2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

Creation of Partial FPGA Configurations
at Run-Time

Miguel L. Silva
DEEC, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: mlms@fe.up.pt

Abstract—This paper describes and evaluates a method to
generate partial FPGA configurations at run-time. The pro-
posed technique is aimed at adaptive embedded systems that
employ run-time reconfiguration to achieve high flexibility and
performance. The approach is based on the availability of a
library of partial bitstreams for a set of basic components.
New partial configurations for circuits defined by netlists of
basic components are created by merging together a default
bitstream of the target area, the relocated configurations of
the components, and the configurations of the switch matrices
used for building the connections between the components. An
implementation targeting the Virtex-II Pro platform FPGA is
described. It runs on the embedded 300 MHz PowerPC CPU
present in the FPGA. The proof-of-concept implementation was
used to create partial configurations at run-time for 20 circuits
with up to 21 components and 288 connections. The complete
configuration creation process took between 7s and 97s.

I. INTRODUCTION

The growing pervasiveness of computing in all aspects of
human life implies the increased importance of autonomous
embedded systems that are able to modify their behavior in
response to changes in the environment or in the system’s
goals [1]. Dynamically-reconfigurable hardware is a natural
implementation platform for such systems, because it provides
the capability to adapt the hardware infrastructure the changing
demands. Since embedded systems are resource-constrained
(when compared to a regular desktop system), the possibility
of reusing the hardware for supporting different tasks at run-
time is a very attractive proposition.

Run-time reconfiguration (RTR) of FPGAs is mostly done
using partial bitstreams created at design time. A more flexible
scheme using run-time creation of bitstreams is justified if
creation at design time is impractical or impossible: there
may be too many possibilities (e.g., shape-adaptive video
processing [2]), or the required information may be only
available at run-time (e.g., self-adaptive systems [3]).

This paper describes work on the generation of partial bit-
streams at run-time. It assumes the presence in the system of a
CPU (in order to run the procedure for creating the new partial
bitstreams), and the capability of loading the partial bitstream
to a specific FPGA area (without disturbing the operation of
other parts of the system). In the prototype described in this
paper, we use a Xilinx Virtex-II Pro platform FPGA equipped

978-0-7695-4171-6/10 $26.00 © 2010 IEEE
DOI 10.1109/DSD.2010.14

80

Jodo Canas Ferreira
INESC Porto, Faculdade de Engenharia
Universidade do Porto
Porto, Portugal
Email: jef@fe.up.pt

with a PowerPC processor core. The bitstreams created at
run-time are used to modify part of the same FPGA (self-
reconfiguration).

The proposed approach starts with a directed acyclic graph
(DAG) that describes the connections among medium-sized
components (like adders, comparators, and multipliers). The
problem of defining the circuit at run-time (selection of the
components and definition of their interconnections) is not
addressed in this paper.

For each component, an abstract description and a par-
tial bitstream must be available. The abstract description
specifies the component’s bounding-box, the position of the
I/O terminals at its periphery, and the internal location of
any special resources (e.g., block RAMs). Components can
be automatically placed in the target area by the run-time
support system, so as to satisfy the constraints imposed by the
resource distribution of the reconfigurable fabric. The partial
bitstreams of the placed components are merged together (after
relocation) with the bitstream of the target area in order to
create a single partial bitstream. This is then further modified
to include the interconnections among the components, and
between the components and the target area’s I/O terminals.

The main goal of the implementation is to obtain acceptable
solutions in a reasonable time when executing in embedded
systems with limited computing resources. Therefore, place-
ment uses a greedy strategy based on the topological order of
the components. Connections are established by finding the
shortest path from a source terminal to the target terminal for
successive nets.

The generation of partial configurations is, by necessity,
closely tied to the organization of the underlying reconfig-
urable fabric, and to the methods available for accessing the
configuration memory. Our proof-of-concept implementation
runs on a Virtex-II Pro FPGA [4], a device that supports
active partial reconfiguration, and has an internal access port
for partial device configuration. Other device families from
the same vendor (like Virtex-4 and Virtex-5) have similar
capabilities, and could, therefore, be targeted in a similar way.

We present results for the generation of partial configura-
tions for a set of 20 circuits with different topologies. The
example circuits contain from 3 to 21 components (average: 10
components), and from 32 to 320 connections. For members

IEEE
computer
® psouety

of this set of circuits, the complete process of bitstream
generation takes between 7s and 100s (average 47s) on the
embedded PowerPC 405 microprocessor clocked at 300 MHz.

The rest of the paper is organized as follows. Section II de-
scribes briefly background and related work. A short overview
of the context considered in this work is given in section III.
Section IV describes how the reconfigurable infrastructure is
modeled for the purposes of bitstream creation. Section V
presents the approach to placement and routing implemented
in the demonstrator system. Results for the benchmark cir-
cuits are detailed in section VI, and concluding remarks are
presented in section VII.

II. RELATED WORK

Run-time reconfiguration allows the postponement of some
implementation decisions until execution time in order to
obtain more flexible systems. Since late binding of function-
ality to resources generally comes at a cost in performance,
one goal of RTR is to offset or avoid this performance loss
while preserving flexibility. As is usual in reconfigurable
computing, performance improvements are achieved by using
logic circuits specialized to the specific computations required
at any given time [5]. Flexibility is preserved by the capability
to exchange the specialized circuits as needed.

The use of RTR naturally raises the issue of creating the
required partial configurations. This is typically done at design
time: all necessary partial configurations must be specified and
created before the application is deployed [6], [7].

Partial configurations target a specific FPGA area. If another
area is targeted after creation, the bitstream must be relocated
to address the new target area. This capability makes for
more flexible system deployment, so several approaches to the
relocation of partial bitstreams have been proposed, including
both software tools [8], [9] and hardware solutions [10], [11].
Bitstream relocation is also explicitly included in recent design
flows [12].

In most cases, the synthesis tools must be run for each
partial configuration. This may be a problem, if many config-
urations are required, since it is a time-consuming process. A
solution based on building a partial bitstreams by combining
bitstreams of smaller components is described in [13]. The
creation of the new bitstreams requires assigning positions of
the target area to components, relocating and merging the in-
dividual component bitstreams. In this approach, components
connect by abutment, so they must be equipped with matching
I/O ports. Since this approach does not rely on the synthesis of
logic descriptions, it is a good candidate for implementation
in an embedded system for creation of partial configurations
at run-time.

A channel router for the Wires-on-Demand RTR framework
is described in [14]. It uses a simplified resource database and
simple algorithms to find local routes between blocks using
relatively few computational resources. Results obtained with a
2.8 GHz Pentium 4 computer indicate that, compared to vendor
tools, memory consumption during execution is three orders of
magnitude smaller and execution is four orders of magnitude

81

PLB Dock
[L | Dynamic area
1
i |
|
i I
|
A
4 1 r—
E B
8 }J ‘
fn PPC
g | |
Q
= -
: i
52 I
‘ l ‘ ICAP controller
1]
i 1
i JJ’ »‘ﬁ:—"i’ﬁﬁif***ﬁ’% ’A;
Fig. 1. Floorplan of the hardware platform used for the proof-of-concept

implementation. The reserved area for loading partial configurations is shown
on the top right (the “dynamic area”). The “PLB dock” implements the
interface between the reserved area and the fixed logic. Only the left CPU is
used.

faster, for an average increase in delay of 15% (over a set of
seven small benchmarks). The reported implementation results
were obtained on a desktop; the possibility of running in an
embedded system is mentioned, but no results are presented.

A less versatile version of the bitstream assembly approach
applied to run-time generation of configurations is described
in [15]. In that implementation, inter-module connections are
selected from a table of predetermined routes. Although fast,
the approach has limited flexibility. The present work does
not use of a predetermined set of routes in order to increase
flexibility, and includes support for automatic placement of the
modules.

III. APPLICATION CONTEXT

For this work, we assume that the hardware infrastructure
has the capability of loading the partial bitstream to a specific
FPGA area (without disturbing the operation of other parts of
the system). The system should have at least one reserved area
for use by the loaded components. This dynamic area must be
completely unused in the base system. A partial bitstream for
this unused area will also be required. In our demonstration
system (see fig. 1), a single reserved area is connected to
the processor’s local bus (PLB), in order to enable fast data
transfers between the CPU and the dynamically reconfigured

modules. The block called “PLB dock” implements the inter-
face between the reserved area and the fixed logic.

The partial configurations loaded to a dynamic area are
created at run-time by combining the partial bitstreams of
smaller modules (the“‘components”). These are created from
RTL descriptions by using standard vendor synthesis tools.
Component designs must be restricted to a specific area of
the device by specifying the appropriate constraints. Their
exact position is not relevant, because the component will
be relocated as required for the assembled configuration. We
assume that input and output terminals are located on the
component’s periphery. Each component employs the LUT-
based interface macros described in [16]. A component may
also use dedicated resources like block RAMs and multiplier
blocks.

The bitstream manipulation tool of [13] is used to extract
the partial bitstream and to collect additional information. All
the information about a component is stored in a file: in
addition to the bitstream data, this includes information about
the width and height of the component (in CLBs), and about
the relative positions of input and output terminals. Component
description files are grouped together in component libraries.
Reference [13] contains more information about the design
process, including a discussion of the issues related to the
physical implementation of the terminals.

At run-time, applications can use the code library that we
developed in order to assemble new partial configurations
using components from all available libraries.

IV. RESOURCE MODELING

The basic element used in the creation of configurations
is the rectangular-shaped component with all its terminals
on the left or right sides. Components are considered as
black boxes during creation of the new configurations: no
overlap of components is allowed and no interconnections can
traverse them. The use of (medium-sized) components means
that applications can view the hardware in terms of elements
that are meaningful to the application, instead of being tied
to the low-level organization of the logic resources. Another
important aspect, is that this approach allows us to limit
the amount of information that must be handled at run-time,
and therefore reduces the demands imposed on the limited
computational resources of a typical embedded system.

The application may specify the location of the modules, or
it may use the code library’s placement routine. In any case,
components should be grouped in vertical stripes. The position
of a component inside a stripe and the width of the stripe
depend both on the physical resources used by the components
and on the position of the stripe in the host area. We also
restrict routing to connections between components in adjacent
stripes. This restriction simplifies the process of creating the
interconnections, because these cannot extend beyond a well-
defined free area, a situation that imposes a bound on the
corresponding search effort.

All connections are unidirectional: terminals are either
inputs or outputs. The output terminals of one component

82

connect to one or more terminals of other components on the
next stripe. The terminals to be connected are typically located
in adjacent CLB columns. If there are more columns between
them, these columns must be empty. In order to limit the effort
during routing, only one additional empty column is currently
allowed; this is necessary to account for constraints imposed
by unused block RAMs and multiplier blocks.

The Virtex-II Pro FPGA has a segmented interconnection ar-
chitecture: interconnections are built from segments connected
through a regular array of switch matrices. These are also
connected to the other resources (like CLBs and BRAMs) [17].
From the large number of routing resources available in the
reconfigurable fabric, we use the following subset:

« direct connections (vertical, horizontal and diagonal con-
nections to neighboring CLBs);

« double lines (connections to every first and second CLB
in all four directions);

« vertical hex lines (connections to every third or sixth CLB
above or below).

Long lines (wires that distribute signals across the full
device height or width) are not used since they can interfere
with circuitry outside of the host area. Horizontal hex lines
reach beyond the area allowed for the connections, which has
only up to three columns of switch matrices.

The final model of the switch matrix contains 116 pins,
distributed as follows:

o 16 direct connections to the 8 neighboring CLBs;

e 40 double lines: 10 in each of the four directions up,
down, left and right;

o 20 vertical hex lines: 10 upwards and 10 downwards;

o 8 connections to the outputs of the 4 slices in the
associated CLB;

e 32 connections to the inputs of the 4 slices in the
associated CLB.

The run-time support library models the area used for the
connections as a two-dimensional array of switch matrices, and
employs a data structure based on the model just described to
keep track of switch matrix resource usage.

V. PARTIAL BITSTREAM CREATION

The run-time creation of new partial configuration starts
from a component netlist, which specifies the components to
be used and the (unidirectional) connections between their
terminals. No cycles between the components are allowed,
i.e., the data flow must be represented by a directed acyclic
graph. The creation proceeds in two stages: 1) definition of
component locations; 2) creation of connections (including the
connections to the interface of the host area).

A. Selecting Component Locations

The current strategy for determining the location of a
component groups components in columns (stripes), so that
directly connected components are assigned to adjacent groups
if possible. The arrangement in columns matches the re-
configuration mechanism of Virtex-1I-Pro FPGAs, where the

Stripe ! i Stripe _
A A
| B

(@ - ' (b) '

Fig. 2. Placing components in stripes. (a) Typical placement for components
that only have CLBs; (b) Placement resulting from restrictions imposed by
the use of particular hardware resources (block RAMs in this case).

smallest unit of reconfiguration data applies to an entire
column of resources. Two examples of possible arrangements
of components in a stripe are displayed in figure 2.

The first step in grouping is to determine each component’s
level (counted from the primary inputs). The first level contains
the components whose inputs are connected to the PLB dock;
the second level contains those components that have all
their input terminals connected to first-level components, and
so forth. A component with more than one input source
will be assigned to the level following the highest-numbered
component connected to it. This procedure assigns component
levels in topological order.

The next step is to determine the set of contiguous CLB
columns (a stripe) required for all components of each level.
The final placement of a component will be restricted to the
columns assigned to its level. Levels are processed in order.
The starting column assigned to a given stripe will be the
one closest to the PLB dock without overlapping previous
stripes. The number of columns assigned to a stripe is the
smallest one required to accommodate all components of the
corresponding level (see Figure 2a). This is determined by
the width of the components and by the compatibility of
the component resources with the destination area. In some
cases it is necessary to widen the stripe in order to cover
an area compatible with the resource requirements of a given
component (see fig. 2b).

The detailed assignment of components to locations is done
by processing each level in succession, and placing the com-
ponents from top to bottom in the device. The placement of
components with non-homogeneous resources (like BRAMs)
may require offsetting the component from the default loca-
tion. As a result, the stripe may have unused areas at its left
or right borders (fig. 2b).

The unused areas of the stripe are filled with feed-through
components, in order to ensure that all inputs are available at

83

Output

—'. n Switgh
| 0 a Matrix
CE
PClk r'Y
i [
N
el e
12 @ ‘9
beik
Input 3 .
LUT
D a
CE
pCik
— G
> LUT
S D Q
Y |
I bCik
'\
\\ -
~—o-

Fig. 3. Example of a route interconnecting two components. (Drawing
elements are not to scale.)

the left border of the stripe, and that all outputs are brought
to the border on the right. Feed-through components simply
connect their inputs directly to their outputs. Components of
this type are also used to provide a path through a stripe when
connecting components that do not belong to the same level.
Feed-through components are generated as required, without
recourse to library components.

The assignment of a component to a location fails if the
sum of the heights of all components of the same level,
including feed-through components added while processing
previous levels, is greater than the height of the host area.

This stage produces a partial configuration which is obtained
by merging the partial bitstream of the empty host area with
the relocated bitstreams of the components.

B. Connecting the Components

The second stage of the run-time creation of a new partial
configuration determines which interconnect resources are
assigned to each connection between components. Given the
previously-described strategy for defining the locations of the
components, this can done by finding out how to establish
connections between terminals of components in adjacent
stripes.

Since we are using LUT-based bus macros for implementing
the terminals as described in [16], component terminals corre-
spond to pins of a switch matrix. The pins of a switch matrix
are connected to pins of other switch matrices according to
the resource model of section IV.

One connection between two components is defined by
the sequence of switch matrix pins required to establish the
desired connectivity. For each matrix, this sequence defines the
internal connections that are required, and therefore defines the
configuration settings of the switch matrices involved. Figure 3
illustrates one such connection. The dots represent the internal
pins, while the dashed lines depict the internal connections that
must be established in each switch matrix.

In order to determine all the pins involved in a connection,
a breadth-first search of the routing area is performed. The
routing area is represented by an array of switch matrices. For

adjacent stripes, two columns of switch matrices are necessary:
one belonging to the right border of the left stripe, and the
other belonging to the left border of the right stripe. An extra
column of switch matrices is included when there is an unused
BRAM/multiplier column between the stripes.

The actual area searched starts as the smallest rectangle that
encloses all pins used as terminals of the connection to be
established, and is reduced during the search, thereby limiting
the number of segments to are considered. Restricting the
search area in this way may cause some segments to be left
out of consideration, but reduces the search effort significantly.
Connections are processed in sequence and no retrying of
failed searches is performed.

The shortest path from a source (output terminal) to the
corresponding sinks (one or more input terminals) is found
by a variant of Dijkstra’s shortest path algorithm [18]. The
breadth-first search procedure maintains a list of those pins that
can be reached from the source by using exactly a number of
segments equal to current iteration count. For any pin on this
list, there is a shortest path (measured in number of segments)
to the source. The search is managed so that a pin can enter
this list only once (at the earliest opportunity).

When a sink is reached, a path to the source is determined
by retracing through the sequence of interconnection segments.
The search is resumed until all sinks of the current connection
are reached.

All connections are processed sequentially in this way. Pins
used for a connection cannot be used in subsequent searches.
Therefore, the order in which connections are processed may
influence the final result. (Evaluation of the influence of this
factor is outside the scope of the present paper.)

After all connections are processed, the partial configuration
is updated with the configuration information for the new
routes.

This algorithm does not ensure that a global optimum for
all routes is obtained, since each net is handled individually,
without considering the influence on the routing of the fol-
lowing nets. The impact of these limitations is reduced by
the fact that choices at this stage are considerably restricted
by the previous placement, and by the design decision to
keep any interconnections confined to the area between stripes.
As the next section shows, several classes of circuits can be
successfully routed under these restrictions.

VI. EXPERIMENTAL RESULTS

The algorithms of the previous section were applied to 20
synthetic circuits. The evaluation was done with a XUP Virtex-
I Pro Development System, which has a Xilinx XC2VP30-7
FPGA [4] and 512 MB of external DDR memory (PC-3200).
The external memory contains the program code and data,
including the library of components. Only one of the two
embedded PowerPC 405 processor cores is used (running at
300 MHz). The 64-bit processor local bus connected to the
memory controller uses a 100 MHz bus clock. The program
used to run the benchmarks was written in C and compiled
with the GNU Compiler version 3.4.1 included in EDK 8.2.

84

(a) (b)

(© (d)

Fig. 4. Structure of connection graphs for each circuit class used in the
evaluation of the demonstrator. (a) One or more pipelines; (b) Tree-like graphs
with a single input component and multiple output components; (c) Tree-like
graphs with multiple input components and a single output component; (d)
Random directed acyclic graphs.

The resulting programs has 105 kB of instructions and 1597 kB
of static data.

The set of test circuits comprises four classes, whose general
structure is depicted in fig. 4:

1) Pipeline: The netlists represent one or more pipelines.
Pipeline components have 8-bit or 16-bit ports, each
pipeline has three or four levels, and each example
contains between one and three pipelines operating in
parallel.

Tree SM: The netlists represent trees with one input
component and multiple output components. Compo-
nents have 8-bit, 16-bit or 32-bit ports. Examples have
tree structures with two to four levels, and components
connect to between one and four components on the next
level.

Tree MS: The elements of this class of circuits are
trees with multiple input components and a single output
component. Again, components have 8-bit, 16-bit or 32-
bit ports. The set includes examples with two to four
levels of components. These circuits display a structure
similar to arithmetic expressions (with binary operators).
Random DAG: These are netlists for random directed
acyclic graphs using components with 8-bit, 16-bit and
32-bit ports. The number of components used in the
examples ranges from 5 to 13.

2)

3)

4)

The structure of the first three classes is well matched to
the placement strategy, while the last class is more general.
Table I summarizes the structural characteristics of the circuits:
number of input and output ports, number of components
for each of the three different data sizes (8, 16 and 32
bits), number of levels of the structure, and maximum fan-
out (number of sinks of a net).

TABLE 1
BASIC STRUCTURAL CHARACTERISTICS OF THE CIRCUITS USED FOR EVALUATION

A Number of Number of Levels Number of Modules Nets Maximum
Circuit Inputs Outputs 8-bit 16-bit 32-bit fan-out
Pipeline 1 8 8 3 3 32 1
Pipeline 2 16 16 3 6 64 1
Pipeline 3 24 24 4 12 120 1
Pipeline 4 24 24 4 4 4 120 1
Pipeline 5 32 32 4 4 4 1 160 1
Tree sml 8 16 2 3 40 2
Tree sm2 8 32 3 7 88 2
Tree sm3 16 64 3 4 5 176 2
Tree sm4 32 64 4 12 2 3 288 2
Tree sm5 32 64 4 16 4 288 4
Tree ms1 32 8 2 3 48 1
Tree ms2 32 16 3 3 128 1
Tree ms3 64 32 3 5 1 224 1
Tree ms4 64 32 4 12 2 1 288 1
Tree ms5 64 8 4 12 8 1 320 1
Random DAG 1 16 8 3 5 72 2
Random DAG 2 32 32 3 5 2 112 2
Random DAG 3 32 32 4 7 5 208 2
Random DAG 4 32 32 5 5 6 1 264 2
Random DAG 5 32 32 5 7 4 1 256 4
TABLE II

EXECUTION TIME FOR CONFIGURATION GENERATION ON THE 300 MHZ POWERPC 405 EMBEDDED IN THE VIRTEX-II PRO XC2VP30-7 FPGA

Circuit Time Bounding box ‘Number of Total component Area used for
(s) (Columns x Rows) feed-throughs area (CLBs) feed-throughs (%)
Pipeline 1 6.97 6x3 0 18 0
Pipeline 2 13.67 6x6 0 36 0
Pipeline 3 23.94 8x12 0 96 0
Pipeline 4 26.63 12x9 4 96 4
Pipeline 5 39.11 12x12 4 132 3
Tree sm1l 9.39 6x6 1 24 4
Tree sm2 20.92 8x12 4 66 6
Tree sm3 45.23 9x24 4 132 3
Tree sm4 92.85 11x24 4 180 2
Tree sm5 99.73 12x24 12 192 6
Tree ms1 10.73 5x8 0 30 0
Tree ms2 27.14 9x12 2 90 2
Tree ms3 73.54 9x24 4 144 3
Tree ms4 94.17 12x24 8 216 4
Tree ms5 96.90 12x32 16 256 6
Random DAG 1 16.28 8x6 2 46 4
Random DAG 2 26.21 9x16 6 102 6
Random DAG 3 50.35 12x24 12 156 7
Random DAG 4 86.44 16x32 22 185 11
Random DAG 5 90.21 21x32 30 164 15

85

Table II summarizes the results obtained with the proposed
approach to configuration generation at run-time: total time
required for bitstream generation, the smallest rectangular area
occupied by the resulting circuit, the number of feed-through
CLBs added during routing, the number of CLBs taken up by
all components (including feed-throughs), and the percentage
of area occupied by feed-through components.

The total running time is completely determined by the rout-
ing stage: the most time-consuming placement took 114 ms
(for the “Random DAG 5” circuit). The procedure for creation
of connections is called L+1 times for each circuit, where L is
the number of levels: L —1 times for the connections between
stripes, and two more times for connecting the primary inputs
and outputs to the PLB dock. For Virtex-II Pro FPGAs the
size of the partial bitstream, and therefore the time taken
by partial reconfiguration, is proportional to the number of
columns occupied by the circuit (first number in the third
column). For the platform used, each column takes 0.31 ms to
reconfigure. All circuits fit in the host area of our test system,
which is 22 columns by 32 rows.

The placement of components may involve adding feed-
through components to the circuit in order to connect com-
ponents that are not on successive levels (cf. section V-A).
With the exception of two benchmarks (the two largest random
DAGs), the additional components represent less than 10% of
the total number of CLBs used by all components.

Most benchmarks took less than 90s; the exceptions are
the two of the largest trees (of both types), and the largest
random DAG. The global average running time is 47.5s. The
most time consuming example took 99.73 s (“tree sm5”).

For the hardware setup used in this evaluation, a one-time
reduction in running time can be obtained by using both
CPU cores: since the areas between stripes can be processed
independently, connection generation may be easily performed
concurrently by both processors.

Another possibility to improve global system performance,
applicable when partial configurations are reused during the
same application run, is to maintain a configuration cache.

The running times achieved by the current implementation
make it unsuitable for applications that require very fast
creation of configurations, like just-in-time hardware com-
pilation. However, there are many application scenarios that
may accommodate delays in the range under discussion.
They include applications that must adapt to relatively slow-
changing environments (like exterior lighting conditions or
temperature) or that may operate temporarily with reduced
quality. Another scenario involves adaptive systems that use
learning (for instance, of new filter settings) to improve their
performance: the time required for generating configurations
may be only a part of the time necessary to learn the new
settings and to take the decision to switch configurations.

VII. CONCLUSION

This paper describes and evaluates a method to generate
partial bitstreams at run-time for use with dynamically recon-
figurable FPGAs. The main goal is to obtain useful solutions

86

in a short time. The computational effort is limited by several
design choices: circuit description by directed acyclic graphs
of coarse-grained components, simplified resource models,
direct placement procedure, and use of limited areas for
routing.

The results for a set of circuits show that the time required
for bitstream generation on a 300 MHz PowerPC embedded
processor depends strongly on the complexity of the circuits,
averaging 47.5 s (minimum: 6.97 s, maximum: 99.73 s) for an
average circuit size of 10 components (minimum: 3, max-
imum: 21) and 164 connections (minimum: 32, maximum:
320).

The working implementation described here shows that run-
time generation of configurations is a feasible technique that
can be used in embedded systems to provide hardware for very
specialized tasks.

The evaluation of the suitability of this approach for specific
applications requires that all system aspects be considered.
For the current implementation, the time required restricts
its application to systems that can gracefully handle the
delays involved (for instance, because temporarily degraded
performance is acceptable), or to situations where the need for
new configurations may be predicted (at run-time) with some
advance. It may also be possible to amortize the generation
time by caching configurations for reuse.

The global performance achieved by the implementation,
although encouraging, indicates that further work is necessary
to meet the conflicting goals of shorter running time and more
flexible placement and routing. In addition, the approach will
be expanded to take timing information and constraints into
account.

ACKNOWLEDGMENTS

The present work was partially supported by research con-
tract PTDC/EEA-ELC/69394/2006 from the Foundation for
Science and Technology (FCT), Portugal. Miguel L. Silva was
funded by FCT scholarship SFRH/BD/17029/2004.

REFERENCES
(1

M. French, E. Anderson, and D. Kang, “Autonomous system on a chip
adaptation through partial runtime reconfiguration,” in /6th Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM °08), 2008, pp. 77-86.

J. Gause, P. Cheung, and W. Luk, “Reconfigurable computing for shape-
adaptive video processing,” IEE Proceedings - Computers and Digital
Techniques, vol. 151, no. 5, pp. 313-320, 2004.

K. Paulsson, M. Hiibner, J. Becker, J. Philippe, and C. Gamrat, “On-
line routing of reconfigurable functions for future self-adaptive systems
- investigations within the ZTHER project,” in International Conference
on Field Programmable Logic and Applications (FPL 2007), 2007, pp.
415-422.

Virtex-1I Platform FPGA User Guide, Xilinx, Nov. 2007, version 2.2.
S. Hauck, “The roles of FPGAs in reprogrammable systems,” Proc.
IEEE, vol. 86, no. 4, pp. 615 -638, Apr. 1998.

I. Robertson and J. Irvine, “A design flow for partially reconfigurable
hardware,” ACM Transactions on Embedded Computing Systems, vol. 3,
no. 2, pp. 257-283, 2004.

P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “Invited
paper: Enhanced architectures, design methodologies and CAD tools
for dynamic reconfiguration of Xilinx FPGAs,” in Proc. International
Conference on Field Programmable Logic and Applications (FPL 2006),
2006, pp. 1-6.

(2]

[8]

[91

[10]

[11]

[12]

E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an FPGA with partial run-time reconfiguration,” in
Proc. 39th Design Automation Conference, 2002, pp. 343-348.

Y. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, “Virtex II FPGA
bitstream manipulation: Application to reconfiguration control systems,”
in Proc. International Conference on Field Programmable Logic and
Applications (FPL 2006), 2006, pp. 1-4.

H. Kalte and M. Porrmann, “REPLICA2Pro: Task relocation by bit-
stream manipulation in Virtex-II/Pro FPGAs,” in Proceedings of the 3rd
Conference on Computing Frontiers. ACM, 2006, pp. 403—412.

F. Ferrandi, M. Morandi, M. Novati, M. D. Santambrogio, and D. Sciuto,
“Dynamic reconfiguration: Core relocation via partial bitstreams filtering
with minimal overhead,” in Proc. International Symposium on System-
on-Chip (Soc 2006), 2006, pp. 1-4.

H. Tan and R. F. DeMara, “A multilayer framework supporting au-
tonomous run-time partial reconfiguration,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, no. 5, pp. 504-516,
2008.

87

[13]

[14]

[15]

[16]

[17

[18]

M. L. Silva and J. C. Ferreira, “Generation of hardware modules for
run-time reconfigurable hybrid CPU/FPGA systems,” IET Computers &
Digital Techniques, vol. 1, no. 5, pp. 461-471, 2007.

J. Suris, C. Patterson, and P. Athanas, “An efficient run-time router for
connecting modules in FPGAS,” in Proc. International Conference on
Field Programmable Logic and Applications (FPL 2008), 2008, pp. 125—
130.

M. L. Silva and J. C. Ferreira, “Generation of partial FPGA con-
figurations at run-time,” in Proc. International Conference on Field
Programmable Logic and Applications (FPL 2008), 2008, pp. 367-372.
M. Hiibner, T. Becker, and J. Becker, “Real-time LUT-based network
topologies for dynamic and partial FPGA self-reconfiguration,” in Proc.
17th Symposium on Integrated Circuits and Systems Design (SBCCI
2004), Sept. 2004, pp. 28-32.

Virtex-1I Pro and Virtex-1I Pro X Platform FPGAs: Complete Data Sheet,
Xilinx, Nov. 2007, version 4.7.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. McGraw-Hill, Dec. 2003.

