
ASPAS: As Secure as Possible Available Systems

Houssam Yactine1, Ali Shoker2, and Georges Younes1

1 HASLab, INESC TEC & University of Minho,
Braga, Portugal {houssam.a.yactin,georges.r.younes}@inesctec.pt

2 VORTEX Colab, Porto, Portugal
{ali.shoker}@vortex-colab.com

Abstract. Available-Partition-tolerant (AP) geo-replicated systems trade
consistency for availability. They allow replicas to serve clients’ requests
without prior synchronization. Potential conflicts due to concurrent op-
erations can then be resolved using a conflict resolution mechanism if
operations are commutative and execution is deterministic. However, a
Byzantine replica can diverge from deterministic execution of operations
and break convergence. In this paper, we introduce ASPAS: As Secure as
Possible highly Available System that is a Byzantine resilient AP system.
ASPAS follows an optimistic approach to maintain a single round-trip
response time. It then allows the detection of Byzantine replicas in the
background, i.e., off the critical path of clients requests. Our empirical
evaluation of ASPAS in a geo-replicated setting shows that its latency in
the normal case is close to that of an AP system, and one order of mag-
nitude better than classical BFT protocols that provide stronger (total
ordering) guarantees, unnecessary in AP systems.

Keywords: Availability; Integrity; Consistency; CRDT; BFT

1 Introduction

In the context of the CAP theorem [14], an Available-Partition-tolerant (AP)
geo-replicated system trades consistency for availability. The design follows op-
timistic replication with a relaxed consistency model [22, 27, 18] where a replica
immediately replies to the client without prior synchronization with other repli-
cas. The essence is to reduce the response delay to a single round-trip between
a replica and a client. This is desired in latency-sensitive applications where
a soft (stale) state is accepted. Nevertheless, concurrent updates can lead to
inconsistency that must be resolved (in the background).

This paradigm is recently getting attention with the advent of conflict reso-
lution mechanisms as Last-Writer-Wins, Cloud Types, and Conflict-free Repli-
cated DataTypes (CRDTs) [5, 25, 2]. Such conflict resolution mechanisms ensure
Strong Eventual Consistency (SEC) [24] that guarantees convergence across sys-
tem replicas if operations are designed to be commutative and only if faults are
benign (see definition 1 in Section 3.1 for details). The idea is to relax the replica’s
state from being totally ordered log to a partially ordered log (POLog) [2]. Being

2 Houssam Yactine, Ali Shoker et al.

commutative, executing operations in the POLog will lead to equivalent states
if replicas are deterministic. Since it is impractical to synchronize or “pause” an
AP system to do this integrity check, it is acceptable for concurrent clients at
distinct replicas to (temporarily) observe different states. This makes it hard to
differentiate a deterministic execution of concurrent operations in a partial order
from a non-deterministic execution caused by a Byzantine (a.k.a., arbitrary or
malicious) [20] replica. This can lead to permanent system divergence.

An intuitive option to address the Byzantine problem is to assess the feasi-
bility of classical BFT protocols [8, 16, 1, 10, 29] to an AP system. This approach
was followed in OBFT [9] where the authors deferred the synchronization (con-
sensus) of replicas, executing concurrent operations, to epochs where the entire
system is “paused”. A similar approach was followed in Zeno [26] that reduced
the quorum size under network partitions, but imposed total ordering within
a partition before replying to clients. Unfortunately, these approaches are not
preferred in AP systems where the expected latency is a single round-trip.

In this paper, we introduce a novel As Secure as Possible AP System (AS-
PAS) that guarantees Strong Convergence (of SEC) and provides Byzantine
security without compromising availability. As shown in Figure 1, ASPAS runs
a frontend layer composed of loosely connected application servers (appservers)
that can serve clients’ requests without prior synchronization. The replica of
an appserver is a datatype following the SEC model, e.g., a CRDT, in order
to ensure convergence despite concurrent operations. A correct client connects
to a single associated appserver. After executing the client’s operation locally,
the appserver propagates the request to other appservers (in the background)
using a Reliable Causal Broadcast [3, 4, 15] (RCB). Delivered operations via the
RCB are then executed in a deterministic way by correct appservers. In the
backend, and to detect Byzantine appservers, correct appservers asynchronously
forward their operations to a BFT cluster (see Figure 1). This process is decou-
pled from the client-appserver communication to maintain the desired latency in
AP applications, i.e., a single round-trip delay. The BFT cluster is responsible
for extracting, out of the different appserver POLogs, a log of stable opera-
tions: non-concurrent operations that are already delivered and executed by all
appservers. The BFT cluster then generates a log “certificate” that ensures the
log integrity up to a common state version across appservers. The BFT cluster
sends the certificate to correct appservers that piggy-back it to clients asserting
the integrity of data up to that state version.

An alternative possible design to the three-tiered design of ASPAS (in Fig-
ure 1) is a two-layered design using Secure RCB [7, 21, 15]. Such RCB protocols
are quorum-based and, thus, require synchronization before replying to clients
which increases the latency. Therefore, the prospective design ends up having
another layer (but running on the same appservers this time) for arbitration,
i.e., another BFT protocol to compare stable partially ordered log versions up
to some offset. This coupling of delivery and arbitration on the same appserver
leads to several drawbacks, among them: (1) Classical BFT protocols scale lin-
early O(N) with the number of appservers N in the system. It is more reasonable

ASPAS: As Secure as Possible Available Systems 3

RCB Log
1

BFT Cluster

Non Certified Log

Certified Log

Clients

Proxy
1

Clients

Proxy
3

Clients

Proxy
3f+1

B
1
 B

2
 B

3
 B

3b+1

Clients

Proxy
5

Proxy
2

Clients

Proxy
4

Clients

RCB RCB RCB RCB RCB
Front
End

Back
End

Fig. 1: ASPAS Architecture.

to decouple the execution layer from the arbitration layer as in ASPAS where the
arbitration protocol runs on a smaller set of n << N BFT servers. (2) Imposing
high inter-replica delays (e.g., up to 100ms in geo-scalable settings) on the BFT
protocol in the arbitration layer. This inter-replica overhead can be mitigated
significantly if the BFT protocol runs in a well connected cluster as we do in
ASPAS. (3) Imposing more memory and computational overhead on appservers
due to the heavy-weight cryptographic and messaging work in BFT protocols.
ASPAS offloads this overhead to the BFT cluster, and thus keeps appservers
dedicated to serving clients’ requests.

The three-tier design of ASPAS allows different clients to choose their level of
security based on their desired freshness and availability-security tradeoff (hence
the name “As Secure As Possible”). It can provide high security as close as clas-
sical BFT protocols, or high availability as close as AP systems, and a wide
spectrum of options in between. However, this entails two main challenges we
solve in ASPAS. The first is generating a consistent certificate despite the exe-
cution of operations in different orders on different appservers (a native pattern
in AP systems). The second is to prevent the appserver from sending certificates
or use different logs for different clients. This is important since client’s requests
in AP systems are handled by only one appserver (without consensus).

ASPAS can be used in any geo-replicated application that adopts SEC [24]
and tolerates a window of unconfirmed operations. In fact, SEC-based applica-
tions trade consistency (i.e., a correctness property) for availability in the fault-
recovery model. Following the same analogy, we argue that these applications
also favor availability over Byzantine integrity (i.e., a correctness property) pro-
vided that the system state eventually converges. In addition, an end-user client
is guaranteed to be notified of a Byzantine fault and get a correct state within
a predefined tolerance window of operations. Note that this is commonly ac-
cepted in several SEC-based applications, e.g., social networks functionalities
like: number of Likes, number of comments, list of comments, recommended me-
dia, number of Ads, shopping carts, real time collaborative editing, etc., as long
as the system eventually converges to a correct state that the client can observe.
Non end-user stateful applications can also roll-back recent changes if required.
This is very common in AP-based applications where the client plays the role of a

4 Houssam Yactine, Ali Shoker et al.

cache or Edge computing node that is used as backend to end-user applications.
This is driven by Edge systems in open volunteer networks like Guifi.net moni-
toring that used to monitor the network state, and Content Delivery Networks
where a cache is used to boost the reply to end-user browsers.

We implemented ASPAS using BFT-SMaRt [1] as a backend BFT Cluster
due to its well tested Java implementation (but any classical BFT protocol can
be used). We conducted an empirical evaluation using YCSB benchmark work-
loads [11] in geo-replicated setting. We compared ASPAS with OBFT [9] as a
state of the art protocol of the same SEC-based class, and with baseline config-
urations: AP system alone, and BFT protocol alone. The results show that the
normal case latency of ASPAS is close to classical AP systems, and one order of
magnitude lower than classical BFT protocols in the geo-replicated settings.

The rest of the paper is organized as follows. We start with presenting the
most related works in Section 2. We then present the problem definition and
ASPAS as a proposed solution in Section 3. Next, we present the empirical
evaluation in Section 4, and we conclude in Section 5.

2 Related work

Byzantine Fault Tolerant (BFT) protocols often follow quorum-based State Ma-
chine Replication (SMR) [8, 16, 1, 10, 29, 23] to ensure total ordering despite the
existence of a fraction f (out of 2f + 1 or more) Byzantine replicas. These pro-
tocols, including the more scalable ones in the Blockchain realm [17, 29], are
known of their high latency due to the cost of consensus. This encouraged the
introduction of more relaxed agreement protocols whose latency is low enough
to be used in AP systems. To provide Byzantine tolerance under partitions,
Zeno [26] lets clients of different partitions to miss the updates of replicas under
network partitions until it heals. However, Zeno exhibits a consensus overhead
by imposing total ordering of updates within the same partition before replying
to clients. On the contrary, ASPAS maintains a single round-trip latency as it
makes use of CRDTs to resolve conflicts and delegates the (costly) consensus
entirely to the background. Similarly, in the more practical work [13] for hard-
ening Cassandra against Byzantine failures, a Write request is confirmed only
after obtaining signed responses from a quorum of nodes—in the critical path of
clients’ requests. In ASPAS, the client never blocks on Writes; it applies them lo-
cally and delegates the integrity checking to a background process. Furthermore,
Byzantine reliable causal broadcast (BRCB) protocols such as [3, 4, 21, 15] are
used to propagate updates to different replicas despite the presence of Byzantine
replicas. Such protocols do not guarantee SEC by default, because a Byzantine
replica can execute local operations incorrectly to impede convergence. Including
execution will again require a costly quorum-based protocol.

The most related work to ours is OBFT [9], which is an AP system that tries
to ensure SEC under Byzantine faults. Since concurrent updates on different
replicas may lead to conflicts, OBFT periodically “pauses” client’s requests until
it achieves convergence. Although it matches the different message logs and uses

ASPAS: As Secure as Possible Available Systems 5

CRDTs to ease the merging, as we do in ASPAS, this is done in a blocking way
which is unacceptable in AP applications. ASPAS avoids fiddling with the client-
appserver message exchange to maintain low latency, and delegates the integrity
checking to a backend BFT cluster off the critical path of clients requests.

3 ASPAS Protocol

3.1 Problem

Modern geo-replicated AP systems trade consistency for availability. They sup-
port concurrent Write/Read operations, which allows client applications to observe—
as fast as possible—different states at different replicas. Despite this, the entire
system should not be broken, by diverging permanently, and thus it follows the
Strong Eventual Consistency (SEC) [24] model to eventually ensure convergence.

Definition 1 (Strong eventual consistency (SEC)). An object is Strongly
Eventually Consistent if the following properties are satisfied:

– Eventual delivery: An update delivered at some correct replica is eventually
delivered to all correct replicas: ∀i, j : f ∈ ci then ♦f ∈ cj

– Termination: All method f executions terminate.
– Strong Convergence: Correct replicas that have delivered the same updates,

even in different orders, have equivalent state: ∀i, j : ci = cj then si ≡ sj.

As depicted in Def. 1, the Strong Convergence (third) property of SEC ex-
tends the Eventual Consistency [27, 22] model by stating that the execution of
the same set of operations in different partially ordered logs should lead to an
equivalent state. However, this (equation ci = cj then si ≡ sj) holds true only
if the execution is deterministic, which cannot be guaranteed if the executing
replica is Byzantine. Therefore, the presence of a single Byzantine replica can
render the entire system convergence impossible.

As a simple example in a social network application, different clients on
different replicas may forever view different lists of comments for the same post,
even if no actions affect that post any more. Notice that this is even harder to
detect when the AP system is in action due to Eventual Consistency and the
lack of consensus between replicas.

3.2 System and fault models

We address ASPAS, a three-tier system model (sketched in Figure 1) composed of
frontend and backend. The frontend follows the geo-replicated AP system model
in which 3f + 1 appservers are geographically located and fully replicated where
at most f appservers are assumed to be Byzantine. Replicated data is assumed
to satisfy SEC [24], e.g., CRDTs [25, 2]. CRDTs are backed by partially ordered
logs defined using appservers’ Version Clocks [19]. In ASPAS, every client has
connections to all appservers, but issues its requests to a single appserver, likely

6 Houssam Yactine, Ali Shoker et al.

Client

S1

BFT Cluster

S2

AppServers
S3

Calculate
Min VV (LV)

Time

Clone VERSION RCB(REQUEST1)

Sf+1

VERTOBFT

RESPONSE1<Res1,Cert σ>

REQUEST1

BFTREQSTABLE

STABLE
CERTIFICATE σ’

RESPONSE2<Res2,Cert σ>

REQUEST2

RESPONSEm<Resm,Cert σ>

REQUESTm

RESPONSEn<Resm,Cert σ’>

REQUESTn

Time

Generate new
Cert σ’

Fig. 2: Messages exchange pattern showing normal update operation and the
certification steps between appservers and BFT cluster in background.

the closest one. In the backend, appservers propagate the received operations to
each other using a Reliable Causal Broadcast (RCB) [3]. Appservers also push
their requests to a BFT cluster that runs a classical BFT SMR protocol, e.g., [8,
1]. The cluster is composed of 3b + 1 BFT replicas (bftservers), where at most
b << f of them are assumed to be Byzantine. The network may (not infinitely)
fail to deliver, corrupt, delay, or reorder messages. Byzantine appservers, replicas,
and clients may either behave arbitrarily, i.e., in a different way to their designed
purposes, or just crash and recover (benign faults). A strong adversary coordi-
nates Byzantine replicas or appservers to compromise the replicated service and
thus bring the appservers to inconsistent states. However, we assume that the
adversary cannot break cryptographic techniques like: collision-resistant hashes,
encryption, and signatures. We also assume all nodes to have unique identities
and cryptographic keys distributed through a trusted mechanism.

3.3 An overview of ASPAS

ASPAS is composed of a frontend and backend. The frontend runs a loosely
coupled geo-replicated AP service over dozens of appservers, to which clients is-
sue their requests. The backend runs a smaller black-box BFT cluster, to which
appservers send their operation logs to assert their consistency up to a cer-
tain version. To thwart blocking and delays in the AP service, these two layers
are completely decoupled and operate concurrently; clients only interact with
appservers, i.e., they are agnostic of the BFT cluster.

As depicted in Figure 2, ASPAS runs two concurrent phases: Normal op-
eration and Certification (presented next in detail). The former represents the
normal operation of an AP system: a client sends its requests to a single associ-
ated appserver at a time (to avoid Byzantine clients issuing different requests to
different appservers). The appserver replies to the client immediately, and then
propagates the operations to its counterpart appservers. The latter executes (or
merge) these operations locally. Using CRDTs techniques, convergence is guar-
anteed as long as appservers are not Byzantine. To guard against Byzantine
appservers (that can cause divergence), correct appservers piggyback a “certifi-
cate”: a signed message issued by the BFT cluster in the certification phase to
assert a consistent appserver state up to a certain version. In the certification
phase, appservers periodically send their (partially-ordered) logs to the BFT

ASPAS: As Secure as Possible Available Systems 7

C

S1

valid certificate

 S1
S2
S3
S4

C

outdated certificate f+1 certificates

C

S1
S2
S3
S4

Complain

(a) Normal case (b1) Server not resopnding (c) Outdated Certificate and Complain

Time Out

 S1
S2
S3
S4

C

(b2) Invalid reply

Invalid replyvalid certificate valid certificate

Fig. 3: Different messaging patterns of ASPAS.

cluster. The latter issues a certificate to correct appserver whose logs are match-
ing to a certain (incremental) state version. Choosing the version and extracting
the corresponding logs are explained in the mechanisms: Stable versions and
Log extraction in the Section 3.6.

In the case of an invalid certificate, i.e., unauthentic, non-matching or out-
dated, the client launches a Complaining process (see the Complaining mech-
anism in Section 3.6) to notify about possible Byzantine appserver and switch
to another associated one. An outdated certificate is defined per client via a
Byzantine tolerance threshold (τ): the maximum number of unconfirmed oper-
ations the client can tolerate, until a new certificate arrives. On the other hand,
if the certificate is valid but demonstrates a prior inconsistent state observed by
clients (which occurs due to a Byzantine appserver or due to concurrency in AP
systems), the latter can make different decisions, e.g., notify users or roll-back.
This is out of the scope of our work.

3.4 Normal operation phase

At the beginning, a client gets assigned an associated appserver s. It establishes a
session with s by sending its desired tolerance threshold τ . The appserver stores
τ and broadcasts it with the client unique ID to all other appservers. When the
client ci invokes a new operation o, it sends a REQUEST(〈lastReq〉αci ,s) message to
s; where lastReq contains the last sequence number of client’s requests, the client
identifier ci and the operation o. 〈〉αci is the encrypted security token (e.g. digital
signature and hash digest) signed with the private key α of ci. Upon receipt of a
valid client REQUEST, s processes the new operation, assigns it a new version vector
VV, updates its vector clock, and sends RESPONSE(〈LastRes[n],σ′〉αsj ,ci) to the client;

where LastRes[n] is the corresponding result with a sequence number n and σ′ is the
appserver’s last certificate. When the client receives RESPONSE from the associated
appserver, it checks its validity (i.e., authenticity, integrity, and sequence nb).
Otherwise, as shown in the Figures 3.b1 and 3.b2, if the client associated a slow
appserver or received a number of invalid messages, it complains and switches
to another appserver (see the Complaining mechanism in Section 3.6).

In the case of an update operation, the appserver signs and broadcasts the
client’s REQUEST, via the RCB, to the other appservers. Once receiving REQUEST,
other appservers process it and update their vectors clocks. The execution of a
new operations triggers the certification phase (see next Section 3.5).

8 Houssam Yactine, Ali Shoker et al.

3.5 Certification phase

This phase aims at generating consistent certificate versions across appservers.
It occurs in parallel with the Normal phase to avoid any delays in the critical
path of clients’ requests. As sketched in Figure 2, for every executed REQUEST, an
appserver sends a VERTOBFT(m, 〈σ〉αsj , B)) message to the BFT cluster. The BFT
cluster, waits for specific TimeOut epochs trying to collect VERTOBFT messages,
then computes a common stable last version (LV) as described below. Note
that this delay is acceptable being not in the critical path of client’s requests.
If the LV is equal to a previous LV, the BFT cluster ignores it and repeats the
process by waiting for new VERTOBFT messages. Otherwise, the BFT cluster sends
a BFTREQSTABLE(〈LV〉αB , S) to all the appservers asking them for a corresponding
state to the LV. Since a convergent state requires all the logs of appservers in an
AP systems, the presence of a single Byzantine appserver can affect liveness—
but not correctness. However, liveness only affects the more conservative clients,
i.e., whose τ is very small due to freshness requirements. These clients may be
blocked waiting for a new certificate, while the other clients operate normally.

Once an appserver receives a request BFTREQSTABLE from the BFT cluster, it
may already have the exact state version stored. This occurs when LV matched
a previous operation VV it executed. If not, the appserver generates such a state
using the Log extraction mechanism, described below. Afterwards, the appserver
sends the generated state in a STABLE(〈σ〉αsj , B)) message to the BFT cluster, ask-
ing for a new certificate that represents a new stable system snapshot. When the
BFT cluster receives at least f +1 valid matching states from the appservers via
messages of type STABLE, within a defined TimeOut, it generates a new certificate
that contains signed hash digests of the appservers (having matching STABLE),
and multicasts it as a CERTIFICATE(〈σ′, STABLE〉αB , CorrectS) message to these cor-
rect appservers only. Late correct appservers can still ask for this certificate
version within a predefined timeout. This has no impact on correctness as the
late appserver can receive a newer certificate that covers the current operations.

Finally, once a new certificate σ′ is received, an appserver checks its validity,
updates its old certificate σ with a new one σ′ if valid, and starts including it in
the future replies to clients.

3.6 ASPAS mechanisms

Stable versions. This mechanism is used by the BFT cluster proxy process to
agree on a specific stable version for which a new certificate will be generated.
This is required in AP systems since appservers run at different speeds. As oper-
ations are applied in different (partial) orders on different replicas, it is necessary
to compute a common stable last version (LV) according to the received VERTOBFT

from at least 2f + 1 appservers. LV guarantees that all operations in the causal
past of this version are executed. In particular, the BFT cluster proxy process
tries to generate LV in a periodic fashion. The technique is fairly simple: it tries
to match the recent version vectors (of operations) received from appservers and
then calculates the minVV by computing the minimum of every index apart (in

ASPAS: As Secure as Possible Available Systems 9

vector clock, every index corresponds to an appserver’s index [18]), a condition
that the new computed minVV should be greater than the last old one. Since the
minVV is less than or equal all VVs, it means that all corresponding appservers
are in a future state of minVV. Therefore, they will be able to generate a cor-
responding state. We have constrained the new calculated minVV (or what we
called LV) to be strictly greater than the last previous one to avoid attacks from
Byzantine appserver. The latter may try to send old versions (i.e., small VV)
to prohibit generating new certificates. In addition, very high versions sent by
Byzantine appservers will be ignored by the minVV function.

Log extraction. Appservers need a way to extract a STABLE state correspond-
ing to the last stable version LV in BFTREQSTABLE, requested by the BFT server
proxy. This extraction is needed as an appserver may have never passed through
this exact state, although it is included in the final one (a normal behavior in
commutative data types). To this end, we used Pure CRDTs [2] that retain a
partial ordered log (POLog) of operations. This simplifies the generation of a
materialized state using the operations of the POLog, a process we call Cloning.
The idea is to “clone” the state of the current data type by simply extracting
all operations in a POLog having timestamps t′ such that t′ ≤ t (i.e., causally
related as per the Lamport’s happens-before relation [19]). Any re-execution of
this POLog extract will result with the same state since concurrent operations
commute. Therefore, appservers can re-execute these operations with V V ≤ LV
to result a STABLE state that must be equal on all correct appservers. Due to lack
of space, we refer the reader to Pure CRDTs [2] for more information if desired.

Complaining. Complaining is the mechanism through which a client can “com-
plain” about a potential Byzantine appserver behavior. A client can complain
in two cases. The first case is upon receiving a message that holds an invalid
or outdated certificate, as shown in Figure 3.c. In this case the client sends
a COMPLAIN(〈NComplain,PROOF〉αci ,S−s) message to all appservers excluding its associ-
ated one. The COMPLAIN includes the complain’s sequence number NComplain and
a PROOF := (〈〈τ, seqNbi, σ, σ′〉αs 〉αci) of complain correctness. The PROOF contains
the agreed client’s configurable tolerance threshold τ signed by the associated
appserver, the appserver reply’s sequence number seqNbi, the old and new cer-
tificate digests σ and σ′. A correct appserver can verify the correctness of the
COMPLAIN by checking if seqNbi > τ and σ = σ′. This proof verification is nec-
essary to avoid Byzantine clients from using fake complaints as a DOS attack
to blacklist correct appservers. Furthermore, it is used as an evidence to de-
tect/block Byzantine clients with high threat rate. As a result of verification,
the correct appservers can detect and blacklist a Byzantine appserver, and reply
to the client with a BLACKLIST(in = 〈bList, σ〉αsj) message. When a client re-
ceives f + 1 matching and valid BLACKLIST messages as a response to its COMPLAIN

request, it updates its blacklist accordingly and switches to a new appserver.
The client also rollbacks its state to the last correct certificate (if necessary)
and resumes sending REQUEST to the new associated appserver in the normal

10 Houssam Yactine, Ali Shoker et al.

case. The second case of COMPLAIN occurs when the client collects f + 1 mis-
matching replies INSPECTREPLY(in = 〈σ〉αsr) from different f+1 correct appservers
according to its INSPECTION. To avoid fake COMPLAIN requested by a Byzantine
client, the latter should piggyback the INSPECTION results as a proof of truth
PROOF := (〈〈rndState, σ〉αsr 〉

α
ci).

Inspection. Inspection is a mechanism used by clients in a periodic fashion
to make sure an appserver is not using two different logs in the backend and
frontend.In ASPAS, to support various security levels for different clients, each
client has to define its “tolerance threshold” τ during which it can operate until a
new certificate arrives. This requires the client to hold a fairly small log of opera-
tions (smaller than τ) for which it has the ability to rollback. While a certificate
is always generated according to causal order of operations (delivered via the
RCB), any client with τ > 1 will only receive certificates in intervals. However,
certificate versions are stable versions that may not correspond to operations on
all appservers (as shown in Stable versions mechanism in Section 3.6). Conse-
quently, there is a need to make sure that received states between two consecutive
certificates are correct. Indeed, a Byzantine appserver may assign the same VV
to multiple clients’ requests, while only pushes one of them to the BFT cluster.
To fool the clients, the appserver can send them wrong replies joint with a correct
certificate that holds the only pushed one to the BFT cluster. Inspection starts
by having each client to periodically select a random non-certified reply from the
appserver (rndState) in its log. Then, it sends an INSPECTION(〈rndState〉αci , S) request
to all the appservers, asking for a confirmation of correctness. The client should
collect at least f + 1 matching INSPECTREPLY(in = 〈σ〉αsr) from the appservers
for its requested INSPECTION; otherwise, it will assume its associated appserver as
Byzantine. In this case, it sends a COMPLAIN to the other appservers. This ran-
dom INSPECTION stands as an accountable approach to prevent the misbehavior
of appservers. For that, if the number of concurrent clients on the service is
high, a Byzantine appserver will be blacklisted even if the rate of inspection is
low. Notice that inspection should be used according to a well configured policy
(defined time, number of times...) to prevent Byzantine clients from using it as
a DOS attack to overload the network. Furthermore, inspection is not crucial to
maintain system convergence, it is just an additional mechanism to guarantee as
much as possible the correctness of client’s received replies. Clients tending for
high security over latency can minimize τ to one, or use a classical BFT system.

4 Evaluation

4.1 Implementation

Code. We implemented ASPAS as a Proof of Concept of 5K Java LOC. We
opted for Java to have a smooth integration with the BFT-SMaRt library [1],
used as the BFT Cluster. The implementation included a thin client, modu-
lar proxies (as described in Figure 1), and appserver including a basic Reliable

ASPAS: As Secure as Possible Available Systems 11

Broadcast protocol [3]. Being modular, ASPAS can use any classical BFT pro-
tocol, like [29, 8, 10], as a backend as long as it exposes the same BFT-SMaRt
API. This is required to integrate with the BFT proxies of ASPAS.
DataTypes. We experimented ASPAS using the Counter and Set datatypes fol-
lowing the Pure CRDT model [2]. These two datatypes are widely used in many
AP applications. As a single example on social network applications, counters
can implement the number of actions: likes, dislikes, comments, views, Ads, etc.;
and sets can implement collections of recommended videos, comments, posts,
etc. In addition, experimenting counters and sets helps us diversify the payload
size of requests and replies (although this had little impact on our results). We
plan to opensource the code after refactoring.

4.2 Experimental Settings

Testbed. We prepared an experimental environment that is very close to re-
ality using Emulab [28]. Emulab is a good choice because it allows using real
machines for processes, and interestingly allows emulating the network delays
using intermediary physical machines which gives the same experience as in geo-
replicated link delays and router’s queuing. We avoided using Grid5000 since it
allows sharing the machines for several experiments which induces ambiguity to
the results and makes it harder to reproduce and compare against.
Machines. We used up to 100 physical commodity real machines at Emulab
each having two 8-core CPUs with RAM between 8GB and 16GB, five Ethernet
10Gb NICs, and running 64-bit Ubuntu OS. These properties allowed us to run
up to 50 client processes or 10 appserver processes on the same machine. The
BFT cluster was deployed on four machines to run BFT-SMaRt bftservers.
Networks. One third of these machines were used by Emulab as intermediary
delay machines to mimic a real delay in geo-replicated settings. To mitigate the
interference across layers and overloading network interfaces (as done in real
settings), we used a different network for each layer: frontend, BFT cluster,
appservers, and backend (as shown in Figure 1). Otherwise explicitly stated,
we configured the network round-trip delays considering the estimated geo-
replicated intra- and inter-continental average delays [12]: 70ms for the frontend
network (clients and appservers), 70ms to 110ms as variant average delay for the
appservers network and backend network (appservers and bftservers), and 10ms
for the BFT cluster (since it is not necessary to be geo-replicated). We could
have explicitly used different delays within the same network to mimic a real
geo-replicated case, but we did not see a significant impact on the evaluation.

4.3 Evaluation Methodology

Metrics and benchmarks. The evaluation focuses on measuring the latency of
ASPAS being the most significant Key Performance Indicator in AP systems. In
addition, we also measure the throughput considering: the number of simultane-
ous clients with different payloads (without batching), and execution times. We
assume b = 1 faulty bftservers out of 3b+ 1 in the BFT cluster unless otherwise

12 Houssam Yactine, Ali Shoker et al.

stated. We experimented the Counter and Set datatypes via microbenchmarks
and YCSB [11] read/write workloads. In all cases, clients issue a sufficiently big
number (up to 10K) of requests to stabilize the network queues. We did not aim
to saturate the network being unrealistic in geo-replicated settings. We remove
the outliers during the system warm-up and cool-down phases to measure the
steady case. We ran each experiment at least five times. Latencies measured at
each client are used to compute the average latency. Throughput is measured at
the appservers and summed up.
Compared protocols. We compared ASPAS with OBFT [9] as a state of the
art BFT protocol for AP systems. To understand the overhead of Byzantine
tolerance, we compared ASPAS to two baseline configurations representing the
ASPAS extremes: (1) an AP system without any BFT backend or cryptography
overhead, and (2) a system running a BFT protocol, e.g., BFT-SMaRt in our
case. Even if sometimes deemed to provide “eventual” consistency, we do not
compare with recent, classical BFT protocols [29, 26, 6]. However, these proto-
cols are complementary to ASPAS because they can be used as backend instead
of BFT-SMaRt if they can improve the BFT cluster functionality.
Compared ASPAS configurations. In addition, to understand the performance-
security tradeoffs of ASPAS, we considered five ASPAS configurations summa-
rized in Table 1. ASPAS1, ASPAS2, and ASPAS3 are the most interesting con-
figurations as they represent reasonable proportions of different levels of security
by clients. We argue that the percentage of τ = 1 is not very low considering
AP systems (which is not the common paradigm for conservative applications).
ASPAS0 and ASPAS4 are used for the sake of the experiments and in special
cases (e.g., under a problem in the backend or system under attack, respectively);
therefore, these are not sought to be normal-case ASPAS configurations.

Configuration % τ = 1 % τ = 1000 % τ = ∞
ASPAS0 0% 0% 100%

ASPAS1 5% 50% 45%

ASPAS2 3% 30% 67%

ASPAS3 0% 100% 0%

ASPAS4 100% 0% 0%

Table 1: The five ASPAS interesting configurations.

4.4 Latency and Throughput microbenchmarks

Counter Figures 4b and 4a show that the latency (resp., throughput) of ASPAS,
as the number of clients increase, are close to that of the optimal baseline AP
System (apsystem) in most configurations (for f = 3). The latency of both
ASPAS and apsystem range between 72ms and 400ms as the number of clients
reaches 1000. This is consistent with a round-trip request/reply with link delay
70ms with few clients, and expected for 1000 clients since we ran up to 50 client
processes on each machine. The same pattern also noticed for the throughput
that exceeds 5K req/s with 1000 clients. The figure shows that the apsystem

ASPAS: As Secure as Possible Available Systems 13

● ● ● ● ●

●
●

●

●

●

●

1 2 5 10 20 50 75 10
0

20
0

50
0

10
00

0

1

2

3

4

5

6

7

8

9

T
hr

ou
gh

pu
t (

K
 R

eq
/s

)

Number of clients

● apsystem
bftsmart
aspas0
aspas1
aspas2
aspas3
aspas4
obft

(a) Counter Tput

● ● ● ● ● ● ● ● ●

●

●

1 2 5 10 20 50 75 10
0

20
0

50
0

10
00

100

200

300

400

500

600

La
te

nc
y

(m
s)

Number of clients

(b) Counter Lat

● ● ● ● ●

●
●

●

●

●

●

1 2 5 10 20 50 75 10
0

20
0

50
0

10
00

0

1

2

3

4

5

6

7

8

T
hr

ou
gh

pu
t (

K
 R

eq
/s

)

Number of clients

(c) Set Tput

● ● ● ● ● ● ● ●
●

●

1 2 5 10 20 50 75 10
0

20
0

50
0

10
00

100

200

300

400

500

600

La
te

nc
y

(m
s)

Number of clients

(d) Set Lat

Fig. 4: Throughput and latency microbenchmarks for Counter and Set datatypes
with payloads 128B and 4KB, respectively with fixed f =3 and b=1.

can scale a bit more than ASPAS, but we could not add more clients due to the
limited number of machines. This result is expected as appservers do extra work
by communicating with the BFT cluster, even if in the background.

Considering OBFT [9], as state of the art SEC-based protocol, its latency is
slightly lower than ASPAS with few clients. This is not surprising since OBFT
uses less secure HMAC-symmetric keys of 6Bytes length and SHA1 digests.
However, OBFT’s latency starts to increase significantly with 10 clients and
more. Indeed, OBFT uses periodic (every 1000 requests) synchronization be-
tween appservers to resolve conflicts, which is, contrary to ASPAS, blocking to
the client. For the same reason, the throughput of OBFT is the lowest compared
to ASPAS and apsystem. This result is an evidence that using a modular ap-
proach like ASPAS to check the Byzantine behaviours in the background is less
complex and maintains the desired low latency in AP Systems.

On the more conservative baseline, BFT-SMaRt only scales up to 100 clients
with almost double the latency of apsystem and ASPAS0 in geo-replicated setting
i.e., 70ms round-trip delay. This is expected due to the extensive two round-trip
messaging pattern of the BFT-SMaRt protocol. As expected, the latency of
ASPAS4 is higher than BFT-SMaRt as confirmed in the figures since all clients
requests in ASPAS4 are only served after a certificate is requested from the BFT
cluster (which incurs additional round-trip delay of 70ms). This was consistent
with the results with few clients where the latency difference was around 78ms.

Interestingly, the latency and throughput of ASPAS in most configurations
are very close to apsystem. As expected, the latency of ASPAS0 is a little higher
than apsystem due to the overhead of SHA256 hashing and RSA signatures
(used by BFT-SmaRt). The results show that as the number of clients with
τ = 1 increases, e.g., in ASPAS1 and ASPAS2, the latency (resp, throughput)
increases (resp., decreases). This is referred to the impact of high delays of clients
with τ = 1 that follow the strong consistency. We also observed that ASPAS2
outperforms ASPAS3 (where all clients set τ = 1000), due to the high proportion
of clients with τ = ∞ (i.e., never block) that dominates the effect of the 3%
clients with τ = 1. The result of ASPAS3 is promising as ASPAS scales up to
500 clients with throughput and latency close to the optimal baseline apsystem.

14 Houssam Yactine, Ali Shoker et al.

● ●

●
●

●

●

●

●

25
0

12
50

22
50

32
50

42
50

52
50

62
50

0

100

200

300

400

500

600

● ●

●
●

●

●

●

●

La
te

nc
y

(m
s)

Throughput (Req/s)

●

●

ASPAS 1 − YCSB A
ASPAS 2 − YCSB A
ASPAS 3 − YCSB A
ASPAS 1 − YCSB B
ASPAS 2 − YCSB B
ASPAS 3 − YCSB B

(a) YCSB Counter scalability

● ● ●

●

●

●

50
0

15
00

25
00

35
00

0

250

500

750

1000

1250

1500

1750

2000

● ●
●

●

●

●

La
te

nc
y

(m
s)

Throughput (Req/s)

●

●

ASPAS 1 − YCSB A
ASPAS 2 − YCSB A
ASPAS 3 − YCSB A
ASPAS 1 − YCSB B
ASPAS 2 − YCSB B
ASPAS 3 − YCSB B

(b) YCSB Set scalability

Fig. 5: Scalability under YCSB A and B workloads

Set Figures 4d and 4c convey the microbenchmarks on the set datatypes. We
noticed the same patterns as in the counter case with lower scalability. This is
expected since the set payload is set to 4KBytes which incurs additional Cryp-
tographic overhead (using SHA256). The large payload overhead also dominates
other protocol’s factors which reflects the observation that all ASPAS configu-
rations and OBFT curves are closer than the counter case. Another observation
is that the latency and throughput get worse much faster than the counter case.
In fact, the increase in the payload size causes delays in the systems that also
delays the certificate at the BFT cluster. Therefore, a fraction of the clients will
reach the threshold τ and thus wait some milliseconds for the certificate. The av-
erage latency shown on the graphs reflects this certificate delay overhead which
we discuss further in the following sections. Finally, we expected the latency of
OBFT to be worse than the counter case with more concurrent clients (i.e., leads
more conflicts). This is because it uses a sophisticated process to have appservers
agree on a correct state and undo incorrect ones [9].

4.5 Scalability with YCSB benchmark

To understand the behaviour of ASPAS with real workloads, we experimented
it using the YCSB benchmark [11] considering Read/Write percentages for both
Counter and Set cases. We only focused on the most three realistic configura-
tions of ASPAS, i.e., ASPAS1, ASPAS2 and ASPAS3. We omit the comparison
with other protocols as the results we got are very consistent with those in the
previous section. We have used two widely used YCSB workloads: workload A
(YCSB A) as an update-heavy scenario with 50% read and 50% update, and the
workload B (YCSB B) as a read heavy scenario with 95% read and 5% update.
In both scenarios, the request distribution is set to zipfian.
Counter: In Figure 5a, i.e., the counter datatype, the results we obtained

are consistent with those in the microbenchmark case: the three ASPAS con-
figurations scale up to 500 clients where the latency stays below 450ms, with
throughput 3680 req/s in the worst case (ASPAS1). Again, this is considered ac-
ceptable in Internet-based geo-replicated applications. We believe this could be
lower in reality as we ran 50 clients on a single machine in this scenario. Even in
this case, the latency remains realistic although the throughput of the protocol

ASPAS: As Secure as Possible Available Systems 15

no longer improves when the appservers get overloaded and the broadcast cost
across appserver gets higher. This is also consistent with another observation
that the scalability with YCSB B is around 20% better than YCSB A in all
configurations; which is expected since with lower update rate in YCSB B, less
load is imposed on the system as no broadcast is needed. On the other hand,
we noticed the same pattern as in the microbenchmark results where ASPAS2
outperforms ASPAS1 as it includes more clients with τ = ∞ (favor availabil-
ity) and less clients are conservative (with τ = 1). This phenomenon is expected
since clients with τ =∞ do not have to wait for a certificate, whereas those with
τ = 1 wait on every update. However, ASPAS3’s scalability remains lower than
ASPAS2 although no clients with τ = 1 exist, but as the clients with τ = ∞
(which have the lowest latency) also disappear in the system, the average latency
increases slightly, but not as worse as ASPAS1.
Set: The results for the set datatype are conveyed in Figure 5b. the first salient
observation is that the curves are closer to those in the Counter case in all ASPAS
configurations and both YCSB A and B. The reason is referred to the domina-
tion of the request sizes in the Set (4KB) over other factors in the system. What
supports this explanation is the low throughput in the case of the set despite
the acceptable latency: although the latency is not significantly higher than the
counters case (where the link delay is a main factor), the throughput (between
2000 and 3000 req/s) is significantly lower that of the counter case (6400 req/s).

5 Conclusion

In this paper, we presented ASPAS: a Byzantine resilient AP system that en-
sures Strong Eventual Convergence despite Byzantine behaviors. ASPAS pro-
vides backend Byzantine faults detection off the critical path of clients requests,
being a requirement for highly available applications. ASPAS also provides a
client-based spectrum of tradeoffs between availability and Byzantine security,
which is convenient for deployments with mixed application security require-
ments. Although ASPAS does not affect the liveness of non Byzantine-sensitive
clients, it could temporarily block conservative clients that require high fresh-
ness. Unfortunately, this is an intrinsic property of AP systems themselves, even
in the crash-recovery model, that could be solved via full replication (i.e., mir-
roring) at the application server level.

Acknowledgments

This work is co-financed by the National Funds through the Portuguese funding
agency, FCT - Fundao para a Cincia e a Tecnologia, within project UIDB/50014/2020;
and the “NORTE-06-3559-FSE-000046 - Emprego altamente qualificado nas em-
presas Contratao de Recursos Humanos Altamente Qualificados (PME ou Co-
LAB)” financed by the Nortes Regional Operational Programme (NORTE 2020)
through the European Social Fund (ESF).

16 Houssam Yactine, Ali Shoker et al.

References

1. Alysson Bessani, Joao Sousa, and Eduardo Alchieri: State machine replication
for the masses with BFT-SMART. In: In Proceedings of the 44th IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE (2014)

2. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based crdts operation-
based. In: Distributed Applications and Interoperable Systems - International Con-
ference, DAIS 2014. pp. 126–140 (2014)

3. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal
and atomic group multicast. ACM Trans. Comput. Syst. 9(3),
272–314 (Aug 1991). https://doi.org/10.1145/128738.128742,
http://doi.acm.org/10.1145/128738.128742

4. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Com-
putation 75(2), 130–143 (1987)

5. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: ACM Sigplan Notices. vol. 49, pp. 271–284.
ACM (2014)

6. Cachin, C.: Architecture of the hyperledger blockchain fabric. In: Workshop on
Distributed Cryptocurrencies and Consensus Ledgers. vol. 310 (2016)

7. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. In: Annual International Cryptology Conference. pp. 524–541.
Springer (2001)

8. Castro, M., Liskov, B.: Practical byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst. 20(4),
398–461 (Nov 2002). https://doi.org/10.1145/571637.571640,
http://doi.acm.org/10.1145/571637.571640

9. Chai, H., Zhao, W.: Byzantine fault tolerance for services with commu-
tative operations. In: Proceedings of the 2014 IEEE International Con-
ference on Services Computing. pp. 219–226. SCC ’14, IEEE Computer
Society, Washington, DC, USA (2014). https://doi.org/10.1109/SCC.2014.37,
http://dx.doi.org/10.1109/SCC.2014.37

10. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riche, T.:
Upright cluster services. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. pp. 277–290. ACM (2009)

11. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154. ACM (2010)

12. Couto, R.S., Secci, S., Campista, M.E.M., Costa, L.H.M.: Latency versus surviv-
ability in geo-distributed data center design. In: 2014 IEEE Global Communica-
tions Conference. pp. 1102–1107. IEEE (2014)

13. Friedman, R., Licher, R.: Hardening Cassandra Against Byzantine Fail-
ures. In: Aspnes, J., Bessani, A., Felber, P., Leitão, J. (eds.) 21st In-
ternational Conference on Principles of Distributed Systems (OPODIS
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 95,
pp. 27:1–27:20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.OPODIS.2017.27,
http://drops.dagstuhl.de/opus/volltexte/2018/8642

14. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. Acm Sigact News 33(2), 51–59 (2002)

ASPAS: As Secure as Possible Available Systems 17

15. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.A.: Scalable
byzantine reliable broadcast (extended version). arXiv preprint arXiv:1908.01738
(2019)

16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: Speculative
byzantine fault tolerance. ACM Trans. Comput. Syst. 27(4), 7:1–7:39 (Jan 2010)

17. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall 1(11) (2014)
18. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. pp.

558–565. ACM (1978)
19. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7), 558–565 (1978)
20. Lamport, L., Shostak, R., Pease, M.: The byzantine generals prob-

lem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (Jul 1982).
https://doi.org/10.1145/357172.357176

21. Malkhi, D., Merritt, M., Rodeh, O.: Secure reliable multicast protocols in a wan.
Distributed Computing 13(1), 19–28 (2000)

22. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys (CSUR)
37(1), 42–81 (2005)

23. Schneider, F.B.: Replication management using the state-machine approach, dis-
tributed systems (1993)

24. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types (2011)

25. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Proceedings of the 13th International Conference on Stabilization, Safety,
and Security of Distributed Systems. pp. 386–400. SSS’11, Springer-Verlag, Berlin,
Heidelberg (2011), http://dl.acm.org/citation.cfm?id=2050613.2050642

26. Singh, A., Fonseca, P., Kuznetsov, P., Rodrigues, R., Maniatis, P.: Zeno:
Eventually consistent byzantine-fault tolerance. In: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation.
pp. 169–184. NSDI’09, USENIX Association, Berkeley, CA, USA (2009),
http://dl.acm.org/citation.cfm?id=1558977.1558989

27. Vogels, W.: Eventually consistent: Building reliable distributed systems at a world-
wide scale demands trade-offs? between consistency and availability. Queue 6(6),
14–19 (2008)

28. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. ACM SIGOPS Operating Systems Review 36(SI), 255–270
(2002)

29. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft consen-
sus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing. pp. 347–356 (2019)

