values suggest
good clustering.

C. CBR replanning
Consider the following definitions:

A={ay,az,...,a,} 3)

St = {51,589, ., 8n, }i=1,..,n )
A" ={d\,dby,...;al,}, A" € A 3)
S = {5, sh, v Sp hid =1 m (6)

where S* denotes the set of solutions found in the search
area a; by the evolutionary offline planner. The new areas
A’, determined previously by the clustering algorithm, are a
subset of the original areas A used for offline planning. In
the worst case scenario where the true mission performance
is below the requirements in all of the coverage area, A’ may
become equal to A. The online coverage problem is then the
search problem of finding solutions S” to the new areas A’,
optimizing the objective function’s value considering previous
search performance.

When confronted with a new problem, the CBR module
will determine the level of similarity between this problem
and the one solved in offline planning. In order to assess this
similarity, a similarity metric is needed. The main challenge
here is dealing with partially unknown environments since
the offline planning algorithm optimizes the solutions to the
available image of the environment at planning time, which
my be inexact. For this reason a statistical measure of error
E,qp was adopted, which describes the difference between
original and updated environment maps, as our measure of
similarity.

The system architecture is presented in Fig. 4. Given a
new task to cover the identified areas, it can choose between
planning using a path from the casebase, locally optimizing
a path from the casebase or even search for a new one.
Case-based path planning and evolutionary path planning are
complimentary methods to achieve better mission performance
in dynamic environments or in scenarios where only imperfect
information is available. The evolutionary path planner seeds
the casebase with innovative, dominant and diverse solutions.
The case-based path planner remembers the characteristics of
the solutions determined in the past and uses them to solve
new problems similar to the original. It is up to the online
planner to decide whether to use an old well-tried solution
from a casebase or to look for a completely new alternative
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Fig. 4. Mission replanning flowchart.

solution to the problem. Once the solution is found, it will be
sent for execution by the planner.

Next, a description of the replanning system is provided
considering the CBR framework.

1) Case Retrieval: The performance of the cases in the
casebase needs to be reevaluated according to the new infor-
mation:

« using the estimated trajectory that was followed by the
vehicle and the updated map image, estimate the detection
performance;

o estimate or measure the energy spent by the vehicle;

« select the dominant cases for further consideration.

2) Case Adaptation: Unless no area was previously cov-
ered, then there is always some sort of adaptation performed
to the old paths:

« for each area a, identify the original area a; that contains
it;

o using the path parameters from selected cases in the
casebase for original area a;, generate solutions for each



new area aj; each area a; now has a set of candidate
paths;
« perform local optimization of every path of every area
as;
« update detection performance, energy consumption and
mission time duration estimates;

3) Case synthesis: New paths need to be synthesized when
no useful or adaptable paths are found in the casebase. This
may happen if the updated map is substantially different then
the original used to build the casebase. Essentially, it is a new
problem. When more extensive search is needed, the offline
planner is used. At every generation during the execution of
the EA for online path planning, the EA refers to the current
world model held by the vehicle in order to evaluate the fitness
of each individual solution in a population.

In the same belief that similar problems could have similar
solutions [17], it is worthwhile to reuse previous ANN struc-
ture to deal with similarly structured environments, instead of
performing an exhaustive search for the best topology.

4) Casebase Management: Remembering past experiences
is a essential requirement to implement the learning system.
However, when problems scale up, forgetting becomes as
important as remembering. To keep the size of the casebase
constrained and to have a better overview of the learning
process, a new case is stored only if there is no similar case
in a sense. The old experiences can be replaced with better
ones in terms of fitness, resulting in the casebase containing
only a few examples from each cluster of similar solutions.
Storing only distinct cases slows down memory consumption
but does not guarantee that the casebase will stay constrained.

To handle this problem the density of individuals in deci-
sion space is controlled. The complete Pareto set (dominant
solutions) is kept in the casebase (the good and bad solutions,
depending on which objective is being considered). Remem-
bering cases with different performance on each objective can
play a positive role in the decision making process. A worse
local solution may need to be chosen if the global planner
cannot find a better feasible solution.

5) Global Planner: After obtaining multiple solution can-
didates for each area ag, the search for a global solution needs
to be performed, determining the order in which each area is
visited, using a global planner. The algorithm for online global
planning is the same iterative algorithm which was developed
for offline global planning [1].

6) Execution Time Constraints: Guarantee that algorithm is
executed when the vehicle interrupts the mission to perform
a surface manoeuvre in order to reduce navigation error or
communicate with the base station. Faster replanning time
may be achieved by reducing the amount of solutions in the
casebase but that may have an impact on the quality of the
online solution.

VI. EXPERIMENTS

The Leixdes harbor was chosen to demonstrate the ca-
pabilities of our planning methodology since it is a typical
application scenario and it is our preferred testing location

Fig. 5. Google Earth satellite view of the Leixdes harbor in Portugal. The
operation area is represented by a polygon in white. The blue dots are the
measurements from the geospatial database.

as it is close to our research institute. Leixdes is one of
Portugal’s major seaports, located 4 km north from where the
Douro River and the Atlantic Ocean converge, in Matosinhos
municipality, near the city of Porto. Geospatial data describing
the seafloor topography was obtained from a freely acces-
sible database from the Portuguese Hydrographic Institute
(www.hidrografico.pt). The DEM contains a grid with 100
meters resolution constructed with depths from the latest
hydrographic surveys made on the area. Figure 5 shoes an
aerial view from the harbor. The operation area is represented
in white and its dimensions are approximately 100 by 80
meters or 8000 squared meters.

Three test cases demonstrate the applicability of the pro-
posed planning methodology to typical coverage problems. In
particular, the goal is to assess the influence that the navigation
system’s performance and the knowledge of the environment
have on the search mission and, as a consequence, on the
replanning stage. The tests take place on the Leixdes harbor,
presented earlier, and involve the following test cases:

o test case A: low map error + bad navigation performance;

o test case B: low map error + average navigation perfor-
mance;

« test case C: high map error + good navigation perfor-
mance.

Overall, these three distinct situations highlight the suitabil-
ity and versatility of the presented planning methodology with
respect to different mission outcomes. The complexity of the
presented scenarios reveals the wide range of use-cases where
the planner can be employed. The planner will use simplified
versions of the DEM to perform offline planning and later
on, using the data acquired during mission execution, it will
estimate its own updated image of the topographic grid. The
depth and slope of the planar grid used by the planner will
depend on the the degree of approximation of the grid used
in each test case. AUV position was estimated using our INS
which fused heading from the compass, absolute position from
the GPS, depth estimated from pressure readings and velocity
over ground measurements from the DVL. The performance



(a) Real terrain. (b) Sloped terrain used for offline

planning.

Fig. 6. Terrains used for representing the topography in the Leixdes harbor.

for each test case is established by controlling the amount
and quality of data sent to the navigation system. Bad nav-
igation performance is achieved by sending acceleration and
angular velocity measurements with high noise and a drifting
bias to the INS, without a velocity fix. Average navigation
performance is achieved by sending acceleration and angular
velocity measurements with high noise and a drifting bias to
the INS, with a velocity fix every 40 seconds. Good navigation
performance is achieved by sending acceleration and angular
velocity measurements with low noise (but without drifting
bias) to the INS, with a velocity fix every 20 seconds. In
all test cases, the INS is able to use GPS measurements
to reduce uncertainty although such data was not actively
requested. Since the vehicle is navigating in shallow water
and the missions are relatively short, it receives GPS data at
the start of the mission, at the end and occasionally during
the mission if it is unable to precisely control the depth of
the vehicle. Contributing to this instability is the obstacle
avoidance system. This system actively controlled the altitude
of the vehicle using the "flyover" behaviour exclusively, as it
is unusual to find obstacles underwater or rough terrain in such
a scenario.

1) Offline planning: The offline planner executed the evo-
lutionary planner, with terrain represented in figure 6(b), for
109 seconds terminating on the fifteenth iteration. As displayed
in figure 7(a), a total of 12 solutions were identified by the
planner and the chosen solution was the orange one at the top.
It was the only solution that guaranteed full area coverage,
although at the cost of higher energy consumption due to
the higher vehicle velocity chosen (1.4 m/s). Figure 7(b)
presents the chosen solution. Since the slope was relatively
small, at around 1.15 degrees, all solutions were defined at
constant depth and this is the main reason why the direction
of the chosen solution is not aligned with the direction of
the slope. It is important to keep all the other non dominant
solutions, even if they have inferior detection performance,
because during the mission, progress might be slower then
expected due to environmental conditions or excessive need
to perform surfacing manoeuvres and it might be necessary to
revert to one of the other mission plans. They might not cover
all situations but form a good starting point when there is a
need to replan during the mission.

2) Test case A: The planned and real paths followed by the
vehicle during test A can be observed in figure 8. As expected,
the INS performance without velocity fix was pretty bad and
the vehicle was unable to follow the planned trajectory. With a
silhouette coefficient of 0.86, the clusters were well defined, as
can be seen in figure 9(a). The map building process identified
a 1.75% difference between the original map and the map
built with acquired data during the mission. This lead the
online replanner to choose as strategy to optimize previous
solutions to the new operating areas, displayed in figure 9(a)
in black. Replanning took 39 seconds and produced a solution
that promised full area coverage with 99.8% probability of
detection. The updated terrain and the new solution can be
visualized in figure 9(b). That divergence at the end (top left of
the figure 8) was caused by an unrequested surface manoeuvre
where the INS was able to acquire a GPS fix and as a result
corrected the trajectory according to the current state of the
mission.

3) Test case B: The planned and real paths followed by the
vehicle during test B can be observed in figure 10. The INS
performance with a velocity fix, even if sparse with one fix
every 40 seconds, was better then expected and the vehicle
was able to perfectly follow the planned trajectory. With a
silhouette coefficient of 0.80, the clusters were scattered over
the operation area, as can be seen in figure 11(a). The map
building process identified a 6.34% difference between the
original map and the map built with acquired data during the
mission. The higher confidence on the geolocalization of the
samples led to this increase on the amount of update done
to the map, when comparing with test case A. This lead the
online replanner to choose as strategy to optimize previously
found solutions to the original operating area, displayed in
figure 11(a) in blue. Replanning took 28 seconds and produced
a solution with 99.4% probability of detection of any object
in the area. The updated terrain and the new solution can be
visualized in figure 11(b).

4) Test case C: The planned and real paths followed by
the vehicle during test C can be observed in figure 12. For
our surprise, the performance of the INS, even with higher
fix rate, was equal to the one achieved on test case B. This
confirms the capability of the lawnmower pattern of cancelling
error growth in the presence of noise and bias drift on IMU
data, as was the case on the previous test. The inability of
the vehicle to follow the exact trajectory after turning is due
to the performance of the controllers during acceleration. It
can clearly be seen that once velocity stabilizes, the trajectory
deviation is reduced. Although with a silhouette coefficient
of 1.00, the identified cluster actually covered all of the the
operation area, as can be seen in figure 13(a). The map
building process identified a 43.88% difference between the
original map and the map built with acquired data during the
mission. This lead the online replanner to choose as strategy
to optimize previously found solutions to the new operating
area, displayed in figure 13(a) in black, which coincidentally
equal to the original area. Unfortunately, the chosen strategy
was unable to generate a good solution to the problem and
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Fig. 7. Solutions generated by the evolutionary planner.
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Fig. 9. Output of the online planner for test case A.
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Fig. 11. Output of the online planner for test case B.
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Fig. 13. Output of the online planner for test case C.

it was required to use the evolutionary planner. It needed 79
seconds to come up with a solution that guaranteed full area
coverage with maximum detection performance. The updated
terrain and the new solution can be visualized in figure 13(b).

VII. CONCLUSIONS

This paper extended our multi-objective multi-stage ap-
proach for search operations mission planning, combining
a EA with simulated annealing and a ANN, in static 3D
environment with partially unknown terrain. A novel mission
replanning algorithm was presented which reused solutions
from the evolutionary planner, considered as past experience,
to speed up the replanning process. Several factors that influ-
enced the choice of the best replanning strategy were studied
and a global replanning algorithm that accounts for different
scenarios was designed. The experiments showed that the
online algorithm was very robust and able to successfully
replan missions in varied scenarios, guaranteeing full area
coverage while minimizing resource consumption. The major
disadvantage of both offline and online algorithms is the
amount of parameters that need to be configured. Although
proper procedures were developed to test their impact in
algorithm performance, one might still need to tweak them
between operating scenarios.
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