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Abstract—In a photovoltaic power plant (PVPP), the DC-AC
converter (inverter) is one of the components most prone to
faults. Even though they are key equipment in such installations,
their fault detection techniques are not as much explored as
PV module-related issues, for instance. In that sense, this paper
is motivated to find novel tools for detection focused on the
inverter, employing machine learning (ML) algorithms trained
using a hybrid dataset. The hybrid dataset is composed of real
and synthetic data for fault-free and faulty conditions. A dataset
is built based on fault-free data from the PVPP and faulty data
generated by a digital twin (DT). The combination DT and ML
is employed using a Clarke/space vector representation of the
inverter electrical variables, thus resulting in a novel feature
engineering method to extract the most relevant features that
can properly represent the operating condition of the PVPP.
The solution that was developed can classify multiple operation
conditions of the inverter with high accuracy.

Index Terms—Machine learning, digital twin, Clarke transfor-
mation, photovoltaic, faults

I. INTRODUCTION

The photovoltaic (PV) power plant (PVPP) has multiple
types of equipment working in cooperation to ensure proper
operation, such as weather stations, electrical equipment (sen-
sors, inverters, transformers, etc.), and supervisory control and
data acquisition (SCADA) system [1]. Even though every
piece of equipment is prone to fault or failure [2], the inverters
are the type of equipment that is the target of most of the
maintenance interventions [1], [3], closely followed by the PV
modules. However, compared to PV modules, the inverter is
not much used for studies of faults detection and classification
[4], [5]. When detection techniques are applied to the inverter,
they do not have a more detailed approach, seeing the inverter
as a “black box” (or a simplified model of this component)
[6].

The studies regarding the faults and failures [2] in PV
systems focus on the DC side (PV modules and DC-DC
converter). Some issues in the PV modules may be identified
by using image processing [1], [7], as multiple issues are
related to the surface of the PV modules (delamination, cracks,
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etc.), while others may be identified using electrical measure-
ments processing [3], [7]. This condition-based monitoring is
particularly important to avoid critical issues that may cause a
significant reduction in power generation or even stop it, whilst
the early fault detection increase the safety and production of
the PVPP.

Regarding the fault detection and classification of the in-
verters, some papers tackle these issues within the context
of renewable and PV systems [3], [8], however, most of the
research on inverter faults is for motor drive [9], [10]. As the
inverter is a critical asset in the PVPP, this paper is motivated
by the fault classification of such equipment using machine
learning (ML) tools. The study was carried out having as
a focus the Clarke transformation, i.e., the measurement of
the output currents of the inverter, combined with other key
measurements that are directly related to the inverter (inverter
inputs and outputs measurements). For the scope of the present
work, the AC/output currents of the inverter and DC/input
currents of the inverter are taken into account.

The Parks-based approach is already applied to motor drives
[10], where the behaviour of the space vector is directly
related to some faulty conditions of the inverter and/or motor.
Thus, a similar approach to the application of the Clarke
transformation used to summarize the behaviour of the PV
inverter into key features is proposed and validated. The results
are always presented in normalized (per unit, p.u.) values to
show that the discussion can be exported to any given three-
phase PV system, regardless of its power level.

To do so, a real dataset of fault-free condition PVPP was
taken as a basis. A digital twin (DT) was built so the faulty
data could be generated. Thus, by using a typical approach due
to fault-free and faulty data imbalance [3], [11], the dataset
that is used to train, validate and test the proposed feature
engineering and methodology is composed of fault-free real
data and faulty simulated data.

This paper is organized as follows: The PVPP and its factors
of influence, including a general overview of the most common
electrical equipment and their faults, are presented in Section
II; Section III describes the dataset and the feature engineer-
ing method based on the Clarke transformation; Section IV
presents the ML algorithms for classification of inverter faults;
Section V describes ML models training and testing; Section
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Fig. 1. PVPP electrical circuit with the junction/combiner boxes connection
to the DC-link of the inverter, and the inverter connection to the grid through
a power transformer. In detail, the PV inverter control.

VI presents the conclusions and future work.

II. PVPP PLANT FAULT CHARACTERIZATION
The PVPP are large structures that can be composed of

hundreds to thousands of PV modules, feeding multiple in-
verters for the grid connection. Other systems, such as weather
stations, and SCADAs, are also part of PVPP. Thus, a study
of the most common faults is a key step to developing
proper detection tools. A simplified representation of the PVPP
electrical circuit is presented in Fig. 1. It is worth noting that
the transformer is not modelled in this paper.

There are multiple fault detection techniques for each part
of a PVPP. Besides the specific object of study within a
PVPP (PV modules, DC cables and combiner/junction boxes,
inverters, power transformer, etc.), there are multiple strategies
(AI-based, model-based, etc.) that can be used to do such a
task. Regardless of the technique or strategy, they have some
clear steps to be followed [7], [11], [12].

Face the size of the PVPP is very important to understand
the range of a fault to develop an effective detection algorithm.
For example, a problem that originates in one of the sub-
systems may be observed on multiple measurement points.
At the same time, it is also important to understand how a
problem at a given point may affect the adjacent sub-systems
(forward-or backward-wise) [13].

A. PV modules

The mismatch faults of PV modules happen when a PV
module, or a set of them, for some reason, are not operating
in the same conditions as the other sets connected in series or
parallel. In a series connection, it is expected that all of the
PV modules work at the same current. Similarly, in a parallel
connection, it is expected that all of the PV modules (or PV
strings) work at the same voltage. The PV cell degradation
faults are related to multiple issues that may lead to the

sunlight blocking (partial or total) of specific areas of PV
modules. They may also cause a series resistance increase,
resulting in a mismatch as well. The PV module faults can be
detected by electrical and meteorological measurements (real
vs. expected out power, for instance).

B. DC connection and combiner boxes

In a PVPP, the PV modules are connected in series (to
increase their output voltage, resulting in PV strings) and,
subsequently, connected in parallel at the combiner boxes
(increasing the current). Among the problems associated with
the DC connection and combiner boxes, and even though
the occurrence of problems in these types of equipment is
negligible compared to the PV modules and power electronics
in terms of production loss [1], one of the most common
alongside short circuits is the cable degradation. The cable
degradation is the gradual resistance increase of the DC cables
caused by soldering issues, ageing or electrical stress, and the
open circuit connections, which is the disconnection between
the PV modules or junction boxes and inverters, or fuse
tripping.

The consequence of those faults is, at the least, a discon-
nection of the affected string or combiner boxes. A short-
circuit may lead to fire and result in cable and/or circuit
disconnection. DC cables and combiners boxes are reliable
and hardly prone to failure, but in case of a problem, as
they connect the multiple parts of the PVPP, the production
associated with them will be stopped. This can go from a
single PV module, through entire strings that are feeding the
inverter.

C. Power electronics and reactive components

Some works are focused on the PV modules and “reduce”
the power electronics and reactive components to a simplistic
black box labelled as “inverter”. However, the inverter is
composed of multiple interconnected systems, and a single
problem in those components may lead to a cascade effect
that will result in poor performance of the PVPP [14].

Besides the three-phase inverters and PV module faults
already being researched, there is a lack of research on ML
techniques applied to fault analysis in the inverter of PV
power plants. Mostly, the effort of this research towards failure
detection in DC-AC converters is on the open or short circuit
analysis, as those conditions can lead to power loss increase,
THD increase, current, voltage, or thermal stress over the
components (semiconductors and reactive), etc. Regarding the
IGBTs and MOSFETs, a switch failure will result in a non-
balanced output (in the case of three-phase systems) [6].

D. Fault Operation Modes

For proof of concept of the proposed methodology, five op-
eration modes (one for fault-free conditions and four for faulty
conditions) directly related to the inverter are considered:

• Fault-free condition (noFault): regular operation of the
PVPP without any fault;
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• DC cable degradation (dcCabDeg): this type of fault is
very common due to the ageing of multiple components.
In this case, this operation mode is representing issues
with the DC cable, or in the connection in the junction
boxes or strings, etc.;

• DC cable open-circuit (dcCabOC): this type of fault can
be caused by several degradations that may lead to the
cable disconnection or fuse tripping during sunny and
cold days;

• switch degradation (switchDeg): this type of fault is
caused by stressful currents and/or voltages profiles
applied to the switches (IGBTs or MOSFETs) of the
inverter, it can lead to a switch fault;

• switch open-circuit (switchOC): one of the most common
faults that can happen to an inverter, not only in PV
systems. This can be caused by stressful current and/or
voltage profiles, over temperature, mechanical damage,
bad assembling, etc.

It is noteworthy that the proposed solutions in this paper are
not dependent on the control, inverter topology, or power level,
and the signals that are being processed by the algorithms are
electrical and weather data, that can be retrieved from PVPP
SCADA systems.

III. DIGITAL TWIN AND FEATURE ENGINEERING

To train and validate the proposed methodology, it is
necessary to build the dataset and to organize/process it so
the data can be intelligible for the algorithms. In that sense,
due to the lack of real faulty data, a DT (implemented in
Simulink/MATLAB®) is developed so that the hybrid dataset
can be assembled. After that, the Clarke transformation and
feature extraction is carried out.

A. PVPP model validation and faulty dataset

This paper is based on the PVPP Monte das Flores (approx-
imately 38º N, 8º W), owned and operated by EDP Renewable.
The meteorological data (i.e., weather measurements such as
irradiance and ambient temperature) and SCADA data (i.e.,
electrical measurements such as currents, voltages, power, etc.)
were used for building the DT model.

Once the DT is assembled, it is validated across multiple
days during a year. Some of these results can be seen in
Fig. 2 for the RMS value of one of the AC output currents
of the inverter. It can be noticed that the DT has a similar
output when compared to the real data. However, under low
irradiance (usually below 100 W/m2), the DT performance is
compromised. Also, during cloudy scenarios, the performance
is not as good as under sunny days, even though it is a
satisfactory result for the objectives of this paper.

After validating the DT model, the faulty data is generated
for the four faulty conditions prior selected. Both DC cable-
related problems are located between one of the junction boxes
and the DC link of the inverter. For the degradation, a series
resistance is added to the circuit. For the open circuit, a
sudden disconnection manoeuvre is done. Both switch-related
problems are applied directly to a switch of the inverter. For

(a) (b)
Fig. 2. Digital twin validation for the AC currents across the year of 2019:
(a) February 28th; and (b) June 21st.

(a) (b)
Fig. 3. Clarke space vector dataset without center dislocation samples from
2019 seasons at 2 PM: (a) Winter; and (b) Summer.

the degradation, an internal series resistance is added to the
on-resistance of the switch. For the open circuit, the switch
stops switching, always at a tuned-off state.

B. Clarke transformation and feature engineering
The Clarke transformation, or alpha-beta transformation, is

a matrix multiplication that can be applied to three-phase
signals to achieve another representation of the three-phase
currents. Thus, it starts from a three-phase system into an
orthogonal reference frame:

iα(t) =
2

3
ir(t)−

1

3
(is(t)− it(t)), (1)

iβ(t) =
2√
3
(is(t)− it(t)), (2)

iγ(t) =
2

3
(ir(t) + is(t) + it(t)). (3)

The iγ , or homopolar component, is not being used in this
project, thus a simplified version of the transform can be
written using only iα, iβ . For a perfectly balanced and fault-
free operating inverter, the three-phase currents are represented
by iα, iβ as a perfect circle in the space vector, as shown in
Fig. 3 by the blue (noFault) waveform.

However, under faulty conditions, the space vector will
suffer deformations in its shape, radius, etc. For instance,
Fig. 3 shows an overlap of the multiple conditions under
analysis. It can be seen that in the noFault, switchDeg and
switchOC the deformation/difference on the space vector is
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(a) (b)
Fig. 4. Clarke space vector dataset with center dislocation samples from 2019
seasons at 2 PM: (a) Spring; and (b) Autumn.

more recognizable when compared to the dcCabDeg and
dcCabOC. The switch-related problems cause the space vector
to change its shape, resulting in something closer to an ellipse
or even a half-circle.

For the DC cable-related problems, the difference from
the fault-free condition is the radius, as the circle shape
is maintained. This can make to be harder to distinguish
between a dcCabDeg and dcCabOC by only exploring the
iα, iβ representation.

Based on this difficulty to distinguish between the dcCab-
Deg and dcCabOC problems, the study proposed to consider
more features to be processed by the ML algorithms or even
altering the space vector to add some elements that could help
to tell the difference between dcCabDeg and dcCabOC. One
simple but effective addition was the centre dislocation, which
consists of using the input DC-link currents of the inverter
(Idc01 , Idc02 as seen in Fig. 1) as the centre of the space
vector, generating the new space vectors presented in Fig. 4.
With the centre dislocation, it is easier to notice the difference
between dcCabDeg and dcCabOC, thus it is expected that the
ML algorithms have a better discrimination capability between
them as well.

The Figs. 3 and 4 show that depending on the irradiance
and temperature level, which vary along the day, months, and
seasons, there will be multiple space vectors. The proposed
features extracted from the space vector and some weather-
related features to be processed by the ML algorithm are
presented in Table I.

It is worth noting that the normalization of the data is done
based on the nominal ratings (current, voltage, power) of the
inverter, which can be found on their datasheet. When nec-
essary, the weather-related data (irradiance and temperature)
are normalized based on the standard test conditions (STC).
This approach aims to provide a generalized overview of the
methodology, which can be exported to any other PV system.

IV. ML ALGORITHMS FOR FAULT DETECTION

The alpha-beta classification is responsible for indicating
the most likely fault that occurred. Therefore, four supervised
machine learning methods will be considered [5], [15]:

TABLE I
PROPOSED FEATURE ENGINEERING AND BRIEF CONTEXTUALIZATION

Feature Explanation/formula
α0, β0 Space vector center

αmax, βmax Maximum value within a cycle of iα, iβ
αmean, βmean Mean value within a cycle of iα, iβ
αmin, βmin Minimum value within a cycle of iα, iβ
αrms, βrms RMS value within a cycle of iα, iβ

∆αmax,∆βmax Difference between a given
∆αmean,∆βmean α, β characteristic and
∆αmin,∆βmin the time-wise previous characteristic
Idc01 , Idc02 DC-link input currents

G Global irradiance
Temp Ambient temperature
season Season of a given subset of the dataset
skytype Indicator from clouded to clear-sky

• Decision Tree (DTr): Although decision trees require
little pre-processing, they have some disadvantages, such
as the creation of high-depth trees does not allow a
reasonable generalization of data (overfitting) and the
instability due to low variations of training samples.

• Random Forest (RF): an ensemble of decision trees that
corrects the overfitting of the previous method during
training. For classification problems, the result is the class
selected by most trees.

• K-Nearest Neighbors (kNN): this algorithm aims to re-
strict the decision space by choosing the k-nearest neigh-
bors in the training dataset of a given testing value.

• Artificial Neural Network (ANN): a biological-inspired
computational network that includes the supervised learn-
ing algorithm Multi-Layer Perceptron (MLP). It is worth
mentioning the adoption of a feedforward architecture
with backpropagation for the alpha-beta classification,
which consists of training the dataset using some gradient
descent-based method by propagating the error back into
the nodes (layers) and updating the parameters (weights
and biases) to minimize the loss.

V. NUMERICAL RESULTS

Combining the dataset and its features (alpha-beta currents
and weather data) with the select ML algorithms, the training,
validation, and testing of each model is carried out. The
general pipeline is depicted in Fig. 5. The training and testing
are done with different datasets from different years.

A. ML models dataset

In the alpha-beta classification, for the training and valida-
tion (cross-validation) is used 80% of the hybrid dataset from
2021. Afterwards, the models described in Table II are tested
using the remaining 20%. Nevertheless, as the purpose of the
model is the classification of faults, regardless of the year
under study, the hybrid dataset from 2019 will be used as a
second and final testing dataset.

At first, were considered features related to date and weather
(skytype and season). However, it is worth remembering that
the faulty dataset was generated through a DT developed in
Simulink/MATLAB® modelling tool, which used the same
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Fig. 5. Fault detection pipeline. Based on the diagram from [11].

TABLE II
ML ALGORITHMS HYPER-PARAMETERS AND TRAIN ACCURACY

Algorithm Hyper-parameters Train accuracy
(without; with dislocation)

ANN

activation = tanh,
hidden layers = 55,
iterations = 1000,

random state = 42 or 0,
tolerance = 0.001,

learning rate = constant

97.9%; 97.7%

DTr depth = 3, random state = 0 93.5%; 89.5%
kNN k = 5, weights = distance 100.0%; 100.0%
RF depth = 3, random state = 42 95.1%; 94.5%

values of the fault-free condition for the previous features. This
assumption created redundancy in considering features related
to date and weather as inputs, leading to their removal.

A similar conclusion was reached regarding the features∑
α and

∑
β. After an investigation based on the Pearson

Correlation Coefficients of the comparison of pairs that com-
pose the set C = {(αmean,

∑
α), (βmean,

∑
β)}, it was found

a coefficient value of 1.00 (ρ = 1.00). Thus, the features
∑

α
and

∑
β were disregarded.

B. Hyper-parameters tuning

One of the most common methods for hyper-parameter
tuning is the Grid Search. Its purpose is to determine the
estimator with the most accurate predictions. The optimization
of the models is implemented by the function GridSearchCV
of the Scikit-Learn/Python library, which includes the cross-
validation of the training dataset, considering five subsamples
(cv = 5).

This allows finding the best (or as close as possible to the
optimal) hyper-parameters for each model. After applying the
Grid Search technique to both dataset approaches (with and
without centre dislocation), the hyper-parameters for the ML
models are listed in Table II.

Their train accuracy shows that ANN and kNN are the most
promising solutions so far. Although, will be tested a different
dataset from another year for a better comparison between the
ML models.

TABLE III
ALGORITHMS METRICS FOR TESTING, WITHOUT CENTER DISLOCATION

Algorithm Accuracy Precision Sensitivity Specificity
ANN 97.3% 97.3% 97.3% 99.3%
DTr 92.1% 93.2% 92.1% 98.1%
kNN 97.2% 97.2% 97.2% 99.3%
RF 93.9% 95.1% 93.9% 98.6%

TABLE IV
ALGORITHMS METRICS FOR TESTING, WITH CENTER DISLOCATION

Algorithm Accuracy Precision Sensitivity Specificity
ANN 97.0% 97.1% 97.0% 99.3%
DTr 87.1% 90.8% 87.1% 97.0%
kNN 97.3% 97.3% 97.3% 99.3%
RF 93.5% 93.8% 93.5% 98.4%

C. ML models comparison

The comparison between the ML models is done using
the metric of accuracy, precision, sensitivity, and specificity,
which are functions of the true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The listed
metrics for the dataset without center dislocation are presented
in Table III, whilst the metrics for center dislocation are
presented in Table IV.

Considering the results without center dislocation, the kNN
and ANN models presented the best results for all of the
metrics, with ANN slightly ahead. This shows that even though
the ANN are more complex solutions, a kNN model is enough
to properly classify the multiple conditions under study.

A similar analysis can be made for the result with center
dislocation. Whilst the DTr and RF presented a worse result,
the kNN model presented the best metrics. Overall, the accu-
racy of the ANN without center dislocation and the kNN with
center dislocation was the same: 97.3%. It is worth noting
that both models do not overfit, which is verified through the
proximity of training and testing metrics, such as accuracy.
The accuracy during the cross-validation is slightly higher,
but this is an expected outcome.

The confusion matrices of the best ML models for this
study are presented in Fig. 6. It can be noticed that the
conditions noFault, switchDeg and switchOC are the most
easily classified, which is supported by the space vector plots.
On the other hand, by analyzing the results for dcCabDeg
and dcCabOC, their classification stills pose some challenges
when compared to the other conditions. This is also visually
noticeable in the space vectors, whereas those two conditions
are the ones with the most similar space vector plots. However,
it is worth noting that both solutions for the ML models
represented in Fig. 6 achieve an accuracy higher than 90%.

VI. CONCLUSIONS AND FUTURE WORK
The paper describes the Alpha-Beta/Clarke representation

built through a DT model using the Simulink/MATLAB® tool.
Subsequently, by applying supervised classification methods,
the models implemented allowed the identification of four
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Fig. 6. Confusion matrices for the testing of the alpha-beta classification for
the ML algorithms that resulted in the highest accuracy: (a) Without center
dislocation for ANN (Table III); and (b) With center dislocation for kNN
(Table IV).

faults related to DC cables and switches. The following
achievements were presented:

• For fault detection, it was possible to model the alpha-
beta representation through supervised machine learning
methods (whereas ANN and kNN presented the best
results);

• For the switch-related faults, it was possible to distinguish
them from the other conditions, on the space vector
representation, by their shape change (an ellipse for
switchDeg and a semicircle in the switchOC);

• The radius deviation caused by the DC cable-related
faults in the space vector representation was more no-
ticeable due to the center dislocation.

For future work, the authors are investigating the possibility
of including more electrical measurements related to the
inverter and its possibility to classify failures in the junction
boxes, PV modules, and grid. In summary, future improvement
will pursue the next steps:

• The inclusion of more electrical readings that can lead to
more classification options;

• Increase the number of conditions to be classified, from
both the DC-side and AC-side of the inverter;

• Further investigation of the inclusion of data for date and

weather-related features.
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