
Expert Systems With Applications 119 (2019) 415–428 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

An unsupervised metaheuristic search approach for segmentation and 

volume measurement of pulmonary nodules in lung CT scans 

Elham Shakibapour a , ∗, António Cunha 

a , b , Guilherme Aresta 

a , c , Ana Maria Mendonça 

a , c , 
Aurélio Campilho 

a , c 

a INESC TEC – INESC Technology and Science. FEUP Campus, Dr. Roberto Frias 4200 - 465, Porto, Portugal 
b Universidade de Trás-os-Montes e Alto Douro. Quinta de Prados 5001-801, Vila Real, Portugal 
c Faculdade de Engenharia, Universidade do Porto. FEUP Campus, Dr. Roberto Frias 4200 - 465, Porto, Portugal 

a r t i c l e i n f o 

Article history: 

Received 9 June 2018 

Revised 5 November 2018 

Accepted 6 November 2018 

Available online 9 November 2018 

Keywords: 

Pulmonary nodules 

Segmentation 

Volume measurement 

Clustering 

Metaheuristic search 

Evolutionary computation 

a b s t r a c t 

This paper proposes a new methodology to automatically segment and measure the volume of pulmonary 

nodules in lung computed tomography (CT) scans. Estimating the malignancy likelihood of a pulmonary 

nodule based on lesion characteristics motivated the development of an unsupervised pulmonary nodule 

segmentation and volume measurement as a preliminary stage for pulmonary nodule characterization. 

The idea is to optimally cluster a set of feature vectors composed by intensity and shape-related features 

in a given feature data space extracted from a pre-detected nodule. For that purpose, a metaheuristic 

search based on evolutionary computation is used for clustering the corresponding feature vectors. The 

proposed method is simple, unsupervised and is able to segment different types of nodules in terms of 

location and texture without the need for any manual annotation. We validate the proposed segmentation 

and volume measurement on the Lung Image Database Consortium and Image Database Resource Initia- 

tive – LIDC-IDRI dataset. The first dataset is a group of 705 solid and sub-solid (assessed as part-solid and 

non-solid) nodules located in different regions of the lungs, and the second, more challenging, is a group 

of 59 sub-solid nodules. The average Dice scores of 82.35% and 71.05% for the two datasets show the 

good performance of the segmentation proposal. Comparisons with previous state-of-the-art techniques 

also show acceptable and comparable segmentation results. The volumes of the segmented nodules are 

measured via ellipsoid approximation. The correlation and statistical significance between the measured 

volumes of the segmented nodules and the ground-truth are obtained by Pearson correlation coefficient 

value, obtaining an R -value ≥ 92.16% with a significance level of 5%. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

w  

n  

m  

q

 

t  

s  

a  

p  

r  

a

a

t  

p

 

C  

a  

i  

t

 

i  

t  

a  

n  

n  

h

0

. Introduction 

Lung cancer is the deadliest type of cancer in both men and

omen ( Stewart & Wild, 2014 ) and the early detection and diag-

osis of lung masses, lung lesions or pulmonary nodules, is funda-

ental to improve the survival rate of patients and to improve the

uality of the worldwide health. 

Pulmonary nodules are detectable on chest X-ray and computed

omography (CT) scans ( Tsao, 2007 ). CT produces a volume of lung

tructures captured from different angles. Modern scanners allow

 lung volume to be reformatted in 3 major orthogonal anatomical

lanes: axial, sagittal, or coronal planes or even as a volumetric 3D

epresentation. Lung computer-aided diagnosis (CAD) systems aim
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o assist expert radiologists in the analysis and interpretation of

ulmonary nodules during lung screening processes. 

Pulmonary nodule detection is the first important task in a lung

AD system. After nodule detection, follows nodule segmentation

nd characterization, to measure the nodule volume or character-

ze the nodule morphology. These are the major steps to estimate

he nodule malignancy likelihood. 

Pulmonary nodules with diverse shapes and lesion character-

stics (size, lobulation, subtlety, spiculation, etc.) can be charac-

erized in terms of location (isolated, juxta-vascular, pleural-tail

nd juxta-pleural nodules) and texture-wise (solid and sub-solid

odules). Sub-solid nodules are further divided into part-solid and

on-solid - Ground Glass Opacity (GGO) nodules. Fig. 1 illustrates

xamples of some nodules with varied textures and appearances

f the Lung Image Database Consortium and Image Database Re-

ource Initiative – LIDC-IDRI dataset – ( Armato et al., 2011 ). 

Fig. 1 illustrates the large variability of cases that can occur,

hich makes more difficult the design of an accurate and robust
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Fig. 1. Examples of pulmonary nodules of the LIDC-IDRI dataset ( Armato et al., 2011 ). 
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segmentation task. An isolated nodule is the easiest to segment

since it does not adhere to any lung structure such as vessel, fis-

sure or chest wall ( Fig. 1 (a)). Segmentation of nodules attached to

other structures ( Fig. 1 (b)–(d)) demands for an approach to seg-

ment them from the lung tissue. The size of nodules has a great

range of variation. Their shape can be very irregular and their con-

trast also has a large variability, which may difficult the nodule

discrimination from the lung tissue. The process of segmentation

is also affected by the nodule texture diversity. Segmentation ap-

proaches often achieve a good performance on segmenting solid

nodules. Part-solid nodules, which are more likely to be malignant

( Tu et al., 2017 ), have characteristics of both solid and non-solid

nodules. Such variability does no ease the segmentation task, re-

sulting in many cases in less accurate results. Segmentation of non-

solid nodules remains challenging because of shape variability with

fuzzy contours and low contrast. 

In a lung CAD system, an accurate segmentation is important

to define correctly the nodule boundaries, and therefore allow a

good estimate of the nodule volume, which is a relevant feature

for lung cancer screening ( Devaraj, van Ginneken, Nair, & Bald-

win, 2017 ). It also assists radiologists predicting the degree of the

nodule malignancy and defining the lesion response to therapy

( McKee, Regis, McKee, Flacke, & Wald, 2015 ). We conceive the seg-

mentation task as an unsupervised learning methodology and as

a process of knowledge discovery through evolutionary computa-

tion. Unsupervised, to avoid the need of previous nodule annota-

tion, which is a costly operation, and usually hard to obtain for a

reasonable number of representative samples. Evolutionary compu-

tation, to optimize the search of the clusters inspired by biological

evolution. Evolutionary algorithms approximate solutions by intel-

ligently evolving the information with a metaheuristic or stochas-

tic approaches. Evolutionary algorithms ideally have a good perfor-

mance with the least knowledge. They start by initializing a set of

parameters and attempt to optimize the series of the solutions and

convert them to the new series such that it is confident that the

new obtained outcomes are better than the previous ones. 

The proposed unsupervised metaheuristic search via an evo-

lutionary algorithm is schematized in Fig. 2 . The goal is to opti-

mally cluster a set of pixels characterized by feature vectors, com-

posed by intensity and shape-related features in a given feature

data space using a 2.5D representation. The feature vectors are ex-

tracted from a pre-detected pulmonary nodule, which is centered

on the nodule’s centroid. The pixels belonging to the same clus-

ter of the nodule’s centroid is the segmented region output. The

nodule volume is measured via ellipsoid approximation, from a

2.5D nodule representation, using the 3 major orthogonal anatom-

ical nodular planes: axial, sagittal and coronal planes of the middle

slice. 

In general, the advantages of the nodule segmentation and vol-

ume measurement schemes proposed in this work are four fold: 
e  
1) An unsupervised learning strategy helps a segmentation appli-

cation to work with a large variety of inputs without any user-

intervention for image annotation. 

2) A metaheuristic search has the potential in revealing an out-

come in a short fraction of time. 

3) A metaheuristic search thru an evolutionary algorithm has the

ability to search for knowledge by evolving their existing infor-

mation intelligently. 

4) In the proposed approach, the nodule size is obtained by mea-

suring the volume of a segmented nodule via ellipsoid approx-

imation using the equivalent diameters of the segmented re-

gions in a 2.5D representation, not demanding for a full use of

the CT slices in the nodule 3D volume. 

The paper is organized as follows. Section 2 briefly surveys

ethods attempted to segment pulmonary nodules. Details of the

roposed pulmonary nodule segmentation and volume measure-

ent are given in Section 3 . Section 4 provides the nodule seg-

entation and volume measurement results with two datasets

rom the LIDC-IDRI dataset. The performance of the segmenta-

ion method is discussed in Section 5 . A comparative analysis of

he proposed methodology with the state-of-the-art techniques

nd details on the performance of the evolutionary algorithms ex-

loited in this paper are also described in Section 5 . Section 6 con-

ludes the paper. 

. Related work 

A number of approaches attempted to first localize pulmonary

odules in lung CT scans and then segment the detected nodules

 Gu et al., 2013; Keshani, Azimifar, Tajeripour, & Boostani, 2013;

ong et al., 2016; Sun et al., 2014 ). In the work of Sun et al. (2014) ,

odules are first detected, followed by the segmentation of juxta-

ascular nodules by extracting flow entropy and geodesic distance

o distinguish the nodular area from vessel segments, using a k -

eans clustering approach. Keshani et al. (2013) employed ac-

ive contours to extract the boundaries of the detected nodules

ollowed by SVM classification to recognize the segmented nod-

les. Segmentation of juxta-pleural nodules using a single click

nd a region growing algorithm was provided by Gu et al. (2013) .

ong et al. (2016) proposed an automatic detection of initial seed

oints by an improved toboggan method. An iterative region grow-

ng approach with multi-constraints was applied for nodule seg-

entation. 

3D segmentation of pulmonary nodules can be di-

ided into two main groups, semi-automatic and automatic.

n the first group, interactive segmentation is performed

 Awad et al., 2012; Farag, Abd, Munim, Graham, & Farag, 2013;

ubota, Jerebko, Dewan, Salganicoff, & Krishnan, 2011; Lassen,

acobs, Kuhnigk, van Ginneken, & van Rikxoort, 2015; Messay

t al., 2015 ), while in the second one there is no user-intervention
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Fig. 2. An overview of the proposed unsupervised pulmonary nodule segmentation and volume measurement schemes. 
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 Gonçalves, Novo, & Campilho, 2016; Jung, Hong, & Goo, 2018; Liu,

eng, Guo, Zhang, & Zhang, 2017; Wang et al., 2017; Ye, Beddoe, &

labaugh, 2010; Zhao, Ji, Xia, & Zhang, 2015 ). 

Semi-automatic and automatic methodologies have been de-

igned by thresholding and morphological methods ( Messay,

ardie, & Tuinstra, 2015; Mukhopadhyay, 2016 ), region-growing

pproaches ( Kalpathy-Cramer et al., 2016; Kubota et al., 2011;

assen et al., 2015; Moltz et al., 2009; Zhao et al., 2015 ), de-

ormable and level-set methods ( Farag et al., 2013; Jung et al.,

018 ), graph-cut algorithms ( Ye et al., 2010 ), shape-based segmen-

ation strategies ( Awad et al., 2012; Gonçalves et al., 2016 ), and un-

upervised and supervised approaches ( Liu et al., 2017; Wang et al.,

017 ). 

A semi-automated system for 3D segmentation of solid and

ub-solid nodules based on parameters estimation for thresholding

nd morphological operations using a regression neural network

as developed in Messay et al. (2015) . Kubota et al. (2011) pro-

osed a solid and sub-solid nodule localization method using a

anually selected starting point as a seed for 3D region growing

n an Euclidean distance map. A convex hull was used for sepa-

ating the attached structures. Lassen et al. (2015) implemented a

D method starting by defining a region of interest around a nod-

le using an user-drawn stroke. Based on intensity analysis of the

odule region and the surrounding parenchyma, a threshold-based

egion growing approach was performed for sub-solid nodules. A

D level-set method was used in Farag et al. (2013) to model the

odule image information. In a shape-based segmentation frame-

ork, the nodule center was marked and an ellipse was adapted

o define the nodular region. 

Zhao et al. (2015) used a region-growing method to roughly

egment an image. A self-generating neural network and particu-

ar swarm optimization algorithms were used to cluster the nodu-

ar regions, particularly for 2D segmentation of cavitary nodules,

ithout user-interaction. Ye et al. (2010) applied a 3D graph-

ut segmentation algorithm using a new energy formulation. The

ethod is automatic, where foreground and background seeds

ere obtained by considering spherical nodules. An important

rawback is the failing of segmentation for some sub-solid nod-

les. Jung et al. (2018) proposed a 3D automatic segmentation of

ub-solid nodules by extracting the non-solid component from the

olid one using histogram modeling. Asymmetric multi-phase de-

ormable model and pulmonary vessel removal were used in the

egmentation process. 

Conventional methods such as region-growing approaches,

nergy optimization algorithms like level-set based techniques or
eformable models along with graph-cut algorithms involve the

efinition of convergence conditions. The convergence criteria can

e very sensitive especially for segmentation of irregular-shaped

odules, as the sub-solid nodules ( Wang et al., 2017 ). These meth-

ds often involve the selection of a threshold or a morphological

emplate, in many cases using ad-hoc parameters. 

A number of researchers worked on shape-based segmentation

trategies. In Awad et al. (2012) , solid nodules were segmented

sing a 3D based user-interaction approach through shape con-

trained Otsu multi-thresholding and sparse field active surface

echniques. Gonçalves et al. (2016) proposed a 3D automatic seg-

entation of nodules using Hessian-based approaches, however it

ailed for some sub-solid nodules. 

Unsupervised nodule segmentation was proposed by 

iu et al. (2017) , using a modified self-adaptive fuzzy C-means

lustering algorithm for 2D automatic segmentation. This approach

as not able to correctly segment non-solid and juxta-pleural

odules as well as small nodules of diameter less than 10.0 mm.

ecently, Wang et al. (2017) proposed a data-driven model, the

o-called central focused convolutional neural networks (CF-CNN)

or 3D segmentation of nodules. The CF-CNN model demonstrated

n ability to learn nodule-sensitive features automatically when

rained on 0.41 million generated voxel patches. The performance

f the CF-CNN model was assessed in terms of lesion characteris-

ics (as size, subtlety, spiculation, among others) but not in terms

f texture. 

After segmentation, a lung CAD system should provide the nod-

le size, as the nodule volume, a major requirement in screening

nvironments. Han, Heuvelmans, and Oudkerk (2017) compared

emi-automated volume and diameter measurements of nodules.

n Gavrielides, Kinnard, Myers, and Petrick (2009) , volumetric anal-

sis of nodules was reviewed. Simple voxel counting for nodule

olume measurement was used by Awad et al. (2012), Diciotti,

ombardo, Falchini, Picozzi, and Mascalchi (2011), Heckel et al.

2014) , and Kalpathy-Cramer et al. (2016) . Volume measurement

erformance depends on image acquisition, nodule characteris-

ics and importantly the performance on the nodule segmentation

hase ( Gavrielides et al., 2009 ). 

In the study addressed in this article, we propose an unsu-

ervised scheme able to segment nodules located in different re-

ions of the lungs, robust to different lesion characteristics, in-

luding solid and sub-solid nodules. Our proposal has the ability

o blindly segment nodules without any user-interaction. The nod-

le volume measurement method is approached with an ellipsoid

pproximation. 
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Fig. 3. Unsupervised pulmonary nodule segmentation and volume measurement schemes. (a) Detected nodule using a 2.5D representation; (b) Nodule image enhancement; 

(c) Nodule feature extraction; (d) Metaheuristic search for clustering; (e) Nodule segmentation; (f) Nodule volume measurement. 
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3. Unsupervised segmentation and volume measurement 

The unsupervised segmentation task is developed by clustering

a set of feature vectors characterizing the pixels belonging to the

nodular region. Generally, in the clustering optimization process,

each data point in a given feature data space is grouped around

the closest cluster center, with a goal that maximizes the intra-

cluster and minimizes the inter-cluster similarity, by optimally up-

dating the position of the cluster centers on the feature space. In

this paper, clustering is treated as a multi-objective optimization

problem formulated by a metaheuristic search via an evolution-

ary algorithm. Fig. 3 gives an overview of the proposed unsuper-

vised pulmonary nodule segmentation and volume measurement

schemes. The input of the system is a 2.5D representation of a

pre-detected nodule, which is centered on the nodule’s centroid,

with the 2D images corresponding to the axial, sagittal and coro-

nal nodular planes ( Fig. 3 (a)). The output is the nodule segmenta-

tion of these 3 nodular planes and an estimation of the segmented

nodule volume. The main phases of the approach are the follow-

ing: 

Step 1 (Enhancement): Given a 2.5D representation of a nod-

ule, the 3 images of the nodular planes are smoothed using a Gaus-

sian filter ( Fig. 3 (b)). 

Step 2 (Feature extraction): The enhanced images are the in-

put to the feature extraction phase, involving the computation of

edge ( Fig. 3 (c1)) and curvature features ( Fig. 3 (c2)). The output is

a matrix of feature vectors characterizing every pixel of each one

of the 3 nodular planes. The corresponding details are given in

Section 3.1 . 

Step 3 (Segmentation by clustering using a metaheuristic

search approach): For each one of the nodular planes, differ-

ent groups of feature vectors are randomly selected as the ini-

tial sets of cluster centers candidates. Each set of the selected

feature vectors represents a candidate solution of the looked-for
ptimum cluster centers. The feature vectors per group are itera-

ively evolved and updated by a metaheuristic search using an evo-

utionary algorithm. The best looked-for optimum candidate solu-

ion and the corresponding clusters of the feature vectors are the

esults of this phase ( Fig. 3 (d)). Thereafter, the nodule segmenta-

ion is performed by obtaining the positions of the pixels’ feature

ectors having the same cluster of the pixel’s feature vector located

n the centroid of each plane ( Fig. 3 (e)). Section 3.2 explains the

etails of this step. 

Step 4 (Volume measurement): After segmentation, the nod-

le volume is estimated from the segmentations obtained for the

 nodular planes ( Fig. 3 (f)), as described in Section 3.3 . 

.1. Feature extraction 

Firstly, the 3 nodular planes of a pre-detected nodule, are or-

anized in INP 2.5D of size N × N × 3. This 3-valued image is pre-

rocessed for reducing noise and smoothing the nodular surface.

ach plane of INP 2.5D is convolved with a 2D Gaussian smoothing

unction ( G ) with standard deviation ( σ ). The output, I 2.5D , given

y Eq. (1) , is the enhanced smoothed image. 

 2 . 5D = IN P 2 . 5D ∗ G ( σ ) (1)

We use an Hessian matrix to measure the shape-related fea-

ures, describing the nodule edgeness and local curvedness. The

essian is the second order partial derivatives of an image. The

essian matrix for I 2.5D at a pixel ( x, y ), of each plane, is defined

y, 

 = 

⎡ 

⎢ ⎣ 

∂ 2 I 2 . 5D ( x, y ) 

∂ x 2 
∂ 2 I 2 . 5D ( x, y ) 

∂ x∂ y 
∂ 2 I 2 . 5D ( x, y ) 

∂ y∂ x 

∂ 2 I 2 . 5D ( x, y ) 

∂ y 2 

⎤ 

⎥ ⎦ 

(2)
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(

The positive curvedness value CV at a given pixel, of each plane,

s given by, 

V = 

√ 

λ1 
2 + λ2 

2 
(3) 

here, λ1 and λ2 are the eigenvalues of H at a given pixel, of each

ne of the 3 nodular planes. 

At a pixel ( x, y ) from each one of the 3 nodular planes, we or-

anize the m -dimensional feature vector, in here m = 4, with the

ollowing characteristics: 

• the first element of the vector is the image intensity at ( x, y ),

f 1 = I 2.5D ( x, y ). 

• the second element of the vector is f 2 = 

∂ 2 I 2 . 5D ( x, y ) 

∂ x 2 
, the first di-

agonal element of H. 

• the third element is f 3 = 

∂ 2 I 2 . 5D ( x, y ) 

∂ y 2 
, the second diagonal ele-

ment of H. 
• the forth element is f 4 = CV . 

Finally, a feature matrix for the pixels of the 3 nodular planes,

 2.5D , is organized where each row of F 2.5D is the m -valued vector

efined above. The number of rows of F 2.5D is the number of pixels

n each image plane, equal to N × N . 

.2. Segmentation by clustering using a metaheuristic search 

pproach 

The input of the segmentation algorithm is the 3 nodular planes

haracterized by the m -valued feature vectors per each one of the

 nodular planes. For segmentation, we cluster the nodule feature

pace F 2.5D into k number of optimum clusters via a metaheuristic

earch using an evolutionary algorithm. In this study, we consider

hree evolutionary algorithms: a firefly algorithm (FA), a genetic al-

orithm (GA) and a teaching learning based optimization (TLBO)

lgorithm (see Table 1 for a brief description) to analyze their per-

ormance. The GA is one of the first most common evolutionary

lgorithms applied in numerous different applications. The FA and

LBO algorithms are recent effective evolutionary algorithms based

n knowledge discovery among the candidate solutions. These al-

orithms are significantly less dependent on initialization settings

nd allow visiting multiple local optima by an iterative evolving

rocess to achieve one global optimum. 

Generally, in an evolutionary algorithm, a population of an ini-

ial set of candidate solutions in the feature data space is generated

nd iteratively evolved and updated. An evolutionary algorithm has

wo main parts: EXPLOITATION and EXPLORATION. EXPLOITATION

ries to improve the current solutions in order to reach new local

ptimum, by evolving gradually the quality rather than only pro-

ucing new results. EXPLORATION produces new solutions in the

eature space search environment. One possible algorithm for ex-

loration is random search, which can produce new results in ev-

ry part of the feature space. 

Specifically, in our segmentation proposal as schematized in

lgorithm 1 , an initial population [step 1] containing nPop random

roups of candidate solutions from F 2.5D are generated where each

andidate solution contains k cluster centers. Each candidate solu-

ion is evaluated by a cost function ( Cost ), [step 2]. Here, we use

ost function defined in Eq. (4) . A candidate solution with mini-

um Cost a long with its corresponding clusters is saved as the

resent best looked-for optimum solution of k clusters, OptimalSol ,

step 3]. 

ost = 

3 ∑ 

z=1 

N×N ∑ 

r=1 

min 

( 

D ( i ) = 

√ 

m ∑ 

j=1 

(
f r jz − cluster cente r i jz 

)2 
f or i = 1 : k 

) 

(4) 
here, D ( i ) is an Euclidean distance computed between the m -

alued feature vector in the r th row of F 2.5D and the i th cluster

enter’s feature vector, per each one of the 3 nodular planes. 

Afterwards, among nPop an exclusive elite sub-group is selected

s nElitePop [step 4], following an algorithm-specific rule, e.g. for

A, nElitePop could be the set of candidate solutions with the best-

t (lower Cost ) values of nPop . During the EXPLOITATION stage

step 6], each candidate solution of nElitePop [step 7] is evolved

nd updated once [step 8], e.g. for GA, this could be crossover and

hen mutation. Followed by Cost computation [step 9], if the up-

ated candidate solution has a lower Cost value, then it replaces its

riginal version [steps 10–11], and thus converge to the local opti-

um. Consequently, it guarantees a better overall clustering solu-

ion. 

After updating, the so-called non-elite sub-group of

NonElitePop is picked [step 12], following an algorithm-specific

ule, ensuring that the metaheuristic search dynamically ex-

lores other locations of the feature space. For instance, for FA,

NonElitePop could be the candidate solutions with lower bright-

ess (higher Cost ). During EXPLORATION [step 13], each one of the

embers of nNonElitePop is swapped by a new random candidate

olution if the new one has a lower Cost [steps 14–18]. This

rocess is repeated for number of iterations ( MaxIt ) and OptimalSol

ith a minimum Cost is computed per iteration [steps 19–20]. The

nal OptimalSol is returned as the best output looked-for optimum

olution of k clusters [step 21]. The final nodule segmentation ( S )

s the set of positions of the pixels’ feature vectors from OptimalSol

aving the same cluster of the pixel’s feature vector located in the

entroid of the 3 nodular planes. A morphological operation of

ilation is applied to refine the border of the segmented areas . 

Fig. 4 illustrates an example of the segmentation results ob-

ained by the metaheuristic search using TLBO. This figure shows a

uxta-vascular solid nodule using a 2.5D representation after image

nhancement ( Fig. 4 (a 1 )–(a 3 )). The corresponding clustering results

or each plane are shown in Fig. 4 (b 1 )–(b 3 ) (for better representa-

ion the clusters are displayed in different colors). Fig. 4 (c 1 )–(c 3 )

resent the final segmentation result. The boundaries of the seg-

ented nodular areas are represented in red, Fig. 4 (d 1 )–(d 3 ). The

lot in Fig. 4 (e 1 ) shows the evolution of the optimum Cost value

btained after each iteration of the metaheuristic search approach.

.3. Volume measurement 

The estimation of the segmented nodule volume ( V ) can be ob-

ained by ellipsoid approximation, using the expression, 

 = 

πd 1 d 2 d 3 / 6 (5) 

here, d 1 , d 2 and d 3 are the equivalent diameters of the seg-

ented regions in the 3 nodular planes, corresponding to the ap-

roximate circular intrinsic shape of a pulmonary nodule in the

lanes. 

. Experimental set-up and results 

The following settings are used through the experiments. For

 -clustering, the number of clusters k is an important hyper-

arameter to produce clusters with a low intra-cluster and a high

nter-cluster distances. To find a good solution for k , we experi-

entally tested the performance of the clustering with k = 5, 7, 9,

1, …, 31. The selected value for k is k = 15, as with this value the

est performance was achieved among all the tested k values. Be-

ides, MaxIT and nPop are set to 100 and 50. The evolutionary algo-

ithms used, namely FA, GA and TLBO, by the metaheuristic search

re initialized with the settings proposed by Holland (1992), Yang

2008) , and Rao, Savsani, and Vakharia (2011) . 
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Table 1 

Brief descriptions of the evolutionary algorithms namely FA, GA and TLBO used in the metaheuristic search a . 

Evolutionary algorithm Description 

Firefly Algorithm (FA), Yang (2008) 

- Attractiveness is proportional to the brightness ( Cost ) 

of the fireflies (candidate solutions containing cluster 

centers). Fireflies with better brightness are attractive 

to the ones with the less brightness, and so for any 

two fireflies, the less bright one will be attracted by 

(and thus move towards) the brighter one. However, 

distance between the fireflies is an important property. 

The intensity (apparent brightness) decreases as their 

mutual distance increases. 

- If there is no fireflies brighter than a given firefly, it 

would be moved randomly. 

Genetic Algorithm (GA), Holland (1992) 

- Selection is proportional to the individuals (candidate 

solutions containing cluster centers) with the best-fit 

(lower Cost ). The best-fit individuals as parents are 

selected for reproduction. 

- Generate new individuals (offsprings) using crossover 

and mutation operations. 

Teaching Learning Based Optimization (TLBO), Rao et al. (2011) 

- Selection is proportional to a teacher (a candidate 

solution containing cluster centers) who has the 

highest knowledge (lower Cost ). A teacher tries to 

improve the performance of his class (other candidate 

solutions as learners) by increasing the average 

knowledge of his class (mean ( Cost )). 

- Learners increase their knowledge by interacting 

among themselves. A learner interacts randomly with 

other learners for enhancing his knowledge. For a 

learner, it moves toward a random selected learner if 

his knowledge is lesser than the selected one, and it 

takes some distance if his knowledge is higher. 

- If the knowledge of a class is not improved, the 

teacher would be changed randomly. 

a Note : Further details of the metaheuristic search and the evolutionary algorithms are given in Holland (1992) , Rao et al. (2011) , 

Yang (2008) and Zäpfel, Bögl, and Braune (2010) . 

Fig. 4. Example of the segmentation results obtained by TLBO. (a 1 )–(a 3 ) A juxta-vascular solid nodule using a 2.5D representation; (b 1 )–(b 3 ) Results of the clustered pixels’ 

feature data for each plane; (c 1 )–(c 3 ) Binary segments corresponding to the region that hits the nodule centroid; (d 1 )–(d 3 ) Contours of the segmented nodular areas are in 

red; (e 1 ) The optimum Cost value obtained after each iteration of the metaheuristic search approach. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

C  

2  

l  

a

 

n  
4.1. LIDC-IDRI dataset 

We assess the performance of the proposed segmentation and

volume measurement on the LIDC-IDRI ( Armato et al., 2011 )

dataset used by many researchers ( Lassen et al., 2015; Messay

et al., 2015; Wang et al., 2017 ). The LIDC-IDRI dataset contains lung
T scans of different patients. The dataset has 1018 scans with

629 detected nodules. In total, 880 nodules have an agreement

evel equal to 4, indicating that all the 4 radiologists agree they

re in presence of a nodule. 

The nodule diameters range from 2.03 mm to 38.12 mm. The

odules show different lesion characteristics like subtlety, inter-
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Algorithm 1 Metaheuristic search via an evolutionary algorithm. 

Input: Feature matrix composed by feature vectors ( F 2.5D ) 

Output: Optimal Solution ( OptimalSol ) 

1: Initialize a population with nPop random candidate solutions from F 2.5D 

2: Evaluate each candidate solution using Cost function 

3: OptimalSol = a candidate solution of min ( Cost ) 

4: Elite population ( nElitePop ) = Evolutionary Computation ( nPop ) 

5: repeat 

6: procedure EXPLOITATION 

7: for all nElitePop do 

8: an updated candidate solution = Evolutionary Computation (a present candidate solution) 

9: Evaluate an updated candidate solution using Cost function 

10: if an updated candidate solution. Cost < a present candidate solution. Cost then 

11: a present candidate solution = an updated candidate solution 

12: Non Elite population ( nNonElitePop ) = Evolutionary Computation ( nPop ) 

13: procedure EXPLORATION 

14: for all nNonElitePop do 

15: Generate a new random candidate solution from F 2.5D 

16: Evaluate a new candidate solution using Cost function 

17: if a new candidate solution. Cost < a present candidate solution. Cost then 

18: a present candidate solution = a new candidate solution 

19: OptimalSol = a candidate solution of min ( Cost ) 

20: until number of iterations ( MaxIt ) 

21: return OptimalSol 
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al structure, calcification, sphericity, margins definition, lobula-

ion, spiculation, and have a degree of malignancy in the range

1, 6]. The texture of the nodules has the range [1, 5]. In our ex-

eriments, the nodules with an average radiologists’ texture rating

ange of [1, 2.5) are considered as non-solid, those in a range [2.5,

) are considered as part-solid, and a range of [4, 5] corresponds

o the solid nodules. 

The segmentation and volume measurement results are evalu-

ted using two subsets of the LIDC-IDRI dataset. We consider as

ataset 1, 705 nodules located in different regions of the lungs,

ith an agreement level 4, 60 categorized as sub-solid (25 pure

on-solid and 35 part-solid) and 645 as solid. We also consider the

hallenging dataset used in Lassen et al. (2015) (Dataset 2), consist-

ng of 59 sub-solid nodules. Dataset 2 is organized in two subsets:

) the first subset (Subset 1) has 19 sub-solid nodules of agreement

evel 4; 2) the second one (Subset 2) includes 40 sub-solid nod-

les, with radiologists’ agreement greater equal to 3. The nodule

olumes are rescaled to a size 51 × 51 × 51 mm with 1 × 1 × 1 mm

oxel size. 

.2. Evaluation metrics 

Dice similarity coefficient ( DSC ) is generally used to compute

he degree of overlap of a segment S with a segment used as ref-

rence G , the ground-truth ( Jung et al., 2018; Wang et al., 2017 ). It

s defined in Eq. (6) . The range of DSC is [0, 1], where low values

orrespond to a poor segmentation performance. The pixel classi-

cation performance and the correctness of the segmentation area

re measured by the sensitivity ( SEN ) and the positive predictive

alue ( PPV ) ( Wang et al., 2017 ), Eq. (7) . SEN and PPV close to 1 in-

icate a high level of agreement. The average boundary distance

 AVD ) between surfaces S and G ( Lassen et al., 2015; Wang et al.,

017 ) is measured by Eq. (8) . The more similar the segmented area

 with respect to G is, the closer AVD is to 0. 

SC = 

2 | S ∩ G | 
| S | + | G | (6) 

EN = 

| S ∩ G | 
| G | , P P V = 

| S ∩ G | 
| S | (7)

V D = 

1 

(
mean i ∈ G min j∈ S d ( i, j ) + mean i ∈ S min j∈ G d ( i, j ) 

)
(8) 
2 
here, the Euclidean distance between pixels i and j measured in

illimeters (mm) is denoted by d ( i, j ). 

The ground-truth boundaries delineated by expert radiologists,

iffer from observer to observer mainly at nodules with complex

hape and irregular contours. Such lack of correspondence affects

he validation of the segmentation process. As a reference, we

easure the inter-observer segmentation performance by comput-

ng the corresponding inter-observer DSC, SEN, PPV and AVD . For

ach metric, the average value is considered as the inter-observer

egmentation performance. In here, the values obtained for SEN

nd PPV are the same since each boundary G considered as S plays

he opposite role in a next computation. 

.3. Segmentation performance on Dataset 1 

Table 2 summarizes the segmentation performance of the meta-

euristic search using FA, GA and TLBO on Dataset 1. Table 2 shows

hat we are able to achieve a segmentation performance compara-

le to the inter-observer performance. It can be also observed that

LBO provides a better segmentation than the other metaheuris-

ics approaches. Comparison and discussion of the performance of

A, GA and TLBO will be given in Section 5 , and hereinafter, in this

ection 4 , we will only present the segmentation performance of

LBO. 

For all the nodules in Dataset 1, the performance of TLBO

an be summarized by the following overall average values:

SC = 82.35% ± 5.54; SEN = 87.11% ± 9.85; PPV = 85.59% ± 11.19; and

VD = 0.49 mm ± 0.32. The distributions of DSC, AVD, SEN and PPV

alues for all the nodules are shown in Fig. 5 . It can be observed

hat most of the nodules achieve a high segmentation similarity

nd a pixel classification performance with a low average bound-

ry distance. 

Fig. 6 shows the segmentation performance on 5 illustrative

xamples using TLBO, on each of the 3 nodular planes from

ataset 1. This figure shows the manual segmentations of 4 ra-

iologists together with the segmentation results obtained by our

roposed approach. There are several observations we can raise re-

arding Fig. 6 . There exists a higher variability and inconsistency

mong observers’ segmentations for the nodules with low con-

rast nodule boundaries, complex shapes and irregular contours.

his inter-observer variability can be objectively measured by DSC

nd AVD , that ranges from 95.20% and 1.06 mm (an almost full

greement among observers) observed in the large well-defined
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Table 2 

Segmentation performance of the metaheuristic search using FA, GA and TLBO on Dataset 1. 

Nodule texture [number of nodules] DSC (%) SEN (%) PPV (%) AVD (mm) 

solid [645] 

method using FA 82.31 ± 5.25 84.84 ± 10.99 87.86 ± 10.91 0.49 ± 0.33 

method using GA 82.23 ± 5.51 84.55 ± 10.69 88.19 ± 10.50 0.49 ± 0.36 

method using TLBO 82.73 ± 5.41 87.29 ± 9.52 86.03 ± 10.84 0.50 ± 0.33 

inter-observer performance 84.52 ± 5.97 85.56 ± 5.08 85.56 ± 5.08 0.45 ± 0.32 

part-solid [35] 

method using FA 76.63 ± 5.60 81.63 ± 13.84 80.94 ± 14.51 0.51 ± 0.32 

method using GA 73.63 ± 9.27 79.20 ± 15.85 78.84 ± 17.95 0.54 ± 0.34 

method using TLBO 78.04 ± 5.72 83.64 ± 13.24 81.69 ± 14.41 0.45 ± 0.19 

inter-observer performance 81.30 ± 5.95 82.53 ± 5.54 82.53 ± 5.54 0.43 ± 0.24 

non-solid [25] 

method using FA 77.41 ± 6.12 87.50 ± 13.51 78.06 ± 12.56 0.48 ± 0.25 

method using GA 77.56 ± 4.89 87.85 ± 11.91 77.80 ± 11.72 0.48 ± 0.24 

method using TLBO 78.50 ± 4.66 87.17 ± 11.62 79.86 ± 12.27 0.47 ± 0.23 

inter-observer performance 80.62 ± 4.36 81.93 ± 3.95 81.93 ± 3.95 0.43 ± 0.24 

Fig. 5. Performance measure histogram for all the nodules in Dataset 1 obtained by TLBO. 
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juxta-vascular solid nodule ( Fig. 6 (a)), to a poor agreement for the

pleural-tail solid nodule in Fig. 6 (d) with a DSC = 68.10% and an

AVD = 2.32 mm, respectively. An intermediate DSC and AVD is ob-

served for the medium size pleural-tail solid nodule in Fig. 6 (b)

with a DSC = 77.60% and an AVD = 1.10 mm, and also for the small

size isolated part-solid nodule in Fig. 6 (c) with a DSC = 86.50% and

an AVD = 0.13 mm. 

It can be observed that the proposed segmentation method

gives similar results comparable to the inter-observer DSC and AVD ,

showing also good performances for the nodules with different

levels of complexity. However, as expected, the performance of the

proposed segmentation method depends on the level of the nod-

ule complexity, namely in terms of location, texture, shape and

contour smoothness. As shown in Fig. 6 (e), for a large size juxta-

t  
leural solid nodule with a DSC = 91.90% and an AVD = 0.62 mm (a

early high agreement among observers), an over-segmented re-

ult is obtained where a connection between the nodule and the

leura makes the segmentation result containing both the nodule

nd the lung pleura in its axial plane. 

.4. Segmentation performance on Dataset 2 

Dataset 2 is considered in this experiment to evaluate the seg-

entation performance of the metaheuristic search using TLBO.

he obtained results are presented in Table 3 . For comparison, the

nter-observer average segmentation performance is also shown.

his table shows that we achieve better segmentation results for

he sub-solid nodules of Subset 1 than for Subset 2. This is because
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Fig. 6. Segmentation performance on 5 illustrative examples using TLBO, on each of the 3 nodular planes from Dataset 1.(a) A juxta-vascular solid nodule of large size; (b) 

A pleural-tail solid nodule of medium size; (c) An isolated part-solid nodule of small size; (d) A pleural-tail solid nodule of large size; (e) An over-segmented result of a 

juxta-pleural solid nodule of large size where the region of the lung pleura is segmented along with the nodule in its axial plane. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

Segmentation performance of the metaheuristic search using TLBO on Dataset 2. 

Sub-solid nodules [number of nodules] DSC (%) SEN (%) PPV (%) AVD (mm) 

Subset 1 [19] 

method using TLBO 76.92 ± 5.77 85.02 ± 12.96 78.95 ± 13.46 0.53 ± 0.24 

inter-observer performance 80.37 ± 4.54 81.80 ± 4.16 81.80 ± 4.16 0.47 ± 0.25 

Subset 2 [40] 

method using TLBO 68.26 ± 12.37 80.01 ± 22.41 70.32 ± 17.33 0.69 ± 0.56 

inter-observer performance 80.57 ± 6.43 82.12 ± 5.56 82.12 ± 5.56 0.49 ± 0.37 
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l  
he nodular surfaces of Subset 2 have very irregular shapes and

issimilar features. For all the sub-solid nodules in Dataset 2, we

btain a DSC = 71.05% ± 11.43. As for the classification performance,

e obtain SEN = 81.63% ± 20.00 and PPV = 73.10% ± 16.68. An AVD is

qual to 0.63 mm ± 0.48. 

In a Bland-Altman plot ( Bland & Altman, 1999 ), the mean be-

ween metric values of two different methods are plotted against

heir differences to evaluate and compare the agreement between

he two methods. The two methods are often considered inter-

hangeable if the mean versus the difference values are within the

tandard deviation lines of the Bland-Altman plot ( Kubota et al.,

011 ). For the sub-solid nodules in Dataset 2, Table 4 provides the

lobal mean difference ( Mean ) and their corresponding standard

eviation ( SD ) for the metrics DSC and AVD used in the Bland-

ltman plot s in Fig. 7 . 

In Table 4 , the absolute high values of Mean and SD for the

etrics DSC and AVD correspond to a low agreement between the
egmentation results and the inter-observer segmentation perfor-

ance. The agreement between the segmentation similarity re-

ults and the inter-observer segmentation similarity performance

or Subset 1 is higher than for Subset 2. It also shows that the pro-

osed segmentation method achieves better agreement on average

oundary distance for the sub-solid nodules of Subset 1 than for

ubset 2. Furthermore, as seen in Fig. 7 (a) and (b), our segmen-

ation approach shows good agreement, with a mean DSC close

r greater than 70.00%. Fig. 7 (c) and (d) show a mean AVD for

ost of the nodules in the nodules in the range [0.20, 0.40] mm.

he segmentation results show a performance comparable to the

nter-observer segmentation performance especially for the sub-

olid nodules in Subset 1. 

Illustrative examples of the segmentation results from the two

ubsets of Dataset 2 are shown in Fig. 8 . 

Fig. 8 (a)–(f) present the sub-solid nodules placed in a complex

ocation as the pleura. For the sub-solid nodules in Fig. 8 , our seg-
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Table 4 

Bland-Altman descriptive statistics for DSC and AVD . 

Sub-solid nodules [number of nodules] segmentation results obtained by our proposed method & inter-observer segmentation performance 

Difference on DSC (%) Difference on AVD (mm) 

Mean SD Mean SD 

Subset 1 [19] –3.46 7.94 0.06 0.13 

Subset 2 [40] –12.31 14.73 0.20 0.39 

Fig. 7. Bland-Altman plots for segmentation of the sub-solid nodules in Dataset 2; the solid horizontal lines correspond the mean difference; the dashed horizontal lines 

correspond to ± 1.96 times the standard deviation of the differences; (LOA – Level of Agreement). 
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mentation proposal performs well, for different nodule shapes and

irregular contours. In this figure, we also show cases with poor

segmentation performance. Fig. 8 (g) shows the effect of the seg-

mentation for the cavitary nodule where the algorithm only seg-

ments the cavitary region. An under segmentation result is ob-

tained for the non-solid nodule in Fig. 8 (h), due to the inhomo-

geneous characteristics of its corresponding nodular region with

fuzzy contour. 

4.5. Volume measurement performance on Dataset 1 and Dataset 2 

We measure the volume of S, V S , using the expression given

in Eq. (5) . Similarly, a V 2. 5G is assessed by computing the aver-

age of the manual segmentations’ volumes using a 2.5D represen-

tation obtained with Eq. (5) . For evaluating the results of the vol-

ume measurement in 2.5D versus 3D, a V 3 G volume is measured by

computing the average of the total number of voxels of the man-
al segmentations in 3D. For the nodules in Dataset 1 and Dataset

, we compute the Pearson correlation coefficient, Pearson’s r ( R -

alue) between V 2. 5G and V 3 G , and between V S and V 3 G . The re-

ults are shown in Table 5 . We also analyze if the volume mea-

urement has statistical significance. Table 5 includes the results of

he t -test analysis ( p -value) with a significance level of 5%. 

In Table 5 , the measured volumes for the 2.5D manual segmen-

ations versus the 3D manual segmentations are highly correlated

ith the R -values ≥ 99.61%. The p -values also show that the vol-

me measurement has significative correlation between the vol-

mes measured in 2.5D versus 3D. For the nodules in Dataset 1

egmented using our segmentation proposal versus the 3D manual

egmentations, the R -values are greater than 92.16%. The volume

easurement shows a significative correlation for all the nodules,

s well. The measured volumes for the sub-solid nodules of Subset

 in Dataset 2 are also highly correlated with an R -value = 95.85%,

ith an p -value of 3.96%. For the sub-solid nodules of Subset 2
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Fig. 8. Segmentation performance on 8 illustrative examples using TLBO, on each of the 3 nodular planes from Dataset 2. (a)-(d) Isolated sub-solid nodules of different 

sizes; (e)–(f) Juxta-pleural sub-solid nodules of large size; (g) Under-segmented cavitary non-solid nodule of large size; (h) Under-segmented juxta-pleural non-solid nodule 

of large size. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n Dataset 2, a low correlation, with an R -value = 39.33%, is ob-

ained. Table 5 shows an overall good performance for the nodule

olume measurement in Dataset 1 and Dataset 2 using a 2.5D rep-

esentation except for some of the sub-solid nodules of Subset 2 in

atabase 2. 

Fig. 9 shows Pearson’s r between V S and V 3 G for the nodules

n Dataset 1 and Dataset 2. As seen in Fig. 9 , the measured vol-

me between the results obtained by our proposed segmentation

ethod and the manual segmentations are highly correlated. This

l  
llows us to conclude, once again, that our segmentation pro-

osal gives a reliable nodule segmentation in a 2.5D representa-

ion, which can be useful to measure the volume in a lung CAD

ystem. 

. Discussion 

In this paper, we use the LIDC–IDRI dataset with nodules of

aried characteristics of lesions located in different regions of the

ungs to evaluate the developed nodule segmentation and volume
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Table 5 

Statistical analysis of the nodule volume measurement on Dataset 1 and Dataset 2. 

Nodule texture [number of nodules] 2.5D manual segmentations versus 3D manual segmentations 2.5D segmentation results versus 3D manual segmentations 

R value (%) p value (%) significative R value (%) p value (%) significative 

Dataset 1: 

Solid [645] 99.61 4.62e –23 Yes 94.10 7.26 e –36 Yes 

part-solid [35] 99.72 0.00 Yes 92.16 0.00 Yes 

non-solid [25] 99.94 0.01 Yes 95.64 1.77 Yes 

Dataset 2: 

Subset 1-sub-solid [19] 99.94 0.04 Yes 95.85 3.96 Yes 

Subset 2-sub-solid [40] 99.81 0.00 Yes 39.33 0.70 Yes 

Fig. 9. Correlation coefficient for volume measurement of the nodules in Dataset 1 and Dataset 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Average DSC for different types of the nodules in Dataset 1 with ratings [1, 6]. 

Lesion characteristic ratings 

Lesion characteristics 1 2 3 4 5 6 

Spiculation 82.25 82.47 83.36 82.98 78.58 –

[number of nodules] [540] [102] [37] [22] [4] –

Malignancy 82.09 81.11 82.35 84.73 82.4 –

[number of nodules] [94] [219] [266] [123] [3] –

Calcification – 82.15 82.67 81.29 83.00 82.26 

[number of nodules] – [2] [86] [16] [55] [546] 

Sphericity – 79.09 81.61 83.23 83.68 –

[number of nodules] – [40] [288] [359] [18] –

(  

s  

T  
measurement schemes. The experimental results presented in

Section 4 show that the proposed segmentation method is able

to segment nodules located in different regions of the lungs

and with different texture, size and shape. To further evaluate

the methodology on Dataset 1, we compute the average DSC for

the nodules having the four lesion characteristics mentioned in

Wang et al. (2017) , namely the spiculation, the malignancy, the

calcification and the sphericity. The corresponding average DSC is

tabulated in Table 6 . As represented in Table 6 , the average DSC

values do not show any significative difference for the different

nodule characteristics, being the proposed segmentation method

able to capture nodule shapes with respect to miscellaneous

characteristics of lesions ( Wang et al., 2017 ). 

We also compare the segmentation performance with re-

cently published state-of-the-art techniques evaluated for nod-

ules of the LIDC–IDRI dataset by at least three radiologists

t  
 Kubota et al., 2011; Lassen et al., 2015; Messay et al., 2015; Mes-

ay, Hardie, & Rogers, 2010; Tan et al., 2013; Wang et al., 2017 ).

ables 7 and 8 show the performance achieved by different au-

hors on Dataset 1 and Dataset 2, together with the performance
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Table 7 

Average JI for different nodule segmentation proposals on the LIDC-IDRI dataset evaluated 

by at least 3 radiologists. 

Methods Number of nodules Performance JI (%) 

Training Testing 

Messay et al. (2010) – 68 63.00 ± 16.00% 

Kubota et al. (2011) – 23 69.00 ± 18.00% 

82 59.00 ± 19.00% 

Tan et al. (2013) – 23 65.00% 

Messay et al. (2015) 300 66 71.70 ± 19.89% 

77 69.23 ± 13.82% 

Wang et al. (2017) 350 493 71.16 ± 12.22% 

Proposed method using TLBO on Dataset 1 – 705 70.37 ± 8.00% 

Table 8 

Average JI for the nodule segmentation proposals on the dataset given in Lassen et al. (2015) . 

Methods Number of nodules Performance JI (%) 

Training Testing 

Lassen et al. (2015) – 19 52.00 ± 7.00% 

40 50.00 ± 14.00% 

Proposed method using TLBO on Dataset 2 – 19 62.53 ± 8.00% 

40 53.06 ± 13.32% 

Table 9 

Approximate processing speed for different nodule segmentation proposals on the LIDC-IDRI dataset. 

Methods Computer configuration Computation time User interaction 

Kubota et al. (2011) 

Not Provided ≤1 min A click point 

initialization 

Lassen et al. (2015) 

Not Provided ≤1 s A user-drawn stroke 

initialization 

Messay et al. (2015) 

MATLAB implementation on an HP workstation with 

processor speed of 3.22 GHz. 

4 min Click point(s) 

initialization 

Wang et al. (2017) 

Python 2.7 implementation on a machine with an Intel 

Core i7-4790K CPU, 8 GB RAM and an NVIDIA GTX-980Ti 

GPU with 6 GB on-board memory. 

The CF-CNN model converged after 9 h of 

training on 0.41 million voxel patches. 

Automatic 

Proposed 

method using 

FA 

Python 3. 6 implementation on an ASUS workstation with 

an Intel® Core TM i7-5960X CPU @ 3.0 GHz and 32 GB 

RAM. 

4.75 min Automatic 

Proposed 

method using 

GA/TLBO 

Python 3. 6 implementation on an ASUS workstation with 

an Intel® Core TM i7-5960X CPU @ 3.0 GHz and 32 GB 

RAM. 

26 s Automatic 
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T  

I  
f our segmentation approach using TLBO. To compare the meth-

ds, we use the Jaccard index ( JI ) (please note that JI and DSC

re related by the expression JI = DSC / (2 – DSC )). Using the re-

ults in Table 7 , we can argue that our method is in par with

he best performant methods, with an advantage of getting a

ower uncertainty for the JI similarity estimate, as we use a much

arger dataset than the other approaches. Similarly, Table 8 shows

he performance on Dataset 2, which are better than those re-

orted by Lassen et al. (2015) . More importantly, the works by

ubota et al. (2011), Lassen et al. (2015), Messay et al. (2015) , and

an et al. (2013) require a manual user-initialization whereas our

egmentation approach is fully automatic, without any manual an-

otation. In addition, our method is unsupervised while the ap-

roach by Wang et al. (2017) relies on training samples. However,

he nodule segmentation proposed in this paper is based on a 2.5D

epresentation whereas the other approaches compared are based

n a 3D representation. 

The performance of the proposed segmentation method typi-

ally relies on feature extraction and the exploitation part of the

volutionary algorithm used by the metaheuristic search. As dis-

ussed in Section 3 , this paper uses FA, GA and TLBO evolutionary

lgorithms, for image segmentation. TLBO proved to be the best

erforming algorithm. Using GA, the new candidate solutions con-

aining cluster centers inherit the features of the existing candidate
olutions. Thus, the intrinsic nature of the current candidate solu-

ions continues to be spread in the iterations of the algorithm. As a

esult, segmentation of sub-solid nodules using GA shows low per-

ormance, due to the poor homogeneity and well-marked features

f the sub-solid nodules, and since GA only attempts to use the in-

ormation of the current candidates to produce the new ones, the

ptimum clusters are not obtained. 

FA shows better segmentation performance in general and, in

articular, for sub-solid nodules. The backbone of FA is based on

ttracting the candidate solutions with higher qualified features,

ermed as lights in the FA algorithm. The light absorption coef-

cient plays an important role in this algorithm. In addition to

ight, the distance of the candidate solutions with respect to each

ther is also considered. A candidate solution with higher qualified

eatures but locating in a farther distance is not considered. This

ature also aids to give a chance to the candidate solutions with

ower qualified features to be exploited. In a population, any group

f the candidate solutions will be attracted to all other groups, re-

ulting in a high computational complexity. 

Among all, TLBO has teaching and learning stages where the

andidate solutions make an effort to compete with each other in

rder to gain knowledge by transmitting their own information.

his allows the candidate solutions to improve their information.

n the exploitation phase of this algorithm, the candidate solutions
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are updated by information discovery of the current candidate

solutions. 

Regarding the processing speed for the proposed prototype

Python implementation, we may say that the computation burden

is mainly due to the time spent by the evolutionary algorithms, for

evolving the candidate solutions. We use Python version 3.6 on an

ASUS workstation with an Intel® Core TM i7-5960X CPU @ 3.0 GHz

and 32 GB RAM. For each nodule, the FA approach, has a compu-

tation time in the range [4, 5.5) min with an average of 4.75 min.

For GA and TBLO, the estimated computation time is in the range

(23, 30) s with an average close to 26 s, being this low value one

additional assert for the TLBO method. These estimates are aver-

age values, considering all the nodules. For comparison purpose,

Table 9 shows the approximate processing speed for several nod-

ule segmentation methods on the LIDC-IDRI dataset, where we can

see the competitive performance of the proposed segmentation

method using TLBO. 

6. Conclusion 

An unsupervised pulmonary nodule segmentation method on

lung CT images was described in this paper. We proposed to seg-

ment a nodule using a 2.5D representation through the meta-

heuristic search, in here based on evolutionary computation. Our

focus was to segment different types of nodules in terms of texture

and location without the need of any manual annotation or fur-

ther post-processing steps. We also addressed the measurement of

the volume of the segmented nodules via ellipsoid approximation.

We validated the proposed approach along with volume measure-

ment on two different datasets, subsets of the LIDC-IDRI dataset.

The comparison between the segmented results and the ground-

truth for the corresponding two datasets demonstrated the robust-

ness of our system. However, it failed to segment a number of

juxta-pleural nodules due to some of their features, like curved-

ness and intensity. Segmentation performance fell down for the

sub-solid nodules such as cavitary ones because of their heteroge-

neous nodular surface characteristics. To improve the performance

of the proposed segmentation method, particularly for this type of

more complex nodules, we need to extract other type of features,

trying to characterize the different levels of complexity that can

appear in lung CT images. 
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