
On Interval Dynamic Logic

Regivan H. N. Santiago1, Benjamı́n Bedregal1, Alexandre Madeira2 and
Manuel A. Martins3

1 Univ. Federal do Rio Grande do Norte — UFRN
Dep. de Informática e Matemática Aplicada — DIMAp

Group for Logic, Language, Information, Theory and Applications — LoLITA,
Natal-RN-Brazil

2 HASLab, INESC-TEC, Dep. Informática Univ. Minho, Portugal
3 CIDMA - Dep. Mathematics, Univ. Aveiro, Portugal

Abstract. The wide number of languages and programming paradigms,
as well as the heterogeneity of ‘programs’ and ‘executions’ require new
generalisations of propositional dynamic logic. The dynamisation method,
introduced in [20], contributed on this direction with a systematic para-
metric way to construct Multi-valued Dynamic Logics able to handle
systems where the uncertainty is a prime concern. The instantiation of
this method with the Lukasiewicz arithmetic lattice over [0, 1], that we
derive here, supports a general setting to design and to (fuzzy-) reason
about systems with uncertainty degrees in their transitions.
For the verification of real systems, however, there are no de facto meth-
ods to accommodate exact truth degrees or weights. Instead, the tradi-
tional approach within scientific community is to use different kinds of
approximation techniques.
Following this line, the current paper presents a framework where the
representation values are given by means of intervals. Technically this is
achieved by considering an ‘interval version’ of the Kleene algebra based
on the [0, 1] Lukasiewicz lattice. We also discuss the ‘intervalisation’ of L
action lattice (in the lines reported in [28]) and how this class of algebras
behaves as an (interval) semantics of multi-valued dynamic logic.

1 Introduction

Dynamic Logics (DL) are extensions of modal logic. They are recognised as
the most adequate logics to reason about computational systems in an asser-
tional way [12]. In its origin, DL was introduced by V. Pratt [26] as a modal
logic suitable to represent and reason about Hoare triples. Since then, DL as-
sumed a central role in the programs verification. Today, not only in response
of the explosion of programming and specification languages, but also in the
emerging heterogeneous nature that a program can assume, a wide family of
DL were defined to be applied to more general complex behaviors. This ranges
from the standard versions for sequential imperative programmes (e.g. [12]) to
other versions tailored for new computing paradigms, either probabilistic sys-
tems, following the original work of D. Kozen [17], hybrid systems with the

differential dynamic logic by A. Platzer [25] or even quantum versions due to
A. Baltag and S. Smets [1]. Within this variety of dynamic logics, in [20], it is
studied a method for a systematic construction of many–valued dynamic logics.
The method is parametrised by an action lattice that supports both the com-
putational paradigm and the truth space, combining in just one structure the
underlying Kleene algebra for the computations and residuated lattices for the
proposition assertions.

On the other hand, logics with many-valued semantics are applied in a va-
riety of fields like Decision Making, Image Processing, Clustering, etc. One of
such logics, which is a very important logic, is that of Lukasiewicz [8], which se-
mantics is based on the residuated lattice L = 〈[0, 1],→, 0, 1〉 — where a →
b = min(1, 1 − a + b). In this logic the truth-values may be thought of as
arising from normalized measurements of bounded physical observables, just
as boolean truth-values arise from yes/no-observables [24, §1.6]. In this context,
it is worth to look into the instantiation of the ‘dynamisation’ parametrised
by the Lukasiewicz action lattice L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉. The space
of values [0, 1] models exact measurements which is far from the real-world.
In fact, any measurement presupposes an uncertainty which is not encoded by
the elements of [0, 1]. For instance, there is no machine representation of irra-
tional numbers. This justifies the use of approximations to those practices. In
order to capture and deal with such uncertainty the indicated approach is to
represent [4] the space [0, 1] by the space of closed intervals of its elements
I([0, 1]) = {[a, b] | [a, b] ⊆ [0, 1]}. Representation here means correction in the
sense of interval mathematics [13, 28] and can be summarised by the following
expressions:

If a ∈ A and b ∈ B, then:

1. a∗ ∈ A∗, a→ b ∈ A→ B,
2. max(a, b) ∈ max(A,B), min(a, b) ∈ min(A,B) and
3. a� b ∈ A�B

Many interesting questions arise in the interval setting. Since I([0, 1]) extends
[0, 1], what are the action lattices properties which are maintained or destroyed?
Actually, we proved that the obtained interval structure is a Kleene Algebra
(see Theorem 1). This paper’s contribution can be useful on the specification and
analysis of programs involving uncertainty degrees in the execution (transitions).
Moreover, based on the Conway matrix constructions [9], we have a support for
the composition under the Kleene operations (sequential composition, choice and
∗-closure) of transition systems weighed by intervals.

However, the notion of action lattice is not enough to abstract the resulting
structure. Namely, the residuum property does not hold (see Proposition 3).
Although, we still can derive a Multi-valued dynamic logic from such structure
such that the semantics behaves as expected: the value of a sentence in the
standard case belongs to the respective interval interpretation.

Outline of the paper. The paper is structured as follows: Section 2 introduces
a Multi-valued Dynamic Logic built on the L-action lattice, following the ‘dy-
namisation’ method of [20]. Then, Section 3 makes an overview on the interval

2

arithmetics and applies it to the ‘intervalisation’ of L. It is also proved that this
structure is, in fact, a Kleene algebra. In Section 4, we discuss the properties
which are preserved and lost in this procedure. Finally, in Section 5 we present
some direction for future work.

2 An L-Fuzzy Dynamic Logic

Many-valued versions of Modal Logics have been discussed in the literature along
the times; the purposed logics vary in the focus where the many-valueless is
presented: in accessibility relations, in propositions interpretation or in both. The
latter is the case of the works [10, 11] of M. Fitting suggest a logic with many-
valueness evaluated in finite Heyting algebras. Later it was deeply investigated
by F. Bou et al in [6], who adopted the more generic truth support of finite
integral commutative residuated lattices.

The literature is not so rich at respect of Many-Valued Dynamic Logics. J.
Hughes et al introduced in [14] a propositional dynamic logic over the continuum
truth (0, 1)-lattice with the standard fuzzy residues. However, from the perspec-
tive of dynamic logic, this formalism is quite restrictive, since it lefts behind both
transitive closure and non deterministic choice. In the context of rational deci-
sion theory, C. Liau [19] introduced also another different many-valued dynamic
logic w.r.t. the specific continuum truth (0, 1)-lattice.

A systematic method to build Multi-valued Dynamic Logics was then in-
troduced in [20, 21]. This method is parametrized by an action lattice [16], an
algebraic structure that provides a generic support for computational space (as a
Kleene algebra) and for truth space (as residuated lattice). The logic introduced
in this section is based on this work and can be captured as an instantiation of
this method.

2.1 The Lukasiewicz action lattice

The role or the Lukasiewicz residuated lattice, i.e., the algebraic structure

 L = ([0, 1],max,�, 0, 1,→)

with

– x→ y = min(1, 1− x+ y) and
– x� y = max(0, y + x− 1),

is taken as the standard fuzzy truth space [30]. Moreover, as stated above, we are
looking for a structure suitable to support a fuzzy computational model. When-
ever the max and the � operators are used to model the choice and composition
of atomic actions, we need to consider a Kleene operator to model the recursive
iteration of programs. These constitute the components of an action lattice [16],
the structure taken in [20, 21] as a generic parameter for a multi-valued logic
definition. More precisely:

3

Definition 1. An action lattice is a tuple

A = (A,+, ; , 0, 1, ∗,→, ·)

where A is a set, 0 and 1 are constants, * is an unary operation in A and +, ; ,→
and · are binary operations in A satisfying the axioms enumerated in Figure 1,
where the relation ≤ is induced by +: a ≤ b iff a+ b = b.

a + (b + c) = (a + b) + c (1)

a + b = b + a (2)

a + a = a (3)

a + 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b + c) = (a; b) + (a; c) (7)

(a + b); c = (a; c) + (b; c) (8)

a; 0 = 0; a = 0 (9)

1 + a + (a∗; a∗) ≤ a∗ (10)

a;x ≤ x ⇒ a∗;x ≤ x (11)

x; a ≤ x ⇒ x; a∗ ≤ x (12)

a;x ≤ b ⇔ x ≤ a→ b (13)

a→ b ≤ a→ (b + c) (14)

(x→ x)∗ = x→ x (15)

a · (b · c) = (a · b) · c (16)

a · b = b · a (17)

a · a = a (18)

a + (a · b) = a (19)

a · (a + b) = a (20)

Fig. 1. Axiomatisation of action lattices (from [16])

Note that, by (19) and (20), the natural order ≤ can be equivalently defined
by a ≤ b iff a · b = a. Observe that by restricting the definition of A to the struc-
ture (A,+, ; , 0, 1, ∗) axiomatised by (1)–(12) we obtain the definition of a Kleene
algebra [9, 18]. In the context of this work, this will be called the underlying
Kleene algebra of A. Moreover, by considering structure (A,+, ; , 0, 1,→, ∗) ax-
iomatized by (1)–(15) we obtain the definition of (left-residuated) action algebra
[27].

For the illustration of the structure with several examples and properties
we suggest [20]. Just as example, we can consider a discrete 3-valued lattice
underling the 3-valued logic:

Example 1 (3 - linear three-value lattice). The explicit introduction of a deno-
tation for unknown gives rise to the the following three elements linear lattice

3 = ({>, u,⊥},∨,∧,⊥,>, ∗,→,∧)

where

∨ ⊥ u >
⊥ ⊥ u >
u u u >
> > > >

∧ ⊥ u >
⊥ ⊥ ⊥ ⊥
u ⊥ u u
> ⊥ u >

→ ⊥ u >
⊥ > > >
u ⊥ > >
> ⊥ u >

∗
⊥ >
u >
> >

4

It is easy to observe that, as a consequence of axiom (10), whenever > = 1, we
have that x∗ = 1, for all x. Hence we have all the ingredients to introduced the
 Lukasiewicz arithmetic lattice, a structure that plays a main role in the theory
developed in the sequel:

Definition 2 (L - the Lukasiewicz arithmetic lattice). The Lukasiewicz
arithmetic lattice is the structure

 L = ([0, 1],max,�, 0, 1, ∗, → , min)

where

– x→ y = min(1, 1− x+ y),
– x� y = max(0, y + x− 1) and
– x∗ = 1.

2.2 The L-Fuzzy Dynamic Logic

Signatures of LDL are exactly the same of the ones of Propositional Dynamic
Logic: signatures are pairs (Π,Prop) of disjoint sets of atomic programs Π and
of propositions symbols Prop.

Formulas of LDL consists in the positive fragment of Propositional Dynamic
Logic: the set of Π-programs, denoted by Prg(Π), consists of all expressions
generated by

π 3 π0 |π;π |π + π |π∗

for π0 ∈ Π. Given a signature (Π,Prop), we define the LDL-formulæ for

(Π,Prop), denoted by Fm LDL(Π,Prop), as the ones generated by the gram-
mar

ρ 3 > |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ→ ρ | ρ↔ ρ | 〈π〉ρ | [π]ρ

for p ∈ Prop and π ∈ Prg(Π).

Semantics. As expectable, the interpretation of atomic programs are Kripke
structures with weighted transitions. For instance, atomic programs Π = {π, π′}
can be realized by the structures

Aπ : s1

√
2

3
**
s2

0.7

��

Aπ′ : s1

√
2

2
**
s2

0.5

��

√
3

2

jj (21)

where that tags mention the uncertainty level of each states transitions. These
weighted transition systems are usually represented by the underlying adjacency
matrices

Aπ =

[
0
√
2
3

0 0.7

]
Aπ′ =

[
0

√
2
2√

3
2 0.5

]

5

Moreover, we need a mathematical framework to interpret composed pro-
grams, i.e., regular expressions of atomic programs. In other words, we need to
consider a computational space for LDL where the programs are interpreted.
Based on the classic matricial constructions over Kleene algebras (see [9, 18]) we
consider the structure

Mn(L) = (Mn(L),max,�, 0, 1, ∗) (22)

as follows:

1. Mn(L) is the space of (n× n)-matrices over L
2. for any A,B ∈ Mn(L), define M = max(A,B) by Mi j = max(Ai j , Bi j),
i, j ≤ n.

3. for any A,B ∈Mn(L), define M = A � B by taking

max
(
Ai 1 �B1 j ,max(Ai 2 �B2 j , (· · · ,max(Ai n �Bn j) · · ·)

)
4. the matricial 1 and 0 are the (n×n)-matrices defined by 1i,j =

{
1 if i = j

0 otherwise

and 0i,j = 0, for any i, j ≤ n.
5. for any M = [a] ∈M1(A), M∗ = [a∗];

for any M =

[
A B
C D

]
∈Mn(A), n > 1, where A and D are square matrices,

define

M* =

[
F ∗ F ∗ � (B � D∗)
(D∗ � C)� F ∗ max(D∗, (D∗ � (C � (F ∗ � (B � D∗)))))

]
where F = max(A,B � (D∗ � C)). Note that this construction is recursively
defined from the base case (where n = 2) where the operations of the base
action lattice A are used.

A classic result (e.g. [9, 18]) establishes that Kleene algebras are closed under
formation of matrices. This justifies the adoption of Mn(L) as a well behaved
computational space for LDL.

Theorem 1. The structure Mn(L) = (Mn(L),max,�, 0, 1, ∗) defined above is a
Kleene algebra.

 LDL-models for a set of propositions Prop and programs Π, denoted by

Mod LDL(Π,Prop), consists of tuples

A = (W,V, (Aπ)π∈Π)

where W is a finite set (of states), V : Prop ×W → [0, 1] is a function, and
Aπ ∈Mn(L), with n standing for the cardinality of W .

The interpretation of programs in these models belongs to the space of the
matrices over the underlying Kleene algebra of L. Each matrix represents the

6

effect of a program executing from any point of the model. Formally, the in-

terpretation of a program π ∈ Prg(Π) in a model A ∈ Mod LDL(Π,Prop) is
recursively defined, from the set of atomic programs (Aπ)π∈Π , as follows:

Aπ;π′ = Aπ �Aπ′ ,Aπ+π′ = max(Aπ,Aπ′) and Aπ∗ = A∗π.

together with the constants interpretations A1 = 1 and A0 = 0.

returning to our running example, we are able to calculate the interpretation
of the program Aπ+π′ by making

Aπ+π′ = max(Aπ,Aπ′) = max

([
0
√
2
3

0 0.7

]
,

[
0

√
2
2√

3
2 0.5

])
=

[
0

√
2
2√

3
2 0.7

]
(23)

that represents the following weighted transition system:

Aπ+π′ : s1

√
2

2
**
s2

0.7

��

√
3

2

jj

By considering the interpretation of the propositions Prop = {p, q} as V (p, s1) =
0.1, V (q, s1) = 0.5, V (p, s2) = π

4 and V (q, s2) = 0.75 we have a compete descrip-
tion of a concrete ({π, π′}, {p, q})-model A = ({s1, s2}, V, (Ap)p∈{π,π′}).

Satisfaction.

As mentioned above, the carrier of L corresponds to the space of truth degrees
for LDL. Hence, the graded satisfaction relation for a model

A ∈ Mod LDL(Π,Prop), consists of a function

|= : W × Fm LDL(Π,Prop)→ L

recursively defined as follows:

– (w |= >) = 1

– (w |= ⊥) = 0

– (w |= p) = V (p, w), for any p ∈ Prop

– (w |= ρ ∧ ρ′) = min
{

(w |= ρ), (w |= ρ′)
}

– (w |= ρ ∨ ρ′) = max
{

(w |= ρ), (w |= ρ′)
}

– (w |= ρ→ ρ′) = (w |= ρ)→ (w |= ρ′)

– (w |= 〈π〉ρ) = max
{
Aπ(w,w′)� (w′ |= ρ)

∣∣w′ ∈W}
– (w |= [π]ρ) = min

{
Aπ(w,w′)→ (w′ |= ρ)|w′ ∈W

}
In order to illustrate the definition, the calculation of the truth degree of the
formula 〈π + π′〉(p→ q)) in the introduced model A can be achieved as follows:

7

(s1 |= 〈π + π′〉(p→ q)) = max(0� (0.1→ 0.5),
√
2
2 � (0.75→ π

4))

=
√
2
2 � (0.75→ π

4)

=
√
2
2 �min(1, 1− 0.75 + π

4)

=
√
2
2

Therefore, we conclude with a degree of certainty
√
2
2 that, after executing π+π′

from the state s1, we have p→ q.

3 L-Interval algebra

As stated before, the space of values [0, 1] models exact measurements/truth
values which is far from the real-world. In fact, any measurement pressuposes
an uncertainty which is not encoded by the elements of [0, 1]. Another situation
arises whenever an expert is unable to supply an exact membership of an object
in a fuzzy set, in this case he can provide a closed subinterval of [0, 1] as an ex-
pression of his inability to supply an exact answer [7]. Such closed subintervals
can also be used as the resulting abstraction of the exact values provided by var-
ious experts about the same membership. Therefore, assuming the Lukasiewcz
arithmetic lattice L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 as a natural space of
measurements/truth values [24, §1.6] it is reasonable to investigate its interval
counterpart. But what would be such interval counterpart? Before we proceed
to answer this question, let’s expose a little about the interval counterpart of
real numbers algebra: 〈R; +,−, /,×, 1, 0〉.

In the 50’s Ramon Moore [22, 23] and Teruo Sunaga [29] proposed the so
called interval arithmetics. Interval arithmetics is a set of operations on the
set of all closed intervals [a, b] ⊆ R. They defined the arithmetic in the following
way:

1. [a, b] + [c, d] = [a+ c, b+ d]

2. −[c, d] = [−d,−c]
3. [a, b] · [c, d] = [minP,maxP] — where P = {a · c, a · d, b · c, b · d}
4. [a, b]−1 = [1/b, 1/a]; provided that 0 /∈ [a, b]

5. [a, b]− [c, d] = [a− d, b− c]
6. [a, b]/[c, d] = [a, b] · ([c, d]−1)

Observe what happens with each operation:

1. If x ∈ [a, b] and y ∈ [c, d], then (x+ y) ∈ [a, b] + [c, d],

2. If x ∈ [a, b] and y ∈ [c, d], then (x · y) ∈ [a, b] · [c, d],

3. If x ∈ [a, b] and y ∈ [c, d], then (x/y) ∈ [a, b]/[c, d], and

4. If x ∈ [a, b], then (−x) ∈ −[a, b].

The arithmetic on intervals reveals two desired properties: (a) Correctness
and (b) Optimality.

8

“Correctness. . . . when an expression is evaluated using intervals, it
yields an interval containing all results of pointwise evaluations based on
point values that are elements of the argument intervals.

. . .
Optimality. By optimality, we mean that the computed floating-point

interval is not wider than necessary.”
Hickey et.al [13, p.1040]

The term Correctness connects n-ary interval operations F with n-ary real
operations f and means that if F is correct with respect to f , then we can enfold
any exact value r ∈ R in a closed interval [a, b], such that r ∈ [a, b], and then
simply operate with such “envelopes” by using F , because the resulting interval
F ([a, b]) will enfold the desired result f(r). Formally a function F is correct with
respect to a real function f whenever:

r ∈ [a, b]⇒ f(r) ∈ F ([a, b]) (24)

In practice, exact values are replaced by intervals which are operated with
correct interval functions. Intervals enfold the exact values and provide a measure
of impreciseness through its width.

Santiago et. al [2, 28] investigated the notion of Correctness. Instead of cor-
rectness the authors used the term representation, since interval expressions
could be faced not just as machine representations of an exact calculation, but
also as an instance of a “mathematical representation of real numbers” 4. Beyond
correctness these interval operations are also optimum; namely the resulting in-
tervals contain only the values of real operations. We could say that the proposed
algebra of intervals is the best interval representation for the arithmetic
of real numbers.

One side-effect of this process of intervalization is the loss of algebraic prop-
erties. The resulting structure is not an Euclidean field; for example X − X is
not always equal to [0, 0]. In this paper we will also lose some properties of L.

3.1 On the Interval Lukasiewicz Lattice

The Lukasiewicz arithmetic lattice L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 contains
non-finitely representable elements; e.g. irrational numbers. In a similar way we
can think of an interval algebra for L. A piece of such algebra was introduced
by Bedregal and Santiago in [4]. There, the authors proposed a correct interval
implication for “→”. In what follows we propose the interval counterpart for
 L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉 in such a way that the resulting operations
are correct and optimal, i.e. they are best interval representations.

Definition 3. Consider the real unit interval U = [0, 1] ⊆ R and the set U =
{[a, b] | 0 ≤ a ≤ b ≤ 1} of subintervals of U . For any interval X ∈ U, X is the

4 This idea is confirmed in some Representation Theorems of Euclidean continuous
functions.

9

minimum of X and X the maximum of X; i.e. X = [X,X]. Given two intervals
X,Y ∈ U, let be the following partial orders on U:

(i) The product or Kulisch-Miranker order :

X ≤ Y ⇔ X ≤ Y ∧ X ≤ Y ; (25)

(ii) The set inclusion order: for all X,Y ∈ U,

X ⊆ Y ⇔ Y ≤ X ∧ X ≤ Y . (26)

Definition 4 ([28]). An interval X ∈ U is a representation of any real num-
ber α ∈ X. Considering two interval representations X and Y for a real number
α, X is said to be an interval representation of α better than Y , if X ⊆ Y .
This notion can also be naturally extended for n-tuples of intervals. A function
F : Un −→ U is said to be an interval representation of a real function
f : Un −→ U if, for each X ∈ Un and x ∈ X, f(x) ∈ F (X). F is also said to
be correct with respect to f . An interval function F : Un −→ U is said to be an
interval representation of a real function f : Un −→ U better than an interval
function G : Un −→ U, if F (X) ⊆ G(X), for each X ∈ Un. The best inter-
val representation of a real function f : Un −→ U is the interval function
f̂ : Un −→ U, defined by

f̂(X) = [inf{f(x) | x ∈X}, sup{f(x) | x ∈X}]. (27)

In what follows we show the best interval representation for the Lukasiewicz
arithmetic lattice L = 〈[0, 1],max,�, 0, 1, ∗,→,min〉. Almost all of the resulting
interval representations comes from previous works. Before we go further it is
noteworthy that the following resulting structure is the best possible
interval structure to represent the Lukasiewicz arithmetic lattice.

Definition 5. Given X,Y ∈ U.

1. Max(X,Y) = [max(X,Y),max(X,Y)]
2. Min(X,Y) = [min(X,Y),min(X,Y)]
3. X

⊙
Y = [(X � Y), (X � Y)] = [max(0, X + Y − 1),max(0, X + Y − 1)]

4. X⇒>Y = [(X → Y), (X → Y)] = [min(1, 1−X + Y),min(1, 1−X + Y)]

5. X~ = [X∗, X
∗
] = [1, 1].

Proposition 1. All of these interval operations are the best interval represen-
tations of the operations in L; i.e. Max = m̂ax, Min = m̂in,

⊙
= �̂, ⇒> = →̂,

and ~ = ∗̂.

Proof. The operations min and � are T-norms on [0, 1] and the interval rep-

resentations of T-norms, according to [5, Theorem 4.3], is given by T̂ (X,Y) =
[T (X,Y), T (X,Y)]. The max operation is a T-conorm on [0, 1] and the inter-
val representations of T-conorms, according to [3, Theorem 5.2], is given by

Ŝ(X,Y) = [S(X,Y), S(X,Y)]. According to [4, Proposition 4.4] ⇒> = →̂. Fi-
nally, it is trivial that ~ = ∗̂.

10

Proposition 2. X ≤ Y iff Max(X,Y) = Y .

Proof. X ≤ Y iff X ≤ Y and X ≤ Y iff max(X,Y) = Y and max(X,Y) = Y iff
Max(X,Y) = Y .

The structure 〈U,Max,Min, [0, 0], [1, 1]〉 is a bounded lattice.

Theorem 2. The structure K(̂L) = 〈U, m̂ax, �̂, [0, 0], [1, 1], ∗̂〉 is a Kleene alge-
bra.

Proof. m̂ax trivially satisfies equations (1)-(4). According to [5, p.3224]
⊙

sat-
isfies equations (5)-(6). Equations (7) requires the result that every T-norm
distributes over the maximum [15, Propostition 2.22], the rest of the proof is
an exercise. Equation (8) comes from equation (7) and the commutativity of �̂.
Equation (9) is also easily proved. Since for every A ∈ U, A∗ = [1, 1], and [1, 1]
is the top element in U, then inequation (10) is trivially satisfied. Again, since
A∗ = [1, 1], then A∗�̂x = x and implication (11) is satisfied. A similar argument
applies to implication (12).

Since K(̂L) is a Kleene algebra, we can canonically construct, as in (22), the

space of matrices Mn(K(̂L)) (which is also a Kleene algebra).

Observation: According to Proposition 1 every operation of the
Kleene algebra K(̂L) is the best interval representation of the respective

operation of K(L). Therefore, we can say that K(̂L) and Mn(K(̂L))
are, respectively, the best interval representation of the Kleene
algebras L and Mn(K(L)).

Notation: In order to simplify the notation we use the same symbols
for the operations of Lukasiewicz Kleene algebra: L = 〈[0, 1],max,�, 0, 1, ∗〉,
its interval representation K(̂L) = (U,max,�, 0, 1, ∗) and the corre-
sponding spaces of matrices: Mn(K(L)) = (Mn(L),max,�, 0, 1, ∗) and

Mn(K(̂L)) = (Mn(K(̂L)),max,�, 0, 1, ∗).

The next automata are the interval representation of (21)

Aπ : s1

[0.4,0.5]
**
s2

[0.7,0.7]

��

Aπ′ : s1

[0.6,0.8]
**
s2

[0.5,0.5]

��

[0.7,0.9]

jj

Their interval matrices are:

Aπ =

[
(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]
Aπ′ =

[
(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.5)

]
The interpretation of the program Aπ+π′ is

max

([
(0, 0) (0.4, 0.5)
(0, 0) (0.7, 0.7)

]
,

[
(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.5, 0.7)

])
=

[
(0, 0) (0.6, 0.8)
(0.7, 0.9) (0.7, 0.7)

]

11

which represents the following weighted transition system:

Aπ+π′ : s1

[0.6,0.8]
**
s2

[0.7,0.7]

��

[0.7,0.9]

jj

4 The Price

Before we proceed, it must be clear why do we use intervals. Intervals are used
in a variety of situations when it is not possible to use exact values. If the exact
values can be used, then it does not make sense to use intervals.

Although it is possible to use a near exact value to represent a desired point;
e.g. 3.14 would be used to represent π, the information about impreciseness is
not codified by such exact value. Intervals provide such kind of information and
the quality of such representation can be measured by the width of the interval:
the tight is the interval the better is the representation.

Sometimes intervals are the only representation available to work with; e.g.
(1) some magnetic resonance machines provide intervals for non-exact values
(2) some applications in Fuzzy Systems provide intervals as inexact membership
degree or as the abstraction of several membership degrees provided by different
experts.

In any case, intervals are the entities provided instead of exact values. To deal
with intervals a price must be paid; namely: not all properties of the space
containing the exact values are preserved in the interval space. For example, in
the case of real numbers, the respective interval representation does not satisfy
the property: x− x = 0.

As we will see the same happens with the interval representation of the action
lattice L. Some properties stated in Figure 1 are satisfied by L, but are not by
its interval representation ̂L. Since these properties are connected with Dynamic
Logics, there will be impacts of interval representation on the logical axioms.
Some of these impacts are discussed below:

Observe that in the Lukasiewicz action lattice, L, the equation “x→ x = 1”
is satisfied while this is not true in its interval representation: ̂L. But this is
a crucial feature of ̂L ! Take the following example: [0.5, 0.6] → [0.5, 0.6] =
[0.6→ 0.5, 0.5→ 0.6] = [0.9, 1] 6= [1, 1]. Although 1 ∈ [0.9, 1], what is happening
here? Suppose that the interval [0.5, 0.6] is the tightest machine interval which
represents the non-finitely representable exact values in L: π

6 = 0.523598775 . . .

and
π
6 +0.6

2 = 0.5617993875 Then, in order to calculate the implications:
π
6 →

π
6 ,

π
6 +0.6

2 →
π
6 +0.6

2 , π
6 →

π
6 +0.6

2 and
π
6 +0.6

2 → π
6 , the only way is to

calculate: [0.5, 0.6] →̂ [0.5, 0.6]. In this case, π
6 →

π
6 = 1,

π
6 +0.6

2 →
π
6 +0.6

2 = 1,
π
6 →

π
6 +0.6

2 = 1,
π
6 +0.6

2 → π
6 = 0.9617993875 . . ., and [0.5, 0.6] →̂ [0.5, 0.6] =

[0.6 → 0.5, 0.5 → 0.6] = [0.9, 1]. Therefore, all the previous implications are

12

contained in the implication [0.5, 0.6] →̂ [0.5, 0.6]. In other words, unless an
interval X has the form [a, a], it does not make sense to impose X → X =
[1, 1], since the same interval can be used to represent two different exact values.
Therefore, the known logical laws of Dynamic Logic must be reviewed.

The price to be paid for using intervals does not stop here, in what follows we
show that the structure ̂L = 〈U,max,�, 0, 1, ∗, →̂ , min〉 is not an action lattice.
This means that to propose a Dynamic Logic which deals with interval values
some properties of action lattices must be generalized.

Proposition 3.

1. Equation (13) a;x ≤ b⇔ x ≤ a→ b (Left-residuation) fails.
2. Equation (15) (x→ x)∗ = x→ x fails, instead x→ x ≤ (x→ x)∗.

Proof. 1. Make x = [1, 1], then a� x ≤ b⇔ x ≤ a→ b becomes a ≤ b⇔ a→
b = [1, 1] which is not true, since x ≤ x, but, as we saw, x→ x is not always
equal to [1, 1]; make x = [0.5, 0.6].

2. Make x = [0.5, 0.6]. By definition (x → x)∗ = [1, 1], but x → x = [0.9, 1].
More generally, since x→ x = x → x ≤ 1 and x→ x = 1, then x → x ≤
[1, 1] = (x→ x)∗.

Proposition 4. Equations (16)-(20) are satisfied.

Proof. It is well-known that the structure 〈U,max,min〉 is a lattice.

However, it is possible to observe that some fragment of the logic generated
by action lattices remains untouched and behaves as expected. For example, by
considering the interpretation of the propositions Prop = {p, q} as V (p, s1) =
[0.1, 0.1], V (q, s1) = [0.5, 0.5], V (p, s2) = [0.7, 0.8] and V (q, s2) = [0.75, 0.75] we
have:

(s1 |= 〈π + π′〉(p→ q))
= max([0, 0]� ([0.1, 0.1]→ [0.5, 0.5]), [0.6, 0.8]� ([0.5, 0.5]→ [0.7, 0.8]))
= max([0, 0], [0.6, 0.8]� [0.5→ 0.7, 0.5→ 0.8])
= [0.6, 0.8]� [1, 1]

= [0.6, 0.8] 3
√
2
2 .

5 Conclusion and Further work

Dynamic logics are very important to specify and verify properties on programs’
executions. Nowadays, Dynamic logics refers to a large family of logics that have
been intensively used in the verification of computational systems, that have
been able to evolve and adapt to new, and complex validation challenges.

In [20, 21] there was introduced a generic method to build propositional
many-valued dynamic logics, parametrized by an action lattice. Moreover, it is
shown that, from beyond of these generic constructions, only the ones parametrized

13

by action lattices behave well, in the sense of the respect of the classic axiomatic
of propositional dynamic logic [12].

We start this work by looking in a such special case, namely the Lukasiewski
lattice over [0, 1] (it is well known that it can be expanded to an Action lat-
tice). This structure support a suitable framework to design and reason about
systems with uncertainty degrees in transitions. However, for implementation
purposes or in the verification of real systems, it is not possible to deal with
exact degrees (for instance irrational numbers), being hence mandatory the use
approximations. In this view we proposed in Section 3.1 an interval version of the
 Lukasiewski lattice. Also here, it can be defined a closure operations in order to
obtain a Kleene Algebra and then the Conway’s matricial constructions [9] can
be applied. Although, not all works perfectly. Actually, the interval Lukasiewski
Kleene algebra is not an action lattice (see Proposition 3).

This is the price to have intervals. In Section 4 we discuss some important
questions related to this situation. In particular, we explain some non intuitive
phenomena: for instance the implication [a, b]→ [a, b] is not necessarily the top
element of the lattice.

This work paves the way for an interesting research agenda. The next step
will the generalization of the intervalising process to an arbitrary Kleene algebra
and to find the axiomatisation for the abstract interval pseudo-action algebras.
We have already worked on this subject and some weakening of the residuum
adjunction must be considered. Another important question, that we shortly
consider at the end of Section 4, is how these structures constitute a sound
(interval) semantics for Dynamic Logic. It can be proved that this semantics is
correct in the sense that the value of a sentence in the standard case belongs to
the respective interval interpretation.

Acknowledgements. R. Santiago and B. Bedregal are supported by Marie
Curie project PIRSES-GA-2012-318986 GetFun funded by EU-FP7 and by the
Brazilian National Council for Scientific and Technological Development (CNPq,
Portuguese: Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico)
under the Projects 304597/2015-5 and 307681/2012-2. This work is also fi-
nanced by the ERDF – European Regional Development Fund through the Op-
erational Programme for Competitiveness and Internationalisation - COMPETE
2020 and by National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-

016692. A. Madeira and M. Martins are also supported by the FCT BPD in-
dividual grant SFRH/BPD/103004/2014 and UID/MAT/04106/2013 at CIDMA,
respectively.

References

1. Baltag, A., and Smets, S. Quantum logic as a dynamic logic. Synthese 179, 2
(2011), 285–306.

2. Bedregal, B., and Santiago, R. Some continuity notions for interval functions
and representation. Computational and Applied Mathematics 32, 3 (2013), 435–
446.

14

3. Bedregal, B. C., and Takahashi, A. Interval valued versions of t-conorms,
fuzzy negations and fuzzy implications. In 2006 IEEE International Conference on
Fuzzy Systems (2006), pp. 1981–1987.

4. Bedregal, B. R. C., and Santiago, R. H. N. Interval representations,
 Lukasiewicz implicators and Smets—Magrez axioms. Information Sciences 221
(2013), 192 – 200.

5. Bedregal, B. R. C., and Takahashi, A. The best interval representations of
t-norms and automorphisms. Fuzzy Sets and Systems 157, 24 (2006), 3220 – 3230.

6. Bou, F., Esteva, F., Godo, L., and Rodŕıguez, R. O. On the minimum many-
valued modal logic over a finite residuated lattice. J. Log. Comput. 21, 5 (2011),
739–790.

7. Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J., Xu, Z., Bedre-
gal, B., Montero, J., Hagras, H., Herrera, F., and Baets, B. D. A histor-
ical account of types of fuzzy sets and their relationships. IEEE Transactions on
Fuzzy Systems 24, 1 (Feb 2016), 179–194.

8. Cignoli, R., d’Ottaviano, I., and Mundici, D. Algebraic Foundations of
Many-Valued Reasoning. Trends in Logic. Springer Netherlands, 1999.

9. Conway, J. H. Regular Algebra and Finite Machines. Printed in GB by William
Clowes & Sons Ltd, 1971.

10. Fitting, M. Many-valued modal logics. Fundam. Inform. 15, 3-4 (1991), 235–254.
11. Fitting, M. Many-valued model logics II. Fundam. Inform. 17, 1-2 (1992), 55–73.
12. Harel, D., Kozen, D., and Tiuryn, J. Dynamic Logic. MIT Press, Cambridge,

MA, USA, 2000.
13. Hickey, T., Ju, Q., and Van Emden, M. H. Interval arithmetic: From principles

to implementation. J. ACM 48, 5 (Sept. 2001), 1038–1068.
14. Hughes, J., Esterline, A. C., and Kimiaghalam, B. Means-end relations and

a measure of efficacy. Journal of Logic, Language and Information 15, 1-2 (2006),
83–108.

15. Klement, E. P., Mesiar, R., and Pap, E. Triangular Norms, 1 ed. Springer,
2000.

16. Kozen, D. On action algebras. manuscript in: Logic and Flow of Information,
Amsterdam, 1991.

17. Kozen, D. A probabilistic PDL. J. Comput. Syst. Sci. 30, 2 (1985), 162–178.
18. Kozen, D. A completeness theorem for Kleene algebras and the algebra of regular

events. Inf. Comput. 110, 2 (1994), 366–390.
19. Liau, C. Many-valued dynamic logic for qualitative decision theory. In New

Directions in Rough Sets, Data Mining, and Granular-Soft Computing, 7th
International Workshop, RSFDGrC ’99, Yamaguchi, Japan, November 9-11, 1999,
Proceedings (1999), N. Zhong, A. Skowron, and S. Ohsuga, Eds., vol. 1711 of
Lecture Notes in Computer Science, Springer, pp. 294–303.

20. Madeira, A., Neves, R., and Martins, M. A. An exercise on the generation
of many-valued dynamic logics. Journal of Logical and Algebraic Methods in
Programming (2016), –.

21. Madeira, A., Neves, R., Martins, M. A., and Barbosa, L. S. A dynamic
logic for every season. In Formal Methods: Foundations and Applications - 17th
Brazilian Symposium, SBMF 2014, Maceió, AL, Brazil, September 29-October 1,
2014. Proceedings (2014), C. Braga and N. Mart́ı-Oliet, Eds., vol. 8941 of Lecture
Notes in Computer Science, Springer, pp. 130–145.

22. Moore, R. E. Interval Arithmetic and Automatic Error Analysis in Digital
Computing. Ph.D. dissertation, Department of Mathematics, Stanford Univer-

15

sity, Stanford, CA, USA, Nov. 1962. Also published as Applied Mathematics and
Statistics Laboratories Technical Report No. 25.

23. Moore, R. E., and Yang, C. T. Interval analysis I. Technical Document LMSD-
285875, Lockheed Missiles and Space Division, Sunnyvale, CA, USA, 1959.

24. Mundici, D. Advanced Lukasiewicz calculus and MV-algebras. Trends in Logic.
Springer Netherlands, 2011.

25. Platzer, A. Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, 2010.

26. Pratt, V. R. Semantical considerations on floyd-hoare logic. In 17th Annual
Symposium on Foundations of Computer Science, Houston, Texas, USA, 25-27
October 1976 (1976), IEEE Computer Society, pp. 109–121.

27. Pratt, V. R. Action logic and pure induction. In JELIA (1990), vol. 478 of
Lecture Notes in Computer Science, Springer, pp. 97–120.

28. Santiago, R. H. N., Bedregal, B. R. C., and Acióly, B. M. Formal aspects of
correctness and optimality of interval computations. Formal Aspects of Computing
18, 2 (2006), 231–243.

29. Sunaga, T. Theory of an interval algebra and its application to numerical analysis
[reprint of res. assoc. appl. geom. mem. 2 (1958), 29–46]. Japan J. Indust. Appl.
Math. 26, 2-3 (10 2009), 125–143.

30. Xu, Y., Ruan, D., Qin, K., and Liu, J. Lattice-Valued Logic: An Alternative
Approach to Treat Fuzziness and Incomparability. Studies in Fuzziness and Soft
Computing. Springer Berlin Heidelberg, 2012.

16

