
Embedding Model-Driven Spreadsheet Queries in
Spreadsheet Systems

Jácome Cunha∗†, João Paulo Fernandes∗‡, Jorge Mendes∗, Rui Pereira∗, and João Saraiva∗
∗ HASLab/INESC TEC & Universidade do Minho, Portugal
† CIICESI, ESTGF, Instituto Politécnico do Porto, Portugal
‡ RELEASE, Universidade da Beira Interior, Portugal

{jacome,jpaulo,jorgemendes,ruipereira,jas}@di.uminho.pt

Abstract—Spreadsheets are widely used not only to define
mathematical expressions, but also to store large and complex
data. To query such data is usually a difficult task to perform,
usually for end user. In this work we embed the textual query
language in the model-driven spreadsheet environment as a
spreadsheet itself. The result is an expressive and powerful query
environment that has knowledge of the business logic defined by
the spreadsheet data (the spreadsheet model) to guide end users
constructing correct queries.

I. INTRODUCTION

Spreadsheets are widely used and tend to evolve into large
and complex data-centric software systems [1]. The use of
simple/abstract models to reason about large and complex real-
world entities is the standard approach of several engineering
disciplines for many decades and even centuries.

More recently, models were widely adopted in software
engineering [2], and spreadsheets followed this trend. Indeed,
there has been recent and relevant research on model-driven
spreadsheets, namely in the definition of spreadsheets mod-
els [3], [4], in the inference of models from spreadsheet data
[5], [6], in the evolution of spreadsheets [7], [8], [9], and
in the construction of model-driven spreadsheet environments
[10], [11]. A model-driven spreadsheet developer mimics a
civil engineer: instead of reasoning about a large and complex
entity/data, he/she reasons about a simpler model defining the
business logic the complex data. Synchronization mechanisms
are used to guarantee model and instance conformance [12]. A
model-driven approach to spreadsheets has furthermore been
demonstrated, in different contexts and by different empirical
studies, as being both efficient and effective [13].

Surprisingly enough, however, while spreadsheets are such
a powerful and multi-purpose system, and namely being used
to store large amounts of data, i.e., as databases, spreadsheets
still lack the powerful tools and techniques that database
systems offer. Specifically, the use of data normalization
techniques [14], for data redundancy removal, and a querying
language and system, to filter and transform data, is still
natively missing in most spreadsheet systems.

This work is part funded by the ERDF - European Regional Develop-
ment Fund through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT - Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)
within project FCOMP-01-0124-FEDER-020484. The first, and fourth author
were funded by FCT: SFRH/BPD/73358/2010, BI3-2013 PTDC/EIA-CCO/
116796/2010 UMINHO, respectively.

In previous work we proposed QuerySheet: a textual SQL-
like query language and system for model-driven spread-
sheets [15]. An empirical study showed that QuerySheet
greatly improves the productivity of end users when compared
to the use of another querying system [16]. Regardless, we
also observed that although our technique facilitates querying
spreadsheets for users with experience in SQL, those with
less experience still felt it difficult to write queries (this was
observed in both our system and the competing one), showing
that traditional query systems are too complex for end users.

Thus, in this paper we present an Embedded Spreadsheet-
Structured Query Language (ES-SQL) that consists in the
embedding of an SQL-like query language in a general purpose
model-driven spreadsheet system. In such an embedded model-
driven spreadsheet query, end users can visually construct their
queries as a spreadsheet, and do so in their familiar spreadsheet
environment. This is the first contribution of this paper and
is shown in Section III. Also, we extend our model/instance
synchronization engine to support ES-SQL, thus guaranteeing
conformance of all software artifacts after users update/evolve
the spreadsheet model or instance. Having the query model/en-
vironment synchronized with the spreadsheet model/instance,
we exploit this knowledge to guide end users to correctly
construct queries: drop down lists are provided containing only
possible attributes, aggregations, and ordering types. This is
our second contribution and is presented in Section IV.

II. SPREADSHEETS: CLASSSHEET MODELS AND QUERIES

When designing and developing our spreadsheet query sys-
tem, we turned to model-driven engineering methodologies [2].
These methodologies exploit domain specific models, or ab-
stract representations of pieces of software, to handle complex
and evolving software systems. We base our work upon model-
driven engineering methodologies for spreadsheets, specifically
on the spreadsheet modeling language ClassSheets [4] and on
the model-driven spreadsheet environment MDSheet [17].

Models in the ClassSheet language are high-level and
object-oriented, and use the concepts of classes and attributes.
Using these models, we are able to define the business logic
of a spreadsheet in a concise and abstract manner. This in
turn allows users to understand, evolve, and maintain com-
plex spreadsheets by just analyzing the (ClassSheet) models,
avoiding looking at large and complex data. Indeed, as shown
in [18], users need mental models to build a bridge between
spreadsheet data and the real world.



Figure 1 presents our running example: a ClassSheet
model, and part of a conforming instance, for a spreadsheet
containing information of a Budget. This ClassSheet model,
named Budget, has a Category class (with a Name attribute)
and a Year class (with a Year attribute), expanding vertically
and horizontally respectively (expressed by the ellipsis). The
joining of each class gives us information on the Quantity,
the Cost, and the Total of a Category in a given Year.

Fig. 1. Budget ClassSheet model and conforming instance

Let us suppose we wanted to answer the following question:
What was the total per year, in decreasing order, from 2010
onwards?

Using our textual model-driven querying approach, we
would only need to simply look at our ClassSheet model (from
Figure 1) and write the query shown in Listing 1 based on our
model-driven querying language.

SELECT Year, sum(Total)
WHERE Year >= 2010
GROUP BY Year
ORDER BY sum(Total) DESC

Listing 1. QuerySheet query answering the proposed question

The SQL-like model-driven query is more descriptive than
some other approaches, taking advantage of the attribute names
used in the model [15], [16]. By doing so, the query itself
becomes more human-friendly and understandable to both read
and write. Indeed we have shown this in previous work [19].

III. EMBEDDING QUERIES IN MODEL-DRIVEN
SPREADSHEETS

Although constructing queries on a model-driven spread-
sheet environment seems to improve efficiency and effective-
ness, our empirical observations also suggest that building
SQL-like queries may still be too complex for end users. In
fact, our studies showed that advanced spreadsheet users with
basic SQL experience still felt it difficult to write spreadsheet
queries [16]. We observed syntactic and semantic difficulties:
first, spreadsheet users were not comfortable to express queries
on a textual syntactic SQL-like notation that is very different
from the spreadsheet programming paradigm. Second, there
is no support on building semantically correct queries, for
example, by forcing the query writer to use valid attributes
only (i.e., attributes that are in the model).

This section presents the embedded spreadsheet-structure
query language that addresses these two issues: First, we

define a visual spreadsheet-like query language for model-
driven spreadsheets where queries are defined as a spreadsheet.
The visual query language is based off of its associated model.
Thus, end users write queries in their familiar spreadsheet
environment, with no need to learn SQL-like notation. Second,
we develop an Integrated Development Environment (IDE)
for ES-SQL as an extension of widely used (model-driven)
spreadsheet system. This allows an end user to use drop-down
boxes to select filter conditions, attribute orders, aggregations,
and other querying conditions, to easily construct the queries
and eliminating any possible syntax and semantic errors. In
other words, this embedded query system helps guide the user
in constructing queries.

The focus of the construction of this embedded query
language is to display all the information from the model-
driven query language in a simple and human-friendly way.
This must be intuitive for both experienced SQL users and end
users, as suggested by our empirical study. Thus, we define a
visual spreadsheet-like representation for each of the syntactic
elements in the QuerySheet language. Figure 2 shows more
advanced features of our embedding that we explain next.

Along with the ClassSheet model and conformed instance,
the ES-SQL query is also in its own worksheet in the MDSheet
model-driven environment.

Fig. 2. ES-SQL: language and spreadsheet IDE

In Figure 2 we see the various areas, identified by the red1

and Roman numerals. Each area is as follows:

I) Here we have a representation of the spreadsheet
model. One can quickly notice that the colors used in this
representation come from the original model, allowing the
user to familiarize him/herself with the classes in this model
representation. This part is divided as follows:

Attributes: shows the class names and associated attributes,
based on the original spreadsheet model.

Selected: this column is for the user to select which
attributes he/she wishes to be presented in the results (SQL
Select Clause). Using drop-down boxes in the cells, the user
can choose a Check Mark to depict a chosen attribute.

Formula: drop-down boxes in this column present the user
with a list of possible formulas to be used on the chosen
attribute (Aggregations): Min, Max, Count, Sum, and Avg.

Sort: to allow the user to sort the results using a specific
attribute (SQL Order By Clause), a series of drop-down boxes
in the cells presents the user the option of an Ascendant (Z↘A)
or Descendant (A↘Z) sorting.

II) Here we have two operations to be applied over the
rows of the results of a query, and a “Run” button. This is
divided as follows:

1We assume colors are visible through the digital version of this document.



Unique Rows: this is used to produce distinct results
(Distinct clause), removing any repetitions. Using the drop-
down box (under column G), the user can choose a Check Mark
to express the wish to produce unique rows of information.

Limit Rows: this is to limit the number of rows to be shown
in the results. The user can write a number in the cell (under
column G) to state how many rows to be shown. For example,
Limit rows 5 would only show the first 5 rows of information
from the query result.

“Run” Button: when the user is done constructing the
desired query, he/she may click on the “Run” button to execute
the query and produce the results.

III) Displays the conditions to be used in the query.
Clicking on the “+” button adds a new row; clicking “-”
removes the corresponding row. This is divided as follows:

Attribute: the user is presented a drop-down box allowing
to choose which attribute to be used for a condition.

Op: a second drop-down box is presented, allowing the
user to choose which operation to be used for a condition.
The operations are: =, <, >, <=, >=, !=.

Value: here a user may write in the actual cell, the value
to be compared to the attribute with the operation.

Another useful addition is the automatic calculation of
when a group by is needed. In other words, when an aggrega-
tion is detect with other selected attributes, the embedded query
automatically produces a grouping. This automatic calculation
not only is practical in query construction, but also made it so
one less query clause was needed to be presented.

Having introduced ES-SQL, we can now construct the
query from Listing 1 using our approach, as shown in Figure 3.

Fig. 3. Embedded Query answering running example

The steps to construct this embedded query are as follows:

1) Using the drop-down boxes under the Selected column,
click on cell B4 and B10 to select the Check Mark,
selecting both year and total to be used, respectively.

2) Under the Formula column, click on cell C10 and choose
Sum from the drop-down box list.

3) Click on the “+” button to add a new condition row.
4) Select the Year.year attribute, and >= operation using the

drop-down boxes in the new condition row. Afterwards,
fill in 2010 in the value cell.

5) Click “Run”.

As we have shown, using ES-SQL, the user can have little
to no SQL experience, and still correctly perform queries.

IV. SPREADSHEET MODELS, INSTANCES AND QUERIES
SYNCHRONIZATION

In the previous section we have presented the embedding
of model-driven visual queries. Such query system is devised

from the spreadsheet model, the ClassSheet, and must always
be synchronized with such a model so the queries are always
correct, even after model evolution. Thus, this section presents
the environment we have designed to keep these artifacts
synchronized. Indeed we extend our model-driven spreadsheet
bidirectional evolution engine presented in [7], [8], [12] to
allow model, instance, and query synchronization. In such
a setting, the embedded query model has knowledge of the
underlying spreadsheet model (and instance), and automati-
cally (co)evolves after the model/instance evolves. Because the
query model is synchronized with the spreadsheet model, it
offers to users information about valid and available attributes
currently in the spreadsheet so that it guides in constructing
correct queries. Figure 4 illustrates this system.

Spreadsheet'Spreadsheet

ClassSheet ClassSheet'

Qm+Q Qm'+Q'

OpM

OpQ

toQ

OpD

synchronized synchronized

fromto

Fig. 4. Diagram of the synchronization between model, data, and queries.

The transformation engine, with the extension presented
here, operates on three distinct structures: the Model (Class-
Sheet), Data (Spreadsheet), and Query (Qm+Q). The inter-
action between model and instance was presented in [20],
and is presented here for completeness purposes: For each
evolution step performed on the model, OpM , a corresponding
operation on the data is calculated, OpD. This is done by
the function to. On the other hand, for every operation on
the instance, from calculates the corresponding operation it
is necessary to perform on the model to keep both artifacts
in conformance. This can be seen in the bottom part of the
diagram presented in Figure 4. With the work presented in
this paper we will complete the top part of this diagram.
Thus, we have the query model and each query instance
(Qm+Q) synchronized with the model. The first query model
is devised from the ClassSheet, but if the model change, the
query must automatically be updated. To do so, for every
update of the model, OpM , the function toQ will compute
the necessary changes to the corresponding query model and
possible existing queries.

V. RELATED WORK

In the past, we have proposed the first model-driven ap-
proach to spreadsheet querying [15], [16]. This initial proposal
includes a language and a tool to construct queries over
spreadsheets with models. In contrast with the work we present
in this paper, such approach was not well suited for end users:
to construct queries users would need to already know or
go trough a steep learning path of SQL. In fact, we have
designed and conducted some empirical studies which showed
that even users with computer science background would
have some difficulties constructing such queries [16]. In an
attempt to overcome this issue, we have proposed a more
graphical approach to help end users perform queries over



spreadsheets [19]. With this approach we were able to show
that users were now more capable of writing queries [19].
Moreover, we have also implemented the embedded querying
system under MDSheet [21].

Microsoft has its own tool to query Excel files: MS-
Query [22]. This is actually a database query interface used
by Microsoft Word and Excel, and consists of an utility
which imports databases, text files, and other spreadsheet
representations (such as csv) into Excel. After importing, a
query builder wizard is shown to begin constructing a query.
In order to be able to query spreadsheet data, the headers of
each attribute must be explicitly represented in a single row
and the data itself must be in a single vertically expanding
table format, format that does not exist for many spreadsheets.

Another tool which allows to query spreadsheets is the
Google QUERY function [23]. It allows users, using a SQL-
like syntax, to perform a query over an array of values,
for example in their Google Drive spreadsheets, where the
function is built-in. Google QUERY function is a two part
query, consisting of a range of input cells, and the actual query
string (subset of SQL), referring data by the names of the
columns where it is placed. The QUERY function shares the
same problems of MS-Query in regards to data representation.

Open/LibreOffice have also a way of querying spread-
sheets [24]. In this case, it must be done through the database
component of the software, and not in the spreadsheet system
itself. The user must create a new database, choosing an
existing spreadsheet file as its source.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a model-driven query-
ing artifact. Spreadsheets are abstractly reasoned about, and
evolved, together with a ClassSheet model representation of
them. The fact that a model which captures the business logic
of a spreadsheet is available is exploited in that queries may
intuitively refer to names of entities instead of column headers
as in previous solutions.

Our approach builds on the language for defining queries
that we propose. Such a language also relies on the model
available: A query template is offered to users, that construct a
query by selecting the parts of information they are interested
in; this is done without margin to mistakes, as the template
only makes available the choices that are actually possible.

Finally, the fact that our query engine is now fully em-
bedded in a spreadsheet system offers: i) an improved user
experience, with queries readily available under spreadsheet
systems and ii) interesting possibilities for full synchronization
of all the elements that are manipulated: ClassSheet models,
spreadsheets, queries and query results. This means upon an
evolution of any of these elements, we now have the means to
synchronize all the associated ones.

The work so far opens interesting research problems. While
able to represent most of our model-driven domain-specific
query in spreadsheets, to write nested logical conditions is
still a limitation. Also, although our previous experience with
querying spreadsheets seem to confirm the interest of this
work, we still need to validate this claim empirically.

REFERENCES

[1] C. Chambers and C. Scaffidi, “Struggling to Excel: A Field Study of
Challenges Faced by Spreadsheet Users,” in VL/HCC’10, 2010, pp.
187–194.

[2] J. Bézivin, “Model driven engineering: An emerging technical space,”
in GTTSE’05, ser. LNCS, R. Lämmel, J. Saraiva, and J. Visser, Eds.,
vol. 4143. Springer, 2005, pp. 36–64.

[3] R. Abraham and M. Erwig, “Inferring templates from spreadsheets,” in
ICSE’06. ACM, 2006, pp. 182–191.

[4] G. Engels and M. Erwig, “ClassSheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in ASE’05.
ACM, 2005, pp. 124–133.

[5] F. Hermans, M. Pinzger, and A. van Deursen, “Automatically extracting
class diagrams from spreadsheets,” in ECOOP’10. Springer-Verlag,
2010, pp. 52–75.

[6] J. Cunha, M. Erwig, and J. Saraiva, “Automatically Inferring ClassSheet
Models from Spreadsheets,” in VL/HCC’10. IEEE, 2010, pp. 93–100.

[7] J. Cunha, J. Visser, T. Alves, and J. Saraiva, “Type-safe evolution of
spreadsheets,” in FASE’11. Springer-Verlag, 2011, pp. 186–201.

[8] J. Cunha, J. Mendes, J. P. Fernandes, and J. Saraiva, “Embedding
and evolution of spreadsheet models in spreadsheet systems,” in
VL/HCC’11. IEEE, 2011, pp. 186–201.

[9] M. Luckey, M. Erwig, and G. Engels, “Systematic evolution of model-
based spreadsheet applications,” Journal of Visual Languages & Com-
puting, vol. 23, no. 5, pp. 267–286, 2012.

[10] M. Erwig, R. Abraham, S. Kollmansberger, and I. Cooperstein, “Gencel:
a program generator for correct spreadsheets,” J. Funct. Program,
vol. 16, no. 3, pp. 293–325, 2006.

[11] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet:
A framework for model-driven spreadsheet engineering,” in ICSE’12.
IEEE Press, 2012, pp. 1395–1398.

[12] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva, “Bidi-
rectional transformation of model-driven spreadsheets,” in ICMT’12.
Springer-Verlag, 2012, pp. 105–120.

[13] L. Beckwith, J. Cunha, J. P. Fernandes, and J. Saraiva, “End-users
productivity in model-based spreadsheets: An empirical study,” in IS-
EUD’11, ser. LNCS. Springer Berlin Heidelberg, 2011, pp. 282–288.

[14] D. Maier, The Theory of Relational Databases. Computer Science
Press, 1983.

[15] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva,
“Querying model-driven spreadsheets,” in VL/HCC’13. IEEE, 2013,
pp. 83–86.

[16] J. Cunha, J. Mendes, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Design and implementation of queries for model-driven spreadsheets,”
in Proceedings of the DSL Summer School 2013, 2014, (submitted).

[17] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet:
A framework for model-driven spreadsheet engineering,” in ICSE’12.
IEEE Press, 2012, pp. 1412–1415.

[18] B. Kankuzi and J. Sajaniemi, “An empirical study of spreadsheet
authors’ mental models in explaining and debugging tasks,” in
VL/HCC’13. IEEE, 2013, pp. 15–18.

[19] J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva, “Graphical querying
of model-driven spreadsheets,” in HCII’14, ser. LNCS. Springer, 2014.

[20] J. Cunha, J. P. Fernandes, J. Mendes, H. Pacheco, and J. Saraiva, “Bidi-
rectional transformation of model-driven spreadsheets,” in ICMT’12,
ser. LNCS, vol. 7307. Springer, 2012, pp. 105–120.

[21] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and J. Saraiva, “ES-
SQL: Visually Querying Spreadsheets,” in VL/HCC’14. IEEE, 2014,
to appear.

[22] Microsoft Query, office.microsoft.com/en-us/excel-help/
use-microsoft-query-to-retrieve-external-data-HA010099664.aspx.

[23] Google Query, developers.google.com/chart/interactive/docs/
querylanguage.

[24] LibreOffice Query, help.libreoffice.org/Common/Query Design.


