
Modeling Families of Public Licensing Services:
A Case Study

Guillermina Cledou
HASLab INESCTEC and Universidade do Minho

mgc@inesctec.pt

Luis Soares Barbosa
UNU-EGOV, United Nations University and Universidade do Minho

barbosa@unu.edu

Abstract—Software Product Lines (SPLs) enable the develop-
ment of families of software systems by taking advantage of the
commonalities and variabilities of the members of the family.
Despite its many advantages, it is an unexplored area in the
electronic government domain, an area with evident families of
services, and with high demands to develop faster and better
services to citizens and businesses while reducing costs. This
paper discusses the need of formal methods to model SPLs for
such domain. It presents a case study of a family of public
licensing services modeled in UPPAAL and based on Featured
Timed Automata, an extension of Timed Automata to model real-
time SPLs. It analyzes the suitability of FTA to model distributed
families of services, while provides hints on a possible enrichment
of FTA to better support modularization and compositionality of
services.

I. INTRODUCTION

SPLs enable the definition of families of systems where all
members share a high percentage of common features while
differ in others. Benefits of adopting a SPL approach include
reduced time to market and development costs, increased
quality, and mass customization.

Although not yet widely used for modeling electronic gov-
ernment (e-government) services, the concept of SPL offers
unique opportunities for the rapid development of certain
services provided by local governments. For example, in most
public administration systems, local governments are respon-
sible for issuing licenses for public transport services. While
such services comprise a number of common functionality —
e.g. submission and approval of the public transport routes,
vehicles’ certificates, driving licenses, and even business pro-
cesses that are shared with many other licensing services
outside the transport domain; they also differ in a number
of features, mostly due to specific regulations imposed by
each local government. Therefore, the idea of applying a SPL
approach for generating families of certain type of public
services is appealing and relevant to the public sector.

Among several formalisms developed to support SPLs,
Featured Timed Automata (FTA) captures the variability of
features influencing timed and discrete behaviour based on
the structure of a timed automata [1]. Relying on the concept
of extending timed automata with variability, this approach
enables the verification of the entire SPL instead of requiring
a product-by-product verification process.

This paper presents a case study in modeling a family of
licensing services for the transport domain resorting to the

FTA formalism and UPPAAL1, a well known real-time model
checker. We present an approach to verify temporal properties
of FTA with UPPAAL and provide examples of verifiable
properties for the case study. Finally, the paper explores
advantages and limitations of modeling these kind of services
with FTA, and discusses possible extensions to the formalism
to better support a compositional and modular specification
of families of services. In particular, when modeling families
of distributed services, it is necessary to model mechanisms
to orchestrate variable services that adapt correctly to the
presence or absence of such services. We illustrate how this
task can quickly become cumbersome and error prone without
further support. Furthermore, many of these orchestration
mechanisms are well known coordination patterns and can
be reused in different application domains. Thus, we hint on
a possible extension to model generic variable orchestration
mechanisms that automatically adapt to the variability of the
orchestrated services through composition.

The structure of this document is as follows. Section II
presents some background and motivation on electronic gov-
ernment, and Section III some technical background. Sec-
tion IV introduces the case study, and presents the resulting
models. Section V discusses the advantages and limitations of
FTA and hints on possible extensions to enrich it. Section VI
presents related work. Finally, Section VII concludes.

II. MODELING FOR E-GOVERMENT

Electronic, or digital, government deals with the use of
Information and Communication Technologies (ICTs) to fa-
cilitate the delivery of electronic public services (EPSs) and
support the interaction between their providers and consumers.
Among the main motivations to implement EPSs is the reduc-
tion of costs and administrative burdens [2].

However, in order to achieve these goals, governments face
several challenges, namely: 1) rapid development of EPSs –
to attend increasing citizens’ demands and quickly integrate
changes in regulations, government must find mechanisms to
rapidly develop EPSs; 2) service integration – government
agencies, and other entities, must collaborate to deliver seam-
less services, i.e., services delivered collaborative by several
government and non-government organizations while present-
ing a single-organization interface to customers. The only-once

1http://www.uppaal.org

principle, which means that citizens, businesses, and other
stakeholders, are required to provide common information
only once, is particularly critical; 3) conformance with laws
and regulations – the delivery of services generally depends
on laws and regulations. Government must have mechanisms
to ensure that an EPS conforms with such laws and regu-
lations, otherwise, failing to correctly design and implement
EPSs can increase bureaucracy, result in unused services or
malfunctioning of services; and 4) development costs – the
adoption of ICT for development of EPSs involves high costs
for governments, particularly at the city level, at short term.

In practice, many of these services still relay on paper-
based solutions, particularly in less resourceful governments.
In many other cases, due to the differences in government reg-
ulations, lack of interoperability, budgetary resources, and the
difficulties in ensuring the fulfillment of their specific features,
local governments develop tailored ICT solutions to automate
the provision of these services. This approach exacerbates the
aforementioned challenges by increasing development times
and costs, as well as hindering service integration. In addition,
it disregards the fact that many public services share common
functionality and business processes.

Thus, formal methods and SPLs can help to overcome, to
some extent, the aforementioned challenges. On the one hand,
formal methods help to model and verify that services conform
with the required laws and regulations at an early stage. On the
other hand, the concept of SPLs offers unique opportunities
for the rapid development and deployment of certain services
provided by local governments. Actually, software product
lines can help to rapidly develop families of services, reducing
costs and development efforts, as well as facilitating service
integration. Thus, integrating both approaches seems the way
to go. Various formalisms exist to formally model and verify
SPLs. Here we concentrate on Featured Timed Automata due
to recurrent time requirements in the e-government domain.

III. BACKGROUND

This section presents some technical background on Soft-
ware Product Lines, Featured Timed Automata, and UPPAAL.

An SPL is a set of software systems that share a high
number of features while differ on others, where concrete
configurations are derived from a core of common assets
in a prescribe way. A feature it is usually referred as a
characteristic or behavior of the system visible to the user.
It captures both requirements of the end users as well as
implementation concepts. For example, in the case study, some
public administrations may require the payment of license
applications. A public license service that requires a payment
may offer credit card payments (cc), PayPal (pp), or both. In
this case, cc and pp are features of the SPL that represent
the presence of credit card and PayPal payments, respectively,
while licensing services with credit card payments, PayPal
payments, both, or none, are different services that can be
derived from the family.

The variability of the SPL is defined in terms of common
and variable features, usually through feature models. A

future model expresses the valid combination of features,
where each combination is a product in the family. In the
previous example, the valid products would be given by the
feature model fm = {{}, {cc}, {pp}, {cc, pp}}, where the
empty set represents base functionality.

Featured Timed Automata is an extension to Timed Au-
tomata (TA) introduced by [1] for modeling families of TA.
This is achieved by associating Boolean expressions over a
set of features, to transitions (edges), referred to as feature
expressions. Given a selection of features FS, it is possible
to project a FTA into a TA. Intuitively, a feature expression
associated with a transition indicates the latter must be present
in all products that satisfy the former.

As in TA, a clock c models continuous and dense-time, it
can only be inspected or reset to zero, and represents the time
elapsed since its last reset. All clocks of a FTA are incremented
synchronously as the automata evolves. A clock valuation η
for a set of clocks C is a function η : C → R≥0 that assigns
each clock c ∈ C to its current value ηc. A clock constraint
is a logic condition over the value of a clock. Formally,
feature expressions, clock constraints, and their satisfiability,
are defined as follows [1].

A feature expression ϕ is a Boolean expression over a set
of features F is defined as follows

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | >

where f ∈ F is a feature. We use ΦF to denote the set of all
possible feature expressions over a set of features F .

A clock constraint over a set of clocks C, written g ∈
CC(C) is defined as follows

g ::= c < n | c ≤ n | c > n | c ≥ n | g ∧ g | >

where c ∈ C, and n ∈ N.
Given a feature selection FS ⊆ F over a set of features

F , and a feature expression ϕ ∈ ΦF , FS satisfies ϕ, noted
FS |= ϕ, if

FS |= > always

FS |= f ⇐⇒ f ∈ FS
FS |= ϕ1 ♦ ϕ2 ⇐⇒ FS |= ϕ1 ♦ FS |= ϕ2

FS |= ¬ϕ ⇐⇒ FS 6|= ϕ

where ♦ ∈ {∧,∨}.
The satisfaction of a clock constraint g by a clock valuation

η, written η |= g, is defined as follows

η |= > always
η |= c� n if η(c)� n

η |= g1 ∧ g2 if η |= g1 ∧ η |= g2

where � ∈ {<,≤, >,≥}.
Definition 1: A feature timed automaton, is a tuple A =

(L,L0, A,C, T, I, F, fm, γ) where L is a set of locations,
L0 ⊆ L is the set of initial locations, A is a set of actions,
C is a set of clocks, T ⊆ L × CC(C) × A × 2C × L is a

`0 `1

payapp
cc ∨ pp

paycc
cc

paypp
pp

{cc}
==⇒ `0 `1

payapp

paycc

Fig. 1: Example of a FTA over features cc and pp (left), and
its projection over the feature selection {cc} (right).

set of transitions, I : L → CC(C) is the invariant, a partial
function that assigns clock constraints to locations, F is a set
of features, fm ⊆ 2F is a feature model, and γ : T → ΦF is
a total function that assigns feature expressions to transitions.

Figure 1 (left) shows a FTA for the example introduced
before and its projection into a TA by selecting the set
of features {cc} (right). A payment for an application
(action payapp) can be requested only if the system supports
payments by credit card or by PayPal, indicated by the
feature expression cc ∨ pp. Once the payment is requested,
the system moves to a new state (`1) and waits for the user
to select one of the available methods. When the FTA is
projected onto the feature selection FS = {cc}, only the set
of transitions with feature expressions that are satisfied by
FS remain in the model.

UPPAAL is a real-time model checker based on TA theory.
A system in UPPAAL is a network of parallel TA, where
automata can transition independently or together by synchro-
nizing over shared actions called channels. A transition with
a channel a can only be taken when its dual channel in a
neighbor automata is also in an transition that can be taken
simultaneously. A channel and its dual channel are represented
by a! and a?.

In addition, UPPAAL’s modeling language enhanced the
modeling of TA with integer variables, constants, arrays, user
defined functions, and urgency, among others. Urgency can
be represented in various ways, such as committed and urgent
locations, and urgent channels. A committed location, marked
with a letter C, is a location in which time can not pass,
thus when an automaton in a network is in a committed
location, only outgoing transition from such location are
enabled. An urgent location, marked with a letter U, is a
location that should be left without delay. Committed locations
are more restricted than urgent locations. An urgent channel
is a synchronization action that should be executed as soon as
it is enabled by the transitions’ guard.

IV. CASE STUDY

The case study is based on two real cases of licensing public
bus passenger services from Portugal and Ireland. Three types
of licenses are required for the provision of such services: 1)
a license to operate passenger services, 2) a license to provide
a public bus passenger along a route, and 3) a license for
each vehicle to transport passengers. All services in the family
support submissions and assessment of licensing requests.
Some licensing services, in addition, require payment before
submitting a request, others allow appeals on rejected requests

(apl), or both. Furthermore, services that require payment
support different payment methods, namely credit cards (cc),
PayPal payments (pp), or both. Functionality is divided in
components and provided as follows.

Application – applicants submit the required documents
(subdocs), pay a fee (payapp) if features pp or cc are present,
and submit the application. Authorities can accept, consider
incomplete (missing required documents), or reject the request.
If the request is accepted or incomplete, it is closed, i.e., no
further actions can be taken. If it is rejected and it is not
possible to appeal (¬apl), the request is closed. If feature apl
is present, the applicant has 31 days to appeal, otherwise the
request is closed as rejected. If an appeal is submitted, it can
be rejected or accepted, and the request is closed.

Queue – as requests are submitted, they are queue and
assigned to a particular authority as soon as they are available.

Authority – each authority is responsible for various re-
quests. For each request that arrives, it has to preassess if all
required documents are present, in which case it proceeds to
assess the request.

PreProcessing – the authority has 31 days to evaluate if all
documents are present and proceed to the assessment of the
request, or notify the applicant if they are incomplete, closing
the application (closeApp).

Processing – the authority has 90 days to evaluate the
application and make a decision of whether accept it or reject
it. If it is accepted the application is closed. If it is rejected,
and feature apl is supported, the authority waits 31 days for
an appeal. If it is submitted, it has 60 days to assess the new
evidence, make a decision, and close the application. If the
applicant does not appeal within the time or if apl is not
supported, the application is closed.

CreditCard (CC) and PayPal (PP) – these are external
payment services. If required, a user can pay fees by credit
card (paycc) or PayPal (paypp). After initiated, the user has 1
day to proceed with the payment which can result in success
(paidcc and paidpp) or cancellation (cancelcc and cancelpp).

A. Modeling Behavior

The UPPAAL automata modeling the components described
before and some additional automata to orchestrate their
interactions are shown in Figure 2. Below we describe some
modeling decisions.

First, in order to model families of TA in UPPAAL, features
are encoded as boolean variables, and feature expressions
associated with transitions are encoded as logic guards over
such boolean variables. Second, since various applications can
be submitted concurrently, it is necessary to model that each
application has its own PreProcessing, Processing, and pay-
ment related processes (PP, CC, selectPayement, mergePaid,
and mergeCancelPay). Thus, some synchronization channels
are declared as an array of channels, indexed by the application
id, ranging from 0 to the maximum number of applications,
represented by a global constant APPS. Third, a global con-
stant AUTH indicates the number of authorities. Finally, there
is only one Queue that receives applications.

Application – an application starts in a location apply
and it can finish in four states: payment_cancelled,
inclomplete_app, accepted, or rejected. Urgent
locations ensure applications will be submitted. The submit
channel is the only one not indexed by the application’s id.
This is because this channel synchronizes with the queue
automaton and there is only one queue, otherwise, UPPAAL
would create an automaton queue for each possible appli-
cation. A global variable ca is used to hold the id of the
application currently submitting, and it is passed by reference
to Application, Queue, and Authority. Thus, the transitions
labelled with submit in the application’s automaton assign the
application’s id to such variable. In order to reduce the search
space during verification, applications are submitted in order of
id. In order to submit, an application has a guard ready() to
check if all applications with lower id have submitted. When
submitting, each application sets to true a global Boolean
array nextapp in its corresponding entry. This is also done
if a payment is canceled, since the application is no longer
active. Two clocks, tproc and tapl , track the elapsed time
since submission, and the appeal window time, respectively.
An invariant in location can_appeal controls that an appeal
must be made within 31 days, or the application is closed.

Queue – when receiving a submission (submit), the cor-
responding id, is added at the end of the queue – id is
a parameter by reference bounded to ca. A variable len
holds the length of the queue. As soon as the queue is not
empty, it informs authorities that there are pending applica-
tions, pendingApps (urgent channel), and uses ca to indicate
which application should be dequeue. The function front()
returns the front of the queue. When an authority retrieves an
application, getApp, it is removed by dequeue().

Authority – in order to balance the work load, a global array
maintains the authorities current work load. An authority can
open a new application if it is the authority with less work,
controlled by the guard canOpenApp(), in which case,
immediately retrieves the application from the queue, adds it to
a list of current opened applications, newApp(id), and starts
a pre-processing process for that application, preassess[id] – id
is a parameter by reference bounded to ca. These three actions
are done atomically, as indicated by the committed states
between actions. When an application is closed, closeApp[id],
only the authority that opened such application can close it,
controlled by inOpenApps(id), removing the application
from the current opened list using removeApp(id).

PreProcessing – a clock tpreproc tracks the pre-assessment
time, which should not exceed 30 days, as indicated by the
corresponding invariant. If documents are incomplete, ca is
set with the application id, enabling the authority to closes
the corresponding application.

Processing – clocks tproc, tapl , and taplproc track the
assessment, appeal, and appeal processing time, which should
not exceed 90, 32, and 60 days, respectively, as indicated by
the corresponding location invariants. After a decision is made,
ca is set with the application id, enabling the authority to
closes the corresponding application.

PP and CC – both automata are symmetric. Clocks, tpp
and tcc, track the elapsed payment time, which should not
exceed one day, as indicated by the corresponding invariant.

In addition, we model automata to orchestrate the way
the previous automata interact. Their functionality is given
as follows. selectPayment – synchronizes payment requests
(payapp) with payment by credit card or PayPal (paypp or
paycc). This automata corresponds to the FTA of Figure 1.
mergePaid and mergeCancelPay – synchronize a successful or
cancellation payment response from either PP or CC (paidpp
and paidcc, and cancelpp and cancelcc), respectively, and notify
the applicant (paidapp or cancelpay).

The parallel composition of these models is a network of
FTA, modeled in UPPAAL, representing a SPL with fea-
ture model fm = {{}, {cc}, {pp}, {apl}, {cc, pp}, {cc, apl},
{pp, apl}, {cc, pp, apl}}.

B. Verifying Properties

In order to verify temporal properties of FTA in Uppaal, it is
necessary to model valid products. This can be done by adding
an automaton to the network to represent the feature model.
Such an automaton consists of an initial committed location
and as many outgoing transitions to new locations (one per
transition) as valid feature selections. Each transition assigns
the Boolean value true to each variable that corresponds to
a feature contained in the corresponding feature selection. The
committed state ensures that a feature selection is made before
any other transition is taken. However, this is not the case if
there exists another automaton with initial committed states.
Such situation should be avoided. The feature model of the
SPL described befored is shown in Figure 3.

Examples of properties that can be verified in UPPAAL
are listed in Table I and can be interpreted as follows: P1 –
an application will eventually result in an accepted, rejected,
incomplete or canceled application, where ap0 represents an
application with id 0. This property is verified for all ids in
[0,APPS-1]; P2 – if either a PayPal or credit card payment
is canceled, the application eventually will be canceled. The
property corresponds to application 0 but can be proved for
all applications as before; P3 – if cc is not present, it is
not possible to eventually be in a state related to credit card
payments.; P4 and P5 – a submission and an appeal are
processed within 121 days and 60 days after being submitted,
respectively; P6 – it is not possible for an application to be
opened by more that one authority at the same time. Here
auth0 and auth1 are the only authorities. These properties
have been checked for APPS = 4, and AUTH = 2. Due to
the complexity of the model in terms of shared variables and
features, increasing the number of applications to 5 hinders
the verification due to the quick explosion in the state space.

V. DISCUSSION

By using formalisms like FTA it is possible to take advan-
tage of the commonalities present in all systems and define
variations of family members over the common set of features.
In addition the formal nature of FTA allows to verify whether

(a) Application

(b) Authority

(c) PreProcessing

(d) PayPal

(e) CreditCard (f) Processing

(g) Queue

(h) selectPayment

(i) mergePaid

(j) mergeCancelPay

Fig. 2: UPPAAL automata with FTA variability modeling domain functionality.

TABLE I: Examples of verifiable temporal properties in Uppaal (using Uppaal’s syntax).

Property Ref

Liveness ap0.apply --> (ap0.accepted || ap0.incomplete_app || ap0.payment_cancelled || ap0.rejected) P1
(mergeCancelPay(0).Lpp || mergeCancelPay(0).Lcc) --> ap0.payment_cancelled P2

Reachability !cc --> !(exists(i:app_id) (CreditCard(i).L1 || mergeCancelPay(i).Lcc || mergePaid(i).Lcc)) P3
Safety A[] ap0.submitted imply ap0.tproc <= 90+31 P4

A[] ap3.appealed imply ap3.tapl <=60 P5
A[] forall(i:app_id) !(auth0.inOpenApps(i) && auth1.inOpenApps(i)) P6

Fig. 3: UPPAAL automaton modeling the feature model.

the models satisfy a given property using well known real-
time model checkers, such as UPPAAL. However, despite
advantages of FTA, as we continued to refine the models of the
case study discussed, we notice that further support is needed
for more modular and compositional modeling of families
of services. We propose a simple scenario to illustrate how
orchestrating the interaction of FTA with variable orchestration
mechanism, i.e., depending on the presence of features, can
become cumbersome and error prone.

In alignment with the only-once principle mentioned in
Section II, a typical scenario is the ability to consult relevant
agencies whether a given applicant possesses a criminal record

or has all tax duties in order. We model such external sources
as FTA in Figure 4 (left). The model on the top left represents
an external database that receives a request to check a given tax
number (checkTax) and provides a response certifying whether
tax duties are in order (resTax), while the model on the bottom
left represents an external database that receives a request
to check a person ID (checkCR) and provides a response
certifying whether the person has criminal records (resCR).
Their presence depends on features tx and cr , respectively.

In this scenario, the authority must consult the required
external sources, if available, and wait for their responses
before deciding to grant the license. Figure 4 (right) shows
such an FTA, which is a simplification of automata Processing
from Figure 2. When an application is ready to be assessed
(assess), the authority consults external sources (checkES) if
supported by the service, waits until all responses are ready
(results), and makes a decision. In case the service does not
support consultation of external sources the authority can
directly make a decision.

The complication arise when modeling the interaction be-
tween the new FTA Assess and the external databases. First,

`0 `1

checkTax
tx

resTax
tx

`0 `1

checkCR
cr

resCR
cr

`0

`1 `2

`3

as
se

ss

checkES
tx ∨ cr

results
tx

∨
cr

accept
¬
(tx

∧
cr

)

re
je

ct
¬
(t
x
∧
cr

)

accept
tx ∨ cr

reject
tx ∨ cr

Fig. 4: Two FTA modeling external databases (left) and an
FTA modeling an Assess component.

`0

`1

`2 `3

ch
ec

kE
S

tx
∨
crch

ec
kT

ax

tx
∧ c

r

checkCR
tx ∧

cr

checkCR
tx ∧ cr

checkTax
tx ∧ cr

checkTax
tx

∧
¬
cr

ch
ec

kC
R

tx
∧
¬
cr

`0`1

`2

`3

resCR
cr

resTax
tx

resCRcrresTa
x

tx

results
¬tx

results
¬cr

results
cr ∧ tx

Fig. 5: Variable orchestration mechanisms, invoking two
databases (left), and waiting for their responses (right).

it is necessary to model the possibility of invoking both
databases in any possible order, but considering that the
presence of both databases is optional, thus all combinations
of presence of features tx and cr must be considered. The FTA
on the left of Figure 5 illustrates such a model. The FTA waits
for an action checkES, which will be present if at least one of
the databases is supported (tx ∨ cr). If only one database is
present, it calls the corresponding database. If both are present,
they can be called in any order. The difficulty in modeling such
a mechanism is twofold: 1) modeling correctly the feature
expressions of all transitions to avoid erroneous behavior,
either coming from transitions that can never take place, or
from transitions that can take place when they should not; and
2) correctly modeling all possible cases. For example, if the
feature expression associated with transition `1

checkTax−−−−−−→ `0
is erroneously set to tx ∧ cr instead of tx ∧ ¬cr , the FTA
allows calling only the database for taxes when both databases
should be called. Furthermore, if in the future a new database
is needed, for example to check if an applicant has a driving
license in order, it will be necessary to redesign the entire
FTA and calculate manually the new feature expressions. Such
an automaton for three databases, has 11 locations and 25
transitions. Thus, in addition to time consuming, it can become
cumbersome and error prone quickly. Similarly, the second
step is to model that results may be ready in any possible
order, and that the presence of a given result depends on the
presence of the databases. The FTA on the right of Figure 5
illustrates such a model. The same potential issues arise in
this example. As before, adding a new database results in an
automaton of 16 locations and 30 transitions.

In addition, it is possible to recognize that these automata
behave as a kind of variable replicator and a join orchestration
mechanism, respectively. A typical replicator consisting of an
input and two outputs receives an input signal and replicates
it to its outputs, while a typical join consisting of two

Assess ReplcheckES
tx ∨ cr

accept

reject

assess

result
tx ∨ cr

in
fin

o1
fo1

o2
fo2

||
checkES ↔ in

fm = > fm = (fo1 ∨ fo2) ↔ fin

fm = > ∧ ((fo1 ∨ fo2) ↔ fin) ∧ ((tx ∨ cr) ↔ fin)

result
tx ∨ cr

asess
accept

reject

o1
fo1

o2
fo2

Fig. 6: An scheme of an enriched FTA enabling inference of
variability restrictions among orchestrated automata.

inputs and one output waits for both input signals before
emitting an output signal. Given that these sort of orches-
tration patterns occur recurrently when modeling families of
services, it is interesting consider to enrich FTA in order to
facilitate the specification of generic orchestration mechanisms
to orchestrate services, similar to how connectors in the Reo
[3] coordination language orchestrate components. Such an
extension should enable the creation of complex orchestration
process by means of composition, without the need to calculate
the variability in the transitions. Instead, variability would
be inferred by the context, namely, the variability of the
services to orchestrate. In addition, by explicitly separating
the modeling of orchestration mechanism from the rest of the
systems’ functionality, it would be possible to model modular
FTA. This facilitates the maintainability of the SPL model,
for example, by enabling faster replacement or extension of
specific functionality or the way they are orchestrated.

In the envision extension, FTA are treated as components
with explicit interfaces, namely the actions on which they
synchronized. Interfaces can be input or output actions. Each
interface action in a given automata has a variability asso-
ciated, which can be inferred from the variability associated
with transitions labeled with such actions, i.e., an interface is
present if at least one transition labeled with such an action is
present. Each automaton expresses its feature model. Thus, an
enriched composition mechanism, would enable to compose
automata by explicitly linking interfaces, thus avoiding the
need to use identical action names when modeling automata.
The composition would compose their feature models, and
impose additional restrictions over the interfaces linked, i.e.,
linked interfaces in addition to depending on their variability
would depend on each other. Thus, orchestration mechanism
can be modeled using generic names for actions and feature
expressions, they can have their own feature model, and when
composed, their interfaces would depend, in addition, on the
actual interfaces they connect to.

Figure 6 illustrates this concept. Assess corresponds to the
FTA shown in Figure 4, with fm = > to indicate that any
combination of features cr and tx is possible. Repl is a generic
version of the Repl in Figure 5 modeled in terms of features
fin , fo1 , and fo2 . The associated feature model indicates that
an output interface can be present, if and only if, the input
is present. By composing both FTA and linking interfaces
checkEs and in, the variability of the resulting automata is
inferred from the feature model of both automata and the
restriction imposed by the new connection. In the resulting

automata interfaces checkES and in are hidden, given that they
become internal actions.

Adding a new database to the previous example would
reduce to replace the current Join and Repl by a Join of three
inputs and one output, and a Repl of one input and three
outputs, respectively. For example, the three input join can
be created by connecting the output of a generic join of two
inputs, to an input of another generic join of two inputs.

VI. RELATED WORK

This section provides a brief overview of related work
regarding formal behavioral modeling and verification of SPL,
development of electronic licensing services, and use of SPL
to support e-government.

Regarding formal modeling and verification of SPL relevant
approaches in the literature include the following. In [4]
the authors proposed Featured Transitions Systems to model
families of Transitions Systems. The semantics of Featured
Timed Automata is based on such an extension. In [1] the
authors of FTA also introduce ProVeLines2, a product line of
verifiers for software product lines. The advantage of using
this tool is that it enables to identify all products that do not
satisfy a given property. However, the installation and use of
the tool is not straightforward. In [5] the authors propose an
extension to Petri Nets, called Feature Nets (FNs) to specify
the behavior of a SPL in a single model.

Regarding the development of electronic licensing services,
only a few relevant studies were found in the literature. In [6],
the authors propose a composite domain framework for rapid
development of electronic public services (EPS). It includes
frameworks for building the front office and back office part
of an EPS. A software infrastructure and a software process
is proposed in [7] for the rapid development of EPS and its
application is shown in [8] through a case study focused on
delivering licensing services. In [9], the authors propose an in-
teroperability integration framework to align the organizational
structures and processes of different government agencies and
to provide integrated public services.

Regarding SPL support for e-government, only a few studies
were found in the literature. In [10] the authors propose a
software product line for generating front-end environments
for an e-government context management system. In [11] the
authors propose a method to generate personalized government
documents using SPL. The approach takes advantage of the
high level of reuse in government documents.

VII. CONCLUSIONS

In this paper we try to motivate the use of formal methods
and software product lines for the e-government domain. We
presented a case study on modeling families of public licensing
services by using the FTA formalism and UPPAAL model
checker, and analyze the suitability of such an approach for
this domain. Although FTA is a rich formalism, we believe it
can be extended to provide better support in the modeling of

2https://projects.info.unamur.be/fts/provelines/

distributed services. In particular, the design of orchestration
mechanism for families of distributed services can become
cumbersome and error prone using bare FTA. We illustrate
this with a scenario from the domain and provide hints on
how to extend FTA.

Based on the lessons learned from the case study, we are
currently developing such an extension to FTA, which can
simplify the modeling of families of service by means of
composition.

ACKNOWLEDGMENT

This work is part of the project SMARTEGOV: Harness-
ing EGOV for Smart Governance (Foundations, Methods,
Tools) / NORTE-01-0145-FEDER-000037, supported by
Norte Portugal Regional Operational Programme (NORTE
2020), under the PORTUGAL 2020 Partnership Agreement,
through the European Regional Development Fund (ERDF).
The first author is further supported by FCT under grant
PD/BD/52238/2013.

REFERENCES

[1] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay, “Behavioural
modelling and verification of real-time software product lines,” in Pro-
ceedings of the 16th International Software Product Line Conference-
Volume 1. ACM, 2012, pp. 66–75.

[2] L. Veiga, T. Janowski, and L. S. Barbosa, “Digital government and
administrative burden reduction,” in Proceedings of the 9th International
Conference on Theory and Practice of Electronic Governance, ICEGOV
2016, Montevideo, Uruguay, March 1-3, 2016, 2016, pp. 323–326.
[Online]. Available: http://doi.acm.org/10.1145/2910019.2910107

[3] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical Structures in Computer Science, no. 3, pp.
329–366, 2004.

[4] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal prop-
erties in software product lines,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 335–344.

[5] R. Muschevici, J. Proença, and D. Clarke, “Feature nets: behavioural
modelling of software product lines,” Software & Systems Modeling,
pp. 1–26, 2015.

[6] A. K. Ojo, T. Janowski, and E. Estevez, “A composite domain framework
for developing electronic public services.” in International Conference
on Software Engineering Theory and Practice (SETP), 2007, pp. 234–
241.

[7] T. Janowski, A. Ojo, and E. Estevez, “Rapid development of electronic
public services: Software infrastructure and software process,” in Pro-
ceedings of the 8th annual international conference on Digital govern-
ment research: bridging disciplines & domains. Digital Government
Society of North America, 2007, pp. 294–295.

[8] ——, “Rapid development of electronic public services: A case study in
electronic licensing service,” in Proceedings of the 8th annual interna-
tional conference on Digital government research: bridging disciplines
& domains. Digital Government Society of North America, 2007, pp.
292–293.

[9] M. Al-Husban and C. Adams, “Connected services delivery framework:
Towards interoperable government,” Emerging Mobile and Web 2.0
Technologies for Connected E-Government, vol. 50, 2014.

[10] V. M. A. de Lima, R. M. Marcacini, M. H. P. Lima, M. I. Cagnin, and
M. A. S. Turine, “A generation environment for front-end layer in e-
government content management systems,” in Web Congress (LA-WEB),
2014 9th Latin American. IEEE, 2014, pp. 119–123.

[11] M. C. Penadés, P. Martı́, J. H. Canós, and A. Gómez, “Product line-
based customization of e-government documents,” in PEGOV 2014:
Personalization in e-Government Services, Data and Applications, vol.
1181. CEUR-WS, 2014.

