
Converting Robot Offline Programs to Native Code
Using the AdaptPack Studio Translators

João Pedro Souza, André Castro, Luı́s Rocha, Pedro Relvas
INESC TEC

Porto, Portugal
{joao.p.souza, andre.l.castro, luis.f.rocha, pedro.m.relvas}@inesctec.pt

Manuel F. Silva
INESC TEC and ISEP-IPP

Porto, Portugal
mss@isep.ipp.pt

Abstract—The increase in productivity is a demand for modern
industries that need to be competitive in the actual business
scenario. To face these challenges, companies are increasingly
using robotic systems for end-of-line production tasks, such as
wrapping and palletizing, as a mean to enhance the production
line efficiency and products traceability, allowing human opera-
tors to be moved to more added value operations. Despite this
increasing use of robotic systems, these equipments still present
some inconveniences regarding the programming procedure, as
the time required for its execution does not meet the current
industrial needs. To face this drawback, offline robot program-
ming methods are gaining great visibility, as their flexibility
and programming speed allows companies to face the need of
successive changes in the production line set-up. However, even
with a great number of robots and simulators that are available
in market, the efforts to support several robot brands in one
software did not reach the needs of engineers. Therefore, this
paper proposes a translation library named AdaptPack Studio
Translator, which is capable to export proprietary codes for the
ABB, Fanuc, Kuka, and Yaskawa robot brands, after their offline
programming has been performed in the Visual Components
software. The results presented in this paper are evaluated in
simulated and real scenarios.

Index Terms—Industrial Application, Robot Language Trans-
lator, Simulation, Offline Programming

I. INTRODUCTION

The adoption of robots in the production scale of Fast
Moving Consumer Goods (FMCG) industry has been increas-
ing according to the rise of global trade competitiveness.
The goals are the high performance, efficiency, and flexibility
focusing on the productivity while helping industries to handle
dangerous and repetitive tasks.

Regarding the programming and the setting up of a robotic
cell, two approaches can be highlighted: the online and the
offline programming. The first one, the most commonly used
by industries, consists of manually teaching points to a robot
supervised by a human operator in a real scenario. More
specifically, the operator moves the robot end-effector with

This work is co-financed by the ERDF European Regional Development
Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 under the PORTUGAL 2020 Partnership
Agreement, and through the Portuguese National Innovation Agency (ANI)
as a part of project AdaptPack: POCI-01-0247-FEDER-017887

a teaching pendant to determined positions and creates the
program based on them. It is also called the lead-through
method. This programming method depends on the operator
skill, and several authors propose assisted online programming
to help in this procedure [1]–[4]. Some drawbacks of this
method are the test procedures which are time-consuming and
lack of program flexibility. Thus, the process becomes expen-
sive, tedious and repetitive. The offline method is commonly
based on a previous programming of the robot in a simulated
environment. Therefore, it is possible to create complex and
flexible systems, besides test it in different situations [5]. As
reported by the authors in [5], this procedure consists of a
chain of steps, including 3D modeling, trajectory and process
planning, simulation, calibration and post-processing.

After completing the development of a robotic cell using
the offline programming approach, the simulated program
needs to be translated to the real robot controller. Concerning
this method, robot programmers face the following issue:
there exists a great number of simulators and robot brands
available in the market, and the attempt to standardize both
their interfaces and the robot programming languages has been
quite modest. One example is the development of the Industrial
Robot Language (IRL) [6], that despite being a standard, is
not truly used (considering the authors knowledge) by any
robot manufacturer. Thus, it is necessary to program different
routines according to the robot brand. This is a problem for
industries that, aiming to be competitive, need fast and flexible
solutions to handle different requirements. In relation to this,
the authors in [7] and [8] propose a framework for offline robot
programming that generates codes to several robots; however,
only some basic commands are translated. The paper [9]
presents a framework to allow interpretation of different native
robot languages assisting the simulation phase, i.e., a native
language translator to a simulation language. Nonetheless,
this approach requires the knowledge of the proprietary used
languages.

This paper addresses the translation of programs developed
offline to the robot native language with the creation of the
AdaptPack Studio Translator Library, integrated in the Visual
Components (VC) simulation software [10]. This library is an
extension of the AdaptPack project [11], [12] which proposes
to research and develop a framework focused on the design and
development of modular robotic packaging and palletizing sys-978-1-7281-3558-8/19/$31.00 ©2019 IEEE

tems. The proposed approach includes a number of innovative
components that support, in an efficient and integrated way,
the conception, design and evaluation of packaging/palletizing
solutions and, at a later stage the assembly of the solution on
the shop floor.

The main contributions of the present paper are the follow-
ing:

• It is proposed a library to automatic translate offline
robot programs from the VC software to native robot
languages of the following manufacturers: ABB, Fanuc,
Kuka, and Yaskawa. This approach allows engineers to
create robotic cells solutions in a simulated environment,
test it and simply export the code to the robot controller.

• It is performed a comparative evaluation of the following
proprietary languages: Rapid (ABB), Karel (Fanuc), KRL
(Kuka) and Inform (Yaskawa).

Bearing these ideas in mind, the remainder of the paper is
organized as follows: after this introductory section, Section II
presents the comparative evaluation between the proprietary
languages used in this work. Section III describes the Adapt-
Pack Translator Library and its structure. Section IV presents
the experimental results obtained using the proposed library.
Finally, Section V presents the main conclusions of the devel-
oped work and some ideas for possible future developments.

II. COMPARATIVE EVALUATION OF SOME OF THE MOST
USED ROBOT PROPRIETARY LANGUAGES

As referred in the previous section, this paper addresses
the problem of off-line programming of robots from different
manufacturers (with their corresponding proprietary program-
ming languages), namely: ABB (RAPID), FANUC (Karel),
KUKA (KRL) and Yaskawa (Inform). A description of each
of these programming languages is performed in the following
subsections, being also presented their comparative evaluation.

A. RAPID

RAPID is the high-level programming language developed
by ABB [13]. The instructions and variables used in the VC
software that have a direct correspondence in this language
are shown in Tables I and II. In RAPID, the registers are
modified if any change occurs in the controller memory while
the program is running. Thus, the user needs to be aware
of this detail if a re-execution of the code is needed. The
operations with coordinate references are performed using
already available RAPID language instructions. For example,
any frame can be translated and rotated by the instructions
presented in Code Script 1, and a transformation in relation
to a tool or base frame is defined by a set of parameters, as
shown in Code Script 2.

frame.uframe.trans := [∆x, ∆y, ∆z];
frame.uframe.rot := OrientZYX(∆ωx, ∆ωy, ∆ωz);

Code Script 1. Rapid references relationship methods

MoveJ GoalPose, v200,fine,toolFrame\WObj:=pickPlace;
MoveL GoalPose, v200,fine,toolFrame\WObj:=pickPlace;

Code Script 2. Rapid base and tool setup of a movement

B. Karel
Fanuc has two different programming approaches: using

TP or using Karel. The TP language is the language used
in the teach pendant and it is FANUC’s lower-level program-
ming language. Karel, on the other hand, is FANUC’s high-
level programming language [14]. Different from the other
languages discussed in this section, the Karel code needs to
be compiled before being uploaded to the robot controller.

As in the RAPID case, this language allows modular
programming. The instructions and variables used in the VC
software that have their correspondence in Karel are presented
in Tables I and II, respectively. The operations with coor-
dinate frames are performed by independently setting each
component of the frame, as presented in Code Script 3, and
its reference is set in the motion instructions parameters, as
depicted in the Code Script 4.

frame.x := ∆x; frame.y = ∆y, frame.z = ∆z;
frame.w := ∆ωx; frame.p = ∆ωy, frame.r = ∆ωz;

Code Script 3. Rapid references relationship methods

WITH $TERMTYPE = FINE, $MOTYPE = JOINT, $SPEED = 1000,
$UFRAME = RobotBase, $UTOOL = ToolFrame MOVE TO
GoalPose

WITH $TERMTYPE = FINE, $MOTYPE = LINEAR, $SPEED = 1000,
$UFRAME = RobotBase, $UTOOL = ToolFrame MOVE TO
GoalPose

Code Script 4. Rapid references relationship methods

Some requirements of offline programming are the capabil-
ity to adjust positions and frames according to the calibration
procedure. Therefore, during the program execution, some
high-level declarations and definitions are not applicable and
it is necessary to perform this procedure with Karel registers
functions and instructions. These instructions can be seen in
the part of the Karel code presented in Code Script 5.

-- Defining Targets
CNV_STR_CONF(’N U T, 0, 0, 0’,config_var, 0)
GenPos[1] = POS(799.13,0.00,747.89, 180.00,

48.86, 180.00, config_var) -- P3
SET_PREG_CMT(1, ’P3’, SetPosCmt)-- Set comment on

Position Register
CNV_STR_CONF(’N U T, 0, 0, 0’,config_var, 0)
GenPos[2] = POS(670.00,0.00,715.00, -180.00,

35.18, -180.00, config_var) -- P4
SET_PREG_CMT(2, ’P4’, SetPosCmt)-- Set comment on

Position Register
FOR i = 1 TO 4 DO

-- Read existent Position Registers from TP
PosReg[i] = GET_POS_REG(i,GetPosStatus)
-- Check for uninitialized Position Registers
IF UNINIT(PosReg[i]) = TRUE THEN
--Create Position Register if Uninitialized

SET_POS_REG(i, (GenPos[i]),SetPosStatus)
PosReg[i] = GET_POS_REG(i,GetPosStatus)

ENDIF
--Compare Points to check for changes
IF GenPos[i] >=< PosReg[i] THEN

-- If point not changed on TP, write
generated point to Position Register

ELSE
-- If point changed on TP, write changed

point to Position Register
GenPos[i] = PosReg[i]

ENDIF
SET_POS_REG(i, (GenPos[i]), SetPosStatus)

ENDFOR

Code Script 5. Karel register methods

TABLE I
INSTRUCTIONS MAPPED FROM VISUAL COMPONENTS TO THE LANGUAGES USED IN THE ADAPTPACK STUDIO TRANSLATOR LIBRARY

Visual Components RAPID Karel KRL Inform

Linear Motion MoveL WITH $MOTYPE = LINEAR MOVE TO ... LIN MOVL
Joint Motion MoveJ WITH $JOINT = LINEAR MOVE TO ... PTP MOVJ

Define Tool ”Tool Name” := ”tooldata”

”Tool Name”.x = ”value”
”Tool Name”.y = ”value”
”Tool Name”.z = ”value”
”Tool Name”.w = ”value”
”Tool Name”.p = ”value”
”Tool Name”.r = ”value”

TOOL DATA[”base id”] = ”tool data” SETTOOL TL#(”tool id”) ”pose”

Define Base ”Base Name” := ”wobjdata”

”Base Name”.x = ”value”
”Base Name”.y = ”value”
”Base Name”.z = ”value”
”Base Name”.w = ”value”
”Base Name”.p = ”value”
”Base Name”.r = ”value”

BASE DATA[”base id”] = ”base data” MFRAME UF#(”base id”) ”frame data”

Call Routine ”Routine Name” ”Routine Name” ”Routine Name”() CALL JOB:”Routine Name”
Assign ”variable” := ”expression” ”variable” = ”expression” ”variable” = ”expression” SET ”variable code” ”expression”

While Control Loop
WHILE ”condition” DO

...
ENDWHILE

WHILE (”condition”)
...

ENDWHILE

WHILE ”condition” DO
...

ENDWHILE

*”while label”
...

JUMP *(while label) IF ”condition”

If/Else Control Loop

IF ”condition” THEN
...

ELSE
...

ENDIF

IF (”condition”) THEN
...

ELSE
...

ENDIF

IF ”condition” THEN
...

ELSE
...

ENDIF

JUMP *(label if) IF ”condition”
JUMP *(label else)

*(label if)
...

JUMP *(label endif)

*(label else)
...

JUMP *(label endif)

*(label endif)
Delay Command WaitTime ”seconds” DELAY ”miliseconds” WAIT SEC ”seconds” TIMER T=”seconds”
Halt Command Stop PAUSE HALT -

Comment Statement ! ”comment” – ”comment” ; ”comment” ’ ”comment”
Print Statement TPWrite ”text” WRITE(”text”) CWRITE(..,..,..,”text”) MSG ”text”

Wait for Binary Input WaitDI ”port”, ”state” WAIT FOR DIN[”port id”] = ”state” WAIT FOR IN[”port id”] WAIT IN#(”port id”) = ”state”
Set Binary Output SetDO ”port”, ”state” DOUT[”port id”] = ”state” $OUT[”port id”] DOUT OT#(”port id”) = ”state”

TABLE II
VARIABLES MAPPED FROM VISUAL COMPONENTS TO THE LANGUAGES

USED IN THE ADAPTPACK STUDIO TRANSLATOR LIBRARY

Visual Components RAPID Karel KRL INFORM*

Integer VAR num : INTEGER DCL INT IXXX
Double VAR num : REAL DCL REAL DXXX
Boolean VAR bool : BOOLEAN DCL BOOL BXXX
String VAR string : STRING[”size”] DCL CHAR[”size”] SXXX

*The “X” represents an arbitrary ID value.

C. KRL

KRL is the language supported by Kuka [15]. A KRL robot
program consists of data and source files. The first one is
the file on which are performed all data declarations, such
as variables, frames and tools. The second one is where the
program routines are defined. The KRL language includes
instructions that simplify the code, e.g homogeneous trans-
formation operators (represented by the “:” operator). All
instructions and variables that have their correspondence in
the VC software are presented in Tables I and II, respectively.
Different from the other considered languages, KRL presents
the Inline Form Programming. This technique, illustrated in
Code Script 6, allows the offline programmer to wrap a code
to be recognized by the controller teach pendant.

;FOLD LIN P4 CONT Vel = 0.35m/s CPDATP4 Tool[1] Base
[2];%{PE}%R8.3.31,%MKUKATPBASIS,%CMOVE,%VLIN,%P 1:
LIN, 2:P4, 3:C_DIS, 5:0.35, 7:CPDATP4

....
;ENDFOLD

Code Script 6. KRL inline form programming for a motion statement

D. Inform

Unlike the other languages discussed in this section, Inform
is a low-level language developed by Yaskawa [16]. For
this reason, some statements of the VC software are not
in conformity with this language, such as the if-else and
while control loops. The mapping of these expressions is
achieved through the use of pointers instructions (see Table I).
The Inform language already provides some instructions to
execute operations among coordinate references; however, it
is necessary to set some security parameters on the robot
controller for these functions to be effective. The translation
and rotation of a base and tool frame are done with the
“MFRAME” and the “SETTOOL” instructions, respectively
(as can be seen in Table I). Regarding the use of registers, since
Inform is a low-level language, the translator needs to map the
variable names to register codes, or ID registers. An example
of an ID register declaration is shown in Code Script 7. It
should be noted that the indexes B, I, D and S are used for
Boolean, Integer, Double and String variables, respectively.

SET B0000 0
SET B0001 1
SET I0000 0
SET D0001 12.5
SET S0001 "string"

Code Script 7. Definition of variables in Inform using ID registers

The base and tool frames are separately defined, each one
in a different “.CND” file, as depicted in the Code Scripts 8
and 9, respectively.

//UFRAME 1
///NAME UFRAME0
///TOOL 0
///GROUP 1,0,0,0,0,0,0,0
///PULSE
////RORG C000=0,0,0,0,0,0
////RXX C001=0,0,0,0,0,0
////RXY C002=0,0,0,0,0,0
////BUSER 0.00,0.00,0.00,0.00,0.00,0.00

Code Script 8. Inform base frame definition file

//TOOL 0
///NAME mountplate
0.00,0.00,0.00,0.00,0.00,0.00
0.000,0.000,0.000
0.000
0.000,0.000,0.000
0,0
//TOOL 1
///NAME TOOL0
0.00,0.00,100.00,0.00,0.00,0.00
0.000,0.000,0.000
0.000
0.000,0.000,0.000
0,0

Code Script 9. Inform tool frame definition file

E. Discussion

All languages discussed in this section provided support
to generate programs based on the interpretation of a high
level programming language, such as the programs generated
by the VC software. As presented in Tables I and II, all
variables and instructions statements are mapped between the
VC language and the native robot programming languages.
What differs in the translation procedure for each of the
considered languages, is the ease of development and the
drawbacks in the program post-processing and correspondent
download to the robot controller.

Regarding the high-level languages (RAPID, Karel and
KRL), these have a good support library and are capable to
deal with all programming requirements. One of the main
issues that was identified on the Karel language is that the
user is required to compile the program before downloading it
to the controller, which is a shortcoming to a fast post-process.
Concerning the KRL, in the authors opinion, the Inline Form
Programming [15] suffers from lack of documentation, making
the programming procedure even more time consuming.

For its turn, the Inform, as a low-level programming lan-
guage, requires more expertise of the programmer. The use
of pointers instructions is an alternative to the lack of control
loops and decision instructions. The use of ID registers (as
presented in Code Script 7) could increase the effort for the
development of an automatic translator (that needs to map the
variables and its position in the program). Another issue of this
language are the drawbacks in the post-process: the support
library depends on each particular controller configuration,
which delays the procedure of downloading a program and
running it in the real robot.

III. ADAPTPACK TRANSLATOR LIBRARY STRUCTURE

The AdaptPack Studio Translator is a dynamic library that
incorporates in the Visual Components (VC) software the
capability to translate a program developed in this offline
programming tool to a specific proprietary code, from the fol-
lowing robot manufacturers: ABB, Fanuc, Kuka, and Yaskawa.
This library is part of the AdaptPack Studio. In the AdaptPack
Studio solution the user does not need to have deep knowledge
on the particular language of the used robot brand, since the
programming is developed in the VC language and, mainly,
using graphical instructions, as described in [12].

A. Translation Procedure

The schematic presented on Figure 1 illustrates the transla-
tion procedure. After the offline programming phase in the VC
software, the developer can translate the program by clicking
one of the buttons inside the Translators section, as depicted
in Figure 2. With the native codes generated, the user can
downloaded it to the robot, using the File Transfer Protocol
(FTP) protocol or flash disk.

Fig. 1. Translation procedure.

B. Translation Architecture

The translation library is composed of three processing enti-
ties: the parser, the translator, and the central code. The parser
is responsible for identifying and extracting information, pa-
rameters, and instructions from the VC program, and storing
it in a data structure. After this step, the translator performs
the conversion of this data, and structures the program created
according to the language chosen by the user. Therefore, there
is a processing step for data acquisition and a translation step
for each chosen language. The management and execution of
the translation library is performed by the central code. Each
one of these entities will be detailed in the sequel.

1) The central code: The central code is executed when
the user presses one of the translation buttons, depicted in
Figure 2. This code checks if the robot has been selected by
the user, identifies the language to be translated, activates the
parser, and executes the translation code. The central code also
displays an advise window, according to the language chosen,
with complementary information for the user concerning the
translation procedure. Finally, the generated code is exported
and saved in a specific path chosen by the user.

Fig. 2. AdaptPack translator section in VC’s program tab.

2) The parser: The implemented parser performs the iden-
tification of VC’s data and instructions, using the .NET API
that implements the Robot Sequence Language (RSL) [17].
Through this library, it is possible to obtain each instruction,
subroutine, and variable programmed on the VC program,
and analyze it individually. Based on each identification, data
structures are created with the parameters that compose it. This
data is later used in the translators. The parser uses three main
classes: the program class, the variables class, and the instruc-
tion class. The program class is relative to program data, such
as the main structure and subroutines, path and file name to be
created. The variables class identifies and defines the variables
used in the program and stores them in a data structure, in the
memory. The variables supported by the parser are of the types
integer, double, string and boolean. The properties of each
variable stored in the parser structure are name and value.
The parser also assigns a unique ID to each variable to be
used in languages that use the register declarations methods.
The instruction class registers the necessary parameters that
define a programmed operation instruction. Figure 3 presents
a sample code generated in VC. In this case, it is possible to
observe examples of instructions that must be translated, such
as: waiting for a digital signal, flow control statements, motion
order, subroutines call, delay command, assignment of values
and signals. Table III presents the instructions supported by
the parser, and the properties that compose each instruction.
These instructions were chosen according to the necessities
of the AdaptPack project [11], [12]. Table IV shows the data
types extracted from the instructions that use the target, base
and tool frames. The parser also assigns IDs to the targets, base
and tool frames, based on the first incidence in the program, in
order to be used by languages that use the register declaration
approach.

3) The RAPID Translator: The RAPID translator is respon-
sible for examining the sequence of variables and statements
stored in the database created by the parser. After, it executes
the writing process in a file, with extension “.mod”, in the
folder specified by the user. During this process, the headers
are first written according to the RAPID syntax. Then, the base
frames, the tool frames and the target positions (identified by
the motion commands) are declared and defined. Base frames
and tool frames backups are also created, since the RAPID
language changes the records of these frames definitively if
any instruction in the code modifies them. In this way, the
frames are restored to their original values at the end of the
execution process. Subsequently, the translator writes the main
routine, with its scope, and the subroutines in the “.mod” file
specified by the user. The subroutines are defined in the same
file of the main routine. The variables are declared and defined

Fig. 3. VC example code.

TABLE III
PARSER SUPPORTED INSTRUCTIONS

Instructions Properties

Comment Text
Wait BIN Port and digital binary value

Delay Time
Linear Motion Target*, speed, base and tool frames*

Point to Point Motion Target*, speed, base and tool frames*
Set BIN Port and digital value
While Condition and scope
If/Else Condition and scope

Call Routine Routine’s name
Assign Operators
SetBase Base’s name, ID and pose
SetTool Tool’s name, ID and pose
Print Text
Break -

Continue -
*See Table IV.

TABLE IV
TARGET, BASE AND TOOL FRAMES SUPPORTED BY THE PARSER

Data Properties

Target Target’s name, pose, joints and configuration
Base Frame Base frame’s name, ID and pose
Tool Frame Tool frame’s name, ID and pose

within each scope in which they are used.
4) The Karel Translator: As in the RAPID case, the Karel

translator is responsible for reading the sequence of variables
and statements stored in the parser database. Afterwards, it
executes the writing process in a file with extension “.kl”, in
the folder specified by the user. Headers are initially written
according to the Karel syntax. The base frames, tool frames
and target positions (identified by the motion commands) are
declared and defined, and the variables are also declared. All
subroutines are defined, and have their scope transcribed so
that later the main scope is created. In this scope are inserted
the definitions of the necessary frames and variables, besides
the instructions that constitute the program. It should be noted
that the Karel translator performs the declaration and definition
of target positions using registers (Code 5). This allows users
to perform modifications and adjustments, using the robot
teach pendant, without the need to translate a new code. These
records have an index according to the first incidence of the
data in the code created in VC.

5) The KRL Translator: The statement and variable se-
quences, wrapped by the parser, are analyzed by the KRL
translator, as the user chooses this language. The writing
process is done in two distinct files: a file with extension “.dat”
and another with the extension “.src”. The “.dat” file is where
program data is declared and defined, while the “.src” file is
where the program is defined.

The KRL translator initially creates the “.dat” file by setting
its header. It then defines and declares the base and tool
frames used, in addition to the targets, identified by the motion
commands. It also includes the declaration and definition
of the properties that constitute these motions. The KRL
translator defines the base and tool frames using registers; this
way, the translations are done based on the first incidence of
this data in the VC’s program. The KRL translator creates a file
with the extension ”.src”, starting with the header, according
to the KRL syntax. The main scope of the code is defined and
transcribed, and then each subroutine is defined and written to
the same file. The Inline Form Documentation method is also
created (Code 6), thus the KRL code instructions are exposed
in the robot’s teach pendant.

6) The Inform Translator: As in the previous translators,
the one for Inform identifies and writes all the instructions and
variables parsed. In this case, at least three files are generated
and saved in a specified folder defined by the user: one “.JBI”
file for the main code, one “.JBI” file for each subroutine (if it
exists) and two other files for base and tool frames declaration
and definition, both with the “.CND” extension.

At the beginning of the translation the file that declares
and defines the base frames is generated, followed by the tool
frames file. The frame registers, in both files, are set with
the ID of each one, based on the first incidence in the VC’s
program. The main code and the subroutines are created after.
Each code has its own header, following the Inform syntax,
that first defines all the target registers used in the scope. After
this, the instructions are written. As stated in Section II-D

and Table I, all “while” and “if” statements are identified and
translated by pointers instructions.

IV. EXPERIMENTAL RESULTS

Test codes generated by the AdaptPack Studio Translator
were submitted, to both, simulated and real scenarios. A robot
program was developed offline, in the VC software, and was
performed its translation to robot native code. Regarding the
simulation phase, the simulators used were: ABB RobotStudio
(Figure 4), Fanuc Roboguide (Figure 5) and Yaskawa Moto-
simEG.The robots used in the tests were the ABB IRB 2600-
20/1.6, Fanuc LR Mate 200iD 7L, and Motoman YR-HP6-
B10/NX100. Concerning the KRL language, the tests in the
KUKA.Sim simulator and the real robot will be done as future
work.

Fig. 4. The ABB RobotStudio simulator.

Fig. 5. The Fanuc Roboguide simulator.

Since, the test program codes are extensive to be included
in the paper, parts of it based on the VC program depicted on
Figure 3 are showed in Code Scripts 10,11 and 12.

25 ! Wait signal to start
26 WaitDI di10,high;
27 MoveL P3,v600,fine,tool1\WObj:=wobj1;
28 WHILE it < 4 DO
29 IF isLeft THEN
30 go_left;
31 isLeft:=False;
32 SetDO do0,low;
33 ELSE
34 go_right;
35 isLeft:=True;
36 SetDO do0,high;

37 ENDIF
38 WaitTime 0.5; ! seconds
39 MoveJ P4, vmax \V := vmax.v_tcp*0.75,fine,tool1

\WObj:=wobj1;
40 it:=it + 1;
41 ENDWHILE

Code Script 10. Rapid sample code

24’ Wait signal to start
25WAIT IN#(101)=ON
26MOVL P0000 V=750 PL=0 //P3
27*0
28’ BEGIN WHILE
29JUMP *1 IF B0000
30’GO TO IF
31JUMP *2
32’ GO TO ELSE
33*1
34’ BEGIN IFTHEN
35CALL JOB:go_left
36SET B0000 0
37DOUT OT#(01)=OFF
38JUMP *3
39’ END IFTHEN
40*2
41’ BEGIN ELSETHEN
42CALL JOB:go_right
43SET B0000 1
44DOUT OT#(01)=ON
45JUMP *3
46’ END ELSETHEN
47*3
48’ END IFELSE STRUCT
49’Timer in seconds
50TIMER T=0.5
51MOVJ P0001 VJ=75 PL=0 //P4
52SET I0000 I0000 + 1
53JUMP *0 IF I0000 < 4
54’ END WHILE

Code Script 11. Inform sample code

70 --Wait signal to start
71 WAIT FOR DIN[11] = ON
72 WITH $TERMTYPE = FINE, $MOTYPE = LINEAR, $SPEED

= 750, $UFRAME = Uframe1, $UTOOL = Utool1
MOVE TO GenPos[1]

73 WHILE (it < 4) DO
74 IF (isLeft) THEN
75 go_left
76 isLeft = False
77 DOUT[1] = OFF
78 ELSE
79 go_right
80 isLeft = True
81 DOUT[1] = ON
82 ENDIF
83 DELAY 500 -- ms
84 WITH $TERMTYPE = FINE, $MOTYPE = JOINT,

$SPEED = 0.75*$PARAM_GROUP[1].
$SPEEDLIMJNT, $UFRAME = Uframe1, $UTOOL =
Utool1 MOVE TO GenPos[2]

85 it = it + 1
86 ENDWHILE

Code Script 12. Karel sample code

After the translation process, all simulations were performed
as expected. All the programming done in VC was repro-
duced in the native simulators. No difference between the
simulations, performed on the robot brand simulators, and the
real scenarios were found. This way, the practical tests were
performed according to the VC’s software programming.

All programs generated by the AdaptPack Studio Translator
were able to accept modifications through the teach pendant.

Therefore, the process of calibration can be performed, if there
are differences in the environment between the simulated and
the real-world scenario.

V. CONCLUSIONS

This paper presented the AdaptPack Studio Translator,
a library to translate programs developed offline in Visual
Components to native robot languages. The brands considered
in this project were ABB, FANUC, Kuka and Yaskawa. It
was also presented a comparative evaluation between each
language, regarding the development of the translator.

The performed tests, either in the simulated and real sce-
narios, allowed to verify the capability and the practicality of
the proposed work. This improves the post-process in offline
programming and helps engineers in the project development.
Furthermore, this methodology is able to handle the industries
demands of fast and flexible solutions.

As future work extensive tests will be performed using
different robots from distinct brands.

REFERENCES

[1] M. H. Choi and W. W. Lee, “A force/moment sensor for intuitive robot
teaching application,” in IEEE International Conference on Robotics and
Automation (ICRA)., vol. 4. IEEE, 2001, pp. 4011–4016.

[2] S. Sugita, T. Itaya, and Y. Takeuchi, “Development of robot teaching
support devices to automate deburring and finishing works in casting,”
The International Journal of Advanced Manufacturing Technology,
vol. 23, no. 3-4, pp. 183–189, 2004.

[3] R. D. Schraft and C. Meyer, “The need for an intuitive teaching method
for small and medium enterprises,” VDI BERICHTE, vol. 1956, p. 95,
2006.

[4] M. Ferreira, P. Costa, L. Rocha, and A. Paulo Moreira, “Stereo-based
real-time 6-DoF work tool tracking for robot programing by demon-
stration,” International Journal of advanced manufacturing technology,
vol. 85, no. 1-4, pp. 57–69, 2016, citations: crossref, scopus, wos.

[5] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” in 41st Inter-
national Symposium on Robotics (ISR) and 6th German Conference on
Robotics (ROBOTIK). VDE, 2010, pp. 1–8.

[6] Industrial Robot Language (IRL) - DIN Standard 66312, Deutsche Norm
Std., 1996.

[7] V. S. Bottazzi and J. F. C. Fonseca, “Off-line robot programming frame-
work,” in Joint International Conference on Autonomic and Autonomous
Systems and International Conference on Networking and Services -
(icas-isns’05), Oct 2005, pp. 71–71.

[8] M. Bruccoleri, C. D’onofrio, and U. La Commare, “Off-line program-
ming and simulation for automatic robot control software generation,” in
5th IEEE Int. Conf. on Industrial Informatics, vol. 1, 2007, pp. 491–496.

[9] E. Freund, B. Ludemann-Ravit, O. Stern, and T. Koch, “Creating the ar-
chitecture of a translator framework for robot programming languages,”
in IEEE Int. Conf. on Rob. and Aut., vol. 1. IEEE, 2001, pp. 187–192.

[10] V. Components, “Visual components,” WebSite, 2018. [Online].
Available: https://www.visualcomponents.com/

[11] R. Silva, L. F. Rocha, P. Relvas, P. Costa, and M. F. Silva, “Offline
programming of collision free trajectories for palletizing robots,” in
Iberian Robotics conference. Springer, 2017, pp. 680–691.

[12] A. Castro, J. P. Souza, L. Rocha, and M. F. Silva, “Adaptpack studio:
Automatic offline robot programming framework for factory environ-
ments,” in 19th IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC 2019), vol. 1. IEEE, 2019.

[13] ABB, Technical reference manual RAPID Instructions, Functions and
Data types.

[14] I. FANUC Robotics America, FANUC Robotics SYSTEM R-J3iB Con-
troller KAREL Reference Manual, 2003.

[15] K. Roboter, Quickguide KRL-Syntax, 2012.
[16] Y. Motoman, DX100 Options Instructions for Inform Language.
[17] V. Components, 3D Simulation Software - Quick Start Guide 3.1, 3rd ed.,

Visual Components, December 2004.

