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Autonomous underwater vehicles (AUVs) are increasingly being used to perform mine countermeasures (MCM) operations but
its capabilities are limited by the efficiency of the planning process. Here we study the problem of multiobjective MCM mission
planning with AUVs. The vehicle should cover the operating area while maximizing the probability of detecting the targets and
minimizing the required energy and time to complete the mission. A multi-stage algorithm is proposed and evaluated. Our algorithm
combines an evolutionary algorithm (EA) with a local search procedure, aiming at a more flexible and effective exploration and
exploitation of the search space. An artificial neural network (ANN) model was also integrated in the evolutionary procedure to
guide the search. The combination of different techniques creates another problem, related to the high amount of parameters that
need to be tuned. Thus, the effect of these parameters on the quality of the obtained Pareto Front was assessed. This allowed us to
define an adaptive tuning procedure to control the parameters while the algorithm is executed. Our algorithm is compared against
an implementation of a known EA as well as another mission planner and the results from the experiments show that the proposed
strategy can efficiently identify a higher quality solution set.
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1. Introduction

Minefields are responsible for halting economic develop-
ment by causing huge problems in worldwide shipping and,
more importantly, causing injuries and death to humans.
Nowadays the cost of producing and laying a mine is much
less than the cost of removing it so there is a need to de-
velop an accurate mine detection system that involves lower
operating costs.1 MCMs can be divided into two types:
passive and active. Passive countermeasures involve reduc-
ing a ship’s acoustic and magnetic signature to prevent
mines from detecting it. Active countermeasures involve
minesweeping or minehunting. Minesweeping is the clearing
of a pre-defined area, whereas minehunting involves system-
atic detection and elimination of mines, one at a time. Sea
minehunting has been typically conducted using systems
towed from a surface craft or helicopters. One major step
taken to improve these capabilities is the introduction of
AUVs.

AUVs are able to perform underwater minehunting
missions with higher efficiency, reduced search time and
even with covert search capability when compared to tra-
ditional methods. The vehicle is launched, operated and
recovered from a surface ship and carries mine reconnais-
sance sensors that are used to locate and identify mine-like

objects (MLOs). In order to have such an important role
in quickly and safely demining an area, the AUV needs to
properly navigate through that area. Hence, a path needs
to be carefully planned so all the area is sampled. There
is an abundance of path planning algorithms in literature
and, for this specific application, a small subset known as
coverage path planning algorithms is usually used.2 It is
then understandable why the mission planning phase of
traditional MCM operations is so important and often con-
sumes as much time as the survey itself: a path needs to
be found that maximizes the probability of detecting mines
(therefore reducing risk) and minimizes the operating time
and energy consumption.

EAs have been successfully used in the past for solv-
ing the multiobjective path planning problem.3,4 This ap-
proach is an alternative to classical optimization methods
with the capability of incorporating a variety of optimiza-
tion goals, and is capable of solving the path planning prob-
lem involving a big search space quickly, although not guar-
anteeing that an optimal solution is found. One of its most
important features is their capability of finding a distinct
set of best solutions, optimizing each of the objectives in a
different manner. The analysis of each of these solutions in
terms of trade-offs provides a better understanding of the
problem to the decision maker.
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Coverage path planning (CPP) consists of determin-
ing a collision-free path that allows a robot to pass over
all points of an area of interest. Since the robot must pass
over all points in the workspace, the CPP problem is re-
lated to the covering salesman problem (CSP), a variant
of the traveling salesman problem (TSP) where, instead
of visiting each city, an agent must visit a neighborhood of
each city.5 It is essential to many robotic applications, such
as demining, vacuum cleaning,6 automated painting,7 auto-
mated field operations,8 window cleaners9 and bathymetric
surveys.10

A considerable amount of research addressing the CPP
problem can be found in the literature. Choset [2] presented
a survey on the field. CPP algorithms can be classified as
heuristic or complete depending on whether or not they
guarantee complete coverage of the free space.2 Addition-
ally they can be classified as either offline or online. Of-
fline algorithms rely only on stationary information, and
the environment is assumed to be known in advance. In
offline algorithms all information about the terrain is pre-
viously known and assumed stationary and path planning is
done entirely computationally. After the path is planned,
the robot moves along the planned path until the end of
the mission. In online algorithms, some or no prior knowl-
edge about the environment to be covered is perceived pre-
viously. Sensors are needed in order to provide informa-
tion about the environment, compensating for its absence.
While the robot is navigating, the planned path will be
updated accounting for the new information until the final
position is reached. Although an online algorithm can plan
for an unknown environment successfully, there is no guar-
antee that an optimal path will be obtained by using local
information to guide path planning.

Next, a brief survey is presented covering some recent
applications of CPP in the general field of robotics. Cheng
et al. [11] presented an algorithm for time-optimal trajec-
tory planning for an Unmanned Aerial Vehicle (UAV) exe-
cuting 3D urban environments coverage. They developed a
set of simplified coverage models to represent the urban fea-
tures, converting the complicated 3D coverage problem into
the problem of covering regular surfaces as hemispheres and
cylinders. They also derived a lower bound on the time to
achieve complete coverage of those surfaces assuming con-
tant speed and designed an analytical motion plan whose
coverage time is bounded by a constant factor times the
lower bound. The designed coverage plan consists of a se-
quence of horizontal circles at different altitudes on the
flight hemisphere. Each building was treated as an individ-
ual planning problem, ignoring nearby buildings. Their ap-
proach is validated using hardware-in-the-loop simulations
involving a fixed wing aircraft.

Oksanen and Visala [12] proposed two greedy algo-
rithms algorithms to find efficient 2D coverage patterns of
agricultural fields. The necessary condition is to cover the
whole field, and the goal is to find as efficient a route as pos-
sible. The first approach adopted the trapezoidal decompo-
sition method and searched for the best driving direction
and selection of subfields. The goal is to split a single field

plot into subfields that are simple to drive or operate. The
algorithm tries to iteratively decompose the field and re-
move the most efficient block (with the best cost), until
the whole field is split. In order to find the best direction,
the algorithm calculates the cost for a descrete set of direc-
tions, selects the best and refines the search by decreasing
angle step size. The search continues until angle resolution
is just below one degree. The drawbacks of the algorithm
primarily concern the straight driving lines (caused by the
decomposition). The underlying idea of second proposed
algorithm is to follow the shapes of field edges and not to
force them straight (following the shape of the edge or mov-
ing around the field as a spiral). The second algorithm is
also an incremental algorithm, but the path is planned on
the basis of the machine’s current state and the search is on
the next swath instead of the next subfield. Here, after each
swath all the possible routes are simulated over a certain
prediction horizon and the best of these is applied. This is
continued until the whole field is covered by the operation.

Jin and Tang [8] developed an algorithm for 2D and
3D terrain field coverage path planning. The algorithm clas-
sifies the field terrain into flat and sloppy areas and then
applies the most appropriate path planning strategy to each
region minimizing headland turning cost, soil erosion cost,
and skipped or overlapped area cost. The terrain character-
istics have significant influence on the design and optimiza-
tion of the coverage path. Elevation variations or slopes
have considerable influence on soil erosion, skips and over-
laps between furrows, and vehicle’s fuel consumption. They
also addressed terrain decomposition because the topogra-
phy of a terrain field might have high variance between
different areas making it difficult to find a single coverage
pattern for the entire field. By decomposing the terrain
into multiple subregions and calculating a different cover-
age planning pattern to each one, the coverage cost could
be further minimized. A searching algorithm named "seed
curve" was provided for the calculation of the optimized
path. For each subregion, the final output of the planning
algorithm is a set of curved paths that are side by side
minimizing coverage costs. A recommended “seed curve”
based on a customized cost function was searched for each
subregion, and parallel coverage paths were generated by
offsetting the found “seed curve” towards its two sides until
the whole region was completely covered.

Xu et al. [13] presented an adaptation of an opti-
mal terrain coverage algorithm for the aerial robotics do-
main. The general strategy involves calculating a trajec-
tory through a known environment with obstacles ensur-
ing complete coverage of the terrain while minimizing path
overlap. The algorithm consists of partitioning the terrain
into cells using the Boustrophedon Cellular Decomposition
(BCD) method, and then generating an Eulerian circuit
through all connected cells by solving a linear program-
ming formulation. The Reeb graph, built using the critical
points identified by the BCD algorithm, is used as input to
the Chinese Postman Problem14 to calculate an Eulerian
circuit, which consists of a path traversing through every
cell. Given an Eulerian circuit connecting all cells, each cell
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can be covered by generating back-and-forth motions tak-
ing into account the kinematic constraints of the vehicle.
The resulting trajectory is represented as a set of waypoints
forming parallel sweep lines through the cell. The direction
of coverage is defined as the orientation of the coverage ex-
ecution as the UAV moves through the free space, which is
orthogonal to all of the sweep lines. Extensive experimental
results in simulation validated the presented system, along
with data from more than 100 kilometres of real coverage
flights using a fixed-wing aircraft.

In the underwater domain, coverage path planning re-
search has its most important application in the context of
MCM applications. Stack et al. [15] presented a 2D cov-
erage algorithm for MCM using cell decomposition. They
investigate a planning scheme for incomplete coverage. This
scheme divides the search area into cells and surveys each
cell using a line-sweep pattern with a row spacing that is
larger than the sensor footprint, exploring the fact that
mines are normally placed in lines. They assume that if
mines are evenly spaced, then randomly varying the spacing
between each row in the lawn-mowing pattern will decrease
the probability of missing an entire mine line. A certain
probability of detection (POD) is ensured by establishing
bounds on row spacing. A perfect POD is assumed for any
mine within the sensor footprint. Their coverage scheme
aims at minimizing the size of the uncovered regions while
keeping them distributed over the search area. The place-
ment of the rows on the right and left sides of the area is
random while the placement of the rows in the middle is a
function of the estimated undetected mine locations.

Fang et al. [16] developed an algorithm for 2D offline
global mission planning, involving the (boustrophedon) de-
composition of the surveyable area into subareas using an
approximation to the generalised Voronoi diagram, calcu-
lation of paths within subareas that allow for incomplete
sonar coverage, and connection of subarea paths with tran-
sits to obtain a mission plan. They intend to cover a well-
known planar seabed using an AUV fitted with side-looking
sonar, maximizing area coverage rate. Paths within each
cell were aligned with the edges of the cell produced by
the decomposition process. They consider both even and
uneven lawn-mowing coverage patterns but the spacing is
fixed, proportional to range setting. Since they assume a
planar seabed, they cannot consider a complex topogra-
phy and therefore there was no need to implement variable
spacing between the segments.

Williams [17] presented an 2D offline coverage algo-
rithm for MCM that optimizes the spacing between par-
allel tracks in order to maximize POD, considering seabed
type and range. It is assumed that the probability of de-
tecting a mine, if one is present, improves to the maximum
of any single view of a given location. They consider a sce-
nario where an area must be surveyed to a certain detection
level, regardless of the amount of energy and time required
to execute a specific mission plan (they assume that the
AUV has sufficient energy). Their track-spacing algorithm
consists of an exhaustive greedy search for the best tracks.
At each iteration, the gain in POD caused by every possi-

ble track is calculated and the track that maximizes it is
chosen and added to the set of tracks to traverse. Because
of the greedy approach employed, the set of selected tracks
is necessarily ordered in terms of decreasing gain in aver-
age POD. To further improve these selected tracks a small
geographical displacement of each track is considered. This
process is iterative and executed until no improvement is
observed. The main disadvantage of this greedy algorithm
is that solutions are only locally optimal.

Das et al. [18] presented a 2D mission planner for
robotic surveys in the ocean targeting the detection of
harmful algal blooms. They use remote sensing (satellite
and radar) to identify relevant bloom patches. After these
areas are identified, an appropriate sampling path for the
AUV is calculated. They use a lawnmower pattern with
constant swath width and assume that the parameters of
the bounding box that defines the survey area are prede-
cided. Their goal is to attain maximum spatio-temporal
sampling resolution at the regions of interest, thus maxi-
mizing the total signal intensity in that region (this measure
is their sampling reward). To determine the location and
orientation for a survey with a known layout and dimen-
sion they fit a bounding box to the identified region that
has the maximum likelihood of an ongoing bloom. Then a
survey path is generated within this area.

Yan et al. [19] developed a mission planner for oceano-
graphic surveys which included a fault recovery architec-
ture. The general idea of their algorithm is that some sub-
areas need to be mapped using an AUV by performing a
sonar survey following a lawnmower pattern. It maintains
depth or altitude during the survey. They adopted a mis-
sion planning algorithm16 to guarantee the complete cover-
age for each subarea, thus inheriting its disadvantages. In
order to interconnect all the subareas while minimizing the
length of the path, the authors formulated the problem as
a prize winning salesman problem (PWSP) but no further
information on the algorithm was provided.

Morin et al. [20] developed an offline coverage path
planning algorithm for AUVs for performing MCM oper-
ations. They assume imperfect sensors and that multiple
scans of the same area are independent. The POD depends
on the seabed type of the surveyed region and on the range
of the sensor. They use a cellular decomposition to repre-
sent the ocean floor by a grid of uniform square cells. The
goal is to plan a path that achieves the minimal required
coverage in each cell while minimizing the total travelled
distance and the total number of turns. The robot can only
move on the grid lines between the cells that represent the
environment, therefore limiting the direction of movement
of the vehicle to four directions. This is the big disadvantage
of their algorithm. It is based on dynamic programming and
on a travelling salesman problem reduction. The algorithm
is composed of two main phases. In the first phase, a greedy
technique constructs a set of disconnected vertical or hor-
izontal segments such that a robot travelling along these
segments will achieve the required coverage. In the second
phase, they use a TSP reduction to optimally connect the
segments obtained in phase 1, obtaining a feasible path of
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minimal length.
At some point while the survey is being performed by

the autonomous vehicle we may need to decide whether
to continue with preplanned search paths or recalculate
a new path in the presence of additional information.
Over a long time interval, the benefits of adaptive au-
tonomous search are overcome by performance of standard
preplanned search paths.21 If the goal of the mission is to
find an object as soon as possible (as in search and rescue
operations), it would be advisable for the vehicle to react
to new information for a small interval of time. However,
if the goal is to find all the objects in the area over a fixed
interval of time then it is more beneficial to to maintain
its initially planned paths for the duration of the search.
Since many information is available a priori, an optimal
path should be precomputed offline. Only if the informa-
tion is found to be significantly different, while the mission
is being executed and new data becomes available, should
the path be efficiently modified. Although in this work we
focus on optimizing the path offline, we present an inter-
esting solution for online mission planning.

Paull et al. [22] developed an 2D online coverage
method for robots equipped with side-looking sensors. This
coverage method continuously directs the vehicle’s heading
using multiobjective optimization to maximize the informa-
tion gain produced by the sensor measurements. The main
advantages are that the AUV is able to maintain heading
for better data mosaicing in the presence of currents or
erratic waypoint tracking behaviour and it can adapt to
changes in environmental conditions that can be detected
in situ. This method is demonstrated in simulation and
experimentally on an AUV conducting MCM operations.
The results also show that the information gain approach
alone is not sufficient as the mean path lengths are longer
then in the cases using lawnmower tracks (common issue
in greedy approaches). No information is given describing
the methodology used to determine the set of weights in the
utility function, which is an important process that dictates
the quality of the final solution. Also, the optimal solution
entirely depends on the chosen utility function, which is
highly subjective.

This article consists of four sections and is structured
as follows. Section 2 presents our multiobjective mission
planning problem. Section 3 gives a brief introduction on
multiobjective problems and discusses the applicability of
EAs to solve them. Here we also provide a detailed de-
scription of the EAs that we designed to solve the prob-
lem under study and other relevant components. Section 4
presents and discusses the obtained results. Finally, in the
last section we give some conclusions and ideas for future
work.

2. The Mission Planning Problem

A typical mission is divided into three separate phases: the
detection phase, the classification phase and the neutraliza-
tion phase. In the detection phase, the location of potential

targets is estimated using the data acquired by low reso-
lution sensors that are able to sample a vast area. In the
classification phase, the identified targets are revisited, pos-
sibly with higher resolution and low coverage sensors so a
more accurate classification can be performed. In the neu-
tralization phase, the MLO is literally neutralized, either
by disarming it or by forcing it to detonate.

The most popular approach used for underwater mine
hunting is performing complete coverage of the operational
area. Complete coverage is achieved by ensuring that all
the area is scanned by the robot’s sensors. When conduct-
ing the detection phase with a sonar-equipped vehicle, a
lawn-mowing search pattern with several parallel tracks is
standard if no prior information on potential target loca-
tions is available.23

2.1. Measures of mission performance

In order to assess the effectiveness of a MCM operation we
need to be able to estimate the detection performance that
should be achieved in a specific mission.

2.1.1. Lateral range

The concept of a lateral range curve (LRC) was introduced
by Koopman [24]. Imagine a searcher following an infinitely
long, straight path, searching on either side of that path.
Lateral range refers to the perpendicular distance an ob-
ject is to the searcher’s path, more specifically to where
the searcher observes the object. That searcher’s LRC p(x)
is the probability of detecting a stationary object that is
at its closest exactly a distance x from the searcher’s path.
Figure 1 shows the relationship between coverage and prob-
ability of detection (POD) as derived by Koopman.

Fig. 1. Relationship between POD and coverage.

Theoretical lateral range curve

In order to calculate a map of POD in the operating area
we need to be able to calculate the POD at any (x,y) point.
Sonar equations are primary analysis tools for studying and
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predicting sonar performance. Prior [25] presented a simple
sonar model and derived a formula for calculating the POD
from the beam origin on the sonar, considering sonar and
environment properties.

Experimental lateral range curve

Target detection is influenced by many factors which may
make the task of building an accurate model of the in-
stantaneous detection unreasonable. The amount of data
required to extrapolate a LRC directly is much less than
that required to develop an instantaneous detection model.
The LRC is derived experimentally by moving a sensor
through an area where objects are randomly placed us-
ing parallel straight-line search transects. Development of
LRCs requires a large sample set with many detection op-
portunities, where the object positions are known, in order
to achieve a more statistically valid curve. Each point on
the LRC represents the probability that a target will be
detected from a specific closest point of approach range.
Derivation of the POD versus lateral range data requires
that the search results be processed to identify the range of
every detection opportunity for each search object on each
search transect.

2.1.2. Probability of detection

POD is an estimate of how likely it will be for a search
performed in a given area to find an object, assuming it
was there. POD measures sensor effectiveness, accuracy,
and quality for the search task. It has become the de facto
measurement used in search and rescue theory. It is known
that an overlap in area coverage can improve the detec-
tion performance. The redundant information that is gath-
ered helps to reduce ambiguity in a noisy environment. In
this sense, we present another important measure of perfor-
mance which is the cumulative POD. After covering a given
area multiple times, the probability of detecting the search
object, if it was present, should be increased as compared to
having searched the area only once. However, searching the
same area twice does not double the chances of detecting
it. When it is assumed that multiple searches are executed
independently of each other, the combined POD at lateral
range x is given by:

PODcum = 1−
n∏

i=1

(1− PODi) (1)

The degree of correlation between the information
gathered from two searches over the same area needs to
have a direct impact upon the manner in which detec-
tion probabilities are combined. Here, we consider three
different scenarios: no correlation, complete correlation or
an indeterminate amount of correlation. When there is
no correlation between the two searches, we use the for-
mula presented above to calculate the cumulative POD. If

assuming the existence of complete correlation, the com-
bined detection probability is simply the higher of the two
individual probabilities. When there is an indeterminate
amount of correlation between the detection performance
achieved in each search, an accepted practice26,27 is to aver-
age the probabilities obtained assuming complete indepen-
dence and complete correlation to estimate the combined
detection probability. Modern research involving the cal-
culation of the cumulative POD in different case studies
assume complete independence, but there are some prob-
lems with this approach.28 If we perform additional sur-
veys using the exact same path in the same conditions
(same sensors, detection algorithms, environmental condi-
tions) we would acquire the same information (same path
and conditions guarantees same perspective of the object)
in each survey so the several PODs should not be com-
bined since there is no information gain. Still, combining
the probabilities should be a close approximation to reality
since it is very difficult to replicate the exact same condi-
tions in different experiments. The choice of methodology
to be used to combine information from different surveys
should also take into account the specific nature of the prob-
lem. Minehunting operations involve a danger or risk fac-
tor that makes the cost of overestimating the POD much
higher than the cost of underestimating it. Ideally, we want
to use a methodology that produces the most reliable es-
timates but, when in doubt, it might be beneficial to opt
for a conservative estimate. These are obtained by assum-
ing the existence of complete correlation, thus by choosing
the higher of the individual estimates, which can be consid-
ered as the lower bound of the interval of admissible POD
estimates.

2.2. Covering with different types of sensors

Now we present a brief description of the characteristics of
conventional sidescan sonars and multibeam echosounders
to understand how they can be used for detecting MLOs.

The operating principle of the sidescan sonar is based
on forming an acoustic image by moving the sonar forward
and compiling the sonar response from successive pings.
A sidescan sonar uses transducers, one on each side, that
emit fan-shaped acoustic pulses down towards the seafloor
across a wide angle perpendicular to the path of the sen-
sor through the water. They have several advantages, such
as being available at a relatively low cost, being easily de-
ployed on AUVs and their ability to produce acoustic im-
ages of the seafloor with high resolution making it capable
of illuminating small targets such as the typical mines. All
sidescan sonars suffer from an inability to sufficiently il-
luminate targets within the “nadir-gap” area. This is the
part of the seafloor directly below the transducers that, be-
cause of the geometry of the sonar configuration, is under
sampled.

The multibeam bathymetric sonar generate a large
number of beams for each ping. It uses two or more per-
pendicular transducer arrays used to transmit and receive
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the beams. Along each beam (or direction), the range (cal-
culated from the time delay) to the seafloor is estimated.
The range estimate in each beam and the angle of the re-
ceived beam gives the relative height of the seafloor relative
to the vehicle. By combining data from consecutive pings,
a 3D map of the seafloor can be generated making them
nearly optimal instruments for bathymetric terrain naviga-
tion. One disadvantage of this type of sonar is the decreas-
ing angular resolution as a function of distance from the
nadir resulting in decreased resolution in the outer swath.

In practice, the most relevant feature that makes it
important for the mission planning algorithm to distin-
guish which type of sonar is used is the existence of the
nadir gap in sonar coverage, as illustrated in figure 2. If it
exists then a different technique should be used to optimize
the coverage plan. The traditional approach to compensate
for this property is to partially overlap consecutive swaths
so the respective nadir gaps are covered, also known as
uneven lawn-mowing.

The principal problem under study in this paper is
how to design and implement a more flexible 3D path
planning algorithm for the detection phase that enables an
AUV to efficiently cover the bottom of a submerged area
with no missed areas and with a specified minimum POD.
The planner should identify a set of transects, representing
sonar swaths, that maximize the estimated performance of
a MCM operation, using the available knowledge and re-
sources. Searching for a path requires the consideration of
the environment characteristics (terrain topography), avail-
able resources (characteristics of the onboard sensors, avail-
able battery power), maximum time available for the mis-
sion and vehicle kinematic constraints. The planner should
also return a map with the estimated detection performance
for the survey area and the total amount of resource spent
during the search. This leads to the formal statement of the
mission planning problem.

2.3. Decision variables

Mission path
A mission path is represented by a set of consecu-
tive straight-line transects also referred as swaths:

P = {s1, s2, ..., sn} (2)

The swaths represent the data acquired by the
sonar while traversing the useful parts of the trajec-
tory. When using the typical lawn-mowing cover-
age pattern, these swaths are parallel to each other.

Vehicle Velocity
The AUV will follow the specified path with a con-
stant forward velocity relative to earth equal to v.

2.4. Objectives

Maximize probability of detection

One of the goals of the planner is to maximize
the MCM effectiveness, which in this case is rep-
resented by the average probability of successfully
detecting the target on the survey area:

max
∑

PODs(S, P ) (3)

Minimize energy consumption

min E(P, v) (4)
The amount of energy consumed by the vehicle de-
pends on its velocity, orientation and the actual
path. Both the energy consumed by the motors and
the payload should be considered.

Minimize time to complete the mission

min T (P, v) (5)
The time required to execute the mission depends
only on the path and the component of velocity
that is parallel to the track direction.

2.5. Constraints

The bounds on the optimizing parameters are presented in
table 1.

Table 1. Design constraints of our optimization problem

Parameter Type of constraint

Battery capacity (Wh) vehicle performance
Percentage of energy available (%) vehicle performance
Velocity relative to water (m/s) vehicle performance
Maximum steering angle (o) vehicle performance
Sonar maximum range (m) sensor performance
Sonar vertical beam angle (o) sensor performance
Maximum operating time (h) mission requirement
Minimum POD (%) mission requirement

Obviously the vehicle is confined to the workspace defined
by the latitude and longitude of the survey area, the bot-
tom floor and the sea surface. The terrain is considered to
be static. It is assumed that there is sufficient knowledge
with regard to the properties of the terrain in which the
robot will operate.
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(a) Coverage with a multibeam
sonar

(b) Coverage with a sidescan sonar (c) Uneven lawn-mowing tech-
nique used for covering the
nadir gaps

Fig. 2. Different methodologies used in coverage problems.

3. Methods

3.1. Evolutionary algorithms for
multiobjective optimization

In a multiobjective optimization problem, the goal is to
find a set of different solutions representing distinct trade-
offs among the different objectives. These solutions are
known as Pareto-optimal solutions.29,30 In problems with
more than one conflicting objective there is no single opti-
mum solution. There exists a number of solutions which are
equally optimal and without any further information about
the problem or about the decision makers preferences, no
solution from this set can be said to be better than the
other. This set of solutions can be found using the Pareto
Optimality Theory.29 The goal of multiobjective optimiza-
tion is to find a set of solutions close to the Pareto-optimal
solutions, diverse enough to represent the entire spread of
the Pareto-optimal front.

The continuous improvement in hardware technology
has allowed the use of EA with higher complexity, provid-
ing efficient means for addressing real world problems that
traditional algorithms were unable to conquer. These tech-
niques are based on the principles of natural evolution as
presented by [31]. Evolution can be interpreted as adding
new individuals to a population, sharing information of the
fittest individuals. An EA consists of a population of can-
didate solutions, known as individuals, manipulated by a
set of operators, called variation operators, and evaluated
by a given fitness function. The fitness function determines
how good an individual is and assigns a corresponding fit-
ness value to the individual, which dictates his chances of
survival. The calculation of the fitness values involves the
evaluation of the considered objective functions.

Pareto dominance-based techniques remain the most
popular selection scheme adopted by Multiobjective evolu-
tionary algorithms (MOEAs), because of the several advan-
tages that it provides. The SPEA 2 [32] and NSGA 2 [33]
are two of the most popular MOEAs used when comparing
a newly designed MOEA.

3.2. Proposed EAs for mission planning

Solving the path planning problem is computationally very
expensive. The upper bound on the complexity of a n
degree-of-freedom path planning problem is O(nn), mean-
ing that the complexity of the path planning problem grows
exponentially with the number of degrees-of-freedom.34
Classical path planning approaches10 are traditionally used
to solve a single-objective optimization problem: find the
shortest path between the initial and goal locations, us-
ing a representation of the environment. Planners with a
shortest path objective may also implicitly satisfy other
optimization objectives imposed by the specific representa-
tion of the environment that is being used. However, there
is no classical path planning approach that can incorporate
several different optimization criteria and handle changes
in these optimization goals without changing the charac-
teristics of the planner itself. In path planning, the short-
est path may not always be the most efficient means of
getting from start to destination. There are many other
attributes of a path that may be desirable in addition to
distance and ultimately it depends on the specific prob-
lem that is being addressed. Another disadvantage is its
predisposition to getting trapped in locally optimal solu-
tions. In some situations, it can be useful to have several
alternative solutions to the path-planning problem rather
than a single solution. For example, in dynamic environ-
ments, one or more of these paths may become infeasible,
so one of the other feasible alternatives can then be chosen.
Evolutionary approaches provide an alternative to classi-
cal functional optimization methods with the capability of
incorporating a variety of optimization goals, and are capa-
ble of solving the path planning problem quickly, although
finding an optimal solution is not guaranteed. The short-
est path optimization objective is an important objective
in the path planning domain but, realistically, it may not
be the only optimization goal that is relevant. Real world
problems may involve the optimization of a variety of com-
plex and subjective objectives so it is preferable to develop
an efficient and flexible planning methodology that can be
successfully applied to different applications.
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The preferred procedure to solve multiobjective op-
timization problems is to follow the preference-based ap-
proach, where the decision maker specifies his preference
structure with respect to the multiple objectives. The abil-
ity of an EA to find multiple optimal solutions in one single
iteration of the algorithm makes the EAs unique in solving
multiobjective problems. Since the a posteriori preference
articulation techniques for multiobjective optimization re-
quire multiple trade-off solutions to be found, an EA’s ca-
pability of generating and handling a population of several
individuals can be suitably used to find a number of so-
lutions for the multiple-objective in a single iteration. As
MOEAs have been successfully used to find good solutions
for complex multiobjective problems in engineering, we de-
cided to propose one MOEA to solve our mission planning
problem. Our approach is a a posteriori technique, more
specifically a Pareto-based approach, that on each iteration
searches for a set of solutions near the true Optimal front.
It shares the structure of the generic EA, but is adapted
to solve our specific multiobjective path planning problem.
The mission planning algorithm is an offline planner that
should be executed before the vehicle is deployed in the
target area.

3.2.1. Individual representation

In our EA, we consider an individual as a solution repre-
sented by a vector of real valued parameters x ∈ Rn. Thus,
an individual is represented by:

Ind ∈ (t, θ, d, a, v) (6)

where t is the track spacing, θ is the track direction, d
is the depth of the path (used if we are planning with con-
stant depth), a is the altitude of the path relative to the sea
floor (used if we are planning with constant altitude) and
v is the velocity relative to the water that will be adopted
by the vehicle while executing the mission. This set of pa-
rameters is needed to automate the procedure of generating
different individuals in decision space. They also allow the
comparison of high level proprieties of distinct individu-
als. These parameters are related to decision variables and
therefore can be combined together to generate values for
these variables.

3.2.2. Standard EA

Initialisation An initial population of individuals is
randomly generated from a uniform distribution in deci-
sion space. When generating the different individuals we
need to consider the boundaries of the parameters that de-
fine them. The total vertical distance available is calcu-
lated by subtracting a maximum depth (which considers
the terrain’s topography and the vehicle’s minimum oper-
ating altitude) to a specified minimum operating depth.
The values for the direction are bounded by 0 and 360 de-
grees. The values for velocity are bounded by the minimum

and the maximum velocities defined for the specific vehicle
being used. For the track distances, we decided to create
a different set for each specific depth. The boundaries of
these sets were calculated taking into account the maximal
horizontal distance which is covered with the pre-specified
maximum sonar angle, at a given depth. For each depth,
the minimum distance between two tracks would be this
single sided horizontal distance, while the maximum would
be twice this distance. When separated by this maximum
distance, two consecutive tracks will not produce overlap-
ping swaths, constituting the upper bound of the set of
track distances.

Evaluation The detection performance achieved by
each individual is determined by calculating the cumula-
tive POD (assuming no correlation between observations
at the same location), a process that is detailed in 2.1.2,
using a lateral range curve. The required energy to com-
plete the mission is calculated by considering the average
energy required by the AUV’s onboard systems and the
motors. The required time is calculated by considering the
velocity of the vehicle relative to water and the current ve-
locity at the operational area. Only individuals that present
a detection performance level above the minimum and re-
quire a amount of time and energy to complete the mission
below the pre-specified maximum are allowed to join the
population.

Fitness Assignment Our algorithm adopted the fit-
ness assignment strategy introduced by SPEA 2, which con-
sists of calculating a strength value, a raw fitness value and
a density value for each individual in the population. The
strength value assigned to each individual represents the
number of individuals dominated by him. The raw fitness
value of an individual is determined by adding the strengths
of the individuals that dominate him. In order to differen-
tiate individuals with the same raw fitness value, density
information is added to that value. The density associated
with an individual is the inverse of the distance to the k-th
nearest neighbour. By adding this density estimate to the
raw fitness value, we obtain the fitness of an individual.
We then filter the whole population by density by remov-
ing individuals from denser areas (closer then a specified
minimum distance) in the objective space.

Environmental Selection Our approach is elitist and
we do not implement a fixed archive or population size.
We believe that this feature does not make sense since that
could lead to a situation where we had clusters of individu-
als scattered around the search space. The objective of our
evolutionary search is to produce the best possible Pareto
Front, containing individuals uniformly scattered in space.
Therefore, the number of individuals is not a parameter
or a requirement. We instead decided to only control the
density of individuals in the containers, which affects the
number of individuals.
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Mating Selection Our strategy for selecting the par-
ents for the next generation population is to:

• mate individuals in the archive;
• mate individuals in the archive and the population.

The first action is achieved by combining properties of in-
dividuals in the archive which are close to each other in
the objective space. We need the pair to be close to each
other because we want to minimize the randomization ef-
fect that exists when we combine two different individuals.
For the same reason, we mate an individual from the pop-
ulation with the closer individual from the archive, hoping
that the offspring is closer to the known Pareto front.

Recombination Our main goal is, for each pair of in-
dividuals in the mating pool, to improve the strengths of
the less fit individual by sharing attributes of the fitter.
The procedure consists of identifying of the fitter individ-
ual, normalizing of the objective function values and im-
proving the strengths of less fit individual. Each individual
can have one strength: detection performance, energy con-
sumption or time required to complete the mission. Several
actions can be performed to improve the performance on
the identified objective. To improve the detection perfor-
mance we can change the depth, the track spacing or the
type of fitting. To improve the energy consumption or the
time required to complete the mission we can change the
track spacing, the direction, the velocity or the type of fit-
ting of the trajectory. Changing the direction can have a
big impact when dealing with currents. Then we assign a
probability for each of those actions. For example, if we in-
tend to improve detection performance then we can assign
the following set of probabilities: 40 % for changing depth,
40 % for changing track spacing and 20 % for changing the
type of fitting of the trajectory. This means that we need
to determine which action will be executed by obtaining a
random number with a uniform distribution. The recombi-
nation is then executed by creating a new individual which
is an evolution of the unfit individual, sharing the previ-
ously chosen attribute with the fit individual.

Mutation The mutation strategy is similar to the one
used in recombination: improve the performance of an in-
dividual in the archive relative to the objective where he
performs better by simply modifying a given attribute by
a small amount. To avoid the loss of good individuals from
the population, and to improve the speed of convergence
of the EA, asexual reproduction is also used to copy the
non-dominated individuals (in the archive) to the next gen-
eration.

Termination The execution of the EA stops when one
or more pre-specified termination criteria are met:

• a pre-specified number of generations is achieved;
• the maximum time allocated for the process is
achieved;

• the algorithm converges (no improvement over a
several generations).

While the termination criteria is not met the algorithm re-
sumes execution on the evaluation step.

3.2.3. Informed EA

Realistic and complex engineering problems, like the one
we are discussing here, involve objective functions that can
be very expensive computationally. Consequently, it is ad-
visable to assess the integration of approximate models,
which are usually orders of magnitude faster. These ap-
proximate models provide less-accurate but more efficient
estimates of the original objective function values and can
be either readily available or can be learned on-line (dur-
ing the course of the optimization) or off-line (by sampling
and building a model before optimization). This can be in-
terpreted as the addition of a learning mechanism because
the information acquired due to the interaction with the
environment will allow the acceleration of the evolutionary
process.

As a result, we decided to combine our EA with an ap-
proximation technique, more specifically ANNs. EAs usu-
ally need a sufficiently large number of function evaluations
to reach the optima of the problem. By using an approxi-
mate model of the problem we are in fact reducing the num-
ber of expensive exact function evaluations. The main task
of the approximate model is to capture the general trend
of the fitness landscape and guide the search towards the
better regions while reducing the number of exact function
evaluations needed to find the best solutions. This guid-
ance is executed by assessing the performance of multiple
candidate individuals using the approximate models, with a
much smaller evaluation time, and choosing only the best to
integrate the next generation population. One of the chal-
lenges that arises is the need to update the approximate
model using new information from exact function evalu-
ations throughout the execution of the algorithm, adding
finer details to the fitness landscape.

It is important to develop an algorithm that adjusts
the training process to the performance of the neural net-
work in an changing environment. If the data used for train-
ing is not representative of the decision space, then signifi-
cant estimation errors may take place. This can easily hap-
pen if the training data is insufficient, which is common
during the initialization phase of the EA as the number
of exact function evaluations is very limited in order not
to take too much time. As the number of generations in-
creases, more exact function evaluations will be available
covering different regions of the search space. Another dif-
ficulties are how to improve the generalization capability of
the network and manage a continuously growing training
data set without running out of memory or increasing the
processing time beyond given limits (see subsection 3.7).
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Initialisation The initial population is populated
with Np individuals randomly generated from a uniform
distribution in decision space. These individuals are evalu-
ated with the original objective functions since at this point
the approximate model is still not available. It is the most
important phase because it will create the first overview of
the fitness landscape that the algorithm will use to guide
the search and also because these exact evaluations will be
used to train our approximate model. The choice of opti-
mum value for the Np parameter is critical for the success
of the algorithm as higher values will create a more de-
tailed picture of the fitness landscape at the cost of a longer
processing time since all objective function evaluations are
exact.

Neural Network Training The first phase of each gen-
eration is dedicated to neural network training. We im-
plemented a classical multilayer feedforward architecture
using the standard error back-propagation algorithm with
sigmoidal activation function. Our ANN structure is char-
acterized be receiving in the input layer six parameters
that define an individual, generating the estimated objec-
tive function values at the output layer. Our EA keeps a
history of all precise function evaluations performed to date
and this information is used every k generations to train
the approximate model. Since the amount of data increases
each generation, there is a need to control this growth (see
subsection 3.7).

The first time this phase is executed several distinct
network topologies are compared. Since it is proven [35]
that a ANN with two hidden layers can approximate any
function with negligibly small error, we test networks with
different number of neurons in each layer. As indicated by
[35], we use as maximum number of nodes for the first and
second hidden layers the output of the following equations,
respectively, ensuring that the training data will not be
overfitted:

N1max =
√

(m+ 2)N + 2

√
N

(m+ 2)
(7)

N2max = m

√
N

(m+ 2)
(8)

The minimum values for the neurons were obtained through
experience: for the first hidden layer we chose twice the
number of input neurons and for the second twice the num-
ber of output neurons. A third parameter needs to be used
to iterate between all possible values, called ∆neurons, lim-
iting the search space for the ANN structures. All the ANNs
in the network container are trained and validated. In order
to train the ANNs and validate the models we divide the set
of precise function evaluations into two sets: a training set
(80%) used for tuning the ANNs and a validation set (20%)
used for performance evaluation. The training and valida-
tion steps performed followed common procedures, such as

normalizing the data tuples used, starting the learning pro-
cess from different random initial states (weights are initial-
ized to random numbers between -1 and 1) and observing
performance along the training iterations. The performance
measure used was the mean square error (MSE) function.
The learning process was controlled based on the behaviour
of the MSE function on the training set. After this initial
phase (in generation 1), ANNs are ranked by validation
MSE and only the best nnn are kept and updated, using
the one with smaller validation MSE. Training stops when
the specified maximum number of epochs is achieved, if the
training error is smaller then the desired error or when it
converges to an error bigger then the desired one. The first
ANN to achieve the desired error is the one that is used as
the approximate model. Therefore, the other ANNs in the
container are only trained in the worst case scenario.

Fitness Assignment / Termination / Mating Selection
Same procedure of the original EA.

Recombination Instead of the stochastic process used
in the original EA, now all possible offspring (all attribute
combinations of the parents) are evaluated using the ap-
proximate model. This could not be done before because
we were using the original expensive objective functions, so
we had to test one random combination of parameters per
set of parent individuals. Like in the original EA, we try to
improve the strengths of the less fit parent, i.e. the objective
function that is closer to the current optimum. Then several
possible combinations of path attributes are identified and
evaluated using the approximate model. Next, these can-
didate offspring are ranked in terms of improvement over
the less fit parent (considering the selected objective func-
tion). If there exists a candidate offspring that represents
an improvement, then the best one is evaluated using the
exact objective functions and added to the population of
the next generation. The proposed method should signifi-
cantly speed up the EA because we are able to test a huge
number of candidate individuals almost instantly.

Mutation Now we evaluate several possible mutations
from the individuals in the archive using the approximate
model. Like in the original EA, we try to improve the
strengths of the selected individual, i.e. the objective func-
tion that is closer to the current optimum. Basically, our
mutation process consists of performing sensitivity analysis
using the ANN, testing different variations of the original
individual by modifying to some extent each of his param-
eters (ANN inputs) and analysing the corresponding es-
timated function values. Our algorithm initially identifies
nm randomly generated variations (e.g. 20 different values
of depth in order to improve POD). A parameter named
mutation magnitude (percentage) is introduced, specifying
the maximum amount of variation that is allowed for each
path attribute. All identified variations of the individual
for all specified actions are then evaluated using the ap-
proximate model, ranked in terms of improvement over the
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original individual, and then, if there is an improvement,
the best one is evaluated using the original objective func-
tions and added to the population of the next generation.
This should improve the quality of the generated individu-
als because we are able to test a huge number of candidate
individuals almost instantly.

3.2.4. Evolutionary performance evaluation

To properly evaluate and analyse MOEA performance,
three different properties should be studied:

Convergence The evolution of the search process is
assessed by analysing convergence. This is done by com-
paring sets of individuals from consecutive generations and
determining the number of individuals that are dominated
in each set.36 In elitist algorithms, the archive at a gen-
eration is compared with an older archive. The number of
solutions in the old archive that are dominated by the cur-
rent archive and the number of older archive members that
remain in the current archive should be computed as such
measures indicate the improvement in the quality of solu-
tions. The comparison of two different archives should be
more straightforward if the number of dominated solutions
is scaled by the size of the archive. The smaller the num-
ber of dominated solutions, the better is the convergence.
This convergence metric is important in cases where a pri-
ori knowledge of the Pareto-optimal front is not available,
like in the problem we are addressing here, implying that
the accuracy cannot be assessed.

Uniformity The uniformity metric estimates how
uniformly the individuals are distributed in the Pareto
front, which is a requirement since one of our goals is to ac-
quire a set of solutions that cover the entire Pareto-optimal
region. The uniformity metric is defined as:29

∆ =

N∑
i=1

|di − d|
N

(9)

d =
1

N

N∑
i=1

di (10)

where di is the crowding distance of an individual in
objective space. Crowding distance is defined as half the
perimeter of the largest hypercube around a particular in-
dividual without surrounding any other individuals.29 In
order to compute ∆, the crowding distance between consec-
utive non-dominated individuals (obtained by ranking the
individuals according to each objective function) needs to
be calculated. The average of these distances d also needs to
be calculated. The boundary points are assigned a crowd-
ing distance of twice the distance to the nearest neighbour.
It combines the values of different objective functions but,
since they are normalized, the units are irrelevant. This

measure is similar to the standard deviation of the crowding
distance, therefore a small value of the uniformity metric
characterizes a good set of solutions.

Spread This metric measures how wide-spread the in-
dividuals in the Pareto front are. It is calculated as the vol-
ume of the largest hypercube in objective space that con-
tains all individuals. A large spread is desired to obtain a
bigger trade-off surface. As the spread metric is determined
considering just the individuals located at the boundary
of the Pareto front, it is very sensitive to the presence of
isolated points that can artificially improve it. Therefore,
diversity can only be assessed by performing a combined
analysis of the uniformity and spread metrics.

3.3. Local optimization

In this section, motivated by the efficiency of both evo-
lutionary global search and local search strategies, we ex-
tend our algorithm into a multi-stage multiobjective EA.
This hybrid algorithm combines the strengths of both evo-
lutionary and local search, in particular of EAs and Simu-
lated Annealing (SA).37 To the best of our knowledge, SA
has never been combined with an EA for solving coverage
problems before. SA gives us the opportunity to quickly im-
prove any solutions that are being considered, working as
an unrestricted mutation operator in order to move to new
non-dominated solutions. Unrestricted because in this stage
we are not limited to the representation of the individual
used in the evolutionary process and therefore we are able
to fine tune any solution found by previous stages without
compromising the efficiency of the evolutionary search pro-
cess. Thanks to the complementary properties of EAs and
local search heuristics, hybrid approaches often outperform
either method operating alone. However, they still require
excessive computational effort.

Our local search stage has been designed to optimize
two distinct objectives, namely:

• Minimize the uncovered area;
• Maximize the average POD.

These objectives are prioritized differently according to our
specific mission planning goals: we can only try to increase
the average POD if there are no more insufficiently cov-
ered areas. The basic idea behind the algorithm is to try to
locally improve the population of non-dominated solutions
found by the EA (the solutions in the external set are the
initial solutions to this procedure). This is a combinatorial
problem where we have to choose the best set of inter track
distances maximizing the coverage of an area characterized
by a specific topography. We use distinct strategies depend-
ing on the type of sonar that is being used for seafloor map-
ping, more specifically if using multibeam (no nadir gap)
or sidescan sonar (with nadir gap).
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Strategy for the case without nadir gap

Initialization The algorithm starts by determining
the original spacing between tracks, which was kept con-
stant in the EA. Then it sets initial values for anneal-
ing process parameters, namely, the temperature and the
neighbourhood size. The neighbourhood size is set to the
initial track spacing that was determined previously. The
initial temperature needs to be hot enough to allow a move
to almost any neighbourhood state. The correct set of pa-
rameters for the cooling schedule and the for termination
procedure were found through experimentation until a con-
sistent improvement of the original solutions was verified.

Evaluation The algorithm analyses the performance
of a solution by evaluating the objective functions in each
subarea. We consider a subarea to be a region of the ter-
rain delimited by a set of tracks. Basically we determine
the percentage of the area that is insufficiently covered (per
subarea and total) and the average POD (per subarea and
total). Each track position is bounded by the position of
the neighbouring tracks. Then we compare the current so-
lution with the previous solution and with the best solution
obtained so far. If it is better than the best or better than
the previous solution, accept the solution. If it isn’t better
then the previous one, then apply the Metropolis criterion
[38] and accept the solution with a given probability (fall-
back to the best if not accepted). At the end of this phase
the temperature of the annealing process is reduced by ap-
plying a geometric decrement.

Check for termination This algorithm assumes that
the annealing process will terminate when the temperature
reaches a minimum value, if there has been no change in
state for a certain number of iterations or if the maximum
number of iterations is reached.

Mutation After analysing the performance, the sub-
area with a higher percentage of insufficiently covered area
is selected for mutation. The main idea here is that if we
place two tracks closer to each other higher coverage will be
achieved in the area in between, at the cost of lower cov-
erage in other areas. So this mutation operator basically
reduces the spacing in the selected subarea and increases
the spacing in other subareas because the sum of inter track
distances is constant. The amplitude of the mutation ∆i is
obtained from equation 12, where r is a random number
between -1 and 1, N is the neighbourhood size and T is
the temperature of the process. It must be inferior to the
previous track spacing si in subarea i. Then the spacing
for that subarea is updated by subtracting the calculated
delta value (equation 11). Each of the other areas will see
its spacing increased considering to the amount of uncov-
ered cells in each of them: areas with a lower ratio will
have a bigger increment then areas with a higher ratio.
The contribution of each subarea ∆j , needed to compen-
sate for ∆i, is determined by calculating a set of weights

using equation 16, inversely dependent on the the amount
of uncovered cells in each subarea (see equation 14). Note
that the described procedure is only executed if in the pre-
vious step it was found that there still existed uncovered
areas. If that is not the case then we will try to maximize
the average POD using a similar procedure where we try
to decrease track spacing in the subarea where the average
POD is lower. In this case the contribution of each subarea
∆j depends directly on the average POD in each of those
subareas (equation 15).

si = si −∆i (11)

∆i = r ×N × T (12)

∆i = −
k∑

j=1
j 6=i

∆j (13)

w′
j =

1

cells_minj
(14)

w′
j = avgpodj (15)

wj =
w′

j∑k
j=1
j 6=i

w′
j

(16)

∆j = wj ×∆i (17)

Build path A 3D path is built using the determined
set of inter track distances, which are 2D and measured
horizontally. The path is determined considering its original
height or depth, depending on its type of fitting (constant
altitude or depth). The algorithm will continue evaluating
different sets of inter track distances until the terminating
criteria is met.

Strategy for case with nadir gap

Since the quality of data at the nadir gap is poor, a smarter
approach can be taken to improve it. The most used tech-
nique to handle this problem is the uneven lawn-mowing
coverage pattern, where consecutive pairs of tracks cover
each other’s nadir. This strategy differs from the previous
one on the evaluation and mutation phase.
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Evaluation Here we make the distinction between
odd and even subareas. This distinction is made because
each type of subarea is analysed differently. According
to the adopted coverage pattern, even subareas will have
smaller spacing since the adjacent tracks need to be closer
together in order to cover their nadir gaps. Even subareas
contain the complete nadir region belonging to each of the
adjacent tracks, even the portion that lies on the adjacent
subareas (the nadir extends to each side of the track con-
sidering that the sonar is being carried with zero roll an-
gle). This happens because, when analysing performance
on these areas, we need to make sure that they are covered
by the pair of tracks that confine each subarea.

Mutation This mutation process is similar to the pre-
vious one, except that adjusting odd subareas only affects
other odd subareas, while adjusting even subareas only af-
fects adjacent subareas. The purpose of controlling track
spacing in an even subarea is mainly to cover their nadir
gaps, therefore only the adjacent subareas should compen-
sate the variation of track spacing applied to it. These sub-
sareas should remain untouched when adjusting odd sub-
areas, hoping that the nadir gaps remain covered. Since
the sea bottom may have a complex topography, adjusting
a subarea may produce a negative impact on performance
elsewhere.

3.4. Environment and path representation

We assumed that the knowledge about the environment is
available because it wouldn’t make sense to optimize a path
to an unknown type of terrain. Information about the to-
pography of the survey area is uploaded from a database
or other available sources. For testing purposes a random
terrain generator was used. A regular grid is then created
inside this area. Each cell holds topographic information
about the seafloor (longitude, latitude and depth) and a
corresponding detection performance estimate that is ob-
tained when a given solution is evaluated. Choosing the
correct resolution is a critical task, since its manipulation
is computationally intensive and it also affects the accuracy
of the detection performance estimation.

Typically, coverage problems are solved by employing
a path planning strategy that uses a set of equally spaced
parallel tracks to cover the terrain. The path, composed by
these tracks, is defined by a set of consecutive points which
will always lie on the convex polygon that delimits the sur-
vey area. The location of these points is not related in any
way to the location of the cells in the grid since these are
only used to provide information about the seafloor and to
estimate detection performance. It is not strictly required
that tracks are parallel to each other but this usually hap-
pens because it makes it easier to generate a path that
doesn’t leave unexplored areas of space. Moreover, the suc-
cess of the mission is highly dependent on the quality of
the sonar acquired data. Typically a sonar does not work
well when the vehicle is turning (the data gets distorted) so

it is imperative that the path includes long straight tracks
with minimal number of turns.

3.5. Trajectory fitting to 3D terrain

We consider that a path can be fitted at constant depth or
at constant altitude. A path with constant depth will not
take into account the structure of the terrain, although it
has to meet the spatial constraints defined by the environ-
ment. Such paths are more efficient in terms of required
energy and time, but if the topography of the survey area
is complex (rough instead of a smooth surface, with a high
standard deviation on elevation) it may exhibit poor de-
tection performance. On the other hand, a path defined
to maintain a constant altitude from the bottom terrain
can display a better overall detection performance (cer-
tainly decreasing its standard deviation) but it will require
more time and energy to be executed by the vehicle since
its length is bigger. Such a path can be seen as a verti-
cal projection of the constant depth path on the bottom.
The calculation of a constant altitude path involves divid-
ing each (constant depth) track in smaller subtracks and
fitting them to the terrain, between two specific horizon-
tal positions, performing a simple linear regression in 2D
space. The algorithm for fitting tracks to the bottom is as
follows:

1. Select a track to be fitted;
2. Estimate the depth of several points along the vertical

projection of track on the terrain. The distance between
the points is a pre-specified parameter;

3. Perform a linear regression to fit a straight line to the
calculated positions on the terrain, maintaining the di-
rection defined by the track;

4. Calculate the regression errors along the fitted track;
5. If the highest error is higher than a given pre-specified

maximum error, then divide the track at the corre-
sponding position and repeat the procedure for each
subtrack. Track division leads to a reduction of the re-
gression error;

6. Add an offset to the fitted track to ensure that it is po-
sitioned above the surface of the terrain. Ensure that
its starting position is not at a higher depth than the
ending position of the previous fitted track;

7. Add an offset corresponding to the desired altitude.

A graphical demonstration of this algorithm is presented
in figure 3. Depth estimation is performed using Inverse
Distance Weighting [39] of the depth measurements sur-
rounding the prediction locations.

3.6. Using infeasible data

Some EAs regard infeasible solutions as useless individu-
als but various research showed that using infeasible indi-
viduals may affect and benefit the search process.40 While
keeping the search space small is a valid reason to discard
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(a) Depth estimation (b) Linear regression (c) Track division and new
regression

(d) Add offset representing
altitude

Fig. 3. Graphical demonstration of the track fitting procedure.

infeasible solutions, it was reported that techniques that
apply this action perform worse than techniques that al-
low these solutions to become involved in the evolutionary
process.41 Yu and Zhou [40] presented a theoretical study
that showed that including infeasible solutions could signif-
icantly affect the performance of EAs by accelerating the
speed of convergence towards optimal solutions.

We propose a method that allows the use of infeasi-
ble individuals in the EA, taking them into account in the
construction of the approximate model. This will help the
exploration process in the boundary between feasible and
infeasible regions. This allows the model to predict the loca-
tion (feasible or infeasible region of the search space) of the
individual being evaluated, which in turn will enable the
EA to choose the best candidate individual to be a part in
the next generation. In practice, we add a fourth output to
the ANN model which describes the feasibility of a given so-
lution and train the ANN with feasible and infeasible data.
This information is then considered by the variation opera-
tors of the Informed EA and will determine if the candidate
solution is accepted for precise evaluation and consequent
integration in the next generation population. The integra-
tion of such strategy creates a data management problem
since we need to sample the entire search space.

3.7. Data density reduction

An accurate approximation of the exact fitness function
may be difficult to achieve when the amount of data avail-
able is inadequate, the data is not uniformly distributed
and as a result not fully representative of the decision and
objectives spaces. Generally speaking, the more accurate
and the denser the training data is, the more accurate the
approximate model will be. While a huge amount of the
training data may guarantee generality of the model, it will
require a very long training time. Improved efficiency can
be achieved if redundant data is identified and eliminated
from the dataset while maintaining generalization.

In this paper we propose a method to select efficient
training data. Training data will be gradually generated
during execution of the algorithm and will be continuously
used for the on-line training of the ANN. Data selection
and management are critical in this case, as the amount
data will become extremely large if it is continuously accu-

mulated. Density is controlled by establishing a minimum
distance between individuals in decision space. We decided
to introduce different distances in feasible and infeasible
space to have a better understanding of the impact of this
mechanism on the overall performance of the ANN. In the
next section a series of experiments are performed to eval-
uate the behaviour of the adopted strategy.

4. Results

We have carried out a large amount of simulations to test
our algorithms. With the following experiments we intend
to:

• achieve a better understanding of the search capa-
bilities of our algorithms;
• prove that our informed EA is superior in terms of

performance to the standard EA;
• show that the integration of our local search strat-

egy increases the efficiency of the search process;
• demonstrate that our multi-stage multiobjective

algorithm can solve the mission planning problem
successfully.

As the optimal Pareto front for our mission planning
problem is not known, we use a procedure adopted by [42]
to obtain an approximation of the Pareto front for each al-
gorithm and different sets of settings. The procedure con-
sists of the following steps:

• each algorithm with a specific combination of set-
tings is executed 10 times, obtaining 10 indepen-
dent sets Si of non-dominated solutions;
• these sets are combined and the non-dominated so-

lutions are stored in a set Sf ;
• the non-dominated solutions in Sf are used as an

approximation of the true Pareto-optimal set.

The process of tuning an EA for a given application is
complex because there is a large number of alternatives and
very limited knowledge about the effect of the parameters
on the algorithm’s performance is available. There is still
a lack of theoretically proven principles to help the user
find good values for these parameters. The current opinion
on EAs admits that specific problems require specific EA
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configurations for acceptable performance.43 Therefore, an
exhaustive analysis of the effects of the main parameters
needs to be executed in order to understand their impact
on the search process.

The following simulations were run in Ubuntu 12, run-
ning in the Parallels Desktop virtual machine on an Apple
MacBook Pro, 2.3 GHz Intel Core i5 with 10 GB ram.

4.1. Tuning the standard MOEA

4.1.1. Population size

We intend here to obtain a better understanding of the
role that the population size plays in the performance of
our EA. To this purpose we performed a number of ex-
periments that consisted in running our EA using distinct
populations of sizes, namely containing 50, 100 and 200 in-
dividuals. The results of the experiments are presented in
the dominance table 2, where the different obtained Pareto
fronts are compared by assessing the ratio (%) of the num-
ber of non-dominated solutions of distinct sets. A brief de-
scription of the obtained datasets is also shown in table
3. Figure 4 shows the evolution of the individuals in the
archive during time.

Table 2. Dominance ta-
ble comparing the per-
formance of the algo-
rithm with different max-
imum population sizes.

Dom 50 100 200

50 - 1.49 2.41
100 28.13 - 4.82
200 43.75 19.40 -

Table 3. Description of the obtained dataset
comparing the performance of the evolution-
ary process with different population sizes.

Pop. size Gen’s Arch. size Volume Uniformity

50 475 64 0.04708 0.02746
100 421 67 0.07648 0.01811
200 327 83 0.07344 0.01392
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Fig. 4. Improvement plots for the considered popu-
lation sizes. Archive population stabilized with evo-
lution as convergence was achieved.

These results indicate that the performance of the EA
improves by increasing population size. This is demon-
strated by the growing dominance ratios and the faster
convergence speed achieved by increasing this parameter.
This improvement comes at the cost of a larger compu-
tational complexity, expressed by a decreasing number of
generations in the same period of time. There is a trade-
off between computational complexity and quality of the
solutions. The EA with smaller population size has has
reasonable computational complexity but is converging to
poor solutions prematurely. Diversity is an important factor
here because if no prior information about the best regions
of the search space is available, then it is expected that
the more diverse the initial population is, the greater the
chances to find good solutions are. Therefore, the number
of individuals in the population is an important parameter
to control the amount of diversity. Our problem instance
is characterized by a large decision space (many variables
with a large range of admissible values) and in this case
smaller population sizes proved to be insufficient because
the individuals did not represent a large enough sample of
the decision space.

Most of the performance gain is justified mainly by the
use of a higher number of individuals in the initial popula-
tion. Our elitist strategy, characterized by the use of an un-
restricted external set with the best solutions to date, and
our density control mechanism, that does not allow simi-
lar solutions in both the archive and the population, lead
to a particular situation where the maximum population
size was never achieved (there was no truncation with the
tested range of population sizes). Therefore, a higher popu-
lation size in our case implies a higher diversity among the
individuals in the population. A higher number of diverse
individuals is potentiating exploration, more prominently
in the beginning as shown in figure 4 where we can witness
higher initial improvement ratios for the larger population
sizes.
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Table 3 also shows that the sets with higher population
sizes, 100 and 200, had similar hypervolume metric values,
both much higher then for the set with 50 individuals. This
means that the obtained Pareto front is much wider in these
cases but, as expected, the individuals in the archive of the
largest set are more uniformly distributed since this archive
also contains more individuals.

It is then clear that the tuning of the population size
has significant influence in the efficiency and convergence
of our EA.

4.1.2. Variation probabilities

Finding robust parameter settings that do not lead to pre-
mature convergence is not simple, as the impact of these
settings on the EA’s performance is complex. This said,
simulations need to be performed in order to assess the
influence in the search process and to find the suitable re-
combination and mutation rates for our algorithm.

In this experiment, these rates are fine tuned by con-
ducting a series of experiments using different combinations
of these rates, seen on table 4 and evaluating the impact
on performance of the algorithm. We tested 4 different pa-
rameter values for each rate, creating a total of 16 pairs of
rates.

The outcome of our simulations is presented in ta-
ble 5. It was found that simulations with higher recom-
bination rates performed better since, in general, sets with
higher rate dominate more and are less dominated in av-
erage. The same conclusion can be taken for the mutation
rate, although it is not so evident. In order to gain a bet-
ter understanding of the behaviour of the algorithm with
the different mutation rates, we ploted the improvement
rates correspondent to the sets 13 to 16 (fixed recombi-
nation rate of 1.0) as can be seen in figure 5. It shows
that higher mutation rates lead to more stable rate of im-
provement (less fluctuations in evolution). The set 13 (in
red) converged faster to sub-optimal solution as can be seen
from the dominance table 5, indicating that the rate is too
small. Sets 15 and 16, with mutation rates of 0.7 and 1.0,
show a stable and sustained evolution even in the later
stages of the simulation, indicating that the performance
could be superior if the time allocated for the simulations
was increased. Table 4 shows that runs with higher rates
seem to populate archives with a higher number of indi-
viduals, occupying a bigger hypervolume and with better
distributed individuals. Sets 12 and 16 are the best from
the group. When comparing both sets, set 12 dominates
twice the number of individuals that set 16 dominates. Set
12 has similar number of individuals in the archive to set
16, but these are better distributed. Considering these re-
sults, the best settings would be set 12 since we consider
the dominance aspect more important then the uniformity

of the individuals in objective space.
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Fig. 5. Improvement plots comparing the evolution using the
different mutation rates with a recombination rate equal to 1.0.
Archived population stabilized with evolution as convergence
was achieved.

During design phase of this algorithm we did not con-
sider using recombination or mutation probabilities (mean-
ing we wanted to use all individuals for reproduction), de-
spite the fact that they were used in most case studies
found. We intended to use the recombination process to
explore the search space and the mutation process solely to
improve the known Pareto front. It is understandable that
there may be a need to limit the exploration process but
this does not apply to the exploitation process where we can
produce a mutated individual that dominates the original.
These results show once more that the optimal combina-
tions of rates are problem and algorithm dependent.

4.1.3. Mutation magnitude

The mutation magnitude parameter represents the maxi-
mum amount of change that is allowed in a single muta-
tion operation. The actual mutation size will be defined by
a uniformly distributed random number between zero and
the product of the mutation magnitude parameter and the
size of the variable range. A mutation with large magnitude
is likely to produce large variations which would facilitate
better exploration of the undiscovered regions of the search
space while a small magnitude usually produces small vari-
ations that are better for exploitation of the already found
solutions. Whether potentiating exploitation or exploration
would be the best objective for this operator is not clear,
so we decided to manually tune this parameter to have a
better understanding of its impact on overall performance.
The dominance table 8, obtained through experimentation
with different magnitudes described in table 7, shows that
the best performance was indeed obtained with the smaller
mutation magnitude (0.1), as the set 1 presents higher av-
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Table 4. Sets of probabilities used for recombination and mutation.

Set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PR 0.2 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.7 0.7 0.7 0.7 1.0 1.0 1.0 1.0
PM 0.2 0.5 0.7 1.0 0.2 0.5 0.7 1.0 0.2 0.5 0.7 1.0 0.2 0.5 0.7 1.0

erage dominance rate and is less dominated by others.

Table 7. Sets of muta-
tion magnitudes using by
the mutation operator.

Set 1 2 3 4

Mag 0.1 0.2 0.3 0.4

Table 8. Dominance table compar-
ing the performance of the algorithm
with different mutation magnitudes.

Dom 1 2 3 4 Avg

1 - 11.22 9.57 37.65 15.71
2 1.96 - 5.22 36.47 11.46
3 5.88 7.48 - 40.48 13.73
4 1.96 0.00 0.87 - 0.98

Avg 6.13 9.35 8.26 41.00
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Fig. 6. Improvement plots comparing the evolution using the
different mutation magnitudes.

The information provided by the convergence graph 6
helps justifying this best performance by displaying a much
higher improvement ratio throughout the simulation run.
We can clearly see that the improvement ratio follows a
specific trend, increasing with decreasing magnitudes. The

lack of convergence (none converged to zero improvement)
indicates that better results could be achieved if more time
was allocated for the simulation runs.

4.2. Tuning the informed EA

Here we are going to evaluate the impact of some of the
parameters that control the fitness approximation strategy
which was adopted. These parameters affect the integration
of the model in the EA and the level of approximation of
the model.

4.2.1. NN training generation gap

The main reason that lead to the introduction of a ANN
training gap is that the process of ANN training can al-
locate a large amount of time in the evolutionary pro-
cess, so we need to assess the impact of such operation
on the performance of our EA. This type of control is usu-
ally performed once in a fixed number of generations. This
method has the disadvantage of forcing a constant control
frequency, meaning that the algorithm cannot react to the
availability of recent training data that represents previ-
ously unknown regions of the search space. Since the train-
ing dataset size is expected to stabilize during the evolu-
tionary process, the accuracy of the model should increase
over time due to the consecutive training phases.

This lead us to perform a series of experiments com-
paring the performance of the informed EA using distinct
training generation gaps (1, 5, 10 and 20 generations).

Table 9. Dominance table compar-
ing the performance of the EA us-
ing different training generation gaps.

Dom 1 5 10 20 Avg

1 - 20.00 12.12 28.41 20.18
5 12.73 - 26.26 38.64 25.88
10 4.04 18.89 - 18.18 13.70
20 14.29 8.89 10.10 - 11.09

Avg 10.35 15.93 16.16 28.41

Numerical results presented in table 9 show that the al-
gorithm performed better using generation gaps of one and
five, with the expected drop-off in performance for higher
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values. The ideal training generation gap needs to be de-
termined considering the specific problem instance being
addressed and the chosen optimization algorithm because
the training gap is dependent on the total number of gener-
ations (in our experiment the average was around 30 for one
hour simulations) and on the number of generations needed
to stabilize the training dataset (not achieved here).

4.2.2. Mutation Settings

The dominance table 11, obtained through experimentation
with different settings described in table 10, shows that the
best performance was obtained with the smaller mutation
magnitude (0.1), as the set 1, 2 and 3 present higher aver-
age dominance rate and are less dominated then the others.
As for the number of mutations that should be performed
using the approximate model, the dominance table shows
that the best results are achieved using 50. When using
small mutation magnitudes there is not a real advantage in
using a higher number of mutations since the individual’s
fitness values will be very close to each other when ranked.

Table 10. Sets of mutation magnitudes and num-
ber of mutations used by the mutation operator.

Set 1 2 3 4 5 6 7 8 9

Mag 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3
Mut 20 50 100 20 50 100 20 50 100

4.2.3. Filtering in feasible and infeasible space

We intend first to compare the performance of the train-
ing procedure using the distinct data densities presented in
table 12 and then to assess its impact on the performance
of the EA. The sampling density experiments were per-
formed on a continuously updated ANN training dataset
where each data tuple was obtained through exact objec-
tive function evaluations.

As expected, we achieve better training performance
by using smaller distances between tuples in feasible space.
Table 13 shows that the average training error, obtained
through split sample validation, increased as the distance
between tuples also increased. This suggested that the op-
timal normalized minimal distance between tuples in the
feasible region should be 0.05 (or less). Comparing the sets
with the same minimal distance in the feasible region re-
veals that the training error decreases if the minimal dis-
tance in the infeasible region is increased, reducing the to-
tal number of tuples in this region. Table 14 presents the
results of multiple simulations with the different trained
ANNs. It is clear that the data density reduction mecha-
nism (increased distance between data tuples) influences
our EA: the average dominance of the obtained Pareto
fronts decreased as data density decreased. The impact of

the variability in ANN training performance observed ear-
lier, in feasible and infeasible spaces, is also evident on the
obtained results.

In any situation the created ANN was trained properly
and was able to give reasonable estimations when fed with
unknown inputs. Training data reduction handles data re-
dundancy and improves data processing efficiency in terms
of both storage and processing time. With this method-
ology, an efficient dataset can be maintained for on-line
training of the ANN.

4.3. Adaptive tuning

The manually determined set of parameter values may
not offer the best performance as they are kept constant
throughout the evolutionary process. We decided that the
only parameters that should be dynamic are the mutation
magnitude and the ANN generation gap. Variation rates
should be kept constant since the informed algorithm will
only generate individuals that are estimated to be non-
dominated, hence guaranteeing that the evolutionary pro-
cess is progressing. Our strategy consists in a decreasing
variation of the mutation magnitude during the execution
of the algorithm. The appropriateness of a small or large
mutation magnitude changes dynamically depending on the
state of the search process as well as the properties of the
search space. A decreasing scheme was chosen because we
expect that a larger magnitude to facilitate the exploration
of the of the search space in the beginning and smaller
magnitudes to help exploitation of the already determined
solutions in the end. The objective is to maintain the im-
provement ratio above a pre-specified minimum value until
the end of the run, achieving a balance between exploitation
with the exploration in the search space. If the improvement
ratio, calculated at the end of each generation, falls below
a minimum value, the mutation magnitude is multiplied by
a constant (inferior to 1) similar to the cooling ratio in SA,
decreasing its value. The previously determined magnitude
will be used as initial value. Similarly, the ANN training
generation gap should increase while the training error is
kept close to the desired value.

The results of the experiment are presented in table
15. The population determined by running the informed
EA with adaptive tuning is superior to the one determined
by the manually tuned EA. The Pareto Front was wider,
with more individuals and these were more uniformly dis-
tributed. This proves that an adaptive mutation magnitude
helps in increasing the diversity which in turn helps balanc-
ing exploration and exploitation of the search space which
finally helps in improving the solution quality and the con-
vergence rate of the algorithm. The ANN training genera-
tion gap, which started as 1, remained the same through-
out the execution of the algorithm as the training error
was higher then the desired value. The time that we had
allocated for this experiment was not enough to observe
a variation of this parameter. Nevertheless, we concluded
that the impact of dynamically controlling this parameter
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Table 11. Dominance table comparing the performance of the EA using different mutation
settings.

Dom 1 2 3 4 5 6 7 8 9 Avg1 Avg2

1 - 6.45 7.53 13.25 12.50 25.81 19.39 24.72 33.67 6.06
20.732 22.33 - 12.90 13.25 22.34 24.73 26.53 28.09 36.73 9.09

3 11.65 6.45 - 10.84 11.46 23.66 26.53 31.46 33.67 8.08

4 10.68 1.08 7.53 - 14.58 13.98 23.47 19.10 21.43 6.06
14.275 11.65 7.53 11.83 14.46 - 18.28 21.43 28.09 27.55 2.02

6 10.68 2.15 5.38 7.23 14.58 - 21.43 10.47 29.59 4.04

7 5.83 2.15 6.45 9.64 10.42 19.35 - 19.10 26.53 4.04
10.128 8.74 6.45 7.53 4.82 9.38 9.68 18.37 - 17.35 6.06

9 7.77 7.53 3.23 6.02 8.33 11.83 13.27 24.72 - 7.07

Avg1 10.39 5.70 7.53 10.60 12.23 18.92 21.33 22.96 28.88

Avg2 7.87 13.92 24.39

Table 12. Sets of decision space distances used by the filtering mechanism.

Set 1 2 3 4 5 6 7 8 9

Minimum Distance Feasible 0.05 0.05 0.05 0.10 0.10 0.10 0.20 0.20 0.20
Infeasible 0.05 0.10 0.20 0.10 0.20 0.40 0.20 0.40 0.80

Table 13. ANN training performance using datasets with the distinct densities presented in table 12. We
present the average number of tuples in the dataset during the execution of the EA. Split sample validation
was performed for assessing the training error, involving randomly splitting the dataset into two subsets,
using one for training and the other for validating the generality of the result. The validation error is the
one that is presented.

Dataset 1 2 3 4 5 6 7 8 9

Avg Tuples 746.63 609.29 702.45 346.43 313.86 268.86 113.71 89.50 77.60
Avg MSE 0.01934 0.01472 0.00896 0.03211 0.02961 0.01515 0.05850 0.02258 0.00679

is small since our training algorithm detects error conver-
gence and terminates the procedure without significant loss
of time.

Table 15. Comparison of the ob-
tained non-dominated sets us-
ing different tuning procedures.

Tuning Manual Adaptive

% Dominated 25.42 4.17
Individuals 59 96
Generations 31 37
Volume 0.07198 0.07554
Uniformity 0.02003 0.01098

4.4. Standard EA VS informed EA

Since the EAs have a different structure we decided to anal-
yse their performance at specific instants of time. Table 16
shows the results of the simulation. We can observe that at
the initial stages the Pareto set obtained by the informed
EA is dominated to a larger extent by the one obtained
by the standard EA. This can be due to the longer initial-
ization phase that is executed on the former, as the neural
network needs to be trained, while the latter starts the evo-
lutionary process sooner. The increasing dominance that
the Pareto set generated by the informed EA exhibits is a
consequence of an improving representation of the search
space, maintained by the ANN training dataset, as the
search progresses. This proves that the integration of the
ANN is advantageous to the search process since it is guid-
ing the search to more promising regions.



December 31, 2016 23:23 ws-us

22 Nuno Abreu, Aníbal Matos

Table 14. Dominance table presenting a comparison of the different Pareto fronts obtained by
using distinct ANNs.

Dom 1 2 3 4 5 6 7 8 9 Avg1 Avg2

1 - 13.95 1.19 16.49 14.81 18.28 27.17 15.48 11.11 14.81
21.632 17.78 - 0.00 21.65 14.81 20.43 27.17 11.90 12.12 15.73

3 27.78 37.21 - 36.08 28.70 35.48 46.74 34.52 28.28 34.35

4 6.67 5.81 1.19 - 0.00 6.45 11.96 9.52 5.05 5.83
12.095 21.11 24.42 5.95 17.53 - 13.98 22.83 25.00 11.11 17.74

6 13.33 18.60 2.38 16.49 4.63 - 20.65 15.48 10.10 12.71

7 15.56 10.47 1.19 11.34 1.85 7.53 - 13.10 7.07 8.51
12.698 16.67 17.44 4.76 20.62 18.52 22.58 22.83 - 17.17 17.57

9 15.56 12.79 2.38 17.53 7.41 13.98 11.96 14.29 - 11.99

Avg1 16.81 17.59 2.38 19.72 11.34 17.34 23.91 17.41 12.75

Avg2 12.26 16.13 18.03

Table 16. Comparison of the obtained non-dominated sets as the EAs are executed.

Time (min) 10 20 40 60

EA Std Inf Std Inf Std Inf Std Inf
% Dominated 2.70 26.67 10.11 18.60 23.71 12.50 30.39 4.76
Individuals 74 75 89 86 97 80 102 84
Generations 6 4 15 14 26 31 37 50
Volume 0.06510 0.07065 0.06787 0.07186 0.07241 0.07832 0.07780 0.07369
Uniformity 0.01499 0.01392 0.01336 0.01322 0.01145 0.01593 0.01255 0.01441

4.5. Mission planning with EAs

It is important to exemplify what will be the typical output
of the execution of our planning algorithm and demonstrate
the role that the decision maker will have to play. For this
test, a smooth terrain was randomly generated using the
Diamond-Square algorithm, a fractal algorithm that’s pop-
ular for generating realistic looking terrain. We decided to
stop the algorithm after one hour so we could analyse its
behaviour in detail. Our planning problem was subject to
the constraints detailed in table 17. We selected five distinct
solutions from the Pareto front shown in figure 7 and these
are fully described in table 18. They were chosen because
they clearly demonstrate the trade-offs between the objec-
tive function values obtained in our mission planning proce-
dure. We can observe that a higher detection performance
implies more time to complete the mission. As expected, we
can also observe that the detection performance is better
when using smaller inter track distances (a higher number
of tracks is used). The velocity also has considerable im-
pact on performance. We came to this conclusion because
the best solutions (in terms of detection performance) use
the minimum values for this variable as the energy that is
saved by doing so is being used to increase the length of
the path by using a higher number of tracks.

Table 17. Design constraints used in this test.

Parameter Bounds Type of constraint

Battery capacity 800 Wh vehicle performance
Velocity (/water) 1 ≤ v ≤ 3 vehicle performance
Sonar max range 80 m sensor performance
Sonar beam angle 10 ≤ α ≤ 70 sensor performance
Max operating time 10 h mission requirement
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Fig. 7. Example of a Pareto Front containing several solutions
for the mission planning problem.

4.6. Local optimization

A group of experiments was executed with the goal of
demonstrating the effect of the inclusion of a local search al-
gorithm in our mission planning procedure. Non-dominated
solutions previously found by our informed EA were used as
initial solutions here. Table 19 presents descriptive statis-
tics for the optimized set of solutions for covering a given
area with a multibeam sonar. It shows the variation in the
amount of insufficiently covered cells ("MinRatio") and the
variation in POD. In average we obtained approximately a
decrease of 1% in the former and a increase of 0.1% in
the latter, clearly showing the improvement made by local
search in this scenario. In order to analyse this results we
need to consider that the solutions being optimized were
the best solutions found by an evolutionary process and
that all these solutions had an average POD higher than
80%. This said, big improvements were not expected from
small adjustments, at least in a smooth 3D terrain such as
the one being considered. In fact, given that the objectives
in this process have different priorities, we were expect-
ing that a decrease in the amount of insufficiently covered
cells caused a decrease of the average POD. Insufficiently
covered areas should be subject to more intense coverage,
sacrificing performance in other areas if needed. But we
found that the local search algorithm is able to adjust the
path successfully without sacrificing mission performance
in terms of coverage quality (though it may use more ve-
hicle resources). Figure 8 shows a graphical representation
of a given solution before and after the local optimization
procedure was executed. The improvement in this case was
a decrease of 10.0% in the amount of insufficiently covered
cells and an increase of 0.3% in the average POD. This is
visually identified by the presence of lighter shades of red
in the optimized solution plot.

Table 19. Descriptive statistics of
the obtained solutions for the cover-
age problem using a multibeam sonar.

∆MR (%) ∆POD (%) Time (s)

Min -11.88 -1.60 21.00
1Q -1.82 -0.10 25.50
Mean -1.15 0.09 58.48
3Q -0.01 0.13 44.00
Max 0.00 3.70 338.00
SD 2.35 0.70 61.45
Var 5.51 0.48 3776.45

Similar experiments were performed, but using a sides-
can instead of multibeam sonar. Table 20 presents the de-
scriptive statistics for the optimized set of solutions. We
observe that the average improvement in this scenario is
almost 5 times more than in the previous one. This demon-
strates the need for uneven lawn-mowing coverage pattern
when using a sidescan sonar. The obtained results allowed
us to take some additional conclusions related to the use-
fulness of this search process. As explained earlier, it is
required an even number of tracks to cover the nadir gaps
caused by the use of a sidescan sonar. If the original num-
ber of tracks is odd, then we need to add or remove a track
in order to use our algorithm. The simulations showed that
while the performance is positively affected by an addition
of a track, it is negatively affected by its removal. The local
optimization algorithm could not compensate the decrease
in performance caused by the removal of a track. Table 21
presents the descriptive statistics for the optimized set of
solutions excluding the ones where tracks were removed.
It can be seen that the average POD increases and that
the amount of cells with insufficient coverage is reduced. In
this scenario the preferred action is to add a track, but since
mission planing constraints need to be respected, it may not
be possible to do so. Therefore we conclude that, in a time
critical application such as the one being addressed here, it
may be better to simply skip the local optimization of solu-
tions that required removal of a track since it is not worth
the extra computational time. Figure 9 shows a graphical
representation of a given solution before and after the local
optimization procedure was executed. The improvement in
this case was a decrease of 14.0% in the amount of insuffi-
ciently covered cells and an increase of 0.9% in the average
POD. This is visually identified by the almost inexistence
of red regions in the optimized solution plot. Notice that
the tracks were simply rearranged maintaining its direction
and depth and that no tracks were added or removed. This
demonstrates the usefulness and complementarity of both
our local optimization algorithm and our EA.

Table 20. Descriptive statistics of the com-
plete set of solutions obtained for the
coverage problem using a sidescan sonar.
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Table 18. Some distinct solutions in the Pareto Front.

Index POD Energy Time Depth Altitude TrackDist Velocity Direction
(%) (Wh) (s) (m) (m) (m) (m/s) (◦)

A 95.65 728.80 06:59:20 - 13.24 41.13 1.07 91.44
B 89.72 537.04 04:31:11 - 11.63 63.26 1.14 32.31
C 90.33 723.73 04:07:59 82.38 - 57.46 1.34 259.87
D 94.08 656.93 05:22:51 81.24 - 50.96 1.15 16.70
E 86.75 500.53 03:55:52 - 18.00 72.31 1.18 201.79

∆MR (%) ∆POD (%) Time (s)

Min -19.41 -8.84 24.00
1Q -10.86 -0.01 29.75
Mean -4.99 0.59 64.74
3Q -0.73 1.49 51.75
Max 11.81 5.51 380.00
SD 5.80 1.76 67.04
Var 33.64 3.10 4494.34

Table 21. Descriptive statistics of
the set of solutions excluding the
ones where tracks were removed.

∆MR (%) ∆POD (%) Time (s)

Min -19.41 -1.99 24.00
1Q -11.68 0.01 29.50
Mean -5.43 0.81 64.77
3Q -0.74 1.54 50.50
Max 2.09 5.51 380.00
SD 5.56 1.28 68.58
Var 30.85 1.64 4702.95

4.7. Mission planner performance
assessment

Table 22. Summary of the mission planner by Williams
[17].

Williams’s planner features

- Local planner, considers single convex areas
- 2D algorithm
- Only considers track spacing
- Maximizes the reward obtained from performing a track
- The POD is a function of range and seabed type
- Assumes the sensor is a sidescan sonar
- Optimizes track spacing (considers nadir gap)

From all the algorithms that were discussed previously
for the underwater CPP domain, we selected the mission

planner presented by Williams [17] since it is better suited
to a search and rescue problem with similar assumptions
to ours. It optimizes track spacing between all tracks cov-
ering the area of operations and also considers POD as
a function of range and seabed type, some features that
other algorithms fail to include. A detailed description of
its features is presented in table 22, but this study should
be complemented with a few experiments to prove the su-
periority of our algorithm (Informed EA). Since its pri-
mary concern is to calculate track spacing between parallel
tracks, we needed to feed that algorithm with information
calculated by our algorithm such as ideal vehicle velocity,
coverage depth and direction. Therefore, the comparison
made here is not fair since our algorithm needed a higher
amount of time to calculate these parameters. However,
this is a distinctive feature of our algorithm and even if
this information is shared with the other algorithms, ours
will still outperform theirs. The experimentations consisted
of mission planning using two different terrains. The first is
a simple planar terrain with a 2% slope and with an area
of one square km. The other is a terrain with a complex
(irregular) topography calculated using a diamond-square
algorithm. The results are presented in tables 23 and 24.

Table 23. Obtained solutions using different local plan-
ners on simple terrain.

Planner POD Energy Time Evaluation
(%) (Wh) (h:m:s) Time (m:s)

Informed EA 95.775 521.612 03:19:48 01:47
Williams 89.978 594.202 03:47:29 01:10

Table 24. Obtained solutions using different local plan-
ners on complex terrain.

Planner POD Energy Time Evaluation
(%) (Wh) (h:m:s) Time (m:s)

Informed EA 98.226 547.486 04:27:25 00:54
Williams 96.081 480.205 03:54:22 02:17

In both scenarios our algorithm displayed the best esti-
mated detection performance. Our algorithm has a high
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(a) 2D coverage plot of original so-
lution.

(b) 3D coverage plot of original solution.

(c) 2D coverage plot of the opti-
mized solution.

(d) 3D coverage plot of the optimized solution.

Fig. 8. 3D local optimization of a solution obtained by the EA using a multibeam sonar.

execution time for two specific reasons. First, because it
is a complex optimization technique that estimates several
mission parameters. Second, because the path fitting al-
gorithm that creates a constant altitude path is computa-
tionally expensive. That was the reason why our algorithm
was slower in the experiment with the simpler terrain, as
that was the only case where the solution had constant
altitude. The other mission planners do not have this capa-
bility. These experiments prove that our informed mission
planner is more complete, although at the cost of higher
complexity and higher execution time.

5. Conclusions

This paper introduced an multiobjective multi-stage ap-
proach combining EA with simulated annealing for plan-
ning minehunting operations in static 3D environment with
predictable terrain. Our algorithm maintains a diverse pop-
ulation of feasible solutions in order to explore the search
space and uses simulated annealing to improve the best
solutions found and produce new solutions in the neigh-
bourhood. Our experiments showed that the proposed local
optimization phase significantly helps to improve the per-

formance of the algorithm, however at the cost of a higher
computational time. We demonstrated the superiority of
our informed algorithm, that used an approximate model
to guide the search, over an adaptation of SPEA 2 designed
for our particular problem. The influence of several parame-
ters was also assessed. We found that the adaptive mutation
magnitude contributes to a better performance. Finally, we
also exemplified what would be the typical output of the
execution of our planning algorithm and demonstrated the
role that the decision maker may have to play when plan-
ning a minehunting mission with an AUV.

In the near future we are going to explore mission plan-
ning with distinct priorities for specific areas. The idea is
to use these algorithms to obtain a Pareto front for each
area an then to efficiently try to interconnect the coverage
paths, thus becoming a variant of the travelling salesman
problem.
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